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Abstract

An integer n > 0 is called a CLT-number if any group of order n has subgroups of order d
for every divisor d of n. The set if of CLT-numbers n is characterized by properties of the prime
factorization of n. In addition, if G has order dividing a CLT-number then the structure of
GICa(U) is given where U is a chief factor of G. Asa consequence, it is shown that G is solvable
of Fitting height at most 3.

One of the very first theorems taught in introductory group theory
courses is the following.

LAGRANGES THEOREM. / /G is a group and His a subgroup of G then the
order of H divides the order of G.

Most students then want to know: "Is the following statement true?"

CONVERSE TO LAGRANGE'S THEOREM. // G is a group of order n, and d is
a divisor of n, then G contains a subgroup of order d.

Of course, the standard example A", the alternating group on 4 points, is
of order 12 and has no subgroup of order 6. Therefore, CLT (the converse to
Lagrange's Theorem) is false. The fundamental importance of Lagrange's
Theorem has led to attempts to describe the groups G and the integers n for
which CLT is valid. We shall say that a group G of order n is a CLT-group if
CLT holds for G and any divisor d of n. We shall say that an integer n > 0 is
a CLT-number if any group of order n is a CL T-group. The CL T-groups are
a very complex class of groups. By a theorem of P. Hall (see Huppert (1967),
VI, 1.10) we know that all such groups are solvable. On the other hand,
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Gagen (to appear) shows that any solvable group may be embedded in an
indecomposable CLT-group.

We shall be content here to look at CLT-numbers, giving a characteriza-
tion of the set of CLT-numbers n > 1 by the divisors and prime factors of n.
In other words, we shall give an effective procedure for determining a set if of
integers n > 1 such that ifL){l} is precisely the set of CLT-numbers. The
basic idea is that most numbers are not CLT-numbers. In Sections 2 and 3 we
describe a class of numbers which are not CLT-numbers. These numbers are
given in Propositions (3.5)-(3.9). The obvious guess is then that these
propositions completely describe non-CLT-numbers. Accordingly, we define
a set if of integers n > 1 in Section 1 rigged so that if is precisely the set of
integers for which Propositions (3.5)-(3.9) fail. We call the integers in if good,
and those not in if bad. In particular, these propositions show that any
CLT-number n > 1 is good.

To complete the circuit we must show that any good integer n > 1 is a
CLT-number. At this point we must show that any group of order n is
solvable. We do this in Section 4 using far too much heavy artillery. In Section
5, the heart of the paper, we examine the structure of chief factors of a group
of order n where n > 1 is good. One upshot of this analysis (Theorem (7.1)) is
that if G has order a good number n then G has fitting height at most 3 and
that this bound is best possible, indicating that groups of order a CLT-
number are rather limited in structure.

In Section 6 we prove a theorem which enables us (1) to ascertain that if
G has a noncyclic chief factor then G has a noncyclic minimal normal
subgroup, and (2) to split G over this minimal normal subgroup. In Section 7
we use the facts in Section 5 to prove that the theorem of Section 6 applies.
The splitting so obtained allows us to use induction on the order of G and the
splitting subgroup obtained in G to complete the proof that a good integer
n > 1 is a CLT-number.

Included in the bibliography is a selection of papers related to CLT.
Some of these are not cited in the text of this paper. For a general discussion
of CLT see McCarthy (1971).

I would like to thank Rebecca Struik for suggesting this problem to me.
She has characterized most of the CLT-numbers of the form p°qb where p
and q are primes Struik (preprint).

1. Definitions

Let d>\ be an integer, and set -?(d) = {1,2, • • •, d - \,2d - 1} and
$'{d) = {1,2, • • •, d - 1}. Fix a prime q and a positive integer m. We define a
set if(m,q) as follows:
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[3] A converse to Lagrange's theorem 293

(1) if p is a prime, p^ q, d is the exponent of q(modp), and d > 1, then
y(p,q)= J>(d) if d is odd and if{p,q)= $\d) if d is even;

(2) if p is a prime, p \q - 1, and p2 Jf q - 1, then S^(p2, g) = ^ (p ) when
p > 2 and if{4,q)= ^'(2);

(3) if p is a prime and p\q — 1, then 5^(p3,q) = ^ (p ) when p > 2 and
5f(8,<j) =^ ' (2 ) ; or

(4) if y{m,q) is not defined by (1), (2), or (3) then let ^(m,q) be the set
of positive integers.
Next we define a set of positive integers Sf(r,pu,q) where r, p, q are primes
and M § 1 is an integer as follows:

(a) if rp\q — 1, r ^ p, and p has odd exponent «(modr) then
y(r,pu,q)= $(r) when r > 2 and ^ (2 ,p u , q) = ^'(2); and

(b) if y{r,p",q) is not defined by (a) then let &>(r,p",q') be the set of
positive integers.

Suppose that n > 1 is an integer and q is a prime divisor of n. We define

where m, r, p, u are positive integers, r and p are primes, and both m and rp"
range over all possible such divisors of n. We shall write

^ = 1 1 *7

where q ranges over the distinct prime divisors of n (i.e. e(q) is the highest
exponent of q such that q'0" divides n). We shall say that an integer n > 1 is
good if e(<?)6 %(q) for all prime divisors q of n, otherwise we say that n is
bad.

The main object of this paper is to prove the following theorem.

THEOREM 1.1. An integer n > 1 is a CUT-number if and only if n is a
good integer.

EXAMPLE 1.2. Suppose that n > 1 is an integer with prime factors 3, 13,
79. What are the possible values for good n? If p and q are primes, let d be
the order of q(modp). Below we list those solutions where d>\.

q p d

3 13 3

3 79 78

13 79 39

We obtain the following sets different from the set of all positive integers.
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, 3) = {1,2, 5}

5^(79,13) = {1, ••• ,38,77}

(3\ 13) = y ( 3 M 3 ) = {1,2,5}

2,79) = #>(3\ 79)^= {1,2,5}

2,79) = 5^(13\ 79) = {1, • • •, 12,25}

,13,79) = {1,2,5}

, 3 \ 79) = {1, ••• ,12,25}

We now have

{l,---,38,77} if e ( 3 ) = l , or

= {1,2,5} if e ( 3 ) > l

^(79) = {1,2,5}

From these values, the possibilities for good n may be listed. For example
35 • 132 • 792 is a good number, as are 3 • 13"- 79s or 3 • 13 • 79s.

The notation and terminology are standard and follow that given in
Gorenstein (1968) and Huppert (1967). We quote here one more theorem
which will be of use and is relevant to our discussion.

THEOREM 1.3. A finite group G is supersolvable if and only if G and all
its subgroups are CLT-groups.

Proofs may be found in Bray (1968), Deskins (1968), Doerk (1968),
McLain (1957), Ore (1939) or Zappa (1940).

2. The examples

HYPOTHESIS 2.1. For this section, let q be a prime, H aq '-group of order h,
and V a faithful irreducible F[H]-module of dimension d where F is the field
GF(q) of q elements.

The groups of main interest will be constructed from the following
examples for the pair H, V.

