Ground State Solutions of Nehari-Pankov Type for a Superlinear Hamiltonian Elliptic System on \mathbb{R}^{N}

Xianhua Tang

Abstract. This paper is concerned with the following elliptic system of Hamiltonian type

$$
\begin{cases}-\Delta u+V(x) u=W_{v}(x, u, v), & x \in \mathbb{R}^{N}, \\ -\Delta v+V(x) v=W_{u}(x, u, v), & x \in \mathbb{R}^{N}, \\ u, v \in H^{1}\left(\mathbb{R}^{N}\right), & \end{cases}
$$

where the potential V is periodic and 0 lies in a gap of the spectrum of $-\Delta+V, W(x, u, v)$ is periodic in x and superlinear in u and v at infinity. We develop a direct approach to finding ground state solutions of Nehari-Pankov type for the above system. Our method is especially applicable to the case when

$$
W(x, u, v)=\sum_{i=1}^{k} \int_{0}^{\left|\alpha_{i} u+\beta_{i} v\right|} g_{i}(x, t) t \mathrm{~d} t+\sum_{j=1}^{l} \int_{0}^{\sqrt{u^{2}+2 b_{j} u v+a_{j} v^{2}}} h_{j}(x, t) t \mathrm{~d} t
$$

where $\alpha_{i}, \beta_{i}, a_{j}, b_{j} \in \mathbb{R}$ with $\alpha_{i}^{2}+\beta_{i}^{2} \neq 0$, and $a_{j}>b_{j}^{2}, g_{i}(x, t)$ and $h_{j}(x, t)$ are nondecreasing in $t \in \mathbb{R}^{+}$for every $x \in \mathbb{R}^{N}$ and $g_{i}(x, 0)=h_{j}(x, 0)=0$.

1 Introduction

In this paper, we study the following nonlinear elliptic system of Hamiltonian type

$$
\begin{cases}-\Delta u+V(x) u=W_{v}(x, u, v), & x \in \mathbb{R}^{N} \tag{1.1}\\ -\Delta v+V(x) v=W_{u}(x, u, v), & x \in \mathbb{R}^{N} \\ u, v \in H^{1}\left(\mathbb{R}^{N}\right) & \end{cases}
$$

where $N \geq 3, V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ and $W \in C\left(\mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}\right)$.
For the case of a bounded domain, assuming $V \equiv 0$, there are a number of papers concerned with the systems similar to (1.1). For example, see Benci and Rabinowitz [6], De Figueiredo and Ding [7], De Figueiredo and Felmer [8] and their references for superlinear systems; see Kryszewski and Szulkin [13] and the references therein for asymptotically linear systems.

A system similar to (1.1) in the whole space \mathbb{R}^{N} was considered recently; see, for instance, $[1-4,9,12,16,21,26,27,29-37]$ and the references therein. However, most of these focused on the case $V \equiv 1$, which is not only radial but also periodic. The main

[^0]difficulty with problems of this type is the lack of compactness in the Sobolev embedding. A common way to overcome the difficulty is by imposing a radial symmetry assumption on the nonlinearities and working on the radially symmetric function space, which possesses a compact embedding. Another common way is to avoid the indefinite character of the original functional by using the dual variational method; see for instance [1-3].

Since Kryszewski and Szulkin [14] proposed the generalized linking theorem for the strongly indefinite functionals in 1998, Li and Szulkin [15], and Bartsch and Ding [5] (see also [10]) gave several weaker versions, which provided a third way to deal with system (1.1); see [12,17,18, 26, 27, 29-37] and the references therein.

In this paper, we consider System (1.1) with 0 lying in a gap of the spectrum $\sigma(-\Delta+V)$ of the Schrödinger operator $-\Delta+V$. More precisely, we first make the following basic assumptions:
(V) $\quad V \in C\left(\mathbb{R}^{N}\right), V(x)$ is 1-periodic in each of $x_{1}, x_{2}, \ldots, x_{N}$, and

$$
\begin{equation*}
\sup [\sigma(-\Delta+V) \cap(-\infty, 0)]<0<\inf [\sigma(-\Delta+V) \cap(0, \infty)] \tag{1.2}
\end{equation*}
$$

(W1) $W \in C\left(\mathbb{R}^{N} \times \mathbb{R}^{2}, \mathbb{R}^{+}\right), W(x, z)$ is 1-periodic in each of $x_{1}, x_{2}, \ldots, x_{N}$, continuously differentiable on $z:=(u, v) \in \mathbb{R}^{2}$ for every $x \in \mathbb{R}^{N}$, and there exist constants $p \in\left(2,2^{*}\right)$ and $C_{0}>0$ such that

$$
\left|\nabla W_{z}(x, z)\right| \leq C_{0}\left(1+|z|^{p-1}\right) \quad \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R}^{2} ;
$$

(W2) $\nabla W_{z}(x, z)=o(|z|)$, as $|z| \rightarrow 0$, uniformly in $x \in \mathbb{R}^{N}$;
(W3) $\lim _{|z| \rightarrow \infty} \frac{|W(x, z)|}{|z|^{2}}=\infty$, a.e. $x \in \mathbb{R}^{N}$.
Let E, E^{-}, and E^{+}be the Hilbert spaces with $E=E^{-} \oplus E^{+}$, which are defined in Section 2. Observe that the natural functional associated with (1.1) is given by

$$
\begin{equation*}
\Phi(z)=\int_{\mathbb{R}^{N}}[\nabla u \cdot \nabla v+V(x) u v] \mathrm{d} x-\int_{\mathbb{R}^{N}} W(x, z) \mathrm{d} x \tag{1.3}
\end{equation*}
$$

for all $z=(u, v) \in E$, where $W(x, z)=W(x, u, v)$. Furthermore, under assumptions (V), (W1), and (W2), $\Phi \in C^{1}(E, \mathbb{R})$ and

$$
\begin{align*}
\left\langle\Phi^{\prime}(z), \zeta\right\rangle=\int_{\mathbb{R}^{N}}[\nabla u \cdot & \nabla \psi+\nabla v \cdot \nabla \phi+V(x)(u \psi+v \phi)] \mathrm{d} x \tag{1.4}\\
& -\int_{\mathbb{R}^{N}} \nabla W(x, z) \cdot \zeta \mathrm{d} x \quad \forall z=(u, v), \zeta=(\phi, \psi) \in E .
\end{align*}
$$

If $z_{0}=\left(u_{0}, v_{0}\right) \in E$ is a nontrivial solution of problem (1.1), then $z_{0} \in \mathcal{N}^{-}$, where

$$
\mathcal{N}^{-}=\left\{z \in E \backslash E^{-}:\left\langle\Phi^{\prime}(z), z\right\rangle=\left\langle\Phi^{\prime}(z), \zeta\right\rangle=0 \quad \forall \zeta \in E^{-}\right\} .
$$

The set \mathcal{N}^{-}was first introduced by Pankov [19], which is a subset of the Nehari manifold

$$
\mathcal{N}=\left\{z \in E \backslash\{0\}:\left\langle\Phi^{\prime}(z), z\right\rangle=0\right\} .
$$

In general, \mathcal{N}^{-}contains infinitely many elements of E. In fact, under assumptions (V), (W1), (W2), and (W3), for any $z \in E \backslash E^{-}$, there exist $t=t(z)>0$ and $\zeta=\zeta(z) \in E^{-}$ such that $\zeta+t z \in \mathcal{N}^{-}$; see Lemma 3.11.

