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Abstract
We prove an extension theorem for local solutions of the 3d incompressible Euler equations. More precisely, we
show that if a smooth vector field satisfies the Euler equations in a spacetime region Ω × (0, 𝑇), one can choose an
admissible weak solution on R3 × (0, 𝑇) of class 𝐶𝛽 for any 𝛽 < 1/3 such that both fields coincide on Ω × (0, 𝑇).
Moreover, one controls the spatial support of the global solution. Our proof makes use of a new extension theorem
for local subsolutions of the incompressible Euler equations and a 𝐶1/3 convex integration scheme implemented in
the context of weak solutions with compact support in space. We present two nontrivial applications of these ideas.
First, we construct infinitely many admissible weak solutions of class 𝐶𝛽

loc with the same vortex sheet initial data,
which coincide with it at each time t outside a turbulent region of width 𝑂 (𝑡). Second, given any smooth solution
v of the Euler equation on T3 × (0, 𝑇) and any open set 𝑈 ⊂ T3, we construct admissible weak solutions which
coincide with v outside U and are uniformly close to it everywhere at time 0, yet blow up dramatically on a subset
of 𝑈 × (0, 𝑇) of full Hausdorff dimension. These solutions are of class 𝐶𝛽 outside their singular set.
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1. Introduction

Convex integration methods, introduced by Nash [40] in the context of the 𝐶1 isometric embedding
problem and subsequently refined by Gromov in his work on flexible geometric PDEs and by Müller and
Šverák [39] in their theory of differential inclusions, have experimented an extraordinary development
in connection with the study of weak solutions of the incompressible Euler equations. This system reads:

𝜕𝑡𝑣 + div(𝑣 ⊗ 𝑣) + ∇𝑝 = 0 , div 𝑣 = 0 ,

where the time-dependent vector field v is the velocity of the fluid and the scalar function p is the
hydrodynamic pressure. One typically considers the Euler equations either on the whole space R3, or
on the torus T3 := (R/Z)3, or on a bounded domain Ω ⊂ R3 with smooth boundary (where additional
complications may arise).
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The motivation to consider weak solutions in this setting is twofold. First, the 3d Euler equations are
expected to dynamically produce singularities from smooth initial conditions [34, 51]. Second, weak
solutions are necessary to describe some of the phenomena that appear in turbulence, such as the energy
dissipation in nonsmooth Euler flows famously conjectured by Onsager in 1949 [42]. Roughly speaking,
Onsager’s conjecture asserts that weak solutions that are Hölder continuous in space with exponent
greater than 1/3 must conserve energy, while for any smaller exponent there should be weak solutions
that do not.

The rigidity part of Onsager’s conjecture was proved by Constantin, E and Titi [18] after a partial
result of Eyink [29]. The endpoint case was addressed in [13]. Concerning the flexible part of the
conjecture, following the construction of 𝐿2 solutions with compact support in space and time due
to Scheffer [44] and Shnirelman [46], a systematic approach was introduced in the seminal work of
De Lellis and Székelyhidi, who introduced 𝐿∞-convex integration and 𝐶0-Nash iteration schemes in
this setting [23, 24]. After a series of significant intermediate results [21, 6, 36], the flexible part of
Onsager’s conjecture was finally established by Isett [36], and further refined by Buckmaster, De Lellis,
Székelyhidi, and Vicol [7] to construct solutions for which the kinetic energy is strictly decreasing. In
addition to the classical Hölder-based approach, the so-called intermittent 𝐿𝑝-based flavor of convex
integration, introduced by Buckmaster and Vicol [10] to prove the nonuniqueness of weak solutions
of the 3d Navier–Stokes equations, has also attracted much attention, as it can effectively capture new
aspects of Kolmogorov’s theory of turbulence. For detailed expositions of these and other results on
various models in fluid mechanics, we refer the reader to the surveys [11, 22] and the papers [1, 8, 9,
12, 15, 14, 16, 30, 31, 41, 47].

A key property of the solutions that one constructs using convex integration techniques is their
flexibility. This refers to the fact that, at a certain regularity level, the equations are no longer predictive:
there exist infinitely many solutions, in stark contrast to what happens in the case of smooth solutions.
Three possible formulations of this property are as follows; as discussed in [41, Remark 1.3], once one
of them has been established within a certain functional framework, it is usually straightforward to pass
to another formulation using techniques that are now standard.

Restricting to the case of T3 for concreteness, let us denote by V ⊂ 𝐿2 (T3) some suitable function
space, which in our case will be some Hölder space𝐶𝛽 (T3). Three standard ways of stating the flexibility
of weak solutions in this regularity class are as follows:

1. Solutions of compact time support: Given any positive constants 𝐸,𝑇 , there exists a weak solution
𝑣 ∈ 𝐶 ([−𝑇, 𝑇],V) whose time support is contained in (−𝑇, 𝑇) and such that ‖𝑣(0)‖𝐿2 (T3) > 𝐸 .

2. Solutions with fixed energy profile: Given any smooth positive function 𝑒 : [0, 𝑇] → (0,∞), there
exists a weak solution 𝑣 ∈ 𝐶 ([0, 𝑇],V) such that ‖𝑣(𝑡)‖𝐿2 (T3) = 𝑒(𝑡) for all 𝑡 ∈ [0, 𝑇].

3. Arbitrary initial and final states: Given any divergence-free vector fields 𝑣start, 𝑣end ∈ V with the
same mean, any 𝑇 > 0 and any 𝜖 > 0, there exists a weak solution 𝑣 ∈ 𝐶 ([0, 𝑇],V) such that

‖𝑣(0) − 𝑣start‖𝐿2 (T3) + ‖𝑣(𝑇) − 𝑣end‖𝐿2 (T3) < 𝜖 . (1.1)

(If 𝑣start, 𝑣end are smooth, one can take 𝜖 = 0 by gluing in time.)

1.1. Main result

Our objective in this paper is to prove an extension theorem for local solutions of the 3d incompressible
Euler equations. Roughly speaking, we prove that if a smooth vector field satisfies the Euler equations
in a spacetime region Ω × (0, 𝑇) (so it is a “local” solution of Euler), one can choose a weak solution
on R3 × (0,∞) of class 𝐶𝛽 for any 𝛽 < 1/3 (which is the sharp Hölder regularity) such that both fields
coincide on Ω× (0, 𝑇). Moreover, one controls the spatial support of the “global solution” which extends
the local one.

This property is very different from the approximation theorems that one can prove for smooth
solutions of various classes of linear PDEs [26, 27, 25, 28], and also from the fact (often known as
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h-principle) that weak solutions of certain regularity can approximate, in Sobolev spaces of negative
index, any given subsolution of the Euler equations.

Before presenting this result, let us recall the definition of weak solution (which, as we will be
dealing with continuous functions exclusively, is just the distributional one). More precisely, given
some 𝑇 ∈ (0,∞] and some open set Ω ⊆ R3 with smooth boundary, we will say that a vector field
𝑣 ∈ 𝐶 (Ω × [0, 𝑇),R3) is a weak solution of the Euler equations on Ω × (0, 𝑇) if∫ 𝑇

0

∫
Ω
(𝜕𝑡𝜑 · 𝑣 + ∇𝜑 : (𝑣 ⊗ 𝑣))𝑑𝑥𝑑𝑡 = 0

for all divergence-free 𝜑 ∈ 𝐶∞
𝑐 (Ω × (0, 𝑇),R3), and div 𝑣 = 0 in the sense of distributions.

The main result of this paper can then be stated as follows:
Theorem 1.1. Fix some 𝑇 > 0 and a bounded open set Ω ⊂ R3 with smooth boundary and with a
finite number of connected components. Assume that 𝑣0 ∈ 𝐶∞(Ω× [0, 𝑇],R3) is a solution of the Euler
equations on the spacetime region Ω × (0, 𝑇). Then, for any 0 < 𝛽 < 1/3, there exists an admissible
weak solution 𝑣 ∈ 𝐶𝛽 (R3 × [0, 𝑇]) of the Euler equations such that 𝑣 |Ω×[0,𝑇 ]

= 𝑣0 if and only if∫
Σ
𝑣0 · 𝜈 =

∫
Σ
[(𝑎 · 𝑥)𝜕𝑡𝑣0 + (𝑎 · 𝑣0)𝑣0 + 𝑝0𝑎] · 𝜈 = 0 (1.2)

for all 𝑎 ∈ R3, all 𝑡 ∈ [0, 𝑇] and all connected components Σ of 𝜕Ω. These conditions are automatically
satisfied if 𝜕Ω is connected. Furthermore, there exists 𝑒0 > 0 such that we may prescribe any energy
profile 𝑒 ∈ 𝐶∞([0, 𝑇], [𝑒0, +∞)), that is, ‖𝑣(𝑡)‖𝐿2 (R3) = 𝑒(𝑡). In addition, given any open set Ω′ ⊃ Ω,
one can in fact assume that the spatial support of v is contained in this region.
Remark 1.2. In fact, one can obtain a global weak solution 𝑣 ∈ 𝐶𝛽 (R3 × [0, +∞)) such that 𝑣 |R3×[0,𝑇 ]

satisfies the claimed properties. Its temporal support may be assumed to be contained in [0, 𝑇 ′] for any
𝑇 ′ > 𝑇 . We cannot then prescribe the energy profile for 𝑡 > 𝑇 , but we can still choose v so that it remains
admissible, that is, ∫

R3
|𝑣(𝑥, 𝑡) | 2𝑑𝑥 ≤

∫
R3

|𝑣(𝑥, 0) | 2𝑑𝑥 ∀𝑡 ∈ [0, +∞).

Remark 1.3. It can be proved [17] that the pressure function 𝑝 := −Δ−1 div div(𝑣 ⊗ 𝑣) associated to
this weak solution is in 𝐿∞

𝑡 𝐶
2𝛽
𝑥 ∩ 𝐶

2𝛽−𝛿
𝑥𝑡 for any 𝛿 > 0.

Before moving on to discuss some applications, let us provide some intuition about the compatibility
conditions (1.2). When 𝜕Ω is connected, it is easy to see that any smooth Euler flow 𝑣0 on Ω satisfies this
condition. Indeed, these two conditions are respectively obtained by integrating over the domain Ω the
incompressibility condition div 𝑣0 = 0 and the projected Euler equation 𝑎 · (𝜕𝑡𝑣0+div(𝑣0⊗𝑣0)+∇𝑝0) = 0.
If 𝑣0 is the restriction toΩ of a global Euler flow, one can refine the argument to show that these conditions
must hold on each connected component Σ of the boundary 𝜕Ω, and not every field satisfying the Euler
equations on Ω will satisfy them. Details are given in Lemma 2.11.

1.2. Applications

We shall next present two applications of the above extension result to the analysis of weak solutions of
the 3d Euler equations. These applications do not follow directly from our main theorem, but they use
it in an essential way.

Specifically, for these applications we consider subsolutions that are not smooth up to the endpoints
of the interval (0, 𝑇), which implies a lack of uniform-in-time bounds. Thus the scheme does not work
as is because the available bounds are not uniform, but we will show in Section 9 that one can tweak
the construction in many interesting situations.
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The first application we consider concerns the case of the standard vortex sheet 𝑢0, which we can
define as the periodic extension to T3 of:

𝑢0 (𝑥) :=
⎧⎪⎪⎨⎪⎪⎩
+𝑒1 if 𝑥3 ∈

[
0, 1

4
]
∪

[ 3
4 , 1

]
,

−𝑒1 if 𝑥3 ∈
(

1
4 ,

3
4

)
.

It follows from the classical local existence results and from the weak-strong uniqueness property [5,
52] that wild initial data must be somewhat irregular. However, until the publication of [49] it was not
known how irregular they must be. In that paper it was proved that the vortex sheet 𝑢0 is a wild initial
data but the constructed solutions are only in 𝐿∞. Results for nonflat vortex sheets have been recently
established in [38].

One can use a suitable modification of our main theorem to extend this result to solutions of class𝐶𝛽
loc:

Theorem 1.4. Let 0 < 𝛽 < 1/3 and let 𝑇 > 0. There exist infinitely many admissible weak solutions of
the Euler equations 𝑣 ∈ 𝐶

𝛽
loc(T

3 × (0, 𝑇)) with initial datum 𝑢0. For all 𝑡 ∈ (0, 𝑇), 𝑣(𝑥, 𝑡) coincides with
𝑢0 (𝑥) outside a “turbulent” zone of size 𝑂 (𝑡).

The second application we will present concerns the existence of a wealth of reasonably well
behaved solutions that blow up on a set of maximal Hausdorff dimension. To make this precise, let
us say that a point (𝑥0, 𝑡0) in spacetime is in the singular set of v, which we will denote by 𝒮∞

𝑣 , if
𝑣 ∉ 𝐿∞((𝑡0 − 𝛿, 𝑡0 + 𝛿) × 𝐵) for any ball 𝐵 � 𝑥0 and any 𝛿 > 0. More generally, the q-singular set of v,
𝒮

𝑞
𝑣 , consists of the spacetime points (𝑥0, 𝑡0) such that 𝑣 ∉ 𝐿∞((𝑡0 − 𝛿, 𝑡0 + 𝛿), 𝐿

𝑞 (𝐵)) for any ball B and
any 𝛿 > 0 as above. Clearly 𝒮

𝑞
𝑣 ⊂ 𝒮

𝑞′

𝑣 if 𝑞 < 𝑞′ and 𝒮
𝑞
𝑣 is a closed set.

We are now ready to state the result. Basically, the theorem says that, given any smooth solution 𝑣0
on Ω × (0, 𝑇) and any open set 𝑈 ⊂ Ω, there is an admissible weak solution v which coincides with
𝑣0 outside U and which is uniformly close to 𝑣0 at time 0, yet blows up dramatically on a subset of
𝑈 × (0, 𝑇) of full dimension. Interestingly, smooth stationary Euler flows with compact support [32, 19]
are very useful as building blocks in the construction of these solutions.

Theorem 1.5. Consider some 0 < 𝛽 < 1/3 and some 𝑞 > 2. Let 𝑇 > 0 and let Ω be T3 or an open
subset of R3. Fix some open set U whose closure is contained in Ω. Let 𝑣0 be a smooth solution of the
Euler equations in Ω × (0, 𝑇). For any 𝜀 > 0 there exists a weak solution 𝑣 ∈ 𝐿2 (Ω × (0, 𝑇)) of the
Euler equations whose q-singular set 𝒮𝑞

𝑣 is contained in 𝑈 × (0, 𝑇] and has Hausdorff dimension 4.
Furthermore, v coincides with 𝑣0 on (Ω\𝑈) × [0, 𝑇] and satisfies

‖𝑣(·, 0) − 𝑣0 (·, 0)‖𝐶0 (Ω) < 𝜀.

Moreover, 𝑣 ∈ 𝐶
𝛽
loc ((Ω×[0, 𝑇])\𝒮𝑞

𝑣 ) and the energy profile
∫
Ω
|𝑣 | 2 𝑑𝑥 can be chosen to be nonincreasing.

1.3. Strategy of the proof

We prove Theorem 1.1 in two stages: first we extend the field to R3 × [0, 𝑇] as a smooth subsolution
(see Definition 2.1 in the main text), and then we use a Nash iteration to perturb it into a weak solution.
These stages are interrelated in that tools and ideas that we develop to manipulate subsolutions also play
a fundamental role in our convex integration scheme.

Concerning the extension of a local smooth solution of the Euler equations as a subsolution, the
key result we prove is the following. In view of future applications of this result, which will appear
elsewhere, we are stating these results for the Euler equations in any spatial dimension 𝑛 ≥ 2.