EXAMPLES 2.2. (1) Let H be cyclic of prime order h ( / q), and V be a
faithful irreducible F[H]-module. If e is the exponent of q (modp) then
d = e.

(2) Suppose that p is a prime such that p\q - 1 and p2 X q - 1. Let H
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be cyclic of order h = p2, and V be a faithful irreducible F[H]-module. In this
case, d = p.

(3) Suppose that p is a prime such that p\q-\. Let H be an
extraspecial p-group of order h = p3, and V be a faithful irreducible
F[H]-module. In this case, d = p. (If p = 2 assume that H is quaternion.)

(4) Suppose that r and p are two distinct primes such that p \q - 1 and
/•/ q. Let H denote the nonabelian group with an elementary abelian normal
Sylow p-subgroup which is a chief factor, and a Hall p'-subgroup of order r.
The order of H is h = rpf where / is the exponent of p (mod r). Let V be a
faithful irreducible F[H]-module so that d = r.

It is straightforward to verify that examples do exist with the given
properties. There is some ambiguity in the statement of these examples:

(a) in example (3) there are two isomorphism classes of such groups H,
and more generally, (b) once H is given, there may be several choices for V
up to isomorphism. For our purposes it does not matter which of all possible
choices is made in each case, except in Example (2.2) (3) when p — 2. If p = 2
in this example, we assume that H is quaternion.

LEMMA 2.3. Suppose that a group G contains normal subgroups L and M
such that L n M = {1}. If T is a subgroup of G then \T\ =
[TL:L][(TnL)M:M].

Note that TL/L = T/TnL and that T D L = (T D L)/(T n L n M) =
(T C\ L)M/M. From this, the lemma follows.

In the following constructions we shall let

fcxV=V©---©V (k copies)

where k is a positive integer, and 0 x V = (0).
(I) The group G,(H,V,k).

LEMMA 2.4. There is a group G,(H, V, k), where k g 0 is an integer, with
the following properties:

(1) it has order hqkd;
(2) it has a normal abelian Sylow q-subgroup Qt(H, V, k); and
(3) i/ K is a subgroup of order hqc then c = k'd for O^lc'Slc,
Let Oi(H, V, k) = k x V, so that there is an obvious action for H upon

Qi(H, V,k). Form the semidirect product

G,(H, V,k) = H • Q,(H, V, k).

Since (1) and (2) are easily verified, we check only (3). Replacing K by a
conjugate, we may assume that K g H. Now K n Q,(H, V, k) is an F[H]-
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submodule of Q,(H, V, k). Since Q\(H, V, fe)is a homogeneous F[H]-module
with irreducible components of dimension d, c = k'd where OS^ 'Sl t .

(II) The group G2(H, V, k) (k g 2).

LEMMA 2.5. There is a group G2(H, V, k), where k i? 2 is an integer, with
the following properties:

(1) it has order hqkd+l;
(2) it has a normal Sylow q-subgroup Q2(H, V, k); and,
(3) if K is a subgroup of order hqc then c = k'd where Q g / c ' S l c - l or

c = k'd + l where O S f c ' S f c .

Let V = HomF( V, F) be the dual space of V. If / G V and x G H then
define fx G V by the equations

(2.6) /*(«) = /(«*-).

This defines an action of H upon V contragradient to the action of H upon V
so that V is a faithful irreducible F[H] — module. Form the Cartesian product

(2.7) Q2{H, V) = ( V 0 V ) x F .

If (i>©/, 2), ( i / © / \ z')G Q2= Q2(H, V) then define multiplication in Q2 via

(2.8) ( w 0 / , z ) ( » W , z ' ) = ((« + " ' ) 0 ( / + / V + *' + /(«'))•

If x G / / and (t> ©/, z)G O2 then define an action of H on Q2 via

(2-9) («©/ ,z)*=((»x)0( /x) ,z) .

Verification of the following facts is straightforward.

LEMMA 2.10. Equations (2.6)-(2.9) de/ine an extraspecial q-group Q2 =
Q2(H, V) of order q2d+l. The group H acts upon Q2 in such a way that H
centralizes Z(Q2) and Q2/Z(Q2)^ V © V as an F[H]-module.

The construction given here is standard and the proof of this lemma is
straightforward.

We set

Q2(H, V,k)= Q2(H, V)x Q,(H, V,k-2)

where k ( g 2) is an integer. Since H has an obvious action upon Q2(H, V,k)
we define

G2(H, V, k) = H • Q2(H, V, k)
to be the semidirect product. Parts (1) and (2) of Lemma (2.5) are easily
verified so that we prove only (3). By conjugating K, we may assume that
K g H. Set G, = G,(H, V, k - 2), G2 = G2(H, V,k), G*2 = G2(H, V, 2), Q, =
Qi(H, V,k- 2), and Q2 = Q2(H, V). We have the following isomorphisms:
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G2/Q2^G,, and G2/O,= Gf.

By these isomorphisms, we may view K, = KQ2/Q2 as a subgroup of G, and
K2 = H(K n Q2)Q\IQ\ as a subgroup of G?. In both cases, we are looking at
subgroups of order hqc for some c'. By Lemma (2.3) the order of the Sylow
q-subgroup of K is the product of the orders of the Sylow q-subgroups of Kt,
i = 1,2. If K, has order qc; i = 1,2 then c, + c2= c. By Lemma (2.4), c, = k'd
for OS fe'g fc - 2 . Viewing K2 as a subgroup of G*, Lemma (2.10), implies
that K2 = K2Z(Q2)/Z(Q2) is a subgroup of order hqc in the semidirect
product H( V 0 V). Such a subgroup must have order hq k"d where 0 S k" § 2
as may be proved by a method analogous to that used to prove Lemma (2.4).
Thusc2= k"d + k0 where fc,, = 0,1 and 0 § /c"§ 2. Suppose that fc" = 2sothat

Q2 = (K2 n Q2, Z(O2)) = K2 n Q2

since Z(Q2) is the Frattini subgroup of Q2. In particular, if k" = 2 then k0 = 1.
Since c, + c2 = c, Lemma (2.5) follows.

(Ill) The group G3(H, V).

LEMMA 2.11. Assume that H, V are as in (a) Example (2.2) (1) with d
even, (b) Examples (2.2) (2) or (3) with p = 2, or (c) Example (2.2) (4) wifh
r = 2 a n d / = 1.

77iere is a group Gj(H, V) with the following properties:
(1) it has order hqd*';
(2) jf /ias a normal Sylow q-subgroup Qi(H, V); and
(3) if K is a subgroup of order hqc then c = 0,1, d + 1.
The group G3(H, V) exists under very general conditions on H and V,

but we shall only need the cases cited here.
The group G3 = G3(H, V) = H • O3(W, V) is a semidirect product where

Q3= Q3(H, V) is extraspecial of order qd+' and Qi/ZiQi)^ V as an F[W]-
module. If H is cyclic of prime order and d is even, the existence of G3 is well
known. (Berger (1973a), Gorenstein (1968) (Exercise 18 p. 215), Winter
(1972)). We shall give a construction which works for G3 whenever q > 2.
Since p \q — 1 in Example (2.2) (4) this is certainly the case there. Therefore,
the only case omitted by this construction is the one where we are considering
Example (2.2) (1), q = 2, and h is an odd prime.