Recently, for (1.1) with

$$
W(x, u, v)=\int_{0}^{u} f(x, t) \mathrm{d} t+\int_{0}^{v} g(x, t) \mathrm{d} t,
$$

Zhao et al. [34] obtained "the least energy solution" (i.e., a minimizer of the corresponding energy within the set of nontrivial solutions) by variant generalized weak linking theorem and monotonicity trick developed by Schechter and Zou [20] under assumptions (V), (W1)-(W3), and the following Nehari type monotone condition
$\left(\mathrm{Ne}^{\prime}\right) \frac{f(x, t)}{|t|}$ and $\frac{g(x, t)}{|t|}$ are strictly increasing in t on $\mathbb{R} \backslash\{0\}$ for every $x \in \mathbb{R}^{N}$.
We must point out that "the least energy solution" (which is sometimes also called the ground state solution) in the aforementioned references is in fact a nontrivial solution z_{0} that satisfies $\Phi\left(z_{0}\right)=\inf _{\mathcal{M}} \Phi$, where

$$
\mathcal{M}=\left\{z \in E \backslash\{0\}: \Phi^{\prime}(z)=0\right\}
$$

is a very small subset of \mathcal{N}^{-}that may contain only one element. In general, it is much more difficult to find a solution z_{0} for (1.1) that satisfies $\Phi\left(z_{0}\right)=\inf _{\mathcal{N}^{-}} \Phi$ than one that satisfies $\Phi\left(z_{0}\right)=\inf _{\mathcal{M}} \Phi$.

The purpose of this paper is to find a solution z_{0} for (1.1) that satisfies $\Phi\left(z_{0}\right)=$ $\inf _{\mathcal{N}^{-}} \Phi$ under the above assumptions. Since z_{0} is a solution at which Φ has least "energy" in the set \mathcal{N}^{-}of Pankov type, we shall call it a ground state solution of NehariPankov type. As a motivation, we recall a notable work of Szulkin and Weth [22] on the existence of ground state solutions of Nehari-Pankov type for strongly indefinite periodic Schrödinger equation

$$
\left\{\begin{array}{l}
-\Delta u+V(x) u=f(x, u), \quad x \in \mathbb{R}^{N}, \tag{1.5}\\
u \in H^{1}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

Under some standard assumptions on f and the following Nehari type monotone condition
(Ne) $\frac{f(x, u)}{|u|}$ is strictly increasing in u on $\mathbb{R} \backslash\{0\}$ for every $x \in \mathbb{R}^{N}$.
Szulkin and Weth developed a powerful approach (the generalized Nehari manifold method) to find ground state solutions of Nehari-Pankov type on the set

$$
\mathcal{N}_{0}=\left\{u \in E \backslash E^{-}:\left\langle\Phi^{\prime}(u), u\right\rangle=\left\langle\Phi^{\prime}(u), v\right\rangle=0 \quad \forall v \in E^{-}\right\} .
$$

This approach transforms, by a direct and simple reduction, the indefinite variational problem to a definite one, resulting in a new minimax characterization of the corresponding critical value. As we know, Condition (Ne) plays a very important role in the generalized Nehari manifold method.

In the recent papers [23-25], the author developed a new approach to find ground state solution of Nehari-Pankov type for (1.5). The main idea of this approach is to find a minimizing Cerami sequence for Φ outside \mathcal{N}^{-}by using the diagonal method, which is completely different from the one of Szulkin and Weth [22].

In this paper, based on [22-25,34], we further develop the approach in [23-25] to find ground state solution of Nehari-Pankov type for (1.1). To state our results, in addition to the aforementioned hypotheses, we make the following assumption:
(W4) For all $\theta \geq 0, z, \zeta \in \mathbb{R}^{2}$,

$$
\frac{1-\theta^{2}}{2} \nabla W(x, z) \cdot z-\theta \nabla W(x, z) \cdot \zeta+W(x, \theta z+\zeta)-W(x, z) \geq 0
$$

We are now in a position to state the main result of this paper.
Theorem 1.1 Assume that V and W satisfy (V), (W1), (W2), (W3), and (W4). Then (1.1) has a solution $z_{0} \in E$ such that $\Phi\left(z_{0}\right)=\inf _{\mathcal{N}^{-}} \Phi>0$.

However, it is not easy to check assumption (W4). Next, we give several classes of functions satisfying (W4). Prior to this, we define one set as follows:
$\mathcal{N D}=\left\{h \in C\left(\mathbb{R}^{N} \times \mathbb{R}^{+}, \mathbb{R}^{+}\right): h(x, t)\right.$ is 1-periodic in each of $x_{1}, x_{2}, \ldots, x_{N}$ and nondecreasing in $t \in[0, \infty)$ for every $x \in \mathbb{R}^{N}$; $h(x, 0) \equiv 0$ for $x \in \mathbb{R}^{N}$;
there exist constants $p \in\left(2,2^{*}\right)$ and $C_{0}>0$ such that $|h(x, t)| \leq C_{0}\left(1+|t|^{p-2}\right) \forall(x, t) \in \mathbb{R}^{N} \times \mathbb{R}$. $\}$

Corollary 1.2 Assume that V and W satisfy (V) and (W3), and that

$$
W(x, u, v)=\sum_{i=1}^{k} \int_{0}^{\left|\alpha_{i} u+\beta_{i} v\right|} g_{i}(x, t) t \mathrm{~d} t+\sum_{j=1}^{l} \int_{0}^{\sqrt{u^{2}+2 b_{j} u v+a_{j} v^{2}}} h_{j}(x, t) t \mathrm{~d} t
$$

where $\alpha_{i}, \beta_{i}, a_{j}, b_{j} \in \mathbb{R}, \alpha_{i}^{2}+\beta_{i}^{2} \neq 0$ and $a_{j}>b_{j}^{2}, g_{i}, h_{j} \in \mathcal{N D}$. Then (1.1) has a solution $z_{0} \in E$ such that $\Phi\left(z_{0}\right)=\inf _{\mathcal{N}^{-}} \Phi>0$.

