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ABSTRACT

Theoretical techniques are developed to study compressible, steady-state, magnetically aligned gas
flows in sunspot regions. The flows are adiabatic and occur in a known streamline configuration.
The non-linear parabolic partial differential equation describing the flow reduces to an ordinary
linear differential equation. The solutions are briefly discussed.

1. Introduction

This paper develops some theoretical tools necessary to study compressible, steady-
state, magnetically aligned gas flows in sunspots. The motions in the spot region take
place along magnetic field lines, i.e.,

v(r) = a(r) H(r), (1.1)

where v is the velocity of a gaseous element, « a function of position, and H the
magnetic field.

We specify, at the outset, the form of the magnetic field. We impose no restriction
of irrotationality or incompressibility. Such constraints immediately define the
streamline configuration. From the known streamline configuration we deduce the
velocity v(r), mass density ¢(r), and pressure p(r) distributions through the flow
region by solutions of the MHD equations.

The magnetic field, which possesses cylindrical symmetry, must satisfy

oH 1
VH=0, — =- (vxH)=0. (1.2)

ot u
Specifically, we employ the dipole-like field of Menzel and Shore (1966) as given by
H(r,z)=H,(r,z)e, + H,(r, z) e_, (1.3)

where

H,(r,z) =3 Mrza(a® + r* + 2%)7%2, (1.4)
H,(r,z) = MaQ2a*+ 22" —r*)(a® + r* + 2%)7%%. (1.5)

* Presented by G.F. Anderson.
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The vector e, is a vertical unit vector directed upward from the solar surface and
e, is the horizontal unit vector. In addition, we shall assume that the gas is perfectly
conducting and obeys the adiabatic relation

p/po = (p/po) . (1.6)

where y is the ratio of specific heats.

2. The Formulation of the Problem

We need two additional equations to determine the steady-state flow: the equations
of momentum transport and of continuity. The first of these is

2
V<v +¢+Jdp)=vx(va)- : H x (V x H), 2.1)
2 p 4np

where ¢ is the gravitational potential. Using the Equations (1.1)-(1.5) and taking the
scalar product of (2.1) with H, we get
3

°; (H-VH?) + a(H-V¢) + (H- Vo)) (*H? — Kyp’ ™) = 0, 2.2)

where K=p,0, . The continuity equation leads to the result
Vopv=V:poH=H"Vpa =0. (2.3)

This equation tells us that the gradient of ga is perpendicular to the magnetic field.
In other words, ga is constant along the stream lines.

We now seek solutions of (2.2) where the proportionality function « can be separa-
ted into a product of three functions

a(r) = E(§) G (p) S(H), 2.4

where G(0)=(¢/00)" "2, S(H)=(H/H,)™' and H, is the value of the magnetic
at the point p,, 9. The form of E(&) will be demonstrated shortly. Substitution of
(2.4) into (2.2) leads to

H-V(H-V¢) + (H—'Y—é—)i

><{<74 )55' Igy[1+2(y—1)55']_1 y_[H-V(éE’/EE}
y+1) E E? (y+1) E (H-V¢) (E'[E)

2h (y - 1)_H-vg]

+(H-VE) [HZ G+1) @

1 —2u)(E H-V¥ 2h?
+(v+ . u)( ) H.Vh_h< J>_ -0,
4uH E 4 (y+1)H

(2.5)
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where
E'=dE/d¢, h=H'VH?>, pu=1—Ky/E*, and ¥=H-Vé.

Equation (2.5) constitutes a second-order, non-linear, parabolic partial differential
equation for £(r). Convergent and stable numerical solutions to partial differential
equations of this type depend upon the form of the variable coefficients as well as
upon the nature of the integration scheme and the boundary conditions. Well-behaved
numerical solutions for Equation (2.5) readily follow if we set the coefficient of
(H-V¢)? equal to zero.

This assumption not only eliminates the second term from (2.5) but also leads to an
ordinary differential equation for E as a function of &,

E" E[GBy-1 Ky\™!
C_E[G )—21—3 -o0. (2.6)
E E{ y+1 E
Equation (2.6) integrates directly to yield
-1 K
Cé+Cy= E‘““"””[(y 5 )4 EZ] (2.7)

where C;, C, are constants. Substituting (2.7) into (2.5), we find the equation for &

H-V (H-V¢) + (H-VE) [2(?:,1)) - H;g]

1 (y-1 C, v, (HYVE) 2“h2 B
+H2(v+6<“c;')[”h "y sz)]-"

(2.8)

