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Protein glycation has been studied for over a century now and plays an important role in
disease pathogenesis throughout the lifecycle. Strongly related to diabetic complications,
glycation of Hb has become the gold standard method for diabetes diagnosis and monitor-
ing. It is however attracting attention in normoglycaemia as well lately. Longitudinal studies
increasingly suggest a positive relationship between glycation and the risk of chronic diseases
in normoglycaemic individuals, but the mechanisms behind this association remain unclear.
The interaction between glycation and oxidative stress may be particularly relevant in the
normoglycaemic context, as suggested by recent epidemiological and in vitro evidence.
In that context nutritional and lifestyle factors with an influence on redox status, such
as smoking, fruit and vegetable and antioxidants consumption, may have the capacity to
promote or inhibit glycation. However, experimental data from controlled trials are lacking
the quality and rigour needed to reach firm conclusions. In the present review, we discuss
the importance of glycation for health through the lifecycle and focus on the importance
of oxidative stress as a driver for glycation. The importance of nutrition to modulate glyca-
tion is discussed, based on the evidence available and recommendations towards higher
quality future research are made.

Glycation: Oxidative stress: Antioxidant: Nutrition: Diabetes mellitus: Chronic disease:
Polyphenols

Glycation reaction: historical background

Glycation, also referred to as non-enzymatic browning
or the Maillard reaction, has attracted scientific interest
for nearly a century. Initiated by the non-enzymatic con-
densation of a reducing sugar (such as glucose) with a
protein, glycation is one of the most important forms
of protein damage/loss, relevant to both medicine and
food science. Named after the pioneer in the field, the
Maillard reactions were described in 1912(1) and system-
atically presented for the first time by John E. Hodge in
1955(2). During the early years, glycation was studied
in the context of food science, food processing and
hence relative to health via nutritional intake. In 1977,
a fraction of Hb, HbA1c, was identified as a ketoamine

(glycation product) and the concept of in vivo protein gly-
cation gradually became mainstream(3–5). HbA1c was
proposed as a useful biomarker for diabetes monitor-
ing(3,4), and endogenously produced advanced glycation
endproducts (AGE) have since attracted further scientific
attention, beyond food chemistry, from fields including
medical biochemistry and pathology.

Importance of glycation for health

Glycation and the AGE–RAGE axis

The study of the role played by glycation in disease
pathogenesis originally relied on measuring fructos-
amine levels in biological fluids, combined with the
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characterisation of endogenous AGE in the circulation
and tissues(6,7). These measurements were related to gly-
caemia and the topic very much focused on diabetes(3–5).

In hyperglycaemia (post-prandially or in non-
controlled diabetes) and to a lesser extent in normogly-
caemia, both circulatory proteins and proteins of the
endothelium are exposed to (excess) glucose, leading
to the slow formation of AGE(8–11). During that process,
glycation adducts are created on the protein molecule,
as a function of glucose levels. Accumulation of glyca-
tion adducts on the protein promotes excessive cross-
linking with other protein molecules, which, in the case
of collagen for example, would inhibit the formation
of an ordered and functional polymeric complex. Such
changes could lead to the formation of a thick vascular
wall with (1) reduced elasticity and (2) a high affinity
of collagen to bind other circulating proteins such
as IgG, albumin and lipoproteins such as LDL(12–21).
In turn, the immobilisation of proteins on the vascular
wall will promote further glycation and cross-linking
and will act as a signal for chemoattraction of macro-
phages and monocytes, promoting inflammation and
‘foam’ cell formation in the endothelium(22–24).

The discovery that AGE can bind on cellular receptors
and alter intracellular events was a breakthrough, linking
glycation to signalling(25). Receptors such as AGE-R1,
AGE-R2, AGE-R3, MSRII, CD36, LOX-1 and the
receptor for AGE (RAGE), the most characterised recep-
tor(26), are multi-ligand cell-surface Ig, with the ability to
initiate injury-like intracellular events, mainly expression
of genes related with inflammation and oxidative
stress(27–29). Upon activation of RAGE, intracellular re-
active oxygen species levels are increased through up-
regulation of NAD(P)H oxidase expression. This in
turns leads to activation of the Ras-mitogen activated
protein kinase pathway, ultimately up-regulating NF-
κB and the production of inflammatory molecules
(including TNF-α, vascular cell adhesion molecule 1,
intercellular adhesion molecule 1 and IL-1β). The
up-regulation of NF-κB also initiates a positive feedback
loop that sensitises the cell (and hence the tissue) to AGE
by promoting RAGE production(24).