Theorem 1.6. Let Ω0 ⊂ R𝑛, 𝑛 ≥ 2 be a bounded open set with smooth boundary and finitely many
connected components and let 𝐼 ⊂ R be a closed and bounded interval. Let (𝑣0, 𝑝0, 𝑅̊0) ∈ 𝐶∞(Ω0× 𝐼) be
a subsolution inΩ0×𝐼. LetΩ be a neighborhood ofΩ0. There exists a subsolution (𝑣, 𝑝, 𝑅̊) ∈ 𝐶∞(R𝑛×𝐼)
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that extends (𝑣0, 𝑝0, 𝑅̊0) and such that supp(𝑣, 𝑝, 𝑅̊) (·, 𝑡) ⊂ Ω for all 𝑡 ∈ 𝐼 if and only if for each
connected component Σ of 𝜕Ω0 and all times 𝑡 ∈ 𝐼 we have∫

Σ
𝑣0 · 𝜈 =

∫
Σ

[
(𝑎 · 𝑥)𝜕𝑡𝑣0 + (𝑎 · 𝑣0)𝑣0 + 𝑝0𝑎 − 𝑎𝑡 𝑅̊0

]
· 𝜈 = 0 ∀𝑎 ∈ R𝑛.

These conditions are automatically satisfied if 𝜕Ω0 is connected.

Regarding the convex integration scheme, we start off with the strategy from [7], which we implement
in the context of solutions with compact support. The main issue we have to address is that, as we want
the resulting solution to coincide with 𝑣0 in Ω× [0, 𝑇], we must ensure that the scheme does not modify
the subsolution in that region.

The result of our construction is:

Theorem 1.7. Fix some 𝑇 > 0 and let Ω ⊂ R3 be a bounded open set with smooth boundary and with
a finite number of connected components. Let (𝑣0, 𝑝0, 𝑅̊0) ∈ 𝐶∞(R3 × [0, 𝑇]) be a subsolution of the
Euler equations. Suppose that supp 𝑅̊0 ⊂ Ω × [0, 𝑇]. Let 0 < 𝛽 < 1/3 and let 𝑒 ∈ 𝐶∞([0, 𝑇], (0,∞))

be an energy profile such that

𝑒(𝑡) >

∫
Ω
|𝑣0(𝑥, 𝑡) |

2𝑑𝑥 + 6‖ 𝑅̊0‖𝐿∞ |Ω| (1.3)

for all 0 ≤ 𝑡 ≤ 𝑇 . Then, there exists a weak solution of the Euler equations, 𝑣 ∈ 𝐶
𝛽
𝑐 (R

3 × [0,∞)), such
that 𝑣 = 𝑣0 in (R3\Ω) × [0, 𝑇] and ∫

Ω
|𝑣(𝑥, 𝑡) | 2𝑑𝑥 = 𝑒(𝑡)

for all 𝑡 ∈ [0, 𝑇].

1.4. Organization of the paper

In Section 2 we develop a set of tools to handle the construction, extension, and gluing of subsolutions
that will be used throughout the paper; in particular we prove Theorem 1.6. In Section 3 we present the
iterative process used to prove Theorem 1.7, which is carried out in a number of stages. The technical
details of each stage of the construction are discussed in detail in Sections 4 to 7. The very short Section 8
shows how to pass from Theorems 1.6 and 1.7 to Theorem 1.1 and Remark 1.2. The modification of this
scheme to account for the lack of uniform-in-time bounds is carried out in Section 9. The applications
concerning vortex sheets and blowup, cf. Theorem 1.4 and Theorem 1.5, are discussed in Sections 10
and 11, respectively. The paper concludes with two appendices, one about Hölder norms and another
with some auxiliary estimates.

2. Extension of subsolutions

The goal of this section is to prove the extension theorem of smooth subsolutions stated in Theorem 1.6.
This is a key ingredient to prove our main theorem on the extension of weak solutions of the Euler
equations. In Subsection 2.1 we sketch the strategy to prove Theorem 1.6. Some instrumental tools
from Hodge theory are presented in Subsection 2.2, and in Subsection 2.3 we show how to construct
compactly supported solutions to the key divergence equation. Finally, the proof of Theorem 1.6 is
completed in Subsection 2.4.

In addition to constructing the desired solutions, we must estimate their derivatives. We refer to
Appendix A for the definition of the Hölder norms used. Specifically, we warn the reader that when
dealing with time-dependent functions, we consider the supremum in time of the corresponding norms in
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space. Nevertheless, obtaining bounds on the derivatives of the solutions to certain differential equations
is not enough for our construction. As we will see, we also need to control their 𝐶0 norm. This can be
achieved if we work with Besov spaces, which are defined in Appendix A.

Throughout this section, we denote the space of 𝑛 × 𝑛 symmetric matrices as S𝑛 and the space of
𝑛 × 𝑛 skew-symmetric matrices as A𝑛. Unless otherwise stated, the dimension is 𝑛 ≥ 2. We define the
divergence of a matrix 𝑀 ∈ 𝐶∞(R𝑛 × R,R𝑛×𝑛) as the vector field whose coordinates are given by

(div 𝑀)𝑖 �
𝑛∑
𝑗=1

𝜕 𝑗𝑀𝑖 𝑗 ,

where the derivatives are taken only with respect to the spatial variables. More generally, partial
derivatives with Latin subscripts denote partial derivatives in the spatial coordinates, whereas temporal
partial derivatives are always denoted by 𝜕𝑡 .

We will repeatedly use Einstein’s summation convention: when an index appears twice in an ex-
pression, it is implicitly summed over its range. Indices that appear only once in an expression are free
indices and are not summed over.

Let us now recall the definition of subsolution of the Euler equations:

Definition 2.1. Let𝑉 ⊂ R𝑛×R be an open set. We will say that a triplet (𝑣, 𝑝, 𝑅̊) ∈ 𝐶∞(𝑉,R𝑛×R×S𝑛)

is a subsolution of the Euler equations if{
𝜕𝑡𝑣 + 𝑣 · ∇𝑣 + ∇𝑝 = div 𝑅̊,

div 𝑣 = 0.
(2.1)

The symmetric matrix 𝑅̊ is known as the Reynolds stress and it measures the deviation from being a
solution of the Euler equations. It is customary to also impose that

tr 𝑅̊ = 0. (2.2)

All along this article, ◦ above a symmetric matrix will indicate that it is trace-free.

Finally, let us fix some notation that will be used all along this section. We introduce the following
norms in the space of 𝑛 × 𝑛 matrices:

|𝑀 | � max
𝜁 ∈S𝑛−1

|𝑀𝜁 | , |𝑀 | 2 �
���

𝑛∑
𝑖, 𝑗=1

𝑀2
𝑖 𝑗
���

1/2

. (2.3)

Unless otherwise stated, we will always use the operator norm |·|. However, in some parts of the
article we will exploit the elementary property that |·| 2

2 depends smoothly on the matrix entries. Note
that |𝑀 | 2

2 = tr(𝑀 𝑡𝑀), which is invariant under orthogonal transformations. Hence, in the case of a
symmetric matrix 𝑆 ∈ S𝑛, we have

|𝑆 | ≤ |𝑆 | 2, (2.4)

which can be easily deduced by using an orthonormal basis of eigenvectors.

2.1. General strategy

Our techniques for extending subsolutions and performing convex integration in the nonperiodic setting
rely on obtaining compactly supported solutions to the (matrix) divergence equation when the source
term is compactly supported. Let us illustrate the key ideas behind our method with the following toy
problem:
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Problem 2.2. Given 𝜌 ∈ 𝐶∞
𝑐 (R3) such that

∫
𝜌 = 0, find 𝑣 ∈ 𝐶∞

𝑐 (R3,R3) such that div 𝑣 = 𝜌.

It is easy to see that 𝑣0 = ∇Δ−1𝜌 solves our equation, but in general it is not compactly supported. To
fix this, let B be a ball containing the support of 𝜌, so that 𝑣0 is divergence-free outside B. In addition,
it follows from the divergence theorem that

0 =
∫
𝐵
𝜌 =

∫
𝐵

div 𝑣0 =
∫
𝜕𝐵

𝑣0 · 𝜈.

This ensures that in R3\𝐵 the divergence-free field 𝑣0 can be written as 𝑣0 = curl𝑤0 for some smooth
field 𝑤0. We extend 𝑤0 to a smooth field 𝑤 ∈ 𝐶∞(R3,R3) and we define

𝑣 � 𝑣0 − curl𝑤.

Since w extends 𝑤0, we see that v vanishes outside B. Furthermore, div 𝑣 = 𝜌 because div curl ≡ 0.
Therefore, v is the sought field, which is clearly not unique.

Our approach to solving the divergence equation in the matrix case is the same: the potential-theoretic
solution of the equation is not compactly supported. However, far from the support of the source our
matrix will be the image of certain differential operator ℒ applied to a smooth potential, which is in
the kernel of the divergence. We will extend the potential to the whole space and then subtract it from
the potential-theoretic solution, obtaining a compactly supported solution.

Just like in the vector case, we will have to impose certain integrability conditions on the source term
for this to be possible. As we will see, these conditions are related to the classical conservation laws of
linear and angular momentum in the Euler equations.

A totally different method to construct compactly supported solutions to the divergence equation in
the (symmetric) matrix case was developed by Isett and Oh in [36]. Their theorem is stated in a very
different setting and adapting it to what we need would require certain work. On the other hand, it will
be relatively easy to deduce our result as a consequence of our analysis of the operator ℒ introduced
below, which is necessary for our result on the extension of subsolutions. Hence, we have preferred to
take this path, which we believe is simpler (partly because it has a nice interpretation in terms of the
elementary operations of vector calculus).

2.2. Basic tools

The tools that we will need come from the Hodge decomposition theorem for manifolds with boundary.
A good reference for this topic is [45]. Nevertheless, we do not need the full generality of these results,
as we will work in bounded domains of R𝑛. Let us summarize the notation and main definitions that we
will need.

Let Ω ⊂ R𝑛 be a bounded domain with smooth boundary. We denote by Λ𝑘 the vector space
of skew-symmetric k-forms over R𝑛, for 0 ≤ 𝑘 ≤ 𝑛. In this setting, differential k-forms are maps
𝜔 ∈ 𝐶∞(Ω,Λ𝑘 ). They form vector spaces in which we have two differential operators: the exterior
derivative 𝑑 : 𝐶∞(Ω,Λ𝑘 ) → 𝐶∞(Ω,Λ𝑘+1) and the codifferential 𝛿 : 𝐶∞(Ω,Λ𝑘+1) → 𝐶∞(Ω,Λ𝑘 ).
The Euclidean product induces a natural scalar product (·, ·) in 𝐶∞(Ω,Λ𝑘 ). The tangential part of a
differential form is t𝜔 � 𝑗∗𝜔, where 𝑗 : 𝜕Ω ↩→ Ω is the natural inclusion, and 𝑗∗ is the pushforward.
We define the Dirichlet harmonic k-forms as:

H𝑘
𝐷 (Ω) � {𝜔 ∈ 𝐶∞(Ω,Λ𝑘 ) : 𝑑𝜔 = 0, 𝛿𝜔 = 0, t𝜔 = 0}.

Finally, to obtain quantitative estimates we will need to work in Hölder spaces. We refer to Appendix A
for the definition of these norms. We also recommend to take a look at the appendix to check our
convention of Hölder norms when the field is time-dependent.

With this notation, the first basic lemma that we shall use is:
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Lemma 2.3. Let Ω ⊂ R𝑛 be a bounded domain with smooth boundary and let 𝜌 ∈ 𝐶∞(Ω,Λ𝑘 ). The
boundary value problem

(𝑃)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛿𝜔 = 𝜌,

𝑑𝜔 = 0,
t𝜔 = 0,
(𝜔, 𝜆) = 0 ∀𝜆 ∈ H𝑘+1

𝐷 (Ω)

is solvable if and only if

𝛿𝜌 = 0 and
∫
𝐶𝑛−𝑘

★𝜌 = 0 ∀ (𝑛 − 𝑘)-cycle 𝐶𝑛−𝑘 .

In that case, the solution is unique and we have

‖𝜔‖𝐶𝑁+1+𝛼 (Ω) ≤ 𝐶 ‖𝜌‖𝐶𝑁+𝛼 (Ω)

for any 𝑁 ≥ 0, 𝛼 ∈ (0, 1) and certain constants 𝐶 ≡ 𝐶 (𝑁, 𝛼,Ω).

For a proof, see [20, Theorem 7.2] and [45, Corollary 3.2.4]. In [45, Theorem 3.2.5] we can find the
general case of a Riemannian manifold with boundary, but it does not include estimates for Hölder norms,
only for Sobolev norms. We recall that, as usual,★ is the Hodge star operator acting on differential forms
and an (𝑛 − 𝑘)-cycle is an (𝑛 − 𝑘)-chain (in the sense of algebraic topology) whose boundary is zero.

We are mainly interested in the problem 𝛿𝜔 = 𝜌, but we have to add the other conditions to select a
single solution. This allows us to obtain a time-dependent version of Lemma 2.3:

Lemma 2.4. Let Ω ⊂ R𝑛 be a bounded domain with smooth boundary and let 𝐼 ⊂ R be a closed and
bounded interval. Let 𝜌 ∈ 𝐶∞(Ω× 𝐼,Λ𝑘 ). There exists a differential form 𝜔 ∈ 𝐶∞(Ω× 𝐼,Λ𝑘+1) solving
the boundary value problem (𝑃) at each 𝑡 ∈ 𝐼 if and only if

𝛿𝜌 = 0 and
∫
𝐶𝑛−𝑘

★𝜌 = 0 ∀ (𝑛 − 𝑘)-cycle 𝐶𝑛−𝑘 ,∀𝑡 ∈ 𝐼 .

In that case, the solution is unique and we have

‖𝜔‖𝑁+1+𝛼 ≤ 𝐶 ‖𝜌‖𝑁+𝛼

for any 𝑁 ≥ 0, 𝛼 ∈ (0, 1) and certain constants 𝐶 ≡ 𝐶 (𝑁, 𝛼,Ω).

Proof. Given a time-dependent differential form, we denote by a subscript the differential form at a given
time. By Lemma 2.3, the necessity of the conditions is clear. To prove that they are also sufficient, let
us suppose that 𝜌𝑡 satisfies the conditions of Lemma 2.3 at all times 𝑡 ∈ 𝐼. Hence, applying Lemma 2.3
at each time, we see that there exists a time-dependent (𝑘 + 1)-form 𝜔 solving (𝑃) at each 𝑡 ∈ 𝐼. The
question is whether 𝜔 depends smoothly on t.

Since 𝜕𝑡 𝜌 also satisfies the hypotheses of Lemma 2.3 at all times 𝑡 ∈ 𝐼, there exists a (𝑘 + 1)-form 𝜔
solving (𝑃) with data 𝜕𝑡 𝜌. For a fixed 𝑡0 ∈ 𝐼 and ℎ ≠ 0 small we see that ℎ−1 (𝜔𝑡0+ℎ − 𝜔𝑡0) − 𝜔𝑡0 is the
unique solution of (𝑃) with data ℎ−1(𝜌𝑡0+ℎ − 𝜌𝑡0) − (𝜕𝑡 𝜌)𝑡0 . Therefore,���𝜔𝑡0+ℎ − 𝜔𝑡0

ℎ
− 𝜔𝑡0

���
𝑘+1+𝛼

≤ 𝐶
��� 𝜌𝑡0+ℎ − 𝜌𝑡0

ℎ
− (𝜕𝑡 𝜌)𝑡0

���
𝑘+𝛼

−→ 0 as ℎ −→ 0.

We deduce that 𝜔 is the partial derivative with respect to time of 𝜔. Iterating this argument, we conclude
that 𝜔 depends smoothly on time. The claimed estimates are easily obtained by taking the supremum
on 𝑡 ∈ 𝐼 in the estimates of Lemma 2.3. �
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Remark 2.5. If 𝛿𝜌 = 0, the integral of ★𝜌 on an (𝑛 − 𝑘)-cycle depends only on the homology class of
the cycle. Indeed, if C and 𝐶 ′ are two (𝑛 − 𝑘)-cycles in Ω that are the boundary of an (𝑛 − 𝑘 + 1)-chain,
by Stokes’ theorem we have∫

𝐶′

★𝜌 −

∫
𝐶
★𝜌 =

∫
𝜕N

★𝜌 =
∫
N
𝑑 ★ 𝜌 = (−1)𝑘

∫
N
★𝛿𝜌 = 0.