Now assume that q > 2, T is a group, and W is an F[T]-module which is
endowed with a nonsingular alternating bilinear form g: W x W —» F. Sup-
pose that T has a normal subgroup To of odd order and of index 1 or 2. If
a G T\Tn then assume that a 2 = l and a inverts the elements of To by
conjugation. Suppose that for x G T and u, v G W

g(ux,vx)= eg(u,v)

https://doi.org/10.1017/S1446788700021042 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021042


298 T. R. Berger [8]

where e = 1 if x G To and s = - 1 if x £ T».
Form the Cartesian product

(2.12) Q*= WxF,

and for (v, z), (v1, z')EQ* define multiplication via

(2.13) (v,z)(v\ z') = (v + v',z + z' + g(v, v1)).

If x G T and (u, z )G Q* then define an action of 7 on O* via

(2.14) (v, z)x =(vx, ez)

where e = 1 if x G To and e = - 1 if x g! Tu.

LEMMA 2.15. Equations (2.11)—(2.14) define an extraspecialq-group Q*
of order qd+l where dim W = d. The group T acts upon Q* in such a way that
CT(Z(Q*))= TO and Q*/Z(Q*) = W as an F[T]-module.

The proof is a straightforward verification. Incidentally, the construction
may be completed when q = 2, but in that case, Q* is abelian.

Let H, V be as in the hypothesis of Lemma (2.11). With H = T and
V = W we wish to prove the existence of a form g. Running through the
Examples (2.2), the form g is given for (1) by [Berger (1975), (2.1)], for (2) also
by [Berger (1975), (2.1)] for (3) by [Berger (1975), (2.2), (2.3)].

Consider finally Example (2.2) (4) with r = 2 and / = 1. Then q is
necessarily odd. Let Ho be the normal subgroup of index 2 in H. Now
V\n, = V, © V2 where V, and V2 are 1-dimensional. Fix y G H\H,h v, G V,,
Vi 7^ 0, and set v2 = yvt so that v2 is a basis vector for V2. If av, + fiv2,
a'v, + f5'v2E V where a, /3, a', /3'G F then set

g2(av, + Pv2,a'v, + (3'v2) = a/3' - a'/3.

With H = T, H,, = To, V = W, and g2 = g, the conditions of Lemma (2.15) are
satisfied for an example of type Example (2.2) (4).

To prove Lemma (2.11) we set

O,(H, V) = Q*, and G3(H, V)= H • Q,(H, V),

a semidirect product. Since QilZ(Qi)~ V, the verification of (1), (2), (3) of
Lemma (2.11) is routine.

3. Bad numbers

In this section we produce a large store of non-CLT groups.

HYPOTHESIS 3.1. In Lemmas (3.2)-(3.4) we assume that q is a prime,
F = GF(q), h > 1 and m g l are integers such that (hm,q) = 1, and n = hmqb
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where b =5 0 is an integer. In addition, we assume that H is a group of order h,
and that V is a faithful irreducible F[H]-module of dimension d > 1.

LEMMA 3.2. If b = kd + j where t § l and 0 § / § d - 2 then there is a
non-CLT group of order n which has no subgroup of order hmqkd~l.

Let M be an abelian group of order mq' so that

G = Mx G^H, V, fc)

has order hmqb by Lemma (2.4). Suppose that K is a subgroup of G of order
hmqkd~'. If L = G, = G,(H, V, k) then Lemma (2.3) implies that kd - 1 =
Ci + c2 where H(K H M)Gi/G, and KM/M have Sylow q-subgroups respec-
tively of orders qc' and q'2. Since G/M — G, and KM/M is a subgroup of
order hq'2, by Lemma (2.4) c2 = k'd where OgJt 'Sfc . Clearly O S c S y so
that kd - I = k'd + c, or - 1 = c, (mod d) where 0 § c, S d - 2. Since this is
impossible, the lemma follows.

LEMMA 3.3. If b = kd + (d - 1) where k § 2 then there is a non-CLT

group of order n which has no subgroup of order hmqkd.

Let M be an abelian group of order mqd 2 so that

G = MxG2{H, V,k)

has order hmqb by Lemma (2.5). Suppose that K is a subgroup of G of order
hmqkd. If L = G2 = G2(H, V, fc) then Lemma (2.3) implies that kd = c, + c2

where H(X fl M)G2/G2 and KM/M have Sylow q-subgroups respectively of
orders <ĵ ' and qC2. Since G/M = G, and KM/M is a subgroup of order hq'2,
Lemma (2.5) implies that c2= k'd where OS k'S k - \ or c2= k'd + I where
OS/c ' s J t . Clearly 0 S c , S d - 2 so that kd = c, + c2 = k'd + e where OS
fe'g/c,Ogegd-l, and if e = 0 then k 'Sfc - 1. Since e = 0 (modd), e = 0
and k'< k contradicting the fact that kd = k'd. The proof of the lemma is
complete.

LEMMA 3.4. Assume that G^(H, V) exists and satisfies the conclusion of
Lemma (2.11). If b = 2d - I then there is a non-CLT group of order n which
contains no subgroup of order hmqd.

Let M be an abelian group of order mqd 2 (recall that d is even) so that

G = Mx Gi(H, V)

has order hmqb by Lemma (2.11). Suppose that K is a subgroup of G of order
hmqd. Since G/M ~ G3 = G3(H, V), as previously, we see that d = c, + c2

where c, is the exponent of q in \K DM\ and c2 is the exponent of q in
\KM/M\. By (3) of Lemma (2.11) we have c2 = 0, l , d + l. Obviously,
0 g c2 S d - 2 so that d = c, + c2 is impossible, completing the proof of the
lemma.
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PROPOSITION 3.5. If n = lp"qb where (a) p and q are distinct primes, (b)
(/,pq)= l , ( c ) a g 1 and (d) d > 1 where d is the exponent of q (modp), then
there is a non-CLT group of order n unless

(1) d is odd andb=0,l,---,d- \,2d - 1,

or

(2) d is even and b = 0,1, • • •, d - 1.

With p = h, let H, V be as in Example (2.2) (1). Assume first that
b = kd+ j where k g 1 and O S / g d - 2 . With m = lp° ' and h = p, Lemma
(3.2) guarantees the existence of a non-CLT group of order n. If b =
kd + (d - 1) where fc g 2 then again with m = /p" ' and h = p, Lemma (3.3)
assures the existence of a non-CLT group of order n. If d is odd, conclusion
(1) follows. We therefore assume that b = 2d - 1 and that d is even. Now
Lemmas (2.11) and (3.4) imply that there is a non-CLT group of order n.
From this, conclusion (2) and the proposition follow.

PROPOSITION 3.6. Ifn = I2"q" where (a) q is an odd prime, (b) (l,2q) = 1,
and (c) a s 2 then there is a non-CLT group of order n unless

(1) 6 = 0,1, or
(2) a = 2 and q = 1 (mod 4).
If a = 2 and q = 3 (mod 4) we let H, V be as in Example (2.2) (2) with

p = 2. If a S 3 we let H, V be as in Example (2.2) (3) with p = 2. In either
case, dim V = 2. As in the previous proposition, Lemmas (3.2) and (3.3) imply
that there is a non-CLT group of order n unless b = 0,1,3. But now Lemma
(3.4) applies to show that there is a non-CLT group of order n if b = 3. The
proof is complete.