Remark 1.3 It is easy to see that the functions

$$
\begin{aligned}
& W(x, u, v)=\left(u^{2}+u v+v^{2}\right) \ln \left(1+u^{2}+u v+v^{2}\right) \\
& W(x, u, v)=(u+2 v)^{2} \ln \left[1+(u+2 v)^{2}\right]+(2 u-v)^{2} \ln \left[1+(2 u-v)^{2}\right], \\
& W(x, u, v)=|u+2 v|^{\sigma_{1}}+|3 u+2 v|^{\sigma_{2}}, \quad \sigma_{1}, \sigma_{2} \in\left(2,2^{*}\right)
\end{aligned}
$$

satisfy (W1), (W2), (W3), and (W4).
The remainder of this paper is organized as follows. In Section 2, we provide some preliminaries and present a variational setting for (1.1). The proofs of our theorem and corollary are given in Section 3.

2 The Variational Setting

Let $\mathcal{A}:=-\Delta+V$; then \mathcal{A} is self-adjoint in $L^{2}\left(\mathbb{R}^{N}\right)$ with domain $\mathfrak{D}(\mathcal{A})=H^{2}\left(\mathbb{R}^{N}\right)$. Let $\{\mathcal{E}(\lambda):-\infty<\lambda<+\infty\}$ be the spectral family of \mathcal{A}, and let $|\mathcal{A}|^{1 / 2}$ be the square root of $|\mathcal{A}|$. Set $\mathcal{U}=\operatorname{id}-\mathcal{E}(0)-\mathcal{E}(0-)$; then \mathcal{U} commutes with $\mathcal{A},|\mathcal{A}|$, and $|\mathcal{A}|^{1 / 2}$, and $\mathcal{A}=\mathcal{U}|\mathcal{A}|$ is the polar decomposition of \mathcal{A} (see [11, Theorem 4.3.3]). By (1.2),

$$
\bar{\Lambda}:=\sup [\sigma(\mathcal{A}) \cap(-\infty, 0)]<0<\underline{\Lambda}:=\inf [\sigma(\mathcal{A}) \cap(0, \infty)] .
$$

Let $\Lambda_{0}=\min \{-\bar{\Lambda}, \underline{\Lambda}\}$, then the following hold:

$$
\begin{aligned}
\mathcal{A} & =\int_{-\infty}^{\infty} \lambda \mathrm{d} \mathcal{E}(\lambda)=\int_{-\infty}^{\bar{\Lambda}} \lambda \mathrm{d} \mathcal{E}(\lambda)+\int_{\underline{\Lambda}}^{\infty} \lambda \mathrm{d} \mathcal{E}(\lambda) \\
|\mathcal{A}| & =\int_{-\infty}^{\infty}|\lambda| \mathrm{d} \mathcal{E}(\lambda)=\int_{\Lambda_{0}}^{\infty}|\lambda| \mathrm{d}[\mathcal{E}(\lambda)-\mathcal{E}(-\lambda)] \\
|\mathcal{A}|^{1 / 2} & =\int_{-\infty}^{\infty}|\lambda|^{1 / 2} \mathrm{~d} \mathcal{E}(\lambda)=\int_{\Lambda_{0}}^{\infty}|\lambda|^{1 / 2} \mathrm{~d}[\mathcal{E}(\lambda)-\mathcal{E}(-\lambda)] .
\end{aligned}
$$

It is well known that $\mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)$ is a Hilbert space endowed with inner product

$$
(u, v)_{\mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)}=\left(|\mathcal{A}|^{1 / 2} u,|\mathcal{A}|^{1 / 2} v\right)_{L^{2}} \quad \forall u, v \in \mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right) .
$$

Then

$$
\|u\|_{\mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)}^{2}=\left\||\mathcal{A}|^{1 / 2} u\right\|_{L^{2}}^{2} \geq \Lambda_{0}\|u\|_{2}^{2} \quad \forall u \in \mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)
$$

Obviously, $\mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)=H^{1}\left(\mathbb{R}^{N}\right)$ with equivalent norm.
Set $E=\mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right) \times \mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)$; then E is a Hilbert space with the inner product

$$
\left(z_{1}, z_{2}\right)=\left(u_{1}, u_{2}\right)_{\mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)}+\left(v_{1}, v_{2}\right)_{\mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)} \quad \forall z_{i}=\left(u_{i}, v_{i}\right) \in E, \quad i=1,2,
$$

the corresponding norm is denoted by $\|\cdot\|$. By the Sobolev embedding theorem, the embedding $E \rightarrow L^{p}\left(\mathbb{R}^{N}\right) \times L^{p}\left(\mathbb{R}^{N}\right)$ is continuous and locally compact.

Let

$$
E^{-}=\left\{(u,-\mathcal{U} u): u \in \mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)\right\}, \quad E^{+}=\left\{(u, \mathcal{U} u): u \in \mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)\right\} .
$$

For any $z=(u, v) \in E$, set

$$
z^{-}=\left(\frac{u-\mathcal{U} v}{2},-\mathcal{U}\left(\frac{u-\mathcal{U} v}{2}\right)\right), \quad z^{+}=\left(\frac{u+\mathcal{U} v}{2}, \mathcal{U}\left(\frac{u+\mathfrak{U} v}{2}\right)\right)
$$

It is easy to check that $\mathcal{U} u \in \mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)$, for all $u \in \mathfrak{D}\left(|\mathcal{A}|^{1 / 2}\right)$. Thus, $E^{-} \subset E$ and $E^{+} \subset E$, $z^{-} \in E^{-}$and $z^{+} \in E^{+}$. It is obvious that $z=z^{-}+z^{+}$. On the other hand, z^{-}and z^{+} are orthogonal with respect to the inner products $(\cdot, \cdot)_{L^{2}}$ and (\cdot, \cdot). Thus, we have $E=E^{-} \oplus E^{+}$. By a simple calculation, one can get that

$$
\begin{aligned}
\frac{1}{2}\left(\left\|z^{+}\right\|^{2}-\left\|z^{-}\right\|^{2}\right) & =\left(|\mathcal{A}|^{1 / 2} \mathcal{U} u,|\mathcal{A}|^{1 / 2} v\right)_{L^{2}}=(|\mathcal{A}| \mathcal{U} u, v)_{L^{2}}=(\mathcal{A} u, v)_{L^{2}} \\
& =\int_{\mathbb{R}^{N}}[\nabla u \cdot \nabla v+V(x) u v] \mathrm{d} x
\end{aligned}
$$