The machinery of differential geometry is quite powerful, but we are interested in the simpler setting
of bounded domains Ω ⊂ R𝑛. Taking advantage of the canonical basis of Euclidean space, we may
forget about differential forms and work with simpler objects. Indeed, there is a natural correspondence
between 1-forms and vector fields and between 2-forms and skew-symmetric matrices A𝑛:

𝐶∞
(
Ω,Λ1

)
→ 𝐶∞

(
Ω,R𝑛

)
,

𝑛∑
𝑖, 𝑗=1

𝑎𝑖 𝑑𝑥𝑖 ↦→
𝑛∑
𝑖=1

𝑎𝑖𝑒𝑖 ,

𝐶∞
(
Ω,Λ2

)
→ 𝐶∞

(
Ω,A𝑛

)
,

1
2

𝑛∑
𝑖, 𝑗=1

𝑎𝑖 𝑗 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 ↦→

𝑛∑
𝑖, 𝑗=1

𝑎𝑖 𝑗𝑒𝑖 ⊗ 𝑒 𝑗 .

Here we have used that 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 = −𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑖 . Using the canonical base of 1-forms, the action of the
codifferential can be summarized as

𝛿( 𝑓 𝑑𝑥𝑖) = 𝜕𝑖 𝑓 , 𝛿( 𝑓 𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 ) = −𝜕 𝑗 𝑓 𝑑𝑥𝑖 ,

where f is any smooth function and 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. One can then check that the following diagram
commutes:

𝐶∞
(
Ω,Λ2

)
𝐶∞

(
Ω,Λ1

)
𝐶∞

(
Ω,Λ0

)
𝐶∞

(
Ω,A𝑛

)
𝐶∞

(
Ω,R𝑛

)
𝐶∞

(
Ω

)
𝛿 𝛿

𝑑𝑖𝑣 𝑑𝑖𝑣

This allows us to write everything in terms of matrices and to simplify the notation. Using this corre-
spondence and Remark 2.5, we may formulate a particular case of Lemma 2.4 as follows:

Lemma 2.6. Let Ω ⊂ R𝑛 be a bounded domain with smooth boundary and let 𝐼 ⊂ R be a closed and
bounded interval. Let 𝑣 ∈ 𝐶∞(Ω × 𝐼,R𝑛). The following are equivalent:

1. there exists 𝐴 ∈ 𝐶∞(Ω × 𝐼,A𝑛) such that div 𝐴 = 𝑣,
2. div 𝑣 = 0 and

∫
Σ
𝑣 · 𝜈 = 0 for any connected component Σ of 𝜕Ω and any fixed 𝑡 ∈ 𝐼,

3.
∫
𝐶𝑛−1

𝑣 · 𝜈 = 0 for any (𝑛 − 1)-cycle 𝐶𝑛−1 and any 𝑡 ∈ 𝐼.

In that case, 𝐴 ∈ 𝐶∞(Ω × 𝐼,A𝑛) may be chosen so that

‖𝐴‖𝑁+1+𝛼 ≤ 𝐶 ‖𝑣‖𝑁+𝛼

for any 𝑁 ≥ 0, 𝛼 ∈ (0, 1) and certain constants 𝐶 ≡ 𝐶 (𝑁, 𝛼,Ω).

The proof is straightforward taking into account that the codifferential 𝛿 becomes the operator div
and the integral on cycles becomes the flux of the corresponding vector field across a closed surface.
By Remark 2.5, the integral only depends on the homology class, so we can choose to integrate on the
connected component of 𝜕Ω belonging to each class.
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2.3. The divergence equation

After collecting some basic tools from Hodge theory in the previous subsection, we will now show
how to obtain compactly supported solutions to the divergence equation. We begin by introducing some
potential-theoretic solutions, which we will later modify in order to fix the support. Let us consider the
following differential operator that maps smooth vector fields (with bounded derivatives) to𝐶∞(R𝑛,S𝑛):

(ℛ 𝑓 )𝑖 𝑗 � Δ−1(𝜕𝑖 𝑓 𝑗 + 𝜕 𝑗 𝑓𝑖) − 𝛿𝑖 𝑗Δ
−1 div 𝑓 . (2.5)

Here Δ−1 refers to the potential-theoretic solution of the Poisson equation, that is, the (spatial) convo-
lution of the source term with the fundamental solution of the Laplace equation in R𝑛. We remind the
reader that partial derivatives with Latin subscripts denote partial derivatives in the spatial coordinates,
whereas temporal partial derivatives are always denoted by 𝜕𝑡 .

A direct calculation shows that divℛ 𝑓 = 𝑓 . We notice that ℛ is not trace-free. This is not an issue
in our proofs, because our constructions with potentials do not preserve being trace-free, so we will
usually absorb the trace into the pressure at the end.

Let us now derive a very useful identity. Let Ω ⊂ R𝑛 be a bounded open set with smooth boundary.
Let 𝑣 ∈ 𝐶∞(Ω,R𝑛) and 𝑆 ∈ 𝐶∞(Ω,S𝑛). Integrating by parts, we have∫

Ω
𝑣 · div 𝑆 +

∫
Ω
(∇sym𝑣) : 𝑆 =

∫
𝜕Ω

𝑣𝑡𝑆 𝜈, (2.6)

where 𝜈 is the unitary normal vector associated to the exterior orientation and the operator ∇sym is given
by:

∇sym : 𝐶∞(Ω,R𝑛) → 𝐶∞(Ω,S𝑛), 𝑣 ↦→
1
2
(∇𝑣 + ∇𝑣𝑡 ).

Its kernel are the so-called Killing vector fields. It is a finite-dimensional vector space that plays an
important role in Riemannian geometry. It is well known (see [43, page 52]) that in R𝑛 a basis of this
vector space is given by

B � {𝑒1, . . . , 𝑒𝑛, 𝜉12, . . . , 𝜉 (𝑛−1)𝑛, } (2.7)

where

𝜉𝑖 𝑗 � 𝑥𝑖𝑒 𝑗 − 𝑥 𝑗𝑒𝑖 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. (2.8)

Next, we introduce two vector spaces and a differential operator that will be very important in our
construction:

Definition 2.7. Let Ω ⊂ R𝑛 be a bounded domain and let 𝐼 ⊂ R be a closed and bounded interval. We
define two vector spaces:

P (Ω × 𝐼) ≔
{
𝐴 ∈ 𝐶∞(Ω × 𝐼,R𝑛4

) : 𝐴𝑖𝑘
𝑗𝑙 = −𝐴𝑘𝑖

𝑗𝑙 , 𝐴
𝑖𝑘
𝑗𝑙 = −𝐴𝑖𝑘

𝑙 𝑗

}
,

G (Ω × 𝐼) ≔

⎧⎪⎪⎨⎪⎪⎩𝑆 ∈ 𝐶∞(Ω × 𝐼,S𝑛) : div 𝑆 = 0,
∫
Σ
𝜉𝑡𝑆 𝜈 = 0

∀𝜉 ∈ ker∇sym,
∀Σ comp. of 𝜕Ω,

∀𝑡 ∈ 𝐼 .

⎫⎪⎪⎬⎪⎪⎭
and we consider the differential operator

ℒ : P (Ω × 𝐼) → 𝐶∞(Ω × 𝐼,R𝑛2
), [ℒ(𝐴)]𝑖 𝑗 =

1
2

∑
𝑘,𝑙

𝜕𝑘𝑙

(
𝐴𝑖𝑘

𝑗𝑙 + 𝐴
𝑗𝑘
𝑖𝑙

)
.
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This operator already appeared in the context of convex integration in the original article by De
Lellis and Székelyhidi [23], who noticed that the image of the operator ℒ is contained in the space of
divergence-free matrices.

For our purposes, this operator can be regarded as a matrix analog of the curl operator in arbitrary
dimension. In order to perform the construction sketched in Subsection 2.1, the next step is to understand
how to invert this operator (under the appropriate boundary conditions). The following lemma is the
key to our approach to solve the divergence equation:

Lemma 2.8. Let Ω ⊂ R𝑛 be a bounded domain with smooth boundary and let 𝐼 ⊂ R be a closed
and bounded interval. Then G (Ω × 𝐼) is the image of the differential operator ℒ. Furthermore, given
𝑆 ∈ G (Ω × 𝐼), there exists 𝐴 ∈ P (Ω × 𝐼) such that 𝑆 = ℒ(𝐴) and for any 𝛼 ∈ (0, 1) we have

‖𝐴‖𝑁+2+𝛼 ≤ 𝐶 ‖𝑆‖𝑁+𝛼

for all 𝑁 ≥ 0 and certain constants 𝐶 ≡ 𝐶 (𝑁, 𝛼,Ω).

Proof. First, we prove that the image of ℒ is contained in G (Ω × 𝐼). Fix an arbitrary 𝐴 ∈ P (Ω × 𝐼). It
is clear from the definition that ℒ(𝐴) is symmetric. The fact that it is divergence-free follows from the
skew-symmetric properties of A:

[divℒ(𝐴)]𝑖 =
1
2

∑
𝑗 ,𝑘,𝑙

𝜕 𝑗𝑘𝑙

(
𝐴𝑖𝑘

𝑗𝑙 + 𝐴
𝑗𝑘
𝑖𝑙

)
=

=
∑
𝑘

1
2
𝜕𝑘

���
∑
𝑗 ,𝑙

𝜕 𝑗𝑙𝐴
𝑖𝑘
𝑗𝑙
��� +

∑
𝑙

1
2
𝜕𝑙

���
∑
𝑗 ,𝑘

𝜕 𝑗𝑘𝐴
𝑗𝑘
𝑖𝑙

��� = 0.

Next, we fix an arbitrary Killing vector field 𝜉 and a connected component Σ of 𝜕Ω. We choose a smooth
cut-off function 𝜑 that vanishes in a neighborhood of Σ and it is identically 1 in a neighborhood of the
other connected components of 𝜕Ω. By the choice of 𝜑 we have∫

𝜕Ω
𝜉𝑡ℒ(𝜑𝐴) 𝜈 =

∫
𝜕Ω

𝜉𝑡ℒ(𝐴) 𝜈 −

∫
Σ
𝜉𝑡ℒ(𝐴) 𝜈.

By our previous discussion, ℒ(𝐴) and ℒ(𝜑𝐴) are symmetric and divergence-free. In addition, 𝜉 is a
Killing vector, so ∇sym𝑤 = 0. Thus, from (2.6) we deduce that the term on the left-hand side of the
previous equation vanishes and so does the first term on the right-hand side. Therefore, we see that∫
Σ
𝜉𝑡ℒ(𝐴) 𝑛 = 0 and, since A, 𝜉, and Σ are arbitrary, we conclude that the image of ℒ is contained in

G (Ω × 𝐼).
Now we will prove the other inclusion and the stated estimate. We fix an arbitrary 𝑆 ∈ G (Ω × 𝐼). By

definition, when choosing the canonical basis of R𝑛 as Killing vectors, we obtain∫
Σ
𝑆𝑖 𝑗𝜈 𝑗 = 0 ∀Σ connected component of 𝜕Ω

for any 𝑖 = 1, . . . , 𝑚. If we fix i, we may apply Lemma 2.6 to conclude that there exists 𝐵𝑖 ≡ 𝐵𝑖
𝑗𝑙 ∈

𝐶∞(Ω × 𝐼,A𝑛) such that 𝜕𝑙𝐵𝑖
𝑗𝑙 = 𝑆𝑖 𝑗 .

Next we fix a Killing field 𝜉 of the form 𝜉𝑖 = 𝑅𝑖𝑘𝑥𝑘 , where 𝑅 ∈ A𝑛. For 𝑗 = 1, . . . 𝑚 we compute

𝜕𝑙 (𝜉𝑖𝐵
𝑖
𝑗𝑙) = 𝜉𝑖𝜕𝑙𝐵

𝑖
𝑗𝑙 + (𝜕𝑙𝜉𝑖)𝐵

𝑖
𝑗𝑙 = 𝜉𝑖𝑆𝑖 𝑗 + 𝑅𝑖𝑙𝐵

𝑖
𝑗𝑙 .
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Note that, since 𝑆 ∈ G (Ω × 𝐼),∫
Σ
𝜉𝑖𝑆𝑖 𝑗𝜈 𝑗 = 0 ∀Σ connected component of 𝜕Ω, ∀𝑡 ∈ 𝐼 .

Regarding the left-hand side term, we define the forms

𝜔 ≔
∑
𝑖, 𝑗 ,𝑙

𝜕𝑙 (𝜉𝑖𝐵
𝑖
𝑗𝑙) 𝑑𝑥 𝑗 ,

𝜂 ≔
∑
𝑗<𝑙,𝑖

𝜉𝑖𝐵
𝑖
𝑗𝑙 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑙 .

Since 𝐵𝑖
𝑗𝑙 is skew-symmetric in the lower indices, we see that 𝛿𝜂 = 𝜔. Using the properties of the Hodge

star operator and the codifferential, we have ★𝛿𝜂 = 𝑑 ★ 𝜂. These forms allow us to rewrite the integral
on an (𝑛 − 1)-cycle at any 𝑡 ∈ 𝐼 as:∫

𝐶𝑛−1

𝜕𝑙 (𝜉𝑖𝐵
𝑖
𝑗𝑙) 𝜈 𝑗 =

∫
𝐶𝑛−1

𝜔(𝑛) 𝜇̃ =
∫
𝐶𝑛−1

★𝜔 =
∫
𝐶𝑛−1

𝑑 (★𝜂) = 0,

where 𝜇̃ is the measure induced by the standard measure in R𝑛. We have used Stokes’ theorem and the
fact that (𝑛 − 1)-cycles have no boundary. We conclude that for any (𝑛 − 1)-cycle∫

𝐶𝑛−1

𝑅𝑖𝑙𝐵
𝑖
𝑗𝑙𝜈 𝑗 = 0.

Choosing 𝑅 = 𝑒𝑖0 ⊗ 𝑒𝑙0 − 𝑒𝑙0 ⊗ 𝑒𝑖0 , that is, choosing 𝜉 as 𝜉𝑙0𝑖0 , we see that for any 𝑖, 𝑙 = 1, . . . 𝑚 we have:∫
𝐶𝑛−1

(𝐵𝑖
𝑗𝑙 − 𝐵𝑙

𝑗𝑖) 𝜈 𝑗 = 0 for any (𝑛 − 1)-cycle 𝐶𝑛−1 and all 𝑡 ∈ 𝐼 .

Applying again Lemma 2.6, we obtain 𝐴𝑖𝑘
𝑗𝑙 skew-symmetric in 𝑗 , 𝑘 such that

𝜕𝑘𝐴
𝑖𝑘
𝑗𝑙 = 𝐵𝑖

𝑗𝑙 − 𝐵𝑙
𝑗𝑖 .

Therefore,

1
2
𝜕𝑘𝑙 (𝐴

𝑖𝑘
𝑗𝑙 + 𝐴

𝑗𝑘
𝑖𝑙 ) =

1
2
𝜕𝑙

[
𝜕𝑘𝐴

𝑖𝑘
𝑗𝑙 + 𝜕𝑘𝐴

𝑗𝑘
𝑖𝑙

]
=

1
2
𝜕𝑙

[
(𝐵𝑖

𝑗𝑙 − 𝐵𝑙
𝑗𝑖) + (𝐵

𝑗
𝑖𝑙 − 𝐵𝑙

𝑖 𝑗 )
]

=
1
2
(𝜕𝑙𝐵

𝑖
𝑗𝑙 + 𝜕𝑙𝐵

𝑗
𝑖𝑙) = 𝑆𝑖 𝑗 ,

where we have used that B is skew-symmetric in the lower indices and the symmetry of S: 𝜕𝑙𝐵𝑖
𝑗𝑙 = 𝑆𝑖 𝑗 =

𝑆 𝑗𝑖 = 𝜕𝑙𝐵
𝑗
𝑖𝑙 . In summary, we have found 𝐴 ∈ 𝐶∞

(
Ω × 𝐼,R𝑛4

)
such that:

(i) 𝐴𝑖𝑘
𝑗𝑙 = −𝐴

𝑖 𝑗
𝑘𝑙 ,

(ii) 𝜕𝑘𝐴
𝑖𝑘
𝑗𝑙 = −𝜕𝑘𝐴

𝑙𝑘
𝑗𝑖 ,

(iii) 1
2𝜕𝑘𝑙

(
𝐴𝑖𝑘

𝑗𝑙 + 𝐴
𝑗𝑘
𝑖𝑙

)
= 𝑆𝑖 𝑗 .