PROPOSITION 3.7. If n = 2lp"qb where (a) p and q are distinct odd primes,
(b) (l,pq}= 1, (c) flgl, and (d) p\q — 1, t/ien fhere /s a non-CLT group of
order n unless b = 0,1.

Let H, V be as in Example (2.2) (4) where r = 2 (so that / = 1 and
2p\q — 1). By Lemmas (3.2) and (3.3) we may argue that there is a non-CLT
group of order n unless b = 0,1,3. If b = 3 then by Lemma (3.4) there is a
non-CLT group of order n, completing the proof of the proposition.

PROPOSITION 3.8. If n = lp"qb where (a) p and q are distinct odd primes,
(b) (/, pq) = 1, (c) a s 2, and (6) p\q-l, then there is a non-CLT group of
order n unless

(a) b = 0,l,---,p-l,2p-l or
(b) a = 2 and (7 = 1 (modp2).
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If a s 3 we use H, V as in Example (2.2) (3). If a = 2 and gf£ 1 (mod/?2)
then we use H, V as in Example (2.2) (2). Lemmas (3.2) and (3.3) imply that
there is a non-CLT group of order n unless (a) holds. Since we have excluded
(b), the proposition is valid.

PROPOSITION 3.9. If n = rlp"qb where (a) r, p and q are distinct odd
primes, (b) (/,pq) = 1, (c) a § u where u is the exponent of p (mod r), and (d)
rp\q — 1, then there is a non-CLT group of order n unless b =
0,1,- • -, r - l , 2 r - 1.

Let H, V be as in Example (2.2) (4). The proposition follows from
Lemmas (3.2) and (3.3).

Using these propositions, we have the following immediate corollary.

THEOREM 3.10. / / n is a CLT-number then e(q)G %{q) for every prime
divisor q of n.

The various sets £f{m, q) are defined in terms of Propositions (3.5)-(3.9).
Therefore, (3.10) follows from these.

4. Good numbers: solvability

In this section we indulge in pounding thumbtacks with sledgehammers.
This section could be avoided entirely if we considered only the class of
solvable groups. We prove:

THEOREM 4.1. Suppose that n > 1 is an integer and for each prime q
dividing n, e(q)E %(q). If G is a group of order dividing n then G is solvable.

If n is odd, the result follows from the paper of Feit and Thompson
(1963) on the solvability of groups of odd order. So we assume that n is even.
Assume that n = 3"2bm where o ^ l , i i S l , and (6, m) = {1}. The exponent v
of 2 (mod3)is2 so that 5^(3,2) = {1}. In particular, &(2) = {l}so that b=\.
Since n is 2 times an odd number, any group of order dividing n is solvable.
We may now assume that n is a 3'-number. Suppose that G is a nonsolvable
3'-group. Thompson's classification of 3'-groups (Thompson (1964)) implies
that G has a section isomorphic to a simple Suzuki group. But all Suzuki
groups have order divisible by 26-5. The exponent of 2 (mod 5) is v — 4 so
that Sf{5,2) = {1,2,3}. If we assume \G\\n then «(2) C 5^(5,2) = {1,2,3}.
Thus e(2) = 6 S2- ^(2) and n is not a good number. From this, we conclude
that any group of order dividing n, where n is good, must be solvable. This
completes the proof of the theorem.

It may be possible to avoid the use of such powerful results in the proof
of this theorem, but the result does not seem to warrant the effort.
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5. Good numbers: group sections

In this section we analyze what can happen on a section of a group whose
order divides a good number.

HYPOTHESIS 5.1.

(1) n > 1 is a good integer.
(2) G is a group whose order divides n.
(3) V and W are q-chief factors of G for a prime q.
(4) T=G/CG(V).
(5) F=GF{q).

LEMMA 5.2. If p is a prime, p\\F(T)\, p X q - 1, and P is a minimal
normal p-subgroup of T then:

(1) dim V = d, d is odd, and e(q) = 2d — 1 where d is the exponent of q
(modp);

(2) P has order p and V\F is irreducible;
(3) F(T) is cyclic, F(T)= CT(P), T/F(T) is cyclic of order dividing

(d,p — 1), and every prime dividing [T: F(T)] divides q(q - 1);
(4) P acts fixed-point-freely on V ® F V; and
(5) ifPg Ca(W)Ca(V)/CG(V) then dim W m d.
Observe that V|P — V, 0 • • • 0 V, where each V, is a nontrivial irreduc-

ible F[P]-module. Since P/CP(V.) has order p, dim V, = d and dim V = td.
Since pq \ n, and since e(q) G ^{q) C if{p, q), we must have dim V Si e(q) S
d - 1 if d is even or g Id - 1 if d is odd. We conclude that t = 1, dim V = d, d
is odd, and e(q) = 2d — 1 proving (1). Since V | P = V,, it is a faithful
irreducible F[P]-module proving (2).

Note that CT(P)^ F(T). Now V|P is irreducible and F is a finite field so
that Schur's Lemma and Wedderburn's theorem on finite division algebras
imply that

F=Homf,p,(V, V)

is a finite extension field of F. Since P generates F over F, F = GF{qd).
Clearly CT{P) is in the multiplicative group F" of F so that CT(P), being a
finite group in the multiplicative group of a field, is cyclic. Since CT(P) is
normal in T and contains F(T), we conclude that F(T)= CT(P) and that
F{T) is self-centralizing in T. By [Passman (1968), Proposition 19.8] T/F(T)
acts upon F(T) as a subgroup of Aut(F) (which has order d and is cyclic).
Since P generates F over F, we conclude that Aut(F) acts faithfully on P
proving that d divides p — 1. Suppose that r is a prime dividing [T: F(T)] but
not q(q — 1). Let R be a Sylow r-subgroup of T and V be a nontrivial
irreducible F[R]-composition factor of V. With V,,= V, To= R/CR(V0), and
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pa = r we may apply (1) of the lemma concluding that e(q) = 2« - 1 whence u
is odd and « is the exponent of q (mod r). Since e(q) = 2d - 1, u = d. This
cannot be since r divides d and u divides r — 1. Therefore, r divides q(q — 1)
completing the proof of (3).

The following lemma will be useful in proving (4).

LEMMA 5.3. Assume hypothesis (5.1). Let P be a minimal normal
p-subgroup of T and F a finite splitting field for V\PoverF. Set V = V §§FF and
suppose that V\P — Vx 0 • • • 0 V, where V) are homogeneous components. If
dim V is odd and p > 2 then P acts fixed-point-freely on V ® F V.