Therefore, the functional Φ defined in (1.3) can be rewritten in a standard way:

$$
\begin{equation*}
\Phi(z)=\frac{1}{2}\left(\left\|z^{+}\right\|^{2}-\left\|z^{-}\right\|^{2}\right)-\Psi(z) \quad \forall z=(u, v) \in E \tag{2.1}
\end{equation*}
$$

where $\Psi(z)=\int_{\mathbb{R}^{N}} W(x, z) \mathrm{d} x$. Our hypotheses imply that $\Phi \in C^{1}(E, \mathbb{R})$, and a standard argument shows that critical points of Φ are solutions of (1.1). Moreover, by (1.4),

$$
\begin{align*}
\left\langle\Phi^{\prime}(z), \zeta\right\rangle= & \left(|\mathcal{A}|^{1 / 2} \mathcal{U} u,|\mathcal{A}|^{1 / 2} \psi\right)_{L^{2}}+\left(|\mathcal{A}|^{1 / 2} \mathcal{U} \phi,|\mathcal{A}|^{1 / 2} v\right)_{L^{2}} \tag{2.2}\\
& -\int_{\mathbb{R}^{N}} \nabla W(x, z) \cdot \zeta \mathrm{d} x \\
= & \left(z^{+}, \zeta^{+}\right)-\left(z^{-}, \zeta^{-}\right)-\int_{\mathbb{R}^{N}} \nabla W(x, z) \cdot \zeta \mathrm{d} x
\end{align*}
$$

for all $z=(u, v), \zeta=(\phi, \psi) \in E$, and $\left\langle\Phi^{\prime}(z), z\right\rangle=\left\|z^{+}\right\|^{2}-\left\|z^{-}\right\|^{2}-\left\langle\Psi^{\prime}(z), z\right\rangle$ for all $z \in E$.

3 Proofs of the Main Results

Let X be a real Hilbert space with $X=X^{-} \oplus X^{+}$and $X^{-} \perp X^{+}$. For a functional $\phi \in$ $C^{1}(X, \mathbb{R}), \phi$ is said to be weakly sequentially lower semicontinuous if for any $u_{n} \rightharpoonup u$ in X, one has $\phi(u) \leq \liminf _{n \rightarrow \infty} \phi\left(u_{n}\right)$, and ϕ^{\prime} is said to be weakly sequentially continuous if $\lim _{n \rightarrow \infty}\left\langle\phi^{\prime}\left(u_{n}\right), v\right\rangle=\left\langle\phi^{\prime}(u), v\right\rangle$ for each $v \in X$.

Lemma $3.1([14,15]) \quad$ Let X be a real Hilbert space with $X=X^{-} \oplus X^{+}$and $X^{-} \perp X^{+}$, and let $\phi \in C^{1}(X, \mathbb{R})$ be of the form

$$
\phi(u)=\frac{1}{2}\left(\left\|u^{+}\right\|^{2}-\left\|u^{-}\right\|^{2}\right)-\psi(u), \quad u=u^{-}+u^{+} \in X^{-} \oplus X^{+} .
$$

Suppose that the following assumptions are satisfied:
(KS1) $\psi \in C^{1}(X, \mathbb{R})$ is bounded from below and weakly sequentially lower semicontinuous;
(KS2) ψ^{\prime} is weakly sequentially continuous;
(KS3) there exist $r>\rho>0$ and $e \in X^{+}$with $\|e\|=1$ such that $\kappa:=\inf \phi\left(S_{\rho}^{+}\right)>$ $\sup \phi(\partial Q)$, where $S_{\rho}^{+}=\left\{u \in X^{+}:\|u\|=\rho\right\}$ and $Q=\left\{v+s e: v \in X^{-}, s \geq 0\right.$, $\|v+s e\| \leq r\}$.
Then there exist a constant $c \in[\kappa, \sup \phi(Q)]$ and a sequence $\left\{u_{n}\right\} \subset X$ satisfying $\phi\left(u_{n}\right) \rightarrow c$ and $\left\|\phi^{\prime}\left(u_{n}\right)\right\|\left(1+\left\|u_{n}\right\|\right) \rightarrow 0$.

Employing a standard argument, one can easily check the following lemma.
Lemma 3.2 Suppose that (V), (W1), and (W2) are satisfied. Then Ψ is nonnegative, weakly sequentially lower semicontinuous, and Ψ^{\prime} is weakly sequentially continuous.

Lemma 3.3 Suppose that (V), (W1), (W2), and (W4) are satisfied. Then

$$
\begin{equation*}
\Phi(z) \geq \Phi(\theta z+\zeta)+\frac{1}{2}\|\zeta\|^{2}+\frac{1-\theta^{2}}{2}\left\langle\Phi^{\prime}(z), z\right\rangle-\theta\left\langle\Phi^{\prime}(z), \zeta\right\rangle \tag{3.1}
\end{equation*}
$$

for all $\theta \geq 0, z \in E, \zeta \in E^{-}$.
Proof By (2.1), (2.2), and (W4), one has

$$
\begin{aligned}
\Phi(z) & -\Phi(\theta z+\zeta) \\
= & \frac{1}{2}\|\zeta\|^{2}+\frac{1-\theta^{2}}{2}\left(\left\|z^{+}\right\|^{2}-\left\|z^{-}\right\|^{2}\right)+\theta(z, \zeta) \\
& -\int_{\mathbb{R}^{N}}[W(x, z)-W(x, \theta z+\zeta)] \mathrm{d} x
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2}\|\zeta\|^{2}+\frac{1-\theta^{2}}{2}\left\langle\Phi^{\prime}(z), z\right\rangle-\theta\left\langle\Phi^{\prime}(z), \zeta\right\rangle \\
& +\int_{\mathbb{R}^{N}}\left[\frac{1-\theta^{2}}{2} \nabla W(x, z) \cdot z-\theta \nabla W(x, z) \cdot \zeta+W(x, \theta z+\zeta)-W(x, z)\right] \mathrm{d} x \\
\geq & \frac{1}{2}\|\zeta\|^{2}+\frac{1-\theta^{2}}{2}\left\langle\Phi^{\prime}(z), z\right\rangle-\theta\left\langle\Phi^{\prime}(z), \zeta\right\rangle \quad \forall \theta \geq 0, \quad z \in E, \quad \zeta \in E^{-} .
\end{aligned}
$$

This shows that (3.1) holds.
From Lemma 3.3, we have the following two corollaries.
Corollary 3.4 Suppose that (V), (W1), (W2), and (W4) are satisfied. Then for $z \in \mathcal{N}^{-}$,

$$
\Phi(z) \geq \Phi(\theta z+\zeta) \quad \forall \theta \geq 0, \quad \zeta \in E^{-}
$$

Corollary 3.5 Suppose that (V), (W1), (W2), and (W4) are satisfied. Then

$$
\begin{equation*}
\Phi(z) \geq \frac{\theta^{2}}{2}\|z\|^{2}+\frac{1-\theta^{2}}{2}\left\langle\Phi^{\prime}(z), z\right\rangle+\theta^{2}\left\langle\Phi^{\prime}(z), z^{-}\right\rangle-\int_{\mathbb{R}^{N}} W\left(x, \theta z^{+}\right) \mathrm{d} x \tag{3.2}
\end{equation*}
$$

for all $z \in E, \theta \geq 0$.
Applying Corollary 3.4, we can prove the following lemma in the same way as [22, Lemma 2.4].