We define

𝐴𝑖𝑘
𝑗𝑙 ≔

1
2

(
𝐴𝑖𝑙

𝑗𝑘 − 𝐴𝑘𝑙
𝑗𝑖

)
.
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It is clear that 𝐴𝑖𝑘
𝑗𝑙 is skew-symmetric in 𝑖, 𝑘 . In addition, it is skew-symmetric in 𝑗 , 𝑙 by (i). Furthermore,

𝜕𝑙𝐴
𝑖𝑘
𝑗𝑙 =

1
2

(
𝜕𝑙𝐴

𝑖𝑙
𝑗𝑘 − 𝜕𝑙𝐴

𝑘𝑙
𝑗𝑖

) (ii)
= 𝜕𝑙𝐴

𝑖𝑙
𝑗𝑘 .

Hence, using (iii) we conclude

1
2
𝜕𝑘𝑙

(
𝐴𝑖𝑘

𝑗𝑙 + 𝐴
𝑗𝑘
𝑖𝑙

)
=

1
2
𝜕𝑘𝑙

(
𝐴𝑖𝑘

𝑗𝑙 + 𝐴
𝑗𝑘
𝑖𝑙

)
= 𝑆𝑖 𝑗 .

Therefore, 𝐴 ∈ P (Ω× 𝐼) and ℒ(𝐴) = 𝑆, as we wanted. The estimates for 𝐴 follow from applying twice
the estimates from Lemma 2.6. �

Finally, we are ready to prove the main result of this subsection, which establishes the existence
of compactly supported solutions to the divergence equation. In a different setting, a related class
of compactly supported solutions to the divergence equation were constructed by Isett and Oh [36,
Theorem 10.1]. Our approach is based on the operator ℒ, which will be essential for the extension
of subsolutions in Lemma 2.15. We observe that the compatibility conditions (2.9) in Lemma 2.9 are
precisely the conditions (202) in [36].

We recall that the Besov norms that we use are defined in Appendix A. We need to work with these
norms because they are necessary to derive estimates for the 𝐶𝛼 norm of the resulting matrix. This will
be essential in the proof of Theorem 1.7.

Lemma 2.9. Let Ω ⊂ R𝑛 be a bounded domain with smooth boundary and let 𝐼 ⊂ R be a closed and
bounded interval. Let 𝑓 ∈ 𝐶∞(R𝑛 × 𝐼,R𝑛) such that supp 𝑓 (·, 𝑡) ⊂ Ω for all 𝑡 ∈ 𝐼. Then, there exists
𝑆 ∈ 𝐶∞(R𝑛 × 𝐼,S𝑛) such that div 𝑆 = 𝑓 and supp 𝑆(·, 𝑡) ⊂ Ω for all 𝑡 ∈ 𝐼 if and only if∫

Ω
𝑓 · 𝜉 = 0 ∀𝜉 ∈ ker∇sym, ∀𝑡 ∈ 𝐼 . (2.9)

In that case, we may choose S so that for all 𝑁 ≥ 0 and any 𝛼 ∈ (0, 1) we have

‖𝑆‖𝑁+𝛼 ≤ 𝐶 ‖ 𝑓 ‖𝐵𝑁−1+𝛼
∞,∞

for certain constants 𝐶 = 𝐶 (Ω, 𝑁, 𝛼).

Proof. First of all, we show that the integrability condition (2.9) is necessary. Let us suppose that such
an S exists. We fix a ball 𝐵 ⊃ Ω and use the identity (2.6) to obtain

0 =
∫
𝜕𝐵

𝜉𝑡𝑆𝜈 =
∫
𝐵
𝜉 · div 𝑆 =

∫
Ω
𝜉 · 𝑓 ∀𝜉 ∈ ker∇sym, ∀𝑡 ∈ 𝐼 .

Let us show that condition (2.9) is also sufficient. The field 𝑆0 ∈ 𝐶∞(R𝑛 × 𝐼,S𝑛) given by 𝑆0 � ℛ 𝑓
solves the equation div 𝑆0 = 𝑓 , where ℛ was defined in (2.5). It is easy to check that it satisfies the
estimates

‖𝑆0‖𝑁+𝛼 ≤ 𝐶 ‖ 𝑓 ‖𝐵𝑁−1+𝛼
∞,∞

(2.10)

for certain constants 𝐶 = 𝐶 (𝑁, 𝛼) because ℛ is an operator of order −1. However, it is not compactly
supported, in general. We must modify it far from the support of f.

We begin by studying the boundary conditions. Let Σ𝑖 be a connected component of 𝜕Ω and let 𝑈𝑖

be the domain bounded by it. We claim that∫
𝑈𝑖

𝜉 · 𝑓 = 0 ∀𝜉 ∈ ker∇sym, ∀𝑡 ∈ 𝐼 . (2.11)
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Indeed, since Ω is a bounded domain, 𝑈𝑖 must be either the complement of the unbounded connected
component of R3\Ω or one of the bounded connected components of R3\Ω (if there are any). In the
first case, (2.11) follows from the integrability condition (2.9) because 𝑓 (·, 𝑡) ⊂ Ω ⊂ 𝑈𝑖 . In the second
case, (2.11) is trivial because 𝑓 (·, 𝑡) vanishes on 𝑈𝑖 ⊂ R

3\Ω. Thus, applying the identity (2.6) to each
𝑈𝑖 we obtain ∫

Σ𝑖

𝜉𝑡𝑆0𝜈 = 0 ∀𝜉 ∈ ker∇sym, ∀𝑡 ∈ 𝐼 . (2.12)

Next, note that for sufficiently small 𝑟 > 0 the boundary of the open set

𝐺 � {𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) < 𝑟}

has twice as many connected components as 𝜕Ω. Furthermore, the boundary of each connected com-
ponent 𝐺𝑖 of G consists of exactly two hypersurfaces, which we denote as Σ𝑖 and Σ′

𝑖 , and we have
Σ𝑖 ⊂ 𝜕Ω. By further reducing 𝑟 > 0, we may assume that 𝑓 (·, 𝑡) vanishes on G at all times 𝑡 ∈ 𝐼. Then,
it follows from (2.12) and the identity (2.6) that∫

Σ′
𝑖

𝜉𝑡𝑆𝜈 = −

∫
Σ𝑖

𝜉𝑡𝑆𝜈 +

∫
𝜕𝐺𝑖

𝜉𝑡𝑆𝜈 = −

∫
Σ𝑖

𝜉𝑡𝑆𝜈 +

∫
𝐺𝑖

𝜉 · 𝑓 = 0

for any 𝜉 ∈ ker∇sym. Next, we fix a ball 𝐵 ⊃ Ω and we consider the domain

𝑈 � (𝐵\Ω) ∪ 𝐺.

We see that

𝜕𝑈 = 𝜕𝐵 ∪
⋃
𝑖

Σ′
𝑖 .

Again, it follows from (2.6) and the integrability condition (2.9) that∫
𝜕𝐵

𝜉𝑡𝑆0𝜈 =
∫
𝐵
𝜉 · 𝑓 =

∫
Ω
𝜉 · 𝑓 = 0 ∀𝜉 ∈ ker∇sym, ∀𝑡 ∈ 𝐼 .

We conclude that 𝑆0 is divergence-free on U and in each connected component Σ of 𝜕𝑈 we have∫
Σ
𝜉𝑡𝑆0𝜈 = 0 ∀𝜉 ∈ ker∇sym, ∀𝑡 ∈ 𝐼,

that is, 𝑆0 ∈ G (𝑈 × 𝐼). By Lemma 2.8 there exists 𝐴0 ∈ P (𝑈 × 𝐼) such that 𝑆0 (𝑥, 𝑡) = ℒ(𝐴0) (𝑥, 𝑡) for
all 𝑥 ∈ 𝐺 and 𝑡 ∈ 𝐼. Furthermore, for any 𝑁 ≥ 0 and 𝛼 ∈ (0, 1) we have

‖𝐴0‖𝑁+2+𝛼 ≤ 𝐶 (𝑈, 𝑁, 𝛼) ‖𝑆0‖𝑁+𝛼 ≤ 𝐶 (𝑈, 𝑁, 𝛼) ‖ 𝑓 ‖𝐵𝑁−1+𝛼
∞,∞

.

The constants depend on U, which depends not only on the geometry of Ω but also on the minimum
distance between the support of 𝑓 (·, 𝑡) and 𝜕Ω through the parameter r. However, since U tends to
𝐵\Ω as 𝑟 → 0, the constants remain uniformly bounded, so they ultimately depend only on Ω. For
this, smoothness of 𝜕Ω is essential, as it allows us to choose parametrizations of 𝑈 converging to
parametrizations of 𝐵\Ω in any Hölder norm as 𝑟 → 0.

Applying Theorem B.3 and antisymmetrizing, we see that there exists a map 𝐴 ∈ 𝐶∞(R𝑛 × 𝐼,R𝑛4
)

such that 𝐴𝑖𝑘
𝑗𝑙 = −𝐴𝑘𝑖

𝑗𝑙 , 𝐴
𝑖𝑘
𝑗𝑙 = −𝐴𝑖𝑘

𝑙 𝑗 that extends 𝐴0 outside 𝑈 × 𝐼. Furthermore, for any 𝑁 ≥ 0 and
𝛼 ∈ (0, 1), we have

‖𝐴‖𝑁+2+𝛼 ≤ 𝐶 (𝑈, 𝑁) ‖𝐴0‖𝑁+2+𝛼 ≤ 𝐶 (𝑈,Ω, 𝑁, 𝛼) ‖ 𝑓 ‖𝐵𝑁−1+𝛼
∞,∞

. (2.13)
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Again, since U tends to 𝐵\Ω as 𝑟 → 0 in a suitable manner, the constants ultimately depend only on Ω,
N, and 𝛼, since they will be uniformly bounded on 𝑟 ∈ (0, 1).

Finally, for 𝑥 ∈ 𝐵 and 𝑡 ∈ 𝐼 we define

𝑆 � 𝑆0 −ℒ(𝐴).

Since the image of ℒ is contained in the kernel of the divergence, we see that div 𝑆 = 𝑓 . By construction
A extends 𝐴0, so ℒ(𝐴) = ℒ(𝐴0) = 𝑆0 on 𝑈 × 𝐼. Therefore, 𝑆(·, 𝑡) vanishes in U, so we may extend it
by 0 to R𝑛 × 𝐼.

In conclusion, we have constructed 𝑆 ∈ 𝐶∞(R𝑛 × 𝐼,S𝑛) such that div 𝑆 = 𝑓 and supp 𝑆(·, 𝑡) ⊂ Ω for
all 𝑡 ∈ 𝐼. Furthermore, the desired estimate follows from (2.10) and (2.13) because ℒ is a second-order
differential operator. �

2.4. Subsolutions and proof of Theorem 1.6

In this subsection we use Lemma 2.8 and Lemma 2.9 to glue and extend subsolutions, which will yield
the proof of Theorem 1.6. It should be apparent by now that controlling the 𝐿2-product with the Killing
fields is very important in these constructions. It is not difficult to construct 𝑓 ∈ 𝐶∞

𝑐 (R𝑛,R𝑛) with the
desired 𝐿2-product with the Killing fields. However, when working with subsolutions we will also need
that f be divergence-free. In addition, in our constructions we will work in domains of a certain form.
Our approach is based on the following:

Lemma 2.10. Let Ω ⊂ R𝑛 be a bounded domain with smooth boundary and let 𝐼 ⊂ R be a closed and
bounded interval. Let 𝑟 > 0 and let 𝐿𝑖 𝑗 ∈ 𝐶∞(𝐼) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. There exists a divergence-free field
𝑤 ∈ 𝐶∞(R𝑛 × 𝐼,R𝑛) such that the support of 𝑤(·, 𝑡) is contained in {𝑥 ∈ R𝑛 : 0 < dist(𝑥,Ω) < 𝑟} and∫

𝑎 · 𝑤 𝑑𝑥 = 0,
∫

𝜉𝑖 𝑗 · 𝑤 𝑑𝑥 = 𝐿𝑖 𝑗 (𝑡)

for all 𝑡 ∈ 𝐼 and 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, where 𝜉𝑖 𝑗 is given by (2.8). Furthermore, for any 𝑁 ≥ 0 we have

‖𝑤‖𝑁 ≤ 𝐶 (𝑁, 𝑛) |Ω| −1 𝑟−(𝑁+1) max
𝑖 𝑗 , 𝑡 ∈𝐼

��𝐿𝑖 𝑗 (𝑡)
�� ,

‖𝜕𝑡𝑤‖𝑁 ≤ 𝐶 (𝑁, 𝑛) |Ω| −1 𝑟−(𝑁+1) max
𝑖 𝑗 , 𝑡 ∈𝐼

���𝐿 ′
𝑖 𝑗 (𝑡)

��� .
Proof. We will construct our field as 𝑤 = div 𝐴 for some 𝐴 ∈ 𝐶∞

𝑐 (R𝑛 × 𝐼,A𝑛) that we will choose later.
Since A is compactly supported, it follows from the divergence theorem that

∫
𝑎 ·𝑤 = 0 for any 𝑎 ∈ R𝑛.

Furthermore, for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 we have∫
𝜉𝑖 𝑗 · 𝑤 =

∫
(𝜉𝑖 𝑗 )𝑘𝜕𝑙𝐴𝑘𝑙 = −

∫
𝜕𝑙 (𝜉𝑖 𝑗 )𝑘𝐴𝑘𝑙 = −

∫
(𝐴 𝑗𝑖 − 𝐴𝑖 𝑗 ) = 2

∫
𝐴𝑖 𝑗 (2.14)

because 𝜕𝑙 (𝜉𝑖 𝑗 )𝑘 = 𝛿𝑖𝑙𝛿 𝑗𝑘 − 𝛿 𝑗𝑙𝛿𝑖𝑘 . Here we have denoted by (𝜉𝑖 𝑗 )𝑘 the k-th component of the vector
𝜉𝑖 𝑗 and we have used Einstein’s summation convention when summing over k and l. By Lemma B.1 we
may choose a nonnegative cutoff function 𝜑 ∈ 𝐶∞

𝑐 (Ω + 𝐵(0, 𝑟)) that is identically 1 in a neighborhood
of Ω and such that

‖𝜑‖𝑁 ≤ 𝐶 (𝑁, 𝑛) 𝑟−𝑁 .

We define

𝐴(𝑥, 𝑡) �
∑

1≤𝑖< 𝑗≤𝑛

𝐿𝑖 𝑗 (𝑡) (𝑒𝑖 ⊗ 𝑒 𝑗 − 𝑒 𝑗 ⊗ 𝑒𝑖)

(
2
∫

𝜑

)−1
𝜑(𝑥).
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Since 𝜑 is constant in a neighborhood of Ω and its support is contained in Ω + 𝐵(0, 𝑟), we see that the
support of 𝑤(·, 𝑡) is contained in {𝑥 ∈ R𝑛 : 0 < dist(𝑥,Ω) < 𝑟}. By construction

2𝐴𝑖 𝑗 (𝑥, 𝑡) = 𝐿𝑖 𝑗 (𝑡)

(∫
𝜑

)−1
𝜑(𝑥),

so it follows from Equation (2.14) that
∫
𝜉𝑖 𝑗 · 𝑤 = 𝐿𝑖 𝑗 . Finally, the claimed estimates follow at once

from the bounds for 𝜑 and the fact that
∫
𝜑 ≥ |Ω|. �

Now we have all the ingredients that we need to glue subsolutions in space. The following lemma is
the key tool in this section. It will be used not only in the proof of Theorem 1.6, but also in the convex
integration scheme. We use skew-symmetric matrices instead of potential vectors because the lemma is
stated in any dimension 𝑛 ≥ 2.