There are homomorphisms Af of P into the pth roots of unity of F", the
multiplicative group of F, such that if v G Vf and x e. P then xi> = \i(x)v.
Suppose that AiA, = 1 for some i,j = 1, •••,(. Since p > 2 , iV /'. Note that
A; = A 7'. Let V|P = W, 0 • • • 0 W; where the Wt are homogeneous compo-
nents. Since V = V <g)FF, we may assume that W, (g) F = V, 0 • • • 0 Vm so
that t = Im. We may even choose our numbering so that i = 1. Fix an index
1 ^ k =s f. For some x G T, xVk lies in W ^ ^ F since T is transitive on the
W's. But then there is a cr £ Aut(F) such that a(xVk) = V, since Aut(F) is
transitive on V,, • • •, Vm. In other words, AJ '" ' = A, so that A^1 = X" = A,, for
some / ' . Since each \k has an inverse A,, and since A t ^ Ak', there must be an
even number of Ak's. Since dim V = t dim V, is odd, t is odd. We conclude
that AiAy / 1 for any i, j = 1, • • •, t.

If i, j are fixed then there is an x £ P such that ki{x)X.j{x) ^ 1. But x acts
upon Vi®tVj as A((x)A>(x) so that P acts fixed-point-freely on Vf (g)F V;.
Consequently, P acts fixed-point-freely on V (g)F V since it is a sum of
V, (g)r Vy 's. If w is a fixed vector of P on V (g), V then since (V <gV V) (g)FF =
V (g)F V as F[P]-modules, w (g) 1 gives rise to a fixed vector of P on V (g)F V
so that w = 0 proving Lemma (5.3).

Since d is odd and p > 2, part (4) of Lemma (5.2) follows immediately
from the preceding lemma.

If U is any nontrivial irreducible F[P0]-module where Po is of order p
then dim U = d. Since Pg CO(W)CG(V)/CG(V), G/CG(W) contains a sub-
group Po of order p. Thus W contains a nontrivial irreducible module U as
above. Therefore, dim W § dim U = d proving (5) and Lemma (5.2).

LEMMA 5.4. Assume that if p is a prime and p 11 F(T)\ then p\q- \. If

2r\(q — 1, n ) for an odd prime r then dim V = 1. In particular, if dim V > 1

then n is odd.

If 2 r | ( q - l , n ) then e(q)G %{q)Q Sf{2, r,q) = {1} so that e ( ( j ) = l g
dim V. Assume that n is even and dim V > 1. Since any prime p dividing
|F(X)|, of necessity, divides q — 1, q must be an odd prime. Since n is even,
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2\(q — l , n ) so that dim V > 1 implies that no odd prime r\(q — I, n). We
conclude that F(T) is a 2-group because all prime factors of |F (T) | divide
q - 1. If 8| n or 4| n (where q = 3 (mod4)) then ^ ( 8 , q) = #"(4, q) = {1} implies
that e(q) = 1 & dim V. If F(T) is a cyclic 2-group then Aut(F(T)) is a 2-group
so that T = F(T). Since T can only have order 2 or 4 (where q = 1 (mod4)), if
T is cyclic, then dim V = 1. We now know that F(T) must be a Klein 4-group
and e(2) = 2. Now T/F(T) has odd order (since 8 X n) and acts faithfully on
F(T) so that [T: F(T)] = 3. From this it follows that dim V = 3. If 3|q - 1
then e(q) G 5^(2,3, q) = {1}. We conclude that the exponent of q (mod 3) is 2.
Therefore, dim V § e(q)G g ( q ) C Sf(3,4) = {1}. This final contradiction
proves that if dim V > 1 then n is odd. The proof of the lemma is finished.

LEMMA 5.5. Assume that n is odd, every minimal normal subgroup of T
is central, and ifp \\F(T)\ for a prime p then p | q - 1. / / dim V > 1 then there is
a minimal normal p-subgroup P of T for a prime p such that:

(1) dim V = p and e{q) = 2p- 1;
(2) T is nilpotent and T = Z(T)OP(T);
(3) P acts fixed point freely on V ® F V; and
(4) if P£ Co(W)CG( V)/Co( V) then dim W ^ p.
If F(T) acts via scalar multiplication on V then F(T)S Z(T) so that

T=F(T) and dim V = 1. Therefore, for some p\\F(T)\, Po= OP(T) does
not act via scalar multiplication on V. If Po is nonabelian, choose P, minimal
such that Pi is normal in T and Pt is nonabelian. If Po is abelian then choose
Pi minimal such that P, is normal in T and P, does not act via scalar
multiplication on V. Restricting V to P, we obtain

V|P ,= V , © - - - © V,

where the Vf are homogeneous components. Now V, is isomorphic to a
multiple of a single irreducible F[Pi]-module U.

Assume that dim U > 1. Since p \q — 1, p divides dim U and therefore,
also, dim V. In any case, | P , | g p 3 or [P,: CP,(U)] = p2 and p2tq-l.
Therefore, g (q )C{ l , - • -,p- 1,2/7 — 1}. Since p |dim V and dim V ^e(q)v/e
have f = 1, t/ = V, dim V = p, and e(q) = 2p - 1.

Assume that dim 1/ = 1 so that F is a splitting field for P, and Po is
abelian. Since P, does not a d via scalar multiplication on V, P, is not in Z(T),
and thus, C, = CT(Pi)^ T. Since Po is abelian, C, g F(T). This observation
will allow us to eventually show that the case dim U = 1 does not occur at all.
Let C2 = CT(PJPI) where P2 = P, D Z(T). The minimal choice of P, assures
us that P1/P2 is a chief factor of T and that P2 acts via scalar multiplication on
V. Assume that d = C2 so that C2 ^ T. Choose M, a minimal normal
subgroup of TIC2. Now M operates fixed-point-freely on Pi/P2; M central-
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izes P2; and P, is abelian so that P, = P2 x [P,, M] is a T-decomposition of P,.
Therefore, [P,, M] = Pi/P2 is a minimal normal noncentral subgroup of T. We
must have d < C2. Now C2/C, acts upon P, and stabilizes the chain
1< P2< P, so that d / d is a nontrivial p-group (Gorenstein (1968) (5.3.1)).
Note now that [C2: d ] ^ p, |P2 |Sp, and [P,: P2]Sp so that p3|n.

The group P, acts via scalar multiplication on V, so that CT(Pi) stabilizes
V,. Since CPl(d) is normal in T and contains P2, the minimality of P, implies
that CPl(d) = P2. We show now that the stabilizer in C2 of V, is d - There is a
homomorphism A, of P, into F such that if i G P , and v G V, then
xu = A,(X)D. Suppose that y G C2\C,. Choose x G P, so that [x, y] = z/\.
Note that since z G P2SZ(T), A,(z)^ 1. If u G V, then xyt> = yx[x,y]v =
A,(x)A,(z)yu^ A,(xjyu so that yV, is not isomorphic to V, as an F[P,]-
module. We conclude that the stabilizer in C2 of V, is d - From this it follows
that [C2: d ] divides t, and hence p divides dim V. Recall that p'\n so that
pSdim V S ^ ( q ) G ^ ( p \ ^ ) = { l , - - - , p - l , 2 p - l } proving that U = V,, t =
p, dim V = p, and e(q) = 2p — 1. We now may conclude that (1) holds.

Our argument shows that if r | |F(T) | where r^ p is a prime then Or(T)
acts via scalar multiplication on V since dim W r. In particular, Or(T)^
Z(7) so that F(T)= Z(T)Op(r).