Together accumulation of AGE in tissues and AGE–
RAGE interactions are the two main pathways of glyca-
tion involvement in disease pathogenesis. These two
pathways are often acting simultaneously and their indi-
vidual effects are hard to distinguish; hence they are com-
monly presented in the same context when discussing
glycation-related pathophysiology(12,30–34).

Glycation and health throughout the lifecycle

Glycation is relevant to all stages in the lifecycle, includ-
ing conception and early gestation. The reproductive
tract is a known site for AGE accumulation both in
men(35) and women(36). AGE accumulation is followed
by changes in the distribution of RAGE in reproductive
tissues(37), and the soluble isoform of RAGE in seminal/
follicular fluid(38,39), which may lead to lower sperm
quality(38), lower likelihood of success following assisted
reproduction(40,41) and reduced embryonal quality and

development(39,41,42). During the course of pregnancy,
activation of the AGE–RAGE axis may be involved in
the pathogenesis of preeclampsia(43–45). So far, evidence
on the involvement of AGE and/or RAGE in fetal devel-
opment is limited and based on animal studies. For
example, a study on transgenic mice showed that overex-
pression of RAGE was associated with impairments
in alveolar morphogenesis. The degree of RAGE overex-
pression was related to the magnitude of the abnormality
with homozygous mice having histological changes simi-
lar to human bronchopulmonary dysplasia. The study
also found that these early life changes could lead to
increased risk of ‘destructive’ emphysema(46). Glycation
has also been proposed as a mechanism of ageing(47,48).
Evidence from animal models suggest that a diet low in
AGE (50% reduction in AGE intake) was associated
with amelioration of insulin resistance, lower AGE ac-
cumulation (both indications of the ageing process) and
ultimately increased lifespan compared with the con-
trols(49). Similarly, mice on caloric restriction, a popular
model of lifespan expansion in animal models, have
lower levels of collagen cross-linking and lower levels
of lens cataract, suggesting lower AGE accumulation in
the vitreous and the extracellular matrix(50,51) as well as
in the brain(52). In fact, mice fed high AGE diets while
on caloric restriction did not show any increase in their
lifespan and the authors of the report suggested that
lower AGE intake may be one of the mechanisms behind
the caloric restriction model(49,53). An interesting obser-
vation linking the effect of AGE in ageing and as early
in life as in conception comes from a study showing
the active involvement of AGE accumulation in ovarian
ageing and ovarian function in human subjects(54).

HbA1c and risk of chronic diseases

Even though the exact mechanisms of disease patho-
genesis remain elusive, extensive evidence is available
to associate glycation with disease risk. Glycation has a
particular relevance for age-related diseases, including
Alzheimer’s disease(55,56), skin ageing(48) and cataract(47).
These conditions are characterised by increased, possibly
lifelong, deposition of AGE in the affected tissue(57–59).

As in vivo glycation is believed to be mainly driven by
plasma glucose concentrations, the most established re-
lationship is between glycation and diabetes. HbA1c is
the gold standard method for diabetes diagnosis and
monitoring(60). According to the American Diabetes
Association, individuals with HbA1c levels between 5·7
and 6·5% are considered at high risk of developing dia-
betes. Those with HbA1c>6·5% are classified as having
diabetes(61). Among patients with diabetes, higher
HbA1c levels are associated with increased risk of retino-
pathy(62–66), neuropathy(67) and nephropathy(66).