Lemma 2.11. Let 𝑇 > 0 and let Ω1 � Ω2 ⊂ R𝑛 be bounded domains with smooth boundary. Let
(𝑣𝑖 , 𝑝𝑖 , 𝑅̊𝑖) ∈ 𝐶∞(Ω2 × [0, 𝑇]) be subsolutions for 𝑖 = 1, 2. Let 𝑟 > 0 be sufficiently small. There exists
a subsolution (𝑣, 𝑝, 𝑅̊) ∈ 𝐶∞(Ω2 × [0, 𝑇]) such that

(𝑣, 𝑝, 𝑅̊) (𝑥, 𝑡) =

{
(𝑣1, 𝑝1, 𝑅̊1) (𝑥, 𝑡) 𝑥 ∈ Ω1,

(𝑣2, 𝑝2, 𝑅̊2) (𝑥, 𝑡) dist(𝑥,Ω1) ≥ 𝑟
(2.15)

if and only if for each connected component Σ of 𝜕Ω1, and all times 𝑡 ∈ [0, 𝑇], we have∫
Σ
𝑣1 · 𝜈 =

∫
Σ
𝑣2 · 𝜈, (2.16)∫

Σ

[
(𝑎 · 𝑥)𝜕𝑡𝑣1 + (𝑎 · 𝑣1)𝑣1 + 𝑝1𝑎 − 𝑎𝑡 𝑅̊1

]
· 𝜈

=
∫
Σ

[
(𝑎 · 𝑥)𝜕𝑡𝑣2 + (𝑎 · 𝑣2)𝑣2 + 𝑝2𝑎 − 𝑎𝑡 𝑅̊2

]
· 𝜈 ∀𝑎 ∈ R𝑛. (2.17)

Suppose that, in addition, we have 𝑣1 = div 𝐴1 and 𝑣2 = div 𝐴2 for some potentials 𝐴𝑖 ∈ 𝐶∞(Ω2×𝐼,A𝑛).
Then, there exists 𝐴 ∈ 𝐶∞(Ω2 × 𝐼,A𝑛) such that 𝑣 = div 𝐴 and 𝐴(𝑥, 𝑡) = 𝐴2(𝑥, 𝑡) if dist(𝑥,Ω1) ≥ 𝑟 .

Remark 2.12. The compatibility conditions (2.16) and (2.17) are automatically satisfied if 𝜕Ω1 is
connected or Ω2 = R𝑛. This will be explained in the proof of the lemma.

Remark 2.13. The subsolution (𝑣1, 𝑝1, 𝑅̊1) need not be defined in all of Ω2 and the subsolution
(𝑣2, 𝑝2, 𝑅̊2) need not be defined in Ω1. We have assumed this to simplify slightly the statement of the
lemma.

Proof. First of all, note that a subsolution (𝑣0, 𝑝0, 𝑅̊0) in a bounded domain G with smooth boundary
satisfies

0 =
∫
𝐺

div 𝑣0 =
∫
𝜕𝐺

𝑣0 · 𝜈, (2.18)

0 =
∫
𝐺
𝑎 ·

[
𝜕𝑡𝑣0 + div

(
𝑣0 ⊗ 𝑣0 + 𝑝0 Id−𝑅̊0

)]
(2.19)

=
∫
𝜕𝐺

[
(𝑎 · 𝑥)𝜕𝑡𝑣0 + (𝑎 · 𝑣0)𝑣0 + 𝑝0𝑎 − 𝑎𝑡 𝑅̊0

]
· 𝜈 ∀𝑎 ∈ R𝑛,

where we have used the divergence theorem, identity (2.6) and the fact that div[(𝑎 · 𝑥)𝜕𝑡𝑣0] = 𝑎 · 𝜕𝑡𝑣0
because 𝜕𝑡𝑣0 is divergence-free.

From these equations we readily deduce that the compatibility conditions (2.16) and (2.17) are
automatically satisfied if 𝜕Ω1 is connected, as both integrals vanish for each field. In the case Ω2 = R𝑛,
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we apply Equations (2.18) and (2.19) to the domain bounded by each connected component of 𝜕Ω1. We
conclude that both integrals vanish for each field in each connected component of 𝜕Ω1.

Next, we check that the conditions are necessary; we study (2.16) because the expressions are shorter,
but the argument for (2.17) is exactly the same. First, if 𝜕Ω1 is connected, it readily follows from (2.18)
that (2.16) must be satisfied. Hence, we focus on bounded domains Ω1 whose boundary is not connected.
In that case, R𝑛\Ω1 must have at least one bounded connected component. Given a bounded connected
component of R𝑛\Ω1, we define G to be its intersection with Ω2. Then, 𝜕𝐺 is composed of a connected
component Σ of 𝜕Ω1 and (possibly) some connected components Σ′

1, . . . ,Σ
′
𝑚 of 𝜕Ω2. Since v equals 𝑣1

on Σ and 𝑣2 on the other connected components of 𝜕𝐺, it follows from (2.18) that:

0 =
∫
𝜕𝐺

𝑣 · 𝜈 =
∫
Σ
𝑣1 · 𝜈 +

𝑛∑
𝑖=1

∫
Σ ′𝑖

𝑣2 · 𝜈.

On the other hand, applying (2.18) to 𝑣2 on G, we have

−

∫
Σ
𝑣2 · 𝜈 =

∑
𝑖=1

𝑛

∫
Σ ′𝑖

𝑣2 · 𝜈,

which, combined with the previous equation, yields∫
Σ
𝑣1 · 𝜈 =

∫
Σ
𝑣2 · 𝜈.

Since this applies to any bounded connected component of R𝑛\Ω1, we can combine it with (2.18) with
𝐺 = Ω1 to obtain an analogous identity for the remaining connected component of 𝜕Ω1, that is, the
boundary of the unbounded connected component of R𝑛\Ω1. We conclude (2.16).

Let us now prove that the compatibility conditions (2.16) and (2.17) are also sufficient. Let 𝑟 > 0 be
small enough so that {𝑥 ∈ Ω2 : dist(𝑥,Ω1) = 𝑟} is diffeomorphic to 𝜕Ω1. We define𝑈 � {𝑥 ∈ Ω2 : 0 <
dist(𝑥,Ω1) < 𝑟}. Then, the condition (2.16) ensures that there exists 𝐴12 ∈ 𝐶∞(𝑈× [0, 𝑇],A𝑛) such that
𝑣2 − 𝑣1 = div 𝐴12 in 𝑈 × [0, 𝑇]. Indeed, let 𝑈𝑖 be a connected component of U and let Σ𝑖 and Σ′

𝑖 be the
connected components of 𝜕𝑈𝑖 , where Σ𝑖 ⊂ 𝜕Ω1. Using (2.16) and the fact that 𝑣2−𝑣1 is divergence-free:∫

Σ′
𝑖

(𝑣2 − 𝑣1) · 𝜈 =
∫
𝜕𝑈

(𝑣2 − 𝑣1) · 𝜈 −

∫
Σ𝑖

(𝑣2 − 𝑣1) · 𝜈 = 0.

Hence, the flux of 𝑣2 − 𝑣1 through each connected component of U vanishes, so by Lemma 2.6 there
exists 𝐴12 ∈ 𝐶∞(𝑈 × [0, 𝑇],A𝑛) such that 𝑣2 − 𝑣1 = div 𝐴12.

Next, using Lemma B.1 we choose a cutoff function 𝜑 ∈ 𝐶∞
𝑐 (Ω1 + 𝐵(0, 𝑟)) that equals 1 in a

neighborhood of Ω1. We define

𝑣 � 𝜑 𝑣1 + (1 − 𝜑)𝑣2 + 𝑤𝑐 + 𝑤𝐿 ≡ 𝜑 𝑣1 + (1 − 𝜑)𝑣2 + 𝑤,

𝑝 � 𝜑 𝑝1 + (1 − 𝜑)𝑝2,

where 𝑤𝑐 � 𝐴12 · ∇𝜑 so that 𝜑 𝑣1 + (1 − 𝜑)𝑣2 + 𝑤𝑐 is divergence-free. The additional correction 𝑤𝐿 is
a divergence-free field supported within U that will be defined later. Its purpose is to cancel the angular
momentum so that the gluing can be performed in the interior of U. After a tedious computation we
obtain

𝜕𝑡𝑣 + div(𝑣 ⊗ 𝑣) + ∇𝑝 = div
(
𝜑 𝑅̊1 + (1 − 𝜑) 𝑅̊2 + 𝑆1

)
+ 𝜕𝑡𝑤𝐿 + 𝑀 · ∇𝜑, (2.20)

https://doi.org/10.1017/fmp.2025.10012 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.10012


Forum of Mathematics, Pi 19

where

𝑆1 � −𝜑(1 − 𝜑) (𝑣1 − 𝑣2) ⊗ (𝑣1 − 𝑣2) + 𝑤 ⊗

(
𝑣 −

1
2
𝑤

)
+

(
𝑣 −

1
2
𝑤

)
⊗ 𝑤, (2.21)

𝑀 � 𝜕𝑡 𝐴12 + 𝑣1 ⊗ 𝑣1 − 𝑣2 ⊗ 𝑣2 + (𝑝1 − 𝑝2) Id−𝑅̊1 + 𝑅̊2. (2.22)

Let 𝜌̃ � 𝑀 · ∇𝜑 and 𝜌 = 𝜌̃ + 𝜕𝑡𝑤𝐿 . Our goal is to find 𝑆2 ∈ 𝐶∞(Ω2 × [0, 𝑇],S𝑛) supported on U for
all 𝑡 ∈ [0, 𝑇] and such that div 𝑆2 = 𝜌. Thus, we may set 𝑅 = 𝜑 𝑅̊1 + (1− 𝜑) 𝑅̊2 + 𝑆1 + 𝑆2 and absorb the
trace into the pressure, obtaining 𝑅̊ and the final pressure p. To do so, first we must check that 𝜌 satisfies
the compatibility conditions (2.9).

Note that 𝜌̃ = div(𝜑𝑀) because div 𝑀 = 0, since (𝑣𝑖 , 𝑝𝑖 , 𝑅̊𝑖) are subsolutions. Hence, by the
divergence theorem for any 𝑎 ∈ R𝑛 we have∫

𝑈
𝑎 · 𝜌̃ =

∫
𝜕𝑈

𝑎𝑡 (𝜑𝑀)𝜈 =
∫
𝜕Ω1

𝑎𝑡𝑀𝜈. (2.23)

Note that ∫
𝜕Ω1

𝑎𝑡 (𝜕𝑡 𝐴12)𝜈 = −

∫
𝜕Ω1

𝜈𝑡 (𝜕𝑡 𝐴12)∇(𝑎 · 𝑥) =
∫
𝜕Ω1

(𝑎 · 𝑥) div(𝜕𝑡 𝐴12) · 𝜈

=
∫
𝜕Ω1

(𝑎 · 𝑥) (𝜕𝑡𝑣1 − 𝜕𝑡𝑣2) · 𝜈. (2.24)

Therefore, combining Equations (2.17), (2.23) and (2.24) we conclude that
∫
𝑈
𝑎 · 𝜌̃ = 0 for all 𝑎 ∈ R𝑛.

Since 𝜕𝑡𝑤𝐿 is divergence-free and its support is contained in U, the same holds for 𝜕𝑡𝑤𝐿 , so
∫
𝑈
𝑎 · 𝜌 = 0

for all 𝑎 ∈ R𝑛.
Next, we study the product with nonconstant Killing fields. For each pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 we define

𝑙𝑖 𝑗 (𝑡) �
∫
𝑈
𝜉𝑖 𝑗 · 𝜌̃(𝑥, 𝑡) 𝑑𝑥,

where 𝜉𝑖 𝑗 are the elements of the basis of Killing fields defined in (2.8). It will be useful later on to
write the coefficients as:

𝑙𝑖 𝑗 =
∫
𝑈
𝜉 𝑗𝑖 · div(𝜑𝑀) =

∫
𝜕Ω1

𝜉𝑡𝑖 𝑗𝑀𝜈, (2.25)

where we have used the fact that Killing fields are divergence-free as well as the values of 𝜑 on 𝜕Ω1
and 𝜕Ω2. We define

𝐿𝑖 𝑗 (𝑡) � −

∫ 𝑡

0
𝑙𝑖 𝑗 (𝑠) 𝑑𝑠. (2.26)

We then define the correction 𝑤𝐿 to be the divergence-free field obtained by applying Lemma 2.10 to
the domain Ω1 with coefficients 𝐿𝑖 𝑗 ∈ 𝐶∞([0, 𝑇]). Thus, we have∫

𝜉𝑖 𝑗 · 𝜕𝑡𝑤𝐿 =
𝑑

𝑑𝑡

∫
𝜉𝑖 𝑗 · 𝑤𝐿 = 𝐿 ′

𝑖 𝑗 = −𝑙𝑖 𝑗 .

We conclude that
∫
𝑈
𝜉 · 𝜌 = 0 for any Killing field 𝜉, as we wanted. Therefore, by Lemma 2.9 there

exists 𝑆2 ∈ 𝐶∞(Ω2 × [0, 𝑇],S𝑛) supported on U for all 𝑡 ∈ [0, 𝑇] and such that div 𝑆2 = 𝜌. We define
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the final pressure and the Reynolds stress as

𝑝 � 𝑝 −
1
𝑛

tr (𝑆1 + 𝑆2) = 𝜑 𝑝1 + (1 − 𝜑)𝑝2 −
1
𝑛

tr (𝑆1 + 𝑆2) ,

𝑅̊ � 𝜑 𝑅̊1 + (1 − 𝜑) 𝑅̊2 + 𝑆1 + 𝑆2 −
1
𝑛

tr (𝑆1 + 𝑆2) Id .

It follows from Equation (2.20) that the resulting triplet (𝑣, 𝑝, 𝑅̊) is a subsolution and it satisfies (2.15)
because 𝑆1 and 𝑆2 are supported in U for all 𝑡 ∈ [0, 𝑇].

Finally, let us consider that the velocity fields are given by 𝑣𝑖 = div 𝐴𝑖 . In that case, we may simply
take 𝐴12 = 𝐴2 − 𝐴1 instead of constructing a suitable potential using Lemma 2.6. We see that

𝑣 − 𝑤𝐿 = 𝜑𝑣1 + (1 − 𝜑)𝑣2 + (𝐴2 − 𝐴1) · ∇𝜑 = div(𝜑𝐴1 + (1 − 𝜑)𝐴2).

Inspecting Lemma 2.10 leads us to define

𝐴 � 𝜑𝐴1 + (1 − 𝜑)𝐴2 +
∑

1≤𝑖< 𝑗≤𝑛

𝐿𝑖 𝑗 (𝑡) (𝑒𝑖 ⊗ 𝑒 𝑗 − 𝑒 𝑗 ⊗ 𝑒𝑖)

(
2
∫

𝜑

)−1
𝜑(𝑥). (2.27)

Hence, we have 𝑣 = div 𝐴 and we see that A equals 𝐴2 in {dist(𝑥,Ω1) ≥ 𝑟} because 𝜑 vanishes in a
neighborhood of this set. �

In the convex integration scheme we will need estimates of the glued subsolution. For the sake of
clarity, we keep them separate in a different lemma:

Lemma 2.14. Let 𝛼 ∈ (0, 1). In the conditions of Lemma 2.11 and using the notation of its proof, the
new subsolution satisfies:

‖𝑣 − (𝜑𝑣1 + (1 − 𝜑)𝑣2)‖𝑁 � 𝑇𝑟−(𝑁+1) ‖𝑀 ‖0;𝑈 +

𝑁∑
𝑘=0

𝑟−(𝑘+1) ‖𝐴12‖𝑁−𝑘;𝑈 , (2.28)

‖𝜕𝑡 (𝑣 − 𝜑𝑣1 − (1 − 𝜑)𝑣2)‖𝑁 � 𝑟−(𝑁+1) ‖𝑀 ‖0;𝑈 +

𝑁∑
𝑘=0

𝑟−(𝑘+1) ‖𝜕𝑡 𝐴12‖𝑁−𝑘;𝑈 , (2.29)

‖ 𝑅̊ − 𝜑 𝑅̊1 − (1 − 𝜑) 𝑅̊2‖0 � 𝑟−𝛼 ‖𝑀 ‖0;𝑈 + ‖𝑣1 − 𝑣2‖
2
0;𝑈 (2.30)

+ (‖𝑣1‖0;𝑈 + ‖𝑣2‖0;𝑈 + ‖𝑤‖0;𝑈 ) ‖𝑤‖0;𝑈 ,

In addition, if 𝑣1 = div 𝐴1 and 𝑣2 = div 𝐴2, the potential A satisfies

‖𝐴 − (𝜑𝐴1 + (1 − 𝜑)𝐴2)‖𝑁 � 𝑇𝑟−𝑁 ‖𝑀 ‖0;𝑈 , (2.31)

‖𝜕𝑡 (𝐴 − 𝜑𝐴1 − (1 − 𝜑)𝐴2)‖𝑁 � 𝑟−𝑁 ‖𝑀 ‖0;𝑈 . (2.32)

The implicit constants in these inequalities depend on Ω1, N, and 𝛼.