Assume again that dim U - 1 so that dim V, = 1. The group Ci stabilizes
each Vi and acts via scalar multiplication on each Vt; therefore, C, is abelian,
and C, § F(T). From the fact that F(T) = Z(TJP0 and Po is abelian we have
C\ = F(T). From our previous observations, C2/Ct is a p-group, and
F(T)/Z(T) is a p-group so that C2/Z(T) is a p-group. This implies that C2 is
nilpotent so that Ci = C2 = F(T). Previously we showed that C2> d . This
contradiction shows that the case dim U = 1 does not occur. We now have
(since V\P, is irreducible) V|Po irreducible of dimension p. In particular, Po

contains a unique normal subgroup P of order p. If Po is abelian then it is
cyclic. Now Z(T)P0= F(T) and Z(T)nP0^P. Therefore, if Po is abelian,
TIF(T) acts as automorphisms faithfully on Po and trivially on P. But then
T/F(T) is a p-group so that T/Z(T) is a p-group. Consequently, T = F(T) is
nilpotent. In proving (2), we may assume that Po is nonabelian.

Note that T g GL(V) = GL(p, F) so that Po is a nonabelian subgroup of
Zp" ~ Zp where pd is the highest power of p dividing g - 1 (Weir (1955)).
Therefore, Po/4>(Po) is a 2-dimensional space over K = GF(p). Since
Z(T)P0 = F(T), T/F(T) acts faithfully on Po and, therefore, on P0/<P(P0). We
have now shown that T/F(T) acts faithfully as an odd order solvable
subgroup of GL(2,p) with no normal p-subgroup. All such subgroups are
cyclic of order dividing p + 1 or are isomorphic to subgroups of Zp_i x Zp_,.
Suppose first that r\[T:F(T)] and r\p + 1. Then e(p)G ^(r,p) = {1} since p
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has order 2 (mod r). But Po is nonabelian so that e ( p ) § |F0 | = p3- Such an r as
this cannot exist. Suppose second that r \p - 1. Since p\q -1, r <p <q. If q
has order d>\ (mod r) then e(<?)G Sf{r,q)Q {1, • • •, d - l,2d - 1}. Now
d\r-\ and r | p - l so that r g ( p - l ) / 2 and d S (p - l ) / 2 - 1 . Thus e(<j)S
2d — l ^ p - 4 < 2 p — 1 = e (q). This contradiction shows that r )( p — \. We
now have shown that T = F(T)= Z(T)OP(T) proving (2).

Since p >2 and dim V = p is odd, Lemma (5.3) implies (3).
Let W be as in (4). Then P D (CG( W)C/C)^ {1} where C = C G ( V ) .

Choose P* a minimal p-subgroup of G such that P*C/C = P,,. Let D =
Cfi( W) so that P ' O D s P*C D DC = C since (P*C D DC)/C does not
contain the unique minimal normal subgroup P of Pn. Therefore, Po is a
homomorphic image of P* = P*D/D. If Po is nonabelian then P* is
nonabelian. In this case, since W is a faithful P ""-module, dim W g p. If Po is
abelian, it is cyclic of some order pa. Further, any faithful irreducible
F[P0]-module has dimension p. Since P(l is a homomorphic image of P*, P*
contains a cyclic subgroup Po of order p°. Now W contains a faithful
irreducible F[P0]-module of dimension p so that dim W a p. This completes
the proof of (4) and the lemma.

LEMMA 5.6. Assume that n is odd, P is a noncentral minimal normal
p-subgroup of T for a prime p, and if a prime s divides \F(T)\ then s | q - 1.
Then:

(1) d i m V > l ; -
(2) there is a prime r\[T: F(T)] such that dim V = rand e(q) = 2r — 1;
(3) T/F(T) is an r-group and r\q — 1
(4) P acts fixed -point-freely on V(g)FV; and
(5) if P£ Ca(W)Ca(V)ICO(V) then dim W a r.
Since p \q - 1, F contains a primitive pth root of unity so that V\P —

V< © • • • © V, where each Vi is a homogeneous component and t>\.
Further, each V, is a sum of 1-dimensional irreducible F[P]-modules. In
particular, dim V g ( ^ l proving (1).

Let T,,= T/CT(P) and F,,= GF(p) so that P is an irreducible F,,[T,,]-
module. Since P is not central in T, Tn/{\}. Let R» be a minimal normal
r-subgroup of Tn for some prime r. Let R be an /--subgroup of T chosen
minimal such that RCT(P)/CT(P) = Ru. Notice that t / -> x <g)F|p|C/ deter-
mines an action of T on the 1-dimensional F[P]-modules contragredient to
the action (given by conjugation) of T upon P. Since R acts fixed-point-freely
on P, every nontrivial R -orbit on P has length divisible by r. Since the
modules V*, i = 1, • • •, f form a union of nontrivial R-orbits, contragredience
implies that r divides /. That is, since all Vf have the same dimension,

r dim V.
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Suppose that r/ q and that d is the exponent of q (mod r). If d > 1 then
e(q) G ^(r, q) C {1, • • •, d - 1,2d - 1}. Some element of T will act nontrivially
upon V with order r so that d g dim V S e ( q ) . These inequalities require
that e(q) = Id - 1 and d be odd. Since d is odd and divides r - 1, dim V S
e(q)=2d- 1 ^ 2 ( r - l ) / 2 - 1 < r. This contradicts the fact that r|dim V. We
have shown that if r / q then r |q — 1.

Change d now to the exponent of p (mod r). Every irreducible F<,[R<,]-
module in P represents Ra as a group of order r and, therefore, has dimension
d. In particular, | P | s p d so that rpd\n. We next establish that r^ q so that
rp \q - 1 since r/ p.lf d = I then r | p - 1 so that r < p < q. Assume that r = q
so that d > 1. Applying Lemma (5.2) with To, Ro, P in place of T, P, V we
conclude that \P\ = pd, d is odd, and e(p) = Id - 1. Since d > 1 is odd, p*\ n.
T h u s e(q)E.y(p\q) = {\,---,p- l,2p - 1}. W e n o w h a v e q = r § d i m V S
e(q) ^ 2p - 1. Since p and q are odd, and since p \q - 1 we have p § (q - l)/2
so that q = r S 2 p - l S < 7 - 2 . We have established that ry^ q.

Since rpd\n, d is odd, and r p | < j - l , e(q)& if{r.pd,q) =

{1, • • •, r - 1,2r - 1}. But now r § dim V S e(q) so that r = dim V and e(q) =
2r — 1. We have completed the proof of (2).

From the facts that r 11 and dim V = r we conclude that dim V,• = 1. In
particular, Cr(P) acts via scalar multiplication on each V, and is, therefore, an
abelian group. Since CT{P) S F(T), F(T) = CT(P). We show next that T has
Fitting length 2, or equivalently, To is nilpotent.