Lemma 3.6 Suppose that (V), (W1), (W2), and (W4) are satisfied. Then
(i) there exists $\rho>0$ such that

$$
m:=\inf _{\mathcal{N}^{-}} \Phi \geq \kappa:=\inf \left\{\Phi(z): z \in E^{+},\|z\|=\rho\right\}>0
$$

(ii) $\quad\left\|z^{+}\right\| \geq \max \left\{\left\|z^{-}\right\|, \sqrt{2 m}\right\}$ for all $z \in \mathcal{N}^{-}$.

Lemma 3.7 Suppose that (V), (W1), (W2), and (W3) are satisfied. Then for any $e \in E^{+}, \sup \Phi\left(E^{-} \oplus \mathbb{R}^{+} e\right)<\infty$, and there is a $R_{e}>0$ such that

$$
\Phi(z)<0 \quad \forall z \in E^{-} \oplus \mathbb{R}^{+} e, \quad\|z\| \geq R_{e}
$$

The proof is standard; see [34, Lemma 4.3].
Corollary 3.8 Suppose that (V), (W1), (W2), and (W3) are satisfied. Let $e \in E^{+}$with $\|e\|=1$. Then there is a $r_{0}>\rho$ such that $\sup \Phi(\partial Q) \leq 0$ for $r \geq r_{0}$, where

$$
\begin{equation*}
Q=\left\{\zeta+s e: \zeta \in E^{-}, s \geq 0,\|\zeta+s e\| \leq r\right\} \tag{3.3}
\end{equation*}
$$

Lemma 3.9 Suppose that (V), (W1), (W2), (W3), and (W4) are satisfied. Then there exist a constant $c \in[\kappa, \sup \Phi(Q)]$ and a sequence $\left\{z_{n}\right\} \subset E$ satisfying

$$
\Phi\left(z_{n}\right) \rightarrow c, \quad\left\|\Phi^{\prime}\left(z_{n}\right)\right\|\left(1+\left\|z_{n}\right\|\right) \rightarrow 0
$$

where Q is defined by (3.3).

Proof Lemma 3.9 is a direct corollary of Lemmas 3.1, 3.2, 3.6(i), and Corollary 3.8.

Analogous to the proof of [23, Lemma 3.8], it is easy to show the following lemma.
Lemma 3.10 Suppose that (V), (W1), (W2), (W3), and (W4) are satisfied. Then there exist a constant $c_{*} \in[\kappa, m]$ and a sequence $\left\{z_{n}\right\}=\left\{\left(u_{n}, v_{n}\right)\right\} \subset E$ satisfying

$$
\begin{equation*}
\Phi\left(z_{n}\right) \rightarrow c_{*}, \quad\left\|\Phi^{\prime}\left(z_{n}\right)\right\|\left(1+\left\|z_{n}\right\|\right) \rightarrow 0 \tag{3.4}
\end{equation*}
$$

Lemma 3.11 Suppose that (V), (W1), (W2), and (W3) are satisfied. Then for any $z \in E \backslash E^{-}, \mathcal{N}^{-} \cap\left(E^{-} \oplus \mathbb{R}^{+} z\right) \neq \varnothing$, i.e., there exist $t(z)>0$ and $\zeta(z) \in E^{-}$such that $t(z) z+\zeta(z) \in \mathcal{N}^{-}$.

The proof is the same as that of [22, Lemma 2.6].
Lemma 3.12 Suppose that (V), (W1), (W2), (W3), and (W4) are satisfied. Then any sequence $\left\{z_{n}\right\}=\left\{\left(u_{n}, v_{n}\right)\right\} \subset E$ satisfying

$$
\begin{equation*}
\Phi\left(z_{n}\right) \rightarrow c \geq 0, \quad\left\langle\Phi^{\prime}\left(z_{n}\right), z_{n}\right\rangle \rightarrow 0, \quad\left\langle\Phi^{\prime}\left(z_{n}\right), z_{n}^{-}\right\rangle \rightarrow 0 \tag{3.5}
\end{equation*}
$$

is bounded in E.

Proof To prove the boundedness of $\left\{z_{n}\right\}$, arguing by contradiction, suppose that $\left\|z_{n}\right\| \rightarrow \infty$. Let $\xi_{n}=z_{n} /\left\|z_{n}\right\|$. Then $\left\|\xi_{n}\right\|=1$. By the Sobolev embedding theorem, there exists a constant $C_{1}>0$ such that $\left\|\xi_{n}\right\|_{2} \leq C_{1}$. If

$$
\delta:=\limsup _{n \rightarrow \infty} \sup _{y \in \mathbb{R}^{N}} \int_{B_{1}(y)}\left|\xi_{n}^{+}\right|^{2} \mathrm{~d} x=0
$$

then by Lions' concentration compactness principle [28, Lemma 1.21], $\xi_{n}^{+} \rightarrow 0$ in $L^{p}\left(\mathbb{R}^{N}\right)$. Fix $R>[2(1+c)]^{1 / 2}$. By virtue of (W1) and (W2), for $\varepsilon=1 / 4\left(R C_{1}\right)^{2}>0$, there exists $C_{\varepsilon}>0$ such that

$$
W(x, z) \leq \varepsilon|z|^{2}+C_{\varepsilon}|z|^{p} \quad \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R}^{2} .
$$

Hence, it follows that

$$
\begin{align*}
& \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} W\left(x, R z_{n}^{+} /\left\|z_{n}\right\|\right) \mathrm{d} x \tag{3.6}\\
& \quad=\limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} W\left(x, R \xi_{n}^{+}\right) \mathrm{d} x \\
& \quad \leq \limsup _{n \rightarrow \infty} R^{2} \varepsilon \int_{\mathbb{R}^{N}}\left|\xi_{n}^{+}\right|^{2} \mathrm{~d} x+\underset{n \rightarrow \infty}{\limsup } R^{p} C_{\varepsilon} \int_{\mathbb{R}^{N}}\left|\xi_{n}^{+}\right|^{p} \mathrm{~d} x \\
& \quad \leq \varepsilon\left(R C_{1}\right)^{2}=\frac{1}{4}
\end{align*}
$$