Proof. We begin by estimating 𝑤𝑐 = 𝐴12 · ∇𝜑. Since 𝜑 satisfies ‖𝜑‖𝑁 � 𝑟−𝑁 and it is independent of
time, it is clear that

‖𝑤𝑐 ‖𝑁 �
𝑁∑
𝑘=0

𝑟−(𝑘+1) ‖𝐴12‖𝑁−𝑘;𝑈 , ‖𝜕𝑡𝑤𝑐 ‖𝑁 �
𝑁∑
𝑘=0

𝑟−(𝑘+1) ‖𝜕𝑡 𝐴12‖𝑁−𝑘;𝑈
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because the support of ∇𝜑 is contained in U. Regarding 𝑤𝐿 , it follows from (2.25) that
��𝑙𝑖 𝑗 �� � ‖𝑀 ‖0;𝑈 ,

so
��𝐿𝑖 𝑗

�� � 𝑇 ‖𝑀 ‖0;𝑈 . Hence, by Lemma 2.10 we have the bounds

‖𝑤𝐿 ‖𝑁 � 𝑇𝑟−(𝑁+1) ‖𝑀 ‖0;𝑈 , ‖𝜕𝑡𝑤𝐿 ‖𝑁 � 𝑟−(𝑁+1) ‖𝑀 ‖0;𝑈 .

The claimed estimates for 𝑣 − (𝜑𝑣1 + (1 − 𝜑)𝑣2) = 𝑤𝑐 + 𝑤𝐿 follow at once. Let us now focus on the
Reynolds stress. Using the assumption ‖𝑤‖0 ≤ ‖𝑣1‖0 + ‖𝑣2‖0, we deduce from the definition (2.21) that

‖𝑆1‖0 � ‖𝑣1 − 𝑣2‖
2
0;𝑈 + (‖𝑣1‖0;𝑈 + ‖𝑣2‖0) ‖𝑤‖0;𝑈 .

Concerning 𝑆2, let us first estimate 𝜌:

‖𝜌‖0 ≤ ‖𝑀 · ∇𝜑‖0;𝑈 + ‖𝜕𝑡𝑤𝐿 ‖0 � 𝑟−1 ‖𝑀 ‖0;𝑈 .

Since the support of 𝜌(·, 𝑡) is contained in {𝑥 ∈ R𝑛 : 0 < dist(𝑥,Ω1) < 𝑟}, we may apply Lemma B.4,
obtaining

‖𝜌‖𝐵−1+𝛼
∞,∞
� 𝑟1−𝛼 ‖𝜌‖0 � 𝑟−𝛼 ‖𝑀 ‖0;𝑈 .

Hence, it follows from the estimates in Lemma 2.9 that

‖𝑆2‖0 � ‖𝜌‖𝐵−1+𝛼
∞,∞
� 𝑟−𝛼 ‖𝑀 ‖0;𝑈 .

Since

𝑅̊ − (𝜑 𝑅̊1 + (1 − 𝜑) 𝑅̊2) = 𝑆1 + 𝑆2 −
1
𝑛

tr(𝑆1 + 𝑆2) Id,

the claimed bound follows.
Finally, let us estimate A in the case that the velocities are given by 𝑣𝑖 = div 𝐴2. By (2.27) we have

𝐴 − (𝜑𝐴1 − (1 − 𝜑)𝐴2) =
∑

1≤𝑖< 𝑗≤𝑛

𝐿𝑖 𝑗 (𝑡) (𝑒𝑖 ⊗ 𝑒 𝑗 − 𝑒 𝑗 ⊗ 𝑒𝑖)

(
2
∫

𝜑

)−1
𝜑(𝑥).

The claimed bounds then follow from the estimates derived in Lemma 2.10. �

Lemma 2.11 is almost what we want, but it can be made a bit sharper. In particular, in Theorem 1.6 we
do not want to assume that the subsolution (𝑣0, 𝑝0, 𝑅̊0) is defined in a neighborhood of Ω0. Fortunately,
it turns out that all subsolutions can be extended, at least a little bit. Our operator ℒ is essential for this:
Lemma 2.15. Let Ω0 ⊂ R𝑛 be a bounded domain with smooth boundary and let 𝐼 ⊂ R be a closed and
bounded interval. Let (𝑣0, 𝑝0, 𝑅̊0) ∈ 𝐶∞(Ω0 × 𝐼) be a subsolution in Ω0 × 𝐼. Let Ω be a sufficiently
small open neighborhood of Ω0. Then, there exists a subsolution (𝑣, 𝑝, 𝑅̊) ∈ 𝐶∞(Ω × 𝐼) that extends
(𝑣0, 𝑝0, 𝑅̊0).
Remark 2.16. The open neighborhood Ω need not be very small. It only needs to be bounded and such
that each connected component of R𝑛\Ω0 has nonempty intersection with R𝑛\Ω.
Proof. We begin by constructing the velocity field v. We choose 𝜌 ∈ 𝐶∞

𝑐 (R𝑛× 𝐼,R) such that supp 𝜌(·, 𝑡)

is contained in R𝑛\Ω for all 𝑡 ∈ 𝐼 and such that∫
𝐺
𝜌(𝑥, 𝑡) 𝑑𝑥 =

∫
𝜕𝐺

𝑣0 · 𝜈 ∀𝑡 ∈ 𝐼

for each bounded connected component G of R𝑛\Ω0, whose boundary we have oriented with the outer
normal with respect to G. This can be done if Ω is a sufficiently small neighborhood of Ω0 so that the
intersection of G with R𝑛\Ω is nonempty.
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Next, let 𝑣̃ � ∇Δ−1𝜌 so that 𝑣̃ ∈ 𝐶∞(R𝑛 × 𝐼,R𝑛) and div 𝑣̃ = 𝜌 for all 𝑡 ∈ 𝐼. By the divergence
theorem we have ∫

𝜕𝐺
𝑣̃ · 𝜈 =

∫
𝐺
𝜌 =

∫
𝜕𝐺

𝑣0 · 𝜈

in each bounded connected component G of R𝑛\Ω0 and for all 𝑡 ∈ 𝐼0. In addition, 𝑣̃ − 𝑣0 is divergence-
free in Ω0 × 𝐼 because 𝜌 vanishes in this set by construction. In particular, by the divergence theorem
we have

∫
𝜕Ω0

(𝑣̃ − 𝑣0) · 𝜈 = 0, from which we conclude∫
Σ
(𝑣̃ − 𝑣0) · 𝜈 = 0 ∀𝑡 ∈ 𝐼0

for all connected components Σ of 𝜕Ω0. Therefore, by Lemma 2.6 there exists 𝐴 ∈ 𝐶∞(Ω0 × 𝐼,A𝑛)

such that div 𝐴 = 𝑣̃ − 𝑣0 in Ω0 × 𝐼. We choose a smooth extension 𝐴 ∈ 𝐶∞(R𝑛 × 𝐼,R𝑛×𝑛) and then we
take the skew-symmetric part, so that 𝐴 ∈ 𝐶∞(R𝑛 × R,A𝑛). We define:

𝑣 � 𝑣̃ − div 𝐴 ∈ 𝐶∞(R𝑛 × 𝐼,R𝑛).

Since the support of 𝜌(·, 𝑡) is contained inR𝑛\Ω and the second term is divergence-free, v is divergence-
free in Ω × 𝐼. In addition, our choice of 𝐴 ensures that the restriction of v to Ω0 × 𝐼 is 𝑣0, as we wanted.

Next, we will extend 𝑆0 � 𝑣0⊗𝑣0+𝑝0 Id−𝑅̊0 in a similar manner. First, we choose 𝑓 ∈ 𝐶∞
𝑐 (R𝑛×𝐼,R𝑛)

such that supp 𝑓 (·, 𝑡) is contained in R𝑛\Ω for all 𝑡 ∈ 𝐼 and such that∫
𝐺𝑖

𝜉 · 𝑓 =
∫
𝐺𝑖

𝜉 · 𝜕𝑡𝑣 +

∫
𝜕𝐺𝑖

𝜉𝑡𝑈0𝜈 ∀𝜉 ∈ ker∇sym, ∀𝑡 ∈ 𝐼 (2.33)

for all bounded connected components 𝐺𝑖 of R𝑛\Ω0, whose boundary we have oriented with the outer
normal with respect to 𝐺𝑖 . To find such an f, we fix a nonnegative radial function 𝜓 ∈ 𝐶∞

𝑐 (𝐵(0, 1)) and
a ball 𝐵(𝑥𝑖 , 𝑟𝑖) ⊂ 𝐺𝑖 . Due to symmetry, for any two elements 𝑤 𝑗 ≠ 𝑤𝑘 of the basis B defined in (2.7)
we have ∫

𝜓
(
𝑟−1
𝑖 (𝑥 − 𝑥𝑖)

)
𝑤 𝑗 (𝑥) · 𝑤𝑘 (𝑥) 𝑑𝑥 = 0.

Therefore, it suffices to choose

𝑓 (𝑥) �
∑
𝑖

𝑛(𝑛+1)/2∑
𝑗=1

𝑐𝑖 𝑗 𝜓
(
𝑟−1
𝑖 (𝑥 − 𝑥𝑖)

)
𝑤 𝑗 (𝑥)

for the appropriate coefficients 𝑐𝑖 𝑗 . Then, noticing that 𝜕𝑡𝑣 is a smooth vector field with bounded
derivatives, we define 𝑆 � ℛ(−𝜕𝑡𝑣 + 𝑓 ) so that 𝑆 ∈ 𝐶∞(R𝑛 × 𝐼,S𝑛), and

div 𝑆 = −𝜕𝑡𝑣 + 𝑓 . (2.34)

Since v extends 𝑣0 and (𝑣0, 𝑝0, 𝑅̊0) is a subsolution in Ω0 × 𝐼, we have

div(𝑆 − 𝑆0) (𝑥, 𝑡) = 0 ∀(𝑥, 𝑡) ∈ Ω0 × 𝐼 (2.35)

because f vanishes in that set. In addition, using (2.6) it follows from (2.34) and (2.33) that∫
𝜕𝐺

𝜉𝑡 (𝑆 − 𝑆0)𝜈 = 0 ∀𝜉 ∈ ker∇sym ∀𝑡 ∈ 𝐼
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for all bounded connected components G of R𝑚\Ω0. Due to (2.6) and (2.35), this integral also vanishes
for the remaining connected component of 𝜕Ω0, that is, the connected component that separates Ω0 and
the unbounded connected component of R𝑛\Ω0.

We conclude that 𝑆 − 𝑆0 is in G (Ω0 × 𝐼). Therefore, by Lemma 2.8 there exists 𝐸 ∈ P (Ω0 × 𝐼) such
that ℒ(𝐸) = 𝑆 − 𝑆0 in Ω0 × 𝐼. We choose a smooth extension 𝐸 ∈ 𝐶∞(R𝑛 × 𝐼,R𝑛4

) and then we make
the appropriate antisymmetrization. We define

𝑆 � 𝑆 −ℒ(𝐸) ∈ 𝐶∞(R𝑛 × 𝐼,S𝑛)

By construction of E, we see that S extends 𝑆0. Additionally, we have

div 𝑆 = div 𝑆 = −𝜕𝑡𝑣 + 𝑓

because the image of ℒ is contained in the kernel of the divergence. We define

𝑅̊ � 𝑣 ⊗ 𝑣 − 𝑆 −
1
𝑛

tr(𝑣 ⊗ 𝑣 − 𝑆) Id,

𝑝 � −
1
𝑛

tr(𝑣 ⊗ 𝑣 − 𝑆).

Since 𝑓 (·, 𝑡) vanishes in Ω for all 𝑡 ∈ 𝐼, we conclude that (𝑣, 𝑝, 𝑅̊) is a subsolution in Ω× 𝐼 that extends
(𝑣0, 𝑝0, 𝑅̊0). �

Combining Lemma 2.11 and Lemma 2.15 we can finally prove Theorem 1.6:

Proof of Theorem 1.6. Working with each connected component of Ω0, we may assume that both Ω0
and Ω are connected (i.e., domains). Then, reducing Ω if necessary, by Lemma 2.15 we may assume
that (𝑣0, 𝑝0, 𝑅̊0) is a subsolution in Ω × 𝐼. The result then follows by applying Lemma 2.11 with the
domains Ω0,Ω and subsolutions (𝑣0, 𝑝0, 𝑅̊0) and (0, 0, 0). �

3. Proof of Theorem 1.7

The construction of a weak solution to the Euler equations stated in Theorem 1.7 consists in an iterative
argument which is presented in Subsection 3.1, cf. Proposition 3.2. This proposition together with
Lemma 3.3 allow us to prove the theorem in Subsection 3.2. We want to remark that most of this article,
that is, Sections 4 to 7, is devoted to prove Proposition 3.2, which is the key result for our convex
integration scheme.

Section 3.1 and Section 3.2 follow the general outline of Sections 2.1 and 2.2 in [7] but with two
important differences: here the initial subsolution will be nontrivial, that is, different from (0, 0, 0), and
the perturbations will be supported in a subset of Ω instead of the whole space. Regarding the first
issue, we use Lemma 3.3 to help start the iterative process. Concerning the second point, we introduce
suitable sets related to the distance to 𝜕Ω and the size of 𝑅̊0. The perturbations will be localized to these
sets, which is summarized in an additional inductive hypothesis, (3.13).

3.1. The iterative process

Let us assume all along this subsection that the subsolution (𝑣0, 𝑝0) (·, 𝑡) is compactly supported for
each time 𝑡 ∈ [0, 𝑇]. We will construct the desired weak solution of the Euler equations as the limit of a
sequence of subsolutions, that is, at a given step 𝑞 ≥ 0 we have (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) ∈ 𝐶∞(R3 × [0, 𝑇]) solving
the Euler-Reynolds system: {

𝜕𝑡𝑣𝑞 + div(𝑣𝑞 ⊗ 𝑣𝑞) + ∇𝑝𝑞 = div 𝑅̊𝑞 ,

div 𝑣𝑞 = 0,
(3.1)
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to which we add the constraint that

tr 𝑅̊𝑞 = 0. (3.2)

The matrix 𝑅̊𝑞 measures the deviation from being a solution of the Euler equations. The goal of the
process is to make 𝑅̊𝑞 vanish at the limit 𝑞 → +∞, so that the limit field is a weak solution of the Euler
equations.

Assume we are given the initial subsolution (𝑣0, 𝑝0, 𝑅̊0) ∈ 𝐶∞(R3 × [0, 𝑇]). Let us then show how
to construct the rest of the terms iteratively. To construct the subsolution at step q from the one in step
𝑞 − 1, we will add an oscillatory perturbation with frequency 𝜆𝑞 . Meanwhile, the size of the Reynolds
stress will be measured by an amplitude 𝛿𝑞 . These parameters are given by

𝜆𝑞 = 2𝜋�𝑎𝑏𝑞
�, (3.3)

𝛿𝑞 = 𝜆
−2𝛽
𝑞 , (3.4)

where �𝑥� denotes the ceiling, that is, the smallest integer 𝑛 ≥ 𝑥. The parameters 𝑎, 𝑏 > 1 are very large
and very close to 1, respectively. They will be chosen depending on the exponent 0 < 𝛽 < 1/3 that
appears in Theorem 1.7, on Ω and on the initial subsolution. We introduce another parameter 𝛼 > 0 that
will be very small. The necessary size of all of the parameters will be discovered in the proof.