Suppose that TJF(T0) contains a nontrivial minimal normal s-subgroup
for a prime s. Each orbit of T() upon the nonidentity elements of P is faithful.
Clearly F(T) stabilizes each V, so that T acts as a permutation group on the
V( with kernel F(T). In other words, To has a faithful permutation represen-
tation of degree r = dim V. Thus s\r\ and 5 = r. Let Ri be a Sylow r-subgroup
of S\ the symmetric group on r-letters. Viewing To as a subgroup of Sr, we
may consider Rt to be R(]. Since 7"0S Ns-(Ri), and since [NS'(Ri): /?i] = r — 1,
s ! r - 1. Now s < r < q, and s | r — 1 so that if sr | q - 1 then e (q) G 5^(s, r, ̂ ) =
{1, • • -, s — 1,2s — 1}. But 2r-l = e(q)^2s-l<2r-l proving that
s Jf q — I. Let u be the exponent of q (mod s). Then w |s — 1 so that u < r. At
this point we know that e(q)e. y(s,q)C{l, • • -, u - 1,2M - 1} so that 2r - 1 =
e(<?) = 2u — I <2r - 1. Therefore, To is nilpotent. Now r could have been any
prime divisor of To so that dim V = r implies that To is an r-group. Since
r l q - 1 , (3) holds.

Since r = dim V and p are odd, lemma (5.3) implies (4).
Note that P is a noncentral chief factor of G and that T/CT(P) is an

/•-group where r\q-\. Since P£ CG(W)Ca(V)/CG(V), P is isomorphic to a
chief factor of T, = G/CG(W). In particular, the nilpotent length of T, is
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bounded below by 2. We now view T,, W in place of T, V. Suppose that
Lemma (5.2) applies to W for a prime 5. Let d be the order of q (mod s) so
that dim W = d. By (5.2) (3) T, has nilpotent length 2 and r | [T,: F(T,)]. Thus
r | d. We now have dim W = d =£ r = dim V. Since T] is not nilpotent, Lemma
(5.5) does not apply to W. Assume that Lemma (5.2) does not apply to W. By
Lemma (5.4) n is odd, and by our remarks above, Lemma (5.6), the present
one, describes the situation on W. By (3) and our preceding discussion,
TJF(T,) is an /--group for the prime r we have always been considering, and
by (2), dim W = r = dim V. We conclude that (5) and the lemma hold.

6. Minimal normal subgroups

HYPOTHESIS 6.1.

(1) G is a solvable group.
(2) P is a p-subgroup of G for a prime p.
(3) H is a normal q-subgroup of G for a prime q/ p.
(4) / / K is a proper subgroup of H normal in G then [K, P] = 1.
(5) There is a G-chief factor V = H/Ho such that if F = GF(q) then P

acts fixed point freely on V ® F V.
(6) PCo(H/H0) is normal in G.
(7) P centralizes every G-chief factor of Co(H/H0)/H whose order is a

power of q.
(8) P normalizes a Sylow q-subgroup of CG(H).

THEOREM 6.2. / / Hypothesis (6.1) holds then
(1) H is a minimal normal subgroup of G;
(2) there is a subgroup Ga of G such that G0H = G and GaC\H = {1}.
We prove this theorem via a sequence of lemmas.

LEMMA 6.3. Ho is the unique maximal G-invariant subgroup of H.
Suppose that H, and H2 are distinct maximal G-invariant subgroups of

H. Then H,H2 = H. But {1} / [H, P] - [H,H2, P] S [H,, P] [H2, P] = {1}.

LEMMA 6.4. Ho^ Z(H).

Now [Ho, P] = {1} so that P x Ho acts upon H. By the p x q lemma
[Gorenstein (1968), (5.3.4)] P acts nontrivially upon CH{H0) so that H =
CH(Hn), proving the lemma.

LEMMA 6.5. H is elementary abelian.

Let H' = W and suppose that H' / {1}. The commutator mapping of H
induces a bracket on L = V 0 W such that L is a Lie ring [Gorenstein (1968),
Section 5.6]. The bracket is an F[G]-bilinear mapping of V x V onto W and,
as such, induces an F[G]-homomorphism of V ® F V onto W. Since W / (0),
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P is nontrivial on W. But H' is a normal subgroup of G proper in H and
centralized by P. We conclude that H is abelian.

The mapping <p(x)= x" is a G-homomorphism of H onto H" =
(x * | x G H). Since H V H we have H" § Ho. Therefore, [H, P] § ker (p. But
ker<p is G-invariant so that H = kercp proving that H has exponent q.

LEMMA 6.6. H is a minimal normal subgroup of G.
Write H additively and view it as an F[G]-module. Then H is indecom-

posable, and Ho is the unique maximal F[G]-submodule. Let Ci - CG(H),
G = G/C, P = PCJC, and C = CG(H/H0)/C,. We prove that C = {1}.

Suppose that Q = Oq(C) ^ {1} and Q = Q, > Q2 > • • > Q,+1 = {1} is a
G-chief series for Q. By (7), [Q, P] S Qi+, for i = 1,2, • • -, t. Thus [Gorenstein
(1968), (5.3.1)] P centralizes Q. Now H = [H, P] © CH(P) is a O decomposi-
tion of H. Since, by (5), P is fixed point free on H/Ho and centralizes Ho,
Ho = CH{P). But HIHo = [H, P] as a O-module and H/Ho is a G-chief factor
so that [H, P ]S CH(Q). Since CH(Q) is a G-submodule on which P is
nontrivial, CH(O)= H proving that O ={1}.

Suppose that M = O,-(C)^_{1}. Then H = [H,M]© CH(M) is an F[G]-
decomposition of H. Now CH (M)H0 = H since M isa<j '-group. Since H is
indecomposable, H = CH (M) proving that M = {1}. Since C is solvable and
O,(C) = Oq(C) = {1} we conclude that C = {1}.

Now P is normal in G so that H = [H, P] 0 CH(P) is a G-
decomposition. Since [H, P] / (0) and since H is indecomposable, we con-
clude that H> = CH(P) = {1}. Since H is a chief factor of G, H is minimal
normal in G.

LEMMA 6.7. T/tere is a subgroup Go o/ G such that G0H = G and
GonH = {\}.

A theorem of Gaschiitz [see Huppert (1967), (1,17.4)] tells us that if
D s H is a subgroup of G and every Sylow r-subgroup of D splits over H
then D splits over H. Since H is a q-group, any Sylow r-subgroup of D
obviously splits over H if r^ q.

We argue that CG(H) = A x H for some subgroup A of CO(H). Let Q,
be a Sylow q-subgroup of CG{H) normalized by P. Let CG(H) = d > • • • >
C, = H > C,+1 = {1} be a G-chief series of CG(H). Suppose that i is maximal
such that O^C^IO^P] so that Q,n Ci+lg[H,P]. Notice that Q, D
C y ( ? i n C i t i so that Cj/Ci+i is a q-chief factor. Suppose that i < f. Then
[O., P] = [O,, P, P] ^ [O, n G, P] g O, n [G, P ] S O , n G+1 since P central-
izes G/G+i. We must therefore have i = f and [Q,,P] = H. Now O,=
CO,(P) • H where COl{P) n H = {1}. Set Q2 = COl(f )• By the Theorem of
Gaschiitz, there is a complement A g Q2:
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Co(H)= AH

where A D H = {1}. But H is central so that Ca(H) = A x H.
Let MICG{H)' = Oq{Ca{H)ICa(H)') so that M is a normal subgroup of

G. Since CC(H)'SA, M^A and CG{H)IM = AIM x HM/M is a abelian
g-group. Now Q2M = A (O2 = CO,(P)) so that AIM = Cr/M(P) where C =
Co(H) and P = PC/C Since P is normal in G = G/C, AIM is G-invariant.
Now set G = G/A, H = HA/A, and P = PA/A. It is straightforward to
verify that H = Oq{G) is the unique minimal normal subgroup of G. In other
words, G = BH where B D H = {1}. Let B be the inverse image in G of B so
that B S A, BH = G, and B D H S H D A = {1}. Therefore, G splits over H
completing the proof of the theorem.