Let us expand (2.8) in cylindrical coordinates into the canonical form (Koshlyakov
et al., 1964)

A(n, ) &y + B, A) &+ C(n, 2) &, +D(n, ))& =0, (2.9)
by means of the transformation equations
A=A(r,z), n=n(rz), (2.10)

where
& =0&lon, &, =0¢lon, &, =00,

A parabolic differential equation has only one family of characteristic curves and is
derived by integration of the equation of characteristics

H,dz — H,dr=0. 2.11)
The integration of (2.11) yields
A(r,z)=r*(a® + z* + r*)7*/? = constant, (2.12)

and provides us with the first of our set of transformation equations (2.10). The
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second relation #(r, z) is chosen independently. Let us select
n(r,z)=r. (2.13)

The transformation is valid everywhere, provided its Jacobian,

(Z(_A,’, '7)=(2‘ x"”_"i'} x?’], (2.14)
o(r,z) 90z or or 0z
is not zero. :
The Jacobian is zero only for points on the z-axis and on the z=0 plane. When the
differential Equation (2.9) is transformed by means of the relations (2.12), (2.13), we

have the result

20 —-1) h H-VY
Hrzﬁﬂ'l + {Hr[ (gy-i-‘i))_ HZ. - g—:, + (H‘V) H,}é,,

h(y=D[H-Vh_ (H-V9) 2h %
ool b s )0

(2.15)

where C, =0. The coefficients of £,, £,, and £ are now functions of the new variables
A, n. The differential equation upon which the solution to our problem depends has
been reduced to an ordinary, linear, second-order differential equation that can be
solved by standard numerical methods.

3. The Solution on the z-axis and on the z=0 Plane

The integration over 7 in Equation (2.15) is equivalent to an integration over r. We
first deduce £ (r) on the z-axis. From these values we compute & (r) away from the axis
by the numerical integration of (2.15). Since Equation (2.15) is not valid on the axis,
we must return to our original expression, (2.5). This equation reduces to

2 2\2 12(y - 1) 2 2

(a +Z) ézz" ('}’+1) z(a +Z)§z
S0 =D gy 5 a2 1) =0 .
+(7_"_“1)—2[Z (Ty=5)-a*(r+1)]¢=0,

and can be either integrated numerically or transformed into an equation whose
solution is a Gaussian hypergeometric function. In the neighborhood of the origin
(0, 0), Equation (3.1) leads to

6(y— 1)
a*¢, — =0, 32
¢ 41 ¢ (3.2)
whose general solution is
E(z)=Cs ™™+ ™, (3.3)

https://doi.org/10.1017/50074180900021446 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900021446

146 G.F. ANDERSON AND D.H. MENZEL

1 -1
where m = \/(60 —) , and £, _ are constants.
ay\ (»+1)
Similarly, the form of the solution in the plane can be derived. In this instance we
find it necessary to use a transformation of variables. The result is

} (rZ/:aZ)Z[(rZ/aZ)_2]4 | rZ/aZ _2| =D+

ey {7 I 200 - 2) 5o
[(r*/a®) + 4]

where ¢, is the value of ¢ at some reference point in the sunspot region. Near the

origin, ¢/&, approaches zero. As a result, from (3.3),

limé=¢, +¢_ =0, (3.5)
z—0
and ¢_ = —¢&,. Hence, the solution for &(r) along the z-axis in the neighborhood of

the origin is of the form &(z)=¢, (e™ —e™™).

4. The Velocity Fields

The velocity is given by
v(r)=oH = E[Z()] [p(]77 "2, 4.1)

In addition to E[£(r)], we must specify the mass density, ¢(r), throughout the flow
regime. The mass density is computed in the following manner. Along a streamline

pa = [p(r)]7" " E[£(r)]/H (r) = constant. 4.2)

For our magnetic field all streamlines intercept the z=0 plane. Since we know the
variation of E and H in the z=0 plane, we need only compute ¢(r, z=0) in order to
evaluate the constant in (4.2) for any given streamline. After we evaluate the constant,
we use (4.2) to compute ¢(r) along streamlines extending anywhere in the sunspot
region. We determine ¢(r, z=0) from Equation (2.2). After some manipulation we
find

6v-1¢%

p(r,z= 0)/90 =- I:—CT_ (E/Eo)_zmﬂ):’ s 4.3)
~ 15z z=0

where E,= E(&,). The term &,(r, z=0) appearing in Equation (4.3) is calculated from
&(r).

Finally, once we have deduced the mass density, we can derive the pressure and
temperature distributions from the polytropic condition (1.6).
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