Throughout the process we will also try to achieve a given energy profile 𝑒 ∈ 𝐶∞([0, 𝑇]), which
must satisfy the inequality (1.3). We will also assume

sup
𝑡 ∈[0,𝑇 ]

���� 𝑑𝑑𝑡 𝑒(𝑡)���� ≤ 1. (3.5)

We will see that this can be assumed without losing generality.
Unlike the construction on the torus in [7], it is essential that we only perturb the field in the region

where the Reynolds stress is nonzero. Hence, we have to pay special attention to the support of the fields.
Since the map (𝑣0, 𝑝0, 𝑅̊0) (·, 𝑡) is assumed to be compactly supported at each time 𝑡 ∈ [0, 𝑇], we

shall see that with a suitable rescaling we may assume that its support and Ω are contained in (0, 1)3.
This is useful because sometimes it will be convenient to consider that we are working with periodic
boundary conditions (that is, in T3) to reuse the results in [7]. On the other hand, 𝑅̊0(·, 𝑡) is supported in a
potentially smaller domain Ω. In our construction we must ensure that we do not perturb the subsolution
outside of this set.

It will be convenient to do an additional rescaling in our problem. In the rescaled problem the
initial subsolution will depend on a, but we assume that nevertheless there exists a sequence {𝑦𝑁 }∞𝑁=0
independent of the parameters such that

‖𝑣0‖𝑁 + ‖𝜕𝑡𝑣0‖𝑁 ≤ 𝑦𝑁 , (3.6)

‖𝑝0‖𝑁 ≤ 𝑦𝑁 , (3.7)

‖ 𝑅̊0‖𝑁 + ‖𝜕𝑡 𝑅̊0‖𝑁 ≤ 𝑦𝑁 . (3.8)

Since the initial Reynolds stress 𝑅̊0 and its derivatives vanish at 𝜕Ω × [0, 𝑇], for any 𝑘 ∈ N there
exists a constant 𝐶𝑘 such that for any 𝑥 ∈ Ω we have

|𝑅̊0 (𝑥, 𝑡) | ≤ 𝐶𝑘 dist(𝑥, 𝜕Ω)𝑘 . (3.9)
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The constants 𝐶𝑘 are independent of a by (3.8). We define

𝑑𝑞 �

(
𝛿𝑞+2𝜆

−6𝛼
𝑞+1

4𝐶10

)1/10

. (3.10)

Hence, we have

|𝑅̊0 (𝑥, 𝑡) | ≤
1
4
𝛿𝑞+2𝜆

−6𝛼
𝑞+1 ∀𝑥 ∈ Ω, dist(𝑥, 𝜕Ω) ≤ 𝑑𝑞 . (3.11)

At step q the perturbation will be localized in a central region

𝐴𝑞 � {𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) ≥ 𝑑𝑞} (3.12)

so that (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) equals the initial subsolution in (R3\𝐴𝑞) × [0, 𝑇]. Note that 𝑑𝑞 → 0 as 𝑞 → ∞

because so does 𝛿𝑞+2. Therefore, in the limit the perturbation covers all of the region where 𝑅̊0 is
nonzero. However, the velocity is not modified outside this set.

As we have mentioned, the error introduced in the gluing step of [7] is spread throughout the whole
space. To avoid this, we introduce an additional gluing in space, which we will explain in more detail
in the following sections.

The complete list of inductive estimates is the following:

(𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) = (𝑣0, 𝑝0, 𝑅̊0) outside 𝐴𝑞 × [0, 𝑇], (3.13)

‖ 𝑅̊𝑞 ‖0 ≤ 𝛿𝑞+1𝜆
−6𝛼
𝑞 , (3.14)��𝑣𝑞��1 ≤ 𝑀𝛿1/2

𝑞 𝜆𝑞 , (3.15)��𝑣𝑞��0 ≤ 1 − 𝛿1/2
𝑞 , (3.16)

𝛿𝑞+1𝜆
−𝛼
𝑞 ≤ 𝑒(𝑡) −

∫
Ω

��𝑣𝑞 �� 2𝑑𝑥 ≤ 𝛿𝑞+1, (3.17)

where M is a geometric constant that depends on Ω and is fixed throughout the iterative process.

Remark 3.1. If Ω has several connected components Ω 𝑗 , we may fix an energy profile 𝑒 𝑗 in each of
them. In that case, (3.17) would have to be replaced by

𝛿𝑞+1𝜆
−𝛼
𝑞 ≤ 𝑒 𝑗 (𝑡) −

∫
Ω 𝑗

��𝑣𝑞 �� 2𝑑𝑥 ≤ 𝛿𝑞+1.

Since the construction does not differ much, for simplicity we will assume that Ω is connected.

The following proposition is the key result to prove Theorem 1.7, because it establishes the existence
of the iterative scheme in the convex integration process.

Proposition 3.2. Let 𝑇 > 0 and let Ω ⊂ (0, 1)3 ⊂ R3 be an open set with smooth boundary and with
a finite number of connected components. Let (𝑣0, 𝑝0, 𝑅̊0) ∈ 𝐶∞(R3 × [0, 𝑇]) be a subsolution whose
support is contained in (0, 1)3 × [0, 𝑇] and such that supp 𝑅̊0 ⊂ Ω × [0, 𝑇]. Furthermore, assume that
(3.6)−(3.8) are satisfied for some sequence of positive numbers {𝑦𝑁 }∞𝑁=0. There exists a constant M
depending only on Ω with the following property: Assume 0 < 𝛽 < 1/3 and

1 < 𝑏 < min
{

1 − 𝛽

2𝛽
,

11
10

}
. (3.18)
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Then there exists an 𝛼0 depending on 𝛽 and b such that for any 0 < 𝛼 < 𝛼0 there is an 𝑎0 depending
on 𝛽, b, 𝛼, Ω, and {𝑦𝑁 }∞𝑁=0 such that for any 𝑎 ≥ 𝑎0 the following holds: Given a strictly positive
energy profile satisfying (3.5) and a subsolution (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) satisfying (3.13)−(3.17), there exists a
subsolution (𝑣𝑞+1, 𝑝𝑞+1, 𝑅̊𝑞+1) satisfying the same equations (3.13)−(3.17) with q replaced by 𝑞 + 1.
Furthermore, we have the estimate��𝑣𝑞+1 − 𝑣𝑞

��
0 +

1
𝜆𝑞+1

��𝑣𝑞+1 − 𝑣𝑞
��

1 ≤ 𝑀𝛿1/2
𝑞+1. (3.19)

We wish to iterate this result to construct a sequence of subsolutions whose limit will be the desired
weak solution. However, in order to start the process, the first term in the sequence must satisfy
the inductive hypotheses (3.13)−(3.17). Since we do not assume any bounds on (𝑣0, 𝑝0, 𝑅̊0), these
hypotheses will not be satisfied by the initial subsolution, in general. Although a time dilation would
almost solve the problem, we need the following lemma to fully prepare the initial subsolution:

Lemma 3.3. Let 𝑇 > 0 and let Ω ⊂ (0, 1)3 ⊂ R3 be an open set with smooth boundary and with a finite
number of connected components. Let (𝑣0, 𝑝0, 𝑅̊0) ∈ 𝐶∞(R3 × [0, 𝑇]) be a subsolution whose support
is contained in (0, 1)3 × [0, 𝑇] and such that supp 𝑅̊0 ⊂ Ω × [0, 𝑇]. Let 𝜆 > 0 be a sufficiently large
constant. There exists a subsolution (𝑣, 𝑝, 𝑅̊) ∈ 𝐶∞(R3 × [0, 𝑇]) such that for any 𝑁 ≥ 0 we have

‖𝑣‖𝑁 � 𝜆𝑁 , ‖ 𝑅̊‖0 ≤ 𝜆−1/2

where the implicit constants are independent of 𝜆. In addition, the energy satisfies∫
Ω
|𝑣0 |

2𝑑𝑥 <

∫
Ω
|𝑣 | 2𝑑𝑥 <

∫
Ω
|𝑣0 |

2𝑑𝑥 + 6‖ 𝑅̊0‖0 |Ω| . (3.20)

Furthermore, (𝑣, 𝑝, 𝑅̊) equals the initial subsolution outside the set

𝐴∗ �
{
𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) > 𝜆−1/12

}
× [0, 𝑇] .

While necessary, this result is nothing new and one could easily obtain it by combining [24] and
Lemma 2.9, or using the ideas in [36]. For completeness, we sketch its proof at the end of Section 7,
considering a simplified version of the preceding construction.

3.2. Proof of Theorem 1.7

We first prove the theorem under the assumption that the subsolution (𝑣0, 𝑝0, 𝑅̊0) (·, 𝑡) is compactly
supported for each time 𝑡 ∈ [0, 𝑇]. This assumption will be relaxed in next subsection to a condition on
the support of 𝑅̊0. We fix 0 < 𝛽 < 1/3, we choose b satisfying (3.18) and 𝛼 smaller than the threshold
given by Proposition 3.2. Next, we use the scale invariance of the Euler equations and subsolutions

𝑣0 (𝑥, 𝑡) ↦→ 𝑣0(𝜌𝑥, 𝜌𝑡), 𝑝0 (𝑥, 𝑡) ↦→ 𝑝0 (𝜌𝑥, 𝜌𝑡), 𝑅̊0 (𝑥, 𝑡) ↦→ 𝑅̊0(𝜌𝑥, 𝜌𝑡)

to assume that Ω ⊂ (0, 1)3 and supp(𝑣0, 𝑝0, 𝑅̊0) ⊂ (0, 1)3 × [0, 𝑇]. The desired energy profile must also
be modified: 𝑒(𝑡) ↦→ 𝜌−3𝑒(𝑡). Note that this preserves (1.3). For convenience, we denote the rescaled
subsolution like the original. It then suffices to construct the desired solution in this case and then reverse
the change of variables.

Next, we use Lemma 3.3 with 𝜆 = 𝜆12𝛼
1 to obtain a subsolution (𝑣1, 𝑝1, 𝑅̊1) that equals the initial

subsolution outside the set

{𝑥 ∈ Ω : 𝑑 (𝑥, 𝜕Ω) > 𝜆−𝛼
1 } × [0, 𝑇]
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and satisfies the estimates

‖𝑣1‖𝑁 ≤ 𝑐𝑁𝜆
12𝑁 𝛼
1 , ‖ 𝑅̊1‖0 ≤ 𝜆−6𝛼

1 ,

where the constants 𝑐𝑁 are independent of 𝜆1 but they will depend on Ω and the initial subsolution. In
addition, by (1.3) we have

𝑒(𝑡) >

∫
Ω
|𝑣0 |

2𝑑𝑥 + 6‖ 𝑅̊0‖0 |Ω| >

∫
Ω
|𝑣1 |

2𝑑𝑥.

Next, we use another scale invariance of the Euler equations (and the definition of subsolution):

𝑣(𝑥, 𝑡) ↦→ Γ𝑣(𝑥, Γ𝑡), 𝑝(𝑥, 𝑡) ↦→ Γ2𝑝(𝑥, Γ𝑡), 𝑅̊(𝑥, 𝑡) ↦→ Γ2 𝑅̊(𝑥, Γ𝑡).

We choose

Γ � 𝛿1/2
2 max

{
1, supp𝑡

(
𝑒(𝑡) −

∫
Ω
|𝑣1 (𝑥, 𝑡) |

2𝑑𝑥

)}−1/2

and we begin to work in this rescaled setting, which we will indicate with a superscript r. We are thus
working in the interval [0, 𝑇], where 𝑇 � Γ−1𝑇 , and we try to prescribe the energy profile 𝑒 � Γ2𝑒(𝑡).
By construction of Γ we have

sup
𝑡

(
𝑒(𝑡) −

∫
Ω

��𝑣𝑟1 (𝑥, 𝑡)�� 2𝑑𝑥

)
≤ 𝛿2

and

inf
𝑡

(
𝑒(𝑡) −

∫
Ω

��𝑣𝑟1 (𝑥, 𝑡)�� 2𝑑𝑥

)
= Γ2 inf

𝑡

(
𝑒(𝑡) −

∫
Ω
|𝑣1 (𝑥, 𝑡) |

2𝑑𝑥

)
.

It follows from the definition of Γ that if a is sufficiently large we have

𝜆𝛼
1

(
Γ2

𝛿2

)
inf
𝑡

(
𝑒(𝑡) −

∫
Ω
|𝑣0(𝑥, 𝑡) |

2𝑑𝑥

)
≥ 1.

so (3.17) holds. On the other hand,

sup
𝑡

|𝑒′(𝑡) | ≤ Γ3/2 sup
𝑡

|𝑒′(𝑡) | ≤ 1

because Γ becomes arbitrarily small by increasing a.
Next, we observe that (𝑣𝑟0 , 𝑝

𝑟
0 , 𝑅̊

𝑟
0) still satisfies (3.6)−(3.8) with the same sequence {𝑦𝑁 }∞𝑁=0.

Regarding (𝑣𝑟1 , 𝑝
𝑟
1 , 𝑅̊

𝑟
1), it follows from the definition of the rescaling that

‖ 𝑅̊𝑟
1 ‖0 ≤ 𝛿2𝜆

−6𝛼
1 .

On the other hand, since the constants 𝑐𝑁 are independent of 𝜆1, for sufficiently large a we have��𝑣𝑟1��0 ≤ 𝛿1/2
2 ‖𝑣1‖0 ≤ 𝛿1/2

2 𝑐0 ≤ 1 − 𝛿1/2
1 ,��𝑣𝑟1��1 ≤ 𝛿1/2

2 ‖𝑣1‖1 ≤ 𝛿1/2
2 𝑐1𝜆

12𝛼
1 ≤ 𝑀𝛿1/2

1 𝜆1.

Finally, (𝑣𝑟1 , 𝑝
𝑟
1 , 𝑅̊

𝑟
1) = (𝑣𝑟0 , 𝑝

𝑟
0 , 𝑅̊

𝑟
0) outside

{𝑥 ∈ Ω : 𝑑 (𝑥, 𝜕Ω) > 𝜆−𝛼
1 } × [0, 𝑇] .
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Let us consider the sets 𝐴𝑞 defined in (3.12). We see that (𝑣𝑟1 , 𝑝
𝑟
1 , 𝑅̊

𝑟
1) = (𝑣𝑟0 , 𝑝

𝑟
0 , 𝑅̊

𝑟
0) outside 𝐴1 × [0, 𝑇]

for sufficiently small 𝛼 and sufficiently large a. Remember that 𝛿𝑞 and 𝜆𝑞 depend on a through the
expressions (3.4) and (3.3), respectively.

From now on we assume that we are working in this rescaled problem and we omit the superscript
r. Once we obtain the desired weak solution in this setting, to obtain the solution to the original
problem it suffices to undo the scaling. By the previous discussion, the energy profile satisfies the
inductive hypotheses (3.5) and the subsolution (𝑣1, 𝑝1, 𝑅̊1) satisfies (3.13)−(3.17). In addition, the
initial subsolution (𝑣0, 𝑝0, 𝑅̊0) satisfies (3.6)−(3.8) for some sequence {𝑦𝑁 }∞𝑁=0 that does not depend
on a. Therefore, we may apply Proposition 3.2 iteratively, obtaining a sequence of compactly supported
smooth subsolutions {(𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞)}

∞
𝑞=1.

It follows from (3.19) that 𝑣𝑞 converges uniformly to some continuous map v. On the other hand,
note that the pressure 𝑝𝑞 is the only compactly supported solution of

Δ 𝑝𝑞 = div div(−𝑣𝑞 ⊗ 𝑣𝑞 + 𝑅̊𝑞).

Therefore, 𝑝𝑞 also converges to some pressure 𝑝 ∈ 𝐿𝑟 (R3) for any 1 ≤ 𝑟 < ∞. Since 𝑅̊𝑞 converges
uniformly to 0, we conclude that the pair (𝑣, 𝑝) is a weak solution of the Euler equations.