Glycation has recently attracted attention as a risk fac-
tor for normoglycaemic individuals. For the purpose of
the present paper, we conducted a systematic literature
search to identify studies documenting the effect of
increased glycation on the risk of non-communicable
chronicdiseases in normoglycaemic subjects.We identified
fifteen reports from eight studies (European Prospective
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Investigation into Cancer and Nutrition(68,69), Athero-
sclerosis Risk in Communities study(70–73), Australian
Diabetes, Obesity and Lifestyle study(74), the Hoorn
Study(75,76), Framingham Offspring(77), Rancho Ber-
nardo(78), Women’s Health Study(79–81) andNational Sur-
vey of Cardiovascular Disorders 1990(82)) analysing data
from a total of over 63 000 participants, followed-up for
4–15 years. The outcomes of interest were diabetes
risk, CVD, IHD, stroke, CHD and all-cause and CVD
mortality. Two reports focused on the association between
glycation and cancer risk, especially colorectal(69) and
breast cancer(80). Overall, the studies showed a positive re-
lationship between higher HbA1c and the risk of stroke
and/or CVD and/or mortality ranging between 18
and 55 % higher risks per 1 % increase in HbA1c(68–74,82).
As far as cancer incidence is concerned, the results are
still inconclusive. Data from the European Prospective
Investigation into Cancer and Nutrition cohort suggest a
33 % increase in the incidence of colorectal cancer per
every 1 % increase in HbA1c(69), but an analysis of the
Women’s Health Study data did not find any association
betweenHbA1c and breast cancer risk(80). As the two can-
cer types differ significantly in aetiology, colorectal cancer
has a strong dietary link(83) whereas breast cancer ismainly
of genetic aetiology(84); more research is needed before any
conclusion is reached.

Oxidative stress and protein glycation in
normoglycaemia

As observed by Selvin et al.(70), fasting glucose may fail
to explain the positive relationship between HbA1c and
CVD and/or mortality. Correction for classical risk
factors (including smoking, dyslipidaemia and inflamma-
tion) explain the relationship better(75,76,79,81), suggesting
that a shared mechanism may drive the increase in
HbA1c levels. Although indications and potential
mechanisms are in place to suggest an active involvement
of oxidative stress in protein glycation in normoglycae-
mia and hence the increase in the risk of chronic diseases,
so far little evidence is available to support such a
hypothesis.

In our previous work, we hypothesised that oxidative
stress could be this shared mechanism, which acts as a
glycation driver in normoglycaemia.

Using the Scottish Health Surveys datasets 1993–2010,
we have shown that, in individuals without diabetes and
HbA1c levels lower than 6·5%, age–sex adjusted HbA1c
levels are positively correlated with smoking status,
an association seen even among ex-smokers who used
to smoke regularly(85). Smoking status was used as a
proxy for oxidative stress and, in a similar way, fruit
and vegetable intake was used as a proxy for antioxidant
intake. Smoking was positively associated with HbA1c
levels from as few as ten cigarettes per day a finding con-
sistent with previous reports(86,87) (Fig. 1). The likelihood
of having an HbA1c level within the prediabetes range
(5·7–6·4 %) was double among smokers compared with
non-smokers; this was seen even with less than ten cigar-
ettes per day smoked. Interestingly, smoking cessation
does not lead to complete reversal to the non-smoking

state, as former smokers were found to have lower
HbA1c levels than smokers but not as low as never smo-
kers(86,87). In a linear regression model, smoking was
associated with 0·08 % higher HbA1c compared with
no smoking, which is equal to 0·25 times the SD. As
expected, vegetable intake had the opposite effect being
associated with lower age–sex adjusted HbA1c levels
with more portions consumed. In fact, for every extra
80g portion of vegetable consumed there was an asso-
ciated 0·01 % reduction in HbA1c.

The hypothesis that glycative and oxidative damage
are closely related in vivo is supported by evidence show-
ing that in purified plasma albumin, oxidative damage,
measured as a reduction in free thiol groups, was posi-
tively related to glycative damage, measured as fructos-
amine and carbonyl rate(88). Moreover, Cys-34, a key
site of oxidative damage in albumin in vivo(89), has also
been suggested as a glycation site, especially from α-
oxoaldehydes(90). Since in vitromodels are often removed
from physiologically relevant reactions, it is important
to set up mechanistic studies with adequate parameters.
To test the hypothesis that, in normoglycaemia, oxidative
stress promotes glycation, we carried out 4-week albumin
incubation studies (albumin has a half-life of 14–28 d).
Glucose concentrations 5 and 10mM were employed to
replicate normoglycaemia and (non-controlled) diabetes,
respectively, whereas 20 and 30mM glucose were used as
the positive controls (supraphysiological concentrations).
There is no consensus on the plasma levels of H2O2 (from
nearly 0 to 35μM(91–93)); we used a low concentration
H2O2 (10nM) to simulate physiologically relevant oxidat-
ive stress(94). Co-incubation of albumin with glucose and
physiological levels of H2O2 led to significantly higher
glycation at all glucose levels tested, after 2 and 4
weeks incubation, compared to glucose alone. At the
physiological glucose level (5mM), there was no signifi-
cant glycation (v. negative control) in absence of H2O2
(Fig. 2), indicating that oxidative stress plays an import-
ant role in glycation in normoglycaemia. Physiologically,
in the presence of oxidative stress, proteins can get
quickly oxidised and remain in this form in circulation
until they are degraded by proteases(95). As extracellu-
lar/circulating proteins are more likely to get oxidised
first before getting glycated, due to the relative speed of
the reactions, the same experiments were repeated using
pre-oxidised protein. The pre-oxidised bovine serum
albumin led to a higher production of fructosamine