7. Good numbers: CLT groups

In this section we prove the following theorems.

THEOREM 7.1. If n > 1 is a good number and G is a group of order
dividing n then G is solvable and has Fitting height at most 3.

THEOREM 7.2. If n > 1 is a good number and G is a group of order n then
G is a CLT group.

First we prove the following.

LEMMA 7.3. Suppose that G is a solvable group and that every G-chief
factor of F(G) is cyclic. Then G is supersolvable.

Let ?F be the set of G-chief factors of F(G). Let T be the direct product
of the groups GICG(V) as V ranges over ST.UxE.G then the mapping that
sends x to the components xCG(V), V G 5", in T is a homomorphism of G
into T with kernel N = D Ca(V), V G ST. Since V G ST is cyclic, G/CC(V) is
abelian. We conclude that GIN is abelian, that is, G-chief factors of G/N are
cyclic. The G-chief factors of N are all central so that N is nilpotent. Since
N 2= F(G), the G-chief factors of N are cyclic. We conclude that the chief
factors of G are cyclic and G is supersolvable.

To prove Theorem (7.1) we apply Theorem (4.1) and note that F(G) has
a G-chief factor V such that T = G/CG(V) has Fitting height one less than
the Fitting height of G (Berger (1973b), (1.1) (Use S./ST)). Since T, V satisfy
the hypotheses (5.1), either V is cyclic, in which case T is abelian, or T has
Fitting height at most 2 by Lemmas (5.2), (5.5) and (5.6). We conclude that G
has Fitting height at most 3. The proof of Theorem (7.1) is complete.

EXAMPLE 7.4. In (1.2) we showed that n = 3-13-795 is a good number.
Let K = GF(79) and H be the group with minimal normal elementary abelian
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noncentral Sylow 13-subgroup and Hall 13'-subgroup of order 3. Thus H is
nonabelian of order 3 • 13. Let V be a faithful irreducible K[H]-module so
that V has order 79\ Form the semidirect product K = H • V. Let L be of
order 792 and set

G = KxL.

Now G has Fitting height 3 and order n. The bound of Theorem (7.1) is best
possible. The Lemmas of Section 5 give ideas on constructing other examples
of Fitting height 3. This example fits into the scheme described by Lemma
(5.6).

Next we prove Theorem (7.2). By Theorem (4.1), any group of order n is
solvable. Assume (7.2) is false and choose n minimal such that a counter-
example exists. Let G be a counter-example of order n. Certainly G is
solvable. If every G-chief factor of F(G) is cyclic then by Lemma (7.3), G is
supersolvable. By (1.3) G is a CLT-group. We conclude that Oq(G) has a
noncyclic G-chief factor for some prime q. Choose H § Oq(G) minimal such
that H is normal in G and H has a noncyclic G-chief factor. Evidently, there
is a subgroup //<> of H which is normal in G for which /////,> is a noncyclic
G-chief factor. Further, all G-chief factors of Ha are cyclic. Set V = H/Ho

and T= G/CG(V). Hypothesis (5.1) now holds for G, T, V. In particular,
there is a p-subgroup P of T for a prime p such that:

(a) P is a G-chief factor,
(b) P acts fixed-point-freely on V (g)F V where F= GF(q);
(c) if W is a q-chief factor of G such that P ^ CG(W)CG(V)/CG(V)

then dim W £ dim V; and
(d) dim V = d where e(q) = 2d - 1 and d is odd.

These conclusions follow from Lemmas (5.2), (5.4), (5.5), and (5.6). Recalling
the definition of %(q), either %(q) = {m 11 S m S Id - 1} or %(q) =
{1, • • •, d - l,2d - 1}. (Actually it is the latter case, but we ignored the
necessary inclusion in Section 5 to prove this.)

Let M be the inverse image in G of P. Set C= Ca(V)= CoiH/H,,) and
let O be a Sylow q-subgroup of C. By the Frattini argument M = NM(Q)C.
Since [M: C] is a power of p, M = PnC for a Sylow p-subgroup Po of NM(Q).
Choose P S Po minimal such that PC = M. We now verify Hypothesis (6.1).
Notice that (1), (2), (3) and (6) of (6.1) are more or less obvious. Since
0 n CG(H) is a Sylow q-subgroup of CO(H) (which is in C and normal in G),
it is normalized by P proving (8). Let W be a G-chief factor of either Ho or
C/H whose order is a power of q. By our choice of W, we know that | W \ \ V |
divides n, that is, e(q) § dim W + dim V. If P acts nontrivially on W, then by
the minimal choice of P, PgCG(W)C/C so that dim W g dim V by (c)
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above. By (d) we obtain e(q) = 2d - 1 g dim W + dim V g 2d. This contradic-
tion proves that P centralizes W verifying (7). If Ho> H,> • • •> Hm = {1} is a
G-chief series of Ho then we also have shown that P stabilizes the chain of
H/s. We conclude that [HO,P] = 1 (Gorenstein (1968) (5.3.1)). By the
minimality of H, Ho is the unique maximal G-invariant subgroup of H so that
(4) holds. Finally (5) holds by (b) above.

Since Hypothesis (6.1) holds, by Theorem (6.2), H is a minimal normal
subgroup of G and there is a subgroup Go of G such that G0H = G and
Go n H = {1}.

Let n'= n/q", %'(q) = %n{q), and e\q) be the e's for n'. then e'(q) =
d - 1. By the definition of %{r) for a prime r, £(r)C %'(r) for all primes r
dividing either n or n'. Since e(r)=e'(r) for r/ q and e(q) = 2d - I,
e'(q) = d - 1 we conclude that n' is a good number. The group Go has order
n' so that Theorem (7.2) is valid for Go.

Suppose that m is a divisor of n. We may write m ~ m'qs where
OS 5 §2d - 1 and (m',q)= l.li s ^d-\ then m divides n'. Since Go is a
CLT-group, Go (hence G) contains a subgroup of order m. If s > d - 1 then
s = d + d' where O g d ' S i i - 1 . Since m"'= m'q'1 divides n', and since Go is
a CL T-group, it contains a subgroup L of order m". Since LH has order m, G
contains a subgroup of order m. We conclude that G is a CLT-group. This
contradiction completes the proof of Theorem (7.2).

Theorems (3.10) and (7.2) prove the main Theorem (1.1) of this paper.
Using the results of Section 5, one should be able to give a fairly complete
description of the structure of groups whose order is a CLT-number.
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