Let $\theta_{n}=R /\left\|z_{n}\right\|$. Hence, by virtue of (3.2), (3.5), and (3.6), one can get

$$
\begin{aligned}
c+o(1)= & \Phi\left(z_{n}\right) \\
\geq & \frac{\theta_{n}^{2}}{2}\left\|z_{n}\right\|^{2}-\int_{\mathbb{R}^{N}} W\left(x, \theta_{n} z_{n}^{+}\right) \mathrm{d} x+\frac{1-\theta_{n}^{2}}{2}\left\langle\Phi^{\prime}\left(z_{n}\right), z_{n}\right\rangle+\theta_{n}^{2}\left\langle\Phi^{\prime}\left(z_{n}\right), z_{n}^{-}\right\rangle \\
= & \frac{R^{2}}{2}-\int_{\mathbb{R}^{N}} W\left(x, R z_{n}^{+} /\left\|z_{n}\right\|\right) \mathrm{d} x \\
& +\left(\frac{1}{2}-\frac{R^{2}}{2\left\|z_{n}\right\|^{2}}\right)\left\langle\Phi^{\prime}\left(z_{n}\right), z_{n}\right\rangle+\frac{R^{2}}{\left\|z_{n}\right\|^{2}}\left\langle\Phi^{\prime}\left(z_{n}\right), z_{n}^{-}\right\rangle \\
= & \frac{R^{2}}{2}-\int_{\mathbb{R}^{N}} W\left(x, R z_{n}^{+} /\left\|z_{n}\right\|\right) \mathrm{d} x+o(1) \\
\geq & \frac{R^{2}}{2}-\frac{1}{4}+o(1)>\frac{3}{4}+c+o(1) .
\end{aligned}
$$

This contradiction shows that $\delta>0$. We may assume the existence of $k_{n} \in \mathbb{Z}^{N}$ such that $\int_{B_{1+\sqrt{N}}\left(k_{n}\right)}\left|\xi_{n}^{+}\right|^{2} \mathrm{~d} x>\frac{\delta}{2}$. Let $\zeta_{n}(x)=\xi_{n}\left(x+k_{n}\right)$. Then

$$
\begin{equation*}
\int_{B_{1+\sqrt{N}}(0)}\left|\zeta_{n}^{+}\right|^{2} \mathrm{~d} x>\frac{\delta}{2} . \tag{3.7}
\end{equation*}
$$

Now we define $\tilde{z}_{n}(x)=z_{n}\left(x+k_{n}\right)$; then $\tilde{z}_{n} /\left\|z_{n}\right\|=\zeta_{n}$ and $\left\|\zeta_{n}\right\|=1$. Passing to a subsequence, we have $\zeta_{n} \rightharpoonup \zeta$ in $E, \zeta_{n} \rightarrow \zeta$ in $L_{\text {loc }}^{2}\left(\mathbb{R}^{N}\right)$, and $\zeta_{n} \rightarrow \zeta$ a.e. on \mathbb{R}^{N}. Obviously, (3.7) implies that $\zeta \neq 0$. Hence, it follows from (3.5), (W3), and Fatou's lemma that

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} \frac{c+o(1)}{\left\|z_{n}\right\|^{2}}=\lim _{n \rightarrow \infty} \frac{\Phi\left(z_{n}\right)}{\left\|z_{n}\right\|^{2}} \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{2}\left(\left\|\xi_{n}^{+}\right\|^{2}-\left\|\xi_{n}^{-}\right\|^{2}\right)-\int_{\mathbb{R}^{N}} \frac{W\left(x, z_{n}\right)}{\left\|z_{n}\right\|^{2}} d x\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{2}\left(\left\|\xi_{n}^{+}\right\|^{2}-\left\|\xi_{n}^{-}\right\|^{2}\right)-\int_{\mathbb{R}^{N}} \frac{W\left(x+k_{n}, \tilde{z}_{n}\right)}{\left|\tilde{z}_{n}\right|^{2}}\left|\zeta_{n}\right|^{2} d x\right] \\
& \leq \frac{1}{2}-\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} \frac{W\left(x, \tilde{z}_{n}\right)}{\left|\tilde{z}_{n}\right|^{2}}\left|\zeta_{n}\right|^{2} d x=-\infty,
\end{aligned}
$$

which is a contradiction. Thus, $\left\{z_{n}\right\}$ is bounded in E.
Lemma 3.13 ([25, Lemma 2.3]) Suppose that $t \mapsto h(x, t)$ is nondecreasing on \mathbb{R} and $h(x, 0)=0$ for any $x \in \mathbb{R}^{N}$. Then

$$
\begin{equation*}
\left(\frac{1-\theta^{2}}{2} \tau-\theta \sigma\right) h(x, \tau)|\tau| \geq \int_{\theta \tau+\sigma}^{\tau} h(x, s)|s| \mathrm{d} s \quad \forall \theta \geq 0, \tau, \sigma \in \mathbb{R} \tag{3.8}
\end{equation*}
$$

Lemma 3.14 Suppose that $W(x, u, v)=\int_{0}^{|\alpha u+\beta v|} g(x, t) t \mathrm{~d} t$, where $\alpha, \beta \in \mathbb{R}$ with $\alpha^{2}+\beta^{2} \neq 0$ and $g \in \mathcal{N D}$. Then W satisfies (W1), (W2), and (W4).

Proof It is easy to see that W satisfies (W1) and (W2). Next, we show that W also satisfies (W4). Let $g(x, t)=0$ for $t<0$. Note that

$$
\begin{equation*}
|\theta a+b| \geq \theta|a|+\frac{a b}{|a|} \quad \forall \theta \geq 0, a, b \in \mathbb{R} \tag{3.9}
\end{equation*}
$$

For any $x \in \mathbb{R}^{N}$, it follows from (3.8) and (3.9) that

$$
\begin{aligned}
& \frac{1-\theta^{2}}{2} \nabla W(x, z) \cdot z-\theta \nabla W(x, z) \cdot \zeta+W(x, \theta z+\zeta)-W(x, z) \\
&= {\left[\frac{1-\theta^{2}}{2}(\alpha u+\beta v)^{2}-\theta(\alpha u+\beta v)(\alpha \phi+\beta \psi)\right] g(x,|\alpha u+\beta v|) } \\
&-\int_{|\theta(\alpha u+\beta v)+(\alpha \phi+\beta \psi)|}^{|\alpha u+\beta v|} g(x, t) t \mathrm{~d} t \\
& \geq {\left[\frac{1-\theta^{2}}{2}(\alpha u+\beta v)^{2}-\theta(\alpha u+\beta v)(\alpha \phi+\beta \psi)\right] g(x,|\alpha u+\beta v|) } \\
&-\int_{\theta|\alpha u+\beta v|+(\alpha u+\beta v)(\alpha \phi+\beta \psi) /|\alpha u+\beta v|}^{|\alpha u+\beta v|} g(x, t)|t| \mathrm{d} t \geq 0
\end{aligned}
$$

for all $\theta \geq 0, z=(u, v), \zeta=(\phi, \psi) \in \mathbb{R}^{2}$. This shows that (W4) holds.
Lemma 3.15 Suppose that $W(x, u, v)=\int_{0}^{\sqrt{u^{2}+2 b u v+a v^{2}}} h(x, t) t \mathrm{~d} t$, where $a, b \in \mathbb{R}$ with $a>b^{2}$ and $h \in \mathcal{N D}$. Then W satisfies (W1), (W2), and (W4).