Fig. 1. Age–sex adjusted mean (SD) of %HbA1c according to
number of cigarettes per day (adapted from Vlassopoulos et al.(85)).
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when incubated with glucose as compared with the native
incubated BSA. Oxidative stress also drove glycation of
human plasma proteins, in presence of 5mM glucose.

Brought together, these results(85,96) indicate the po-
tential role for oxidative stress as a driver for glycation
in normoglycaemic individuals. The increased levels of
HbA1c seen in smokers and those consuming low
amounts of fruit and vegetables could be partially due
to their impaired redox status, as stipulated by the epide-
miological data. This interaction between oxidative stress
and glycation will be subtle but with potentially sizeable
long-term effects. Hence, dietary interventions aiming to
restore the antioxidant/pro-oxidant balance in subjects
at high risk of oxidative stress could be of value in
chronic disease prevention.

Antiglycative capacity of antioxidants and polyphenols

In the search for compounds able to inhibit or slow the
glycation reaction, antioxidants have attracted attention.

The first AGE blocker identified is aminoguanidine(97);
a dicarbonyl scavenging agent that reduces AGE
production by removing the oxidatively produced pre-
cursors, like α-oxoaldehydes(98,99). Aminoguanidine,
like other glycation-inhibiting compounds aspirin and
ibuprofen, has the capacity to scavenge free radicals
and improve redox status, which may contribute to
their antiglycative capacity(99–101).

The antiglycative capacity of antioxidant vitamins
and polyphenols has also been investigated, with
in vitro studies showing some polyphenols and phenolic
acids to be even more effective than aminoguanidine in
inhibiting glycation(102–104). Herb extracts and commonly
consumed herbal preparations have been shown to in-
hibit glycation of albumin in experimental settings. Red
wine, green tea, maté tea (Ilex paraguariensis)(105,106),
cinnamon, garlic(107) and other herbs used to prepare
hot drinks or added during cooking are rich in a variety
of micronutrients with antiglycative effects(108,109). A re-
cent review of the literature by Xie et al.(110) analysed
results from nineteen in vitro trials and eleven animal stu-
dies and concluded that antiglycative capacity of poly-
phenols is linked to ring hydroxylation patterns. In this
context, molecules with hydroxyl groups in the A and
B rings (i.e. apigenin<luteolin, fisetin<quercetin, daid-
zein<genistein) those with multiple hydroxyl groups es-
pecially in the ortho- and meta-structure (i.e. phloridzin
<sieboldin), the proanthocyanidin di/trimmers and the
ellagitannins all showed increased antiglycative capacity.
On the other hand, hydrogenation of the C2–C3 bond
(i.e. eriodictyol< luteolin), methylation (i.e. diosmetin
<luteolin) and the addition of rutinosides all decreased
the antiglycative capacity(110). The results of in vitro stu-
dies are still heterogeneous and a thorough review of the
glycation models and assays used would help to under-
stand why translation of the findings to a physiological
setting has not been forthcoming. Some of the reasons in-
clude use of high glucose or fructose concentrations,
supraphysiological concentrations of polyphenols/phenolic
acids, use of compounds with very limited bioavailabil-
ity, and variability in the incubation period/temperature.
Doses tested in vitro are, mostly beyond concentration
that could be reached via habitual consumption of
phenolic-rich foodstuff. Most polyphenols are meta-
bolised extensively in the gut and by the liver after inges-
tion, and have generally a low bioavailability(111,112).
Therefore studies focusing on the systemic effects of the
‘parent’ compounds, as found in foods, are likely to
have low translational values. Phenolic acids, such as
3-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic
acid and caffeic acid, conversely, are formed after
exposure to the gut microbiota, have a higher bio-
availability than larger polyphenols and are more likely
to exert systemic effects(111,112).