Furthermore, using (3.19) we obtain

∞∑
𝑞=1

��𝑣𝑞+1 − 𝑣𝑞
��
𝛽′ ≤

∞∑
𝑞=1

𝐶 (𝛽′, 𝛽)
��𝑣𝑞+1 − 𝑣𝑞

��1−𝛽′

0

��𝑣𝑞+1 − 𝑣𝑞
��𝛽′

𝛽

≤ 𝐶 (𝛽′, 𝛽)
∞∑
𝑞=1

(𝑀𝛿1/2
𝑞+1)

1−𝛽′
(
𝑀𝛿1/2

𝑞+1𝜆𝑞

)𝛽′

≤ 𝑀 𝐶 (𝛽′, 𝛽)
∞∑
𝑞=1

𝜆
𝛽′−𝛽
𝑞 ,

so {𝑣𝑞}
∞
𝑞=1 is uniformly bounded in 𝐶0

𝑡 𝐶
𝛽′

𝑥 for all 𝛽′ < 𝛽. To recover the time regularity, see [7].
Next, note that (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) = (𝑣0, 𝑝0, 0) in (R3\Ω) × [0, 𝑇] for all q by (3.13) and the definition of

𝐴𝑞 . Hence, we have (𝑣, 𝑝) = (𝑣0, 𝑝0) in (R3\Ω) × [0, 𝑇].
Finally, it follows from (3.17) and the fact that 𝛿𝑞+1 → 0 as 𝑞 → ∞ that

∫
Ω
|𝑣(𝑥, 𝑡) | 2𝑑𝑥 = 𝑒(𝑡), as we

wanted. This completes the proof of the theorem for the case that the initial subsolution is compactly
supported for all time.

3.3. Dropping the compact support condition

Once we have proved Theorem 1.7 for the case that (𝑣0, 𝑝0, 𝑅̊0) (·, 𝑡) is compactly supported, it is easy
to relax this condition and show that it suffices that 𝑅̊0 (·, 𝑡) is compactly supported.

Indeed, let us choose a bounded domain with smooth boundary 𝑈 � Ω. As we mentioned in
Lemma 2.11 and Remark 2.12, any subsolution defined in allR3 automatically satisfies the conditions in
Theorem 1.6. Hence, there exists a subsolution (𝑣̃0, 𝑝0,

˚̃𝑅0) ∈ 𝐶∞(R3 × [0, 𝑇]) that extends (𝑣0, 𝑝0, 𝑅̊0)
outside 𝑈 and that is compactly supported in each time slice. Since it is an extension, we see that the
Reynolds stress vanishes in 𝑈\Ω.

We can now apply Theorem 1.7 in the case that the subsolution is compactly supported for each time
slice, thus obtaining a weak solution (𝑣, 𝑝) with the appropriate regularity and such that (𝑣, 𝑝) = (𝑣0, 𝑝0)
in (𝑈\Ω) × [0, 𝑇]. Since Ω � 𝑈, we may glue this region back into (𝑣0, 𝑝0), obtaining a weak solution
that equals (𝑣0, 𝑝0) outside Ω × [0, 𝑇].

Finally, since Ω and R3\𝑈 are disjoint, when we apply Theorem 1.7 we may fix the energy profile in
each region independently. Therefore, we can prescribe the energy profile in Ω of the final weak solution
to be any smooth function satisfying condition (1.3).
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4. Proof of Proposition 3.2

The different steps in the proof of Proposition 3.2 are presented in Subsection 4.1. These steps are
elaborated in the next subsections, and we complete the proof of the proposition in Subsection 4.6.
Roughly speaking, our proof adapts the arguments of [7] to the nonperiodic setting. To do so, we
introduce an additional step in the iteration: a gluing in space that ensures that the error does not spread
out to the whole space when we glue in time.

4.1. Stages of the proof

1. Preparing the subsolution. We mollify our subsolution (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) to avoid the loss of derivatives
problem, obtaining a new subsolution (𝑣ℓ , 𝑝ℓ , 𝑅̊ℓ). It is convenient to glue it in space to the original
subsolution far from the turbulent zone.

2. Gluing in space. We pick a collection of times {𝑡𝑖} ⊂ [0, 𝑇] and we consider the solutions (𝑣𝑖 , 𝑝𝑖)

of the Euler equations with initial data 𝑣̃ℓ (𝑡𝑖). We glue them in space to (𝑣̃ℓ , 𝑝ℓ ,
˚̃𝑅ℓ), obtaining new

subsolutions (𝑣̃𝑖 , 𝑝𝑖 ,
˚̃𝑅𝑖). The error ˚̃𝑅𝑖 is small and these subsolutions equal (𝑣0, 𝑝0, 𝑅̊0) near 𝜕Ω.

3. Gluing in time. We glue together the subsolutions (𝑣̃𝑖 , 𝑝𝑖 ,
˚̃𝑅𝑖), obtaining a new subsolution

(𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) in which most of the error is concentrated in temporally disjoint regions. The error re-
mains localized within Ω owing to the fact that the differences between the subsolutions (𝑣̃𝑖 , 𝑝𝑖 , ˚̃𝑅𝑖)

vanish near 𝜕Ω.
4. Perturbation. We add a highly oscillatory perturbation to reduce the error. In fact, we add many

corrections, each of them reducing the error in one of the temporally disjoint regions. These pertur-
bations do not interact with each other, which yields the optimal estimates for the new subsolution
(𝑣𝑞+1, 𝑝𝑞+1, 𝑅̊𝑞+1).

Throughout the iterative process we will use the notation 𝑥 � 𝑦 to denote 𝑥 ≤ 𝐶𝑦 for a sufficiently large
constant 𝐶 > 0 that is independent of a, b, and q. However, the constant is allowed to depend on 𝛼, 𝛽,
Ω, and {𝑦𝑁 }∞𝑁=0 and it may change from line to line.

4.2. Preparing the subsolution

The first step consists in mollifying the field in order to avoid the loss of derivatives problem, which is typ-
ical of convex integration. The problem is the following: to control a Hölder norm of (𝑣𝑞+1, 𝑝𝑞+1, 𝑅̊𝑞+1)
we need estimates of higher-order Hölder norms of (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞). As the iterative process goes on, we
need to estimate higher and higher Hölder norms of the initial terms of the sequence to control just the
first few Hölder norms of the subsolution. However, if we mollify the subsolution (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞), we can
control all the derivatives in terms of the first few Hölder norms and the mollification parameter.

Note that this process changes the subsolution in the whole space, yet mollification is only strictly
necessary in 𝐴𝑞 × [0, 𝑇], as (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) equals (𝑣0, 𝑝0, 𝑅̊0) outside of this set. Furthermore, it will be
convenient for later estimates that the resulting subsolution equals the initial subsolution far from the
turbulent zone, as this is a property that we want to impose unto (𝑣𝑞+1, 𝑝𝑞+1, 𝑅̊𝑞+1). Hence, our approach
consists in gluing the mollified subsolution to the initial subsolution, which is not quite demanding
because both subsolutions are very close far from the turbulent zone.

We begin by fixing a mollification kernel in space 𝜓 ∈ 𝐶∞
𝑐 (R3) and we introduce the mollification

parameter

ℓ �
𝛿1/2
𝑞+1

𝛿1/2
𝑞 𝜆1+3𝛼

𝑞

. (4.1)

Since (𝛿𝑞+1/𝛿𝑞)
1/2 = 𝜆

−𝛽 (𝑏−1)
𝑞 and our assumption (3.18) implies that 𝛽(𝑏 − 1) < 1/2, we see that we

may choose 𝛼 sufficiently small and a sufficiently large so as to have
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𝜆−3/2
𝑞 ≤ ℓ ≤ 𝜆−1

𝑞 . (4.2)

Note that our definition of ℓ differs from the one in [7] by a factor of 𝜆−3𝛼/2
𝑞 . The coefficients of 𝛼

used in [7] are fine-tuned to their proof. Since we do some things differently, it is not surprising that we
have to change some of these coefficients. In general the factor 𝜆−3𝛼/2

𝑞 is quite harmless, as only simple
relationships like (4.2) are used throughout most of the paper, and these are the same here and in [7].
The actual value of ℓ is only used at the very end, when fine relationships between the parameters are
needed to estimate 𝑅̊𝑞+1. We will study these situations when they arise, but in any case we will see that
the extra factor is essentially irrelevant. Indeed, 𝛼 is assumed to be so small that in those inequalities
the term containing 𝛼 is negligible. Our definition of ℓ leads to a different coefficient multiplying 𝛼, but
this only changes how small 𝛼 has to be chosen, so it is not important.

After this brief digression, we define

𝑣ℓ � 𝑣𝑞 ∗ 𝜓ℓ ,

𝑝ℓ � 𝑝𝑞 ∗ 𝜓ℓ +
��𝑣𝑞 �� 2 ∗ 𝜓ℓ − |𝑣ℓ |

2,

𝑅̊ℓ � 𝑅̊𝑞 ∗ 𝜓ℓ − (𝑣𝑞 ⊗̊𝑣𝑞) ∗ 𝜓ℓ + 𝑣ℓ ⊗̊𝑣ℓ ,

where the convolution with 𝜓ℓ is in space only and 𝑓 ⊗̊𝑔 denotes the traceless part of the tensor 𝑓 ⊗ 𝑔.
It is easy to check that the triplet (𝑣ℓ , 𝑝ℓ , 𝑅̊ℓ) is a subsolution and by [7, Proposition 2.2] we have the
following estimates: ��𝑣ℓ − 𝑣𝑞

��
0 � 𝛿1/2

𝑞+1𝜆
−𝛼
𝑞 ,

‖𝑣ℓ ‖𝑁+1 � 𝛿1/2
𝑞 𝜆𝑞 ℓ

−𝑁∀𝑁 ≥ 0,
‖ 𝑅̊ℓ ‖𝑁+𝛼 � 𝛿𝑞+1ℓ

−𝑁+3𝛼 ∀𝑁 ≥ 0,����∫
Ω

��𝑣𝑞 �� 2 − |𝑣ℓ |
2 𝑑𝑥

���� � 𝛿𝑞+1ℓ
𝛼 .

Note that we have an extra factor ℓ2𝛼 in the estimate for the Reynolds stress in comparison to [7]. This
comes from the extra factor 𝜆−3𝛼

𝑞 in ‖ 𝑅̊𝑞 ‖0 and from our definition of ℓ. They cause an extra factor 𝜆−3𝛼
𝑞

to appear in the estimate, which yields an extra factor ℓ2𝛼 by (4.2).
Obtaining an extra factor ℓ2𝛼 (actually ℓ𝛼 would suffice) is our reason for modifying the inductive

estimate of the Reynolds stress and the definition of ℓ. We will use this extra factor to compensate a
suboptimal estimate that we will be forced to use in Section 5.

Once we have mollified the subsolution, we will glue it to the initial subsolution far from the turbulent
zone. It will be convenient to divide 𝐴𝑞+1\𝐴𝑞 into several pieces because we will have to do several
constructions in this region. We define

𝜎 =
1
5
(𝑑𝑞 − 𝑑𝑞+1), (4.3)

where 𝑑𝑞 was defined in (3.10). Using the elementary inequalities

2𝜋 ≤
𝜆𝑞

𝑎𝑏𝑞 ≤ 4𝜋 (4.4)

we deduce 𝛿𝑞+2 � 𝜆
−2𝛽𝑏2

𝑞 . By (3.18) we have 𝑏2 < 5/4, so for sufficiently small 𝛼 we have

𝑑𝑞 � 𝜆−1/11
𝑞 .

Therefore,

𝜎−1 � 𝜆1/11
𝑞 . (4.5)

https://doi.org/10.1017/fmp.2025.10012 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.10012


Forum of Mathematics, Pi 31

In particular, 𝜎 � ℓ. For 1 ≤ 𝑗 ≤ 5 we define

𝐵 𝑗 � R3\[𝐴𝑞 + 𝐵(0, 𝑗)]

By hypothesis, (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) equals (𝑣0, 𝑝0, 𝑅̊0) outside 𝐴𝑞 × [0, 𝑇]. Hence, it follows from (3.6)−(3.8)
that

‖𝑣ℓ − 𝑣0‖𝑁 ;𝐵1 + ‖𝜕𝑡𝑣ℓ − 𝜕𝑡𝑣0‖𝑁 ;𝐵1 � ℓ2, (4.6)

‖𝑝ℓ − 𝑝0‖𝑁 ;𝐵1 � ℓ2, (4.7)

‖ 𝑅̊ℓ − 𝑅̊0‖𝑁 ;𝐵1 � ℓ2. (4.8)

Thus, both subsolutions are very close in this region, which makes gluing them much easier. Taking
into account (4.6), it follows from Lemma 2.6 that there exists a potential 𝐴 ∈ 𝐶∞(𝐵1 × [0, 𝑇],A3) such
that div 𝐴 = 𝑣ℓ − 𝑣0 in 𝐵1 × [0, 𝑇] and

‖𝐴‖𝑁+1+𝛼;𝐵1 + ‖𝜕𝑡 𝐴‖𝑁+1+𝛼;𝐵1 � ℓ2 ∀𝑁 ≥ 0.

Therefore, the matrices 𝑆1 and M that appear in Lemma 2.11 satisfy the estimates ‖𝑆1‖𝑁+𝛼+‖𝑀 ‖𝑁+𝛼 �
ℓ2. We introduce this estimates into Lemma 2.11 to perform a gluing in the region 𝐵1\𝐵2. Since 𝜎 � ℓ
we may essentially ignore any factor coming from the derivatives of the cutoff by absorbing it into the ℓ
factor. Carrying out the rest of the construction of Lemma 2.11, we conclude that there exists a smooth
subsolution such that

(𝑣̃ℓ , 𝑝ℓ ,
˚̃𝑅ℓ) (𝑥, 𝑡) =

{
(𝑣ℓ , 𝑝ℓ , 𝑅̊ℓ) (𝑥, 𝑡) if 𝑥 ∈ 𝐴𝑞 + 𝐵(0, 𝜎),
(𝑣0, 𝑝0, 𝑅̊0) (𝑥, 𝑡)if 𝑥 ∈ 𝐵2

(4.9)

and satisfies the estimates ��𝑣̃ℓ − 𝑣𝑞
��

0 � 𝛿1/2
𝑞+1𝜆

−𝛼
𝑞 , (4.10)

‖𝑣̃ℓ ‖𝑁+1 � 𝛿1/2
𝑞 𝜆𝑞 ℓ

−𝑁∀𝑁 ≥ 0, (4.11)

‖
˚̃𝑅ℓ ‖𝑁+𝛼 � 𝛿𝑞+1ℓ

−𝑁+3𝛼 ∀𝑁 ≥ 0, (4.12)����∫
Ω

��̃𝑣𝑞 �� 2 − |𝑣ℓ |
2 𝑑𝑥

���� � 𝛿𝑞+1ℓ
𝛼 . (4.13)

That is, we have obtained a new subsolution satisfying the same estimates as (𝑣ℓ , 𝑝ℓ , 𝑅̊ℓ) but with the
additional property of being equal to the initial subsolution far from the turbulent zone.

Although many constructions in [7] work in R3 with very little or no modification, it is more
convenient to work with periodic fields so that we may use results from [7] directly. Note that the
subsolution that we have just obtained is supported in (0, 1)3 × [0, 𝑇] because it equals the initial
subsolution far form the turbulent zone. This allows us to consider its periodic extension to R3/Z3,
which we denote the same. From now on, we consider that we are working in this setting.

4.3. Overview of the gluing in space

The key idea introduced by Isett in [35] is to glue in time exact solutions of the Euler equations to obtain
a new subsolution (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) such that 𝑣𝑞 is close to 𝑣𝑞 but 𝑅̊𝑞 is supported in a series of disjoint
temporal regions of the appropriate length. This allows the use of Mikado flows, leading to the optimal
regularity 𝐶𝛽 for any 𝛽 < 1/3 (as in Onsager’s conjecture).
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More specifically, we define the length

𝜏𝑞 