Proof It is easy to see that W satisfies (W1) and (W2). Next, we show that W also satisfies (W4). Let $h(x, t)=0$ for $t<0$ and for $z=(u, v), \zeta=(\phi, \psi) \in \mathbb{R}^{2}$, let

$$
A=\left(\begin{array}{ll}
1 & b \\
b & a
\end{array}\right), \quad z A z^{\top}=(u, v)\left(\begin{array}{ll}
1 & b \\
b & a
\end{array}\right)\binom{u}{v}=u^{2}+2 b u v+a v^{2}
$$

and

$$
z A \zeta^{\top}=(u, v)\left(\begin{array}{ll}
1 & b \\
b & a
\end{array}\right)\binom{\phi}{\psi}=u \phi+b(\phi v+u \psi)+a v \psi
$$

Then $W(x, u, v)=W(x, z)=\int_{0}^{\sqrt{z A z^{\top}}} h(x, t) t \mathrm{~d} t$. By virtue of Lemma 3.13, one has

$$
\begin{align*}
& {\left[\frac{1-\theta^{2}}{2} \sqrt{z A z^{\top}}-\frac{\theta\left(z A \zeta^{\top}\right)}{\sqrt{z A z^{\top}}}\right] h\left(x, \sqrt{z A z^{\top}}\right) \sqrt{z A z^{\top}} \geq } \tag{3.10}\\
& \int_{\theta \sqrt{z A z^{\top}}+z A \zeta^{\top} / \sqrt{z A z^{\top}}}^{\sqrt{z A z^{\top}}} h(x, \tau)|\tau| \mathrm{d} \tau
\end{align*}
$$

for all $\theta \geq 0, z, \zeta \in \mathbb{R}^{2}$. It is easy to verify that

$$
z A \zeta^{\top} \leq \sqrt{z A z^{\top}} \sqrt{\zeta A \zeta^{\top}} \quad \forall z, \zeta \in \mathbb{R}^{2}
$$

which, together with (3.10), implies

$$
\begin{aligned}
& \frac{1-}{2} \theta^{2} \\
& \nabla \\
&= \frac{1-\theta^{2}}{2} h(x, z) \cdot z-\theta \nabla W(x, z) \cdot \zeta+W(x, \theta z+\zeta)-W(x, z) \\
&+\int_{\sqrt{z A z^{\top}}}^{\left.\sqrt{(\theta z+\zeta) A(\theta z+\zeta)^{\top}}\right) z A z^{\top}}-\theta\left(z A \zeta^{\top}\right) h\left(x, \sqrt{z A z^{\top}}\right) \\
&= {\left[\frac{1-\theta^{2}}{2} \sqrt{z A z^{\top}}-\frac{\theta\left(z A \zeta^{\top}\right)}{\sqrt{z A z^{\top}}}\right] h(x, \sqrt{ } \tau} \\
&+\int_{\sqrt{z A z^{\top}}}^{\sqrt{\theta^{2}\left(z A z^{\top}\right)+\zeta A \zeta^{\top}+2 \theta\left(z A \zeta^{\top}\right)}} h(x, \tau)|\tau| \mathrm{d} \tau \\
& \geq {\left[\frac{1-\theta^{2}}{2} \sqrt{z A z^{\top}}\right.} \\
&\left.+\int_{\sqrt{z A z^{\top}}}^{\theta \sqrt{z A z^{\top}}}-\frac{\theta\left(z A \zeta^{\top}\right.}{\left.\sqrt{z A \zeta^{\top}}\right)}\right] h\left(x, \sqrt{z A z^{\top}}\right. \\
& \geq 0
\end{aligned}
$$

for all $\theta \geq 0, z, \zeta \in \mathbb{R}^{2}$. This shows that (W4) holds.
Proof of Theorem 1.1 Applying Lemmas 3.10 and 3.12, we deduce that there exists a bounded sequence $\left\{z_{n}\right\}=\left\{\left(u_{n}, v_{n}\right)\right\} \subset E$ satisfying (3.4). The rest of the proof is standard.

Employing Theorem 1.1 and Lemmas 3.14 and 3.15, we have Corollary 1.2 immediately.

References

[1] C. O. Alves, P. C. Carrião, and O. H. Miyaguki, On the existence of positive solutions of a perturbed Hamiltonian system in \mathbb{R}^{N}. J. Math. Anal. Appl. 276(2002), no. 2, 673-690. http://dx.doi.org/10.1016/S0022-247X(02)00413-4
[2] A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems. J. Differential Equations 191(2003), no. 2, 348-376. http://dx.doi.org/10.1016/S0022-0396(03)00017-2
[3] , Multiple solutions of nonlinear elliptic systems. NoDEA Nonlinear Differential Equations Appl. 12(2005), no. 4, 459-479. http://dx.doi.org/10.1007/s00030-005-0022-7
[4] T. Bartsch and D. G. de Figueiredo, Infinitely many solutions of nonlinear elliptic systems. In: Topics in nonlinear analysis, Progr. Nonlinear Differential Equations Appl., 35, Birkhäuser, Basel, 1999, pp. 51-67.
[5] T. Bartsch and Y. H. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachr. 279(2006), no. 12, 1267-1288. http://dx.doi.org/10.1002/mana. 200410420
[6] V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals. Invent. Math. 52(1979), no. 3, 241-273. http://dx.doi.org/10.1007/BF01389883
[7] D. G. de Figueiredo and Y. H. Ding, Strongly indefinite functions and multiple solutions of elliptic systems. Tran. Amer. Math. Soc. 355(2003), no. 7, 2973-2989. http://dx.doi.org/10.1090/S0002-9947-03-03257-4
[8] D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems. Trans. Amer. Math. Soc. 343(1994), no. 1, 99-116. http://dx.doi.org/10.1090/S0002-9947-1994-1214781-2
[9] Y. H. Ding, Infinitely many entire solutions of an elliptic system with symmetry. Topol. Methods Nonlinear Anal. 9(1997), no. 2, 313-323.
[10] \qquad , Variational methods for strongly indefinite problems. Interdisciplinary Mathematical Sciences, 7, World Scientific Publishing, Hackensack, NJ, 2007.
[11] D. E. Edmunds and W. D. Evans, Spectral theory and differential operators. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1987.
[12] S. He, R. Zhang, and F. Zhao, A note on a superlinear and periodic elliptic system in the whole space. Comm. Pure. Appl. Anal. 10(2011), no. 4, 1149-1163. http://dx.doi.org/10.3934/сраа.2011.10.1149
[13] W. Kryszewski and A. Szulkin, An infinite-dimensional Morse theory with applications. Trans. Amer. Math. Soc. 349(1997), no. 8, 3184-3234. http://dx.doi.org/10.1090/S0002-9947-97-01963-6
[14] __, Generalized linking theorem with an application to semilinear Schrödinger equations. Adv. Differential Equations 3(1998), no. 3, 441-472.
[15] G. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part. Commun. Contemp. Math. 4(2002), no. 4, 763-776. http://dx.doi.org/10.1142/S0219199702000853
[16] G. Li and J. Yang, Asymptotically linear elliptic systems. Comm. Partial Differential Equations 29(2004), no. 5-6, 925-954. http://dx.doi.org/10.1081/PDE-120037337
[17] F. Liao, X.H. Tang, and J. Zhang, Existence of solutions for periodic elliptic system with general superlinear nonlinearity. Z. Angew. Math. Phys. http://dx.doi.org/10.1007/s00033-014-0425-6
[18] F. Liao, X. H. Tang, J. Zhang, and D. Qin, Semi-classical solutions of perturbed elliptic system with general superlinear nonlinearity. Bound. Value Probl. 2014(2014), no. 208.
[19] A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73(2005), 259-287. http://dx.doi.org/10.1007/s00032-005-0047-8
[20] M. Schechter and W. M. Zou, Weak linking theorems and Schrödinger equations with critical Sobolev exponent. ESAIM Control Optim. Calc. Var. 9(2003), 601-619. http://dx.doi.org/10.1051/cocv:2003029
[21] B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in \mathbb{R}^{N}. Adv. Differential Equations 5(2000), no. 10-12, 1445-1464.
[22] A. Szulkin and T. Weth, Ground state solutions for some indefinite problems. J. Funct. Anal. 257(2009), no. 12, 3802-3822. http://dx.doi.org/10.1016/j.jfa.2009.09.013
[23] X. H. Tang, Non-Nehari manifold method for superlinear Schrödinger equation. Taiwanese J. Math. 18(2014), no. 6, 1957-1979.
[24] \quad, Non-Nehari manifold method for asymptotically linear Schrödinger equation. J. Aust. Math. Soc. 98(2015), no. 1, 104-116. http://dx.doi.org/10.1017/S144678871400041X
[25] _, Non-Nehari manifold method for asymptotically periodic Schrödinger equations. Sci. China Math. 58(2015), no. 4, 715-728. http://dx.doi.org/10.1007/s11425-014-4957-1 http://dx.doi.org/10.1007/s11425-014-4957-1
[26] J. Wang, J. Xu, and F. Zhang, Existence and multiplicity of solutions for asymptotically Hamiltonian elliptic systems in \mathbb{R}^{N}. J. Math. Anal. Appl. 367(2010), no. 1, 193-203. http://dx.doi.org/10.1016/j.jmaa.2010.01.002
[27] _. Existence of solutions for nonperiodic superquadratic Hamiltonian elliptic systems. Nonlinear Analysis 72(2010), no. 3-4, 1949-1960. http://dx.doi.org/10.1016/j.na.2009.09.035
[28] M. Willem, Minimax theorems. Progress in nOnlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Boston, MA, 1996.
[29] L. Xia, J. Zhang, and F. Zhao, Ground state solutions for superlinear elliptic systems on \mathbb{R}^{N}. J. Math. Anal. Appl. textbf401(2013), no. 2, 518-525. http://dx.doi.org/10.1016/j.jmaa.2012.12.041
[30] R. Zhang, J. Chen, and F. Zhao, Multiple solutions for superlinear elliptic systems of Hamiltonin type. Disc. Contin. Dyn. Syst. 30(2011), no. 4, 1249-1262. http://dx.doi.org/10.3934/dcds.2011.30.1249
[31] J. Zhang, W. Qin, and F. Zhao, Existence and multiplicity of solutions for asymptotically linear nonperiodic Hamiltonian elliptic system. J. Math. Anal. Appl. 399(2013), no. 2, 433-441. http://dx.doi.org/10.1016/j.jmaa.2012.10.030
[32] J. Zhang, X. Tang, and W. Zhang, Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms. Nonlinear Anal. 95(2014), 1-10. http://dx.doi.org/10.1016/j.na.2013.07.027
[33] F. Zhao, L. Zhao, and Y. Ding, Multiple solutions for asympototically linear elliptic systems. NoDEA Nonlinear Differential Equations Appl. 15(2008), no. 6, 673-688. http://dx.doi.org/10.1007/s00030-008-7080-6
[34] , Multiple solutions for a superlinear and periodic ellipic system on \mathbb{R}^{N}. Z. Angew. Math. Phys. 62(2011), no. 3, 495-511. http://dx.doi.org/10.1007/s00033-010-0105-0
[35] , A note on superlinear Hamiltonian elliptic systems. J. Math. Phys. 50(2009), no. 11, 112702. http://dx.doi.org/10.1063/1.3256120
[36] F. Zhao and Y. Ding, On Hamiltonian elliptic systems with periodic or non-periodic potentials. J. Differential Equations 249(2010), no. 12, 2964-2985. http://dx.doi.org/10.1016/j.jde.2010.09.014 [37] L. Zhao and F. Zhao, On ground state solutions for superlinear Hamiltonian elliptic systems. Z. Angew. Math. Phys. 64(2013), no. 3, 403-418. http://dx.doi.org/10.1007/s00033-012-0258-0
School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, P.R. China e-mail: tangxh@mail.csu.edu.cn

[^0]: Received by the editors August 8, 2014.
 Published electronically May 21, 2015.
 This work is partially supported by the NNSF (No: 11171351) of China.
 AMS subject classification: 35J50, 35J55.
 Keywords: Hamiltonian elliptic system, superlinear, ground state solutions of Nehari-Pankov type, strongly indefinite functionals .