Despite the extensive mechanistic evidence, epidemio-
logical data on polyphenol consumption are scarce.
Principal reasons include the difficulties and the biases
associated with deriving polyphenol intake data from
dietary records. The process involves the use of data-
bases, such as PhenolExplorer(113) documenting the poly-
phenol content of foods(113,114) and/or the analysis of

Fig. 2. Differences in fructosamine concentration after incubation
with glucose alone compared to glucose and constant exposure to
oxidation from hydrogen peroxide (10nM) after 2 and 4 weeks
incubation. *P<0·05 native v. constant oxidation; fructosamine was
measured using the nitroblue tetrazolium method with the
synthetic fructosamine equivalent deoxy-morpholino-fructose
(DMF) as a calibrator (adapted from Vlassopoulos et al.(96)).
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FFQ to identify patterns of higher intake of polyphenol-
rich foods. So far, there are no reports addressing the re-
lationship between polyphenol intake and glycation
levels. The reports associating polyphenol intake with
diabetes risk have so far reached contradictory conclu-
sions(115–117). Our own systematic review of the literature
relating antioxidant intake with protein glycation in nor-
moglycaemia showed that human trials with polyphenol-
rich supplements and foods are few and characterised by
high heterogeneity, poor design and small samples size
(in preparation). In the last 20 years, only fourteen trials
used polyphenols as a means to reduce glycation in non-
diabetic individuals, out of which two did not have any
control group(118,119). Taken together, the results of
these studies seem to suggest that polyphenol supplemen-
tation fails to improve glycation markers in non-diabetic
individuals, although this conclusion is most likely to be
a result of poor study design. In populations with estab-
lished impaired glucose tolerance, increased intake of
polyphenols might be promising in reducing protein gly-
cation(120,121), but no hard conclusions can be made at
this point. The bioactive molecules tested were diverse
with no standardisation in dose. The majority of the stu-
dies had glycation as a secondary outcome, leading to
low statistical power, and did not have sufficient duration
to detect changes, if any were present.

Considerations for the future

Although the importance of glycation as a marker of dis-
ease pathogenesis outside of diabetes is becoming clearer,
it is yet to be fully understood. More studies are required
to describe the interactions between oxidative stress and
glycation, especially in normoglycaemia. The importance
of RAGE activation to signal intracellular events that
promote dysfunction and the factors that determine the
levels of the soluble isoform of RAGE have not attracted
the required attention.

As far as polyphenol and antioxidant trials are con-
cerned, there is still much improvement to be done in
terms of study design before conclusions can be reached.
If the working hypothesis is that polyphenols will exert
health benefits via their antioxidant capacity, then mar-
kers to document such improvements should be included
and results on glycation markers, such as HbA1c, should
be discussed alongside oxidative stress improvements.

Sample size and targeting the correct population are
two key aspects of the study design to be considered.
Polyphenol supplementation in a relatively healthy popu-
lation is likely to have a subtle effect on health markers
and hence studies with large sample sizes are likely to
be required(122). The majority of the studies to date fall
short of that sample size and are hence likely to be under-
powered. As a result, we should be careful in conclud-
ing that polyphenol supplementation has no effect on
glycation. The current literature may be just describing
a lack of power to detect such an effect if any.

A good understanding of the supplement used, with
data on bioavailability, composition and dose would
allow for a more effective comparison of the studies.

Also ensuring that the study duration is sufficient to de-
tect changes in glycation markers is a vital improvement.
Albumin has a half-life of 14–28d whereas Hb half-life is
90d; studies with duration shorter than the half-life of the
target protein are unlikely to detect any changes in pro-
tein glycation. Also even though physical protein damage
is the main pathway of glycation-related pathogenesis;
RAGE activation, the soluble isoform of RAGE levels
and glycation-related inflammation are also important
pathways for the involvement of glycation in disease
pathogenesis, but are so far understudied(123,124).

Conclusion

Glycation is an important mechanism of end organ
damage and disease pathogenesis affecting individuals
throughout the lifecourse. With many target molecules
and mechanisms of actions glycation and oxidative stress
are increasingly recognised as of clinical importance
not only in diabetes but in normoglycaemia as well.
Epidemiological and in vitro data so far are supporting
the hypothesis that oxidative stress and its regulation
with antioxidants is of importance in an attempt to
inhibit glycation, especially in normoglycaemia. Although
the importance of nutrition in glycation regulation is
becoming more apparent, clinical trials with polyphenols
so far lack the quality to form conclusive decisions. More
large-scale and high-quality interventions are needed
before recommendations can be made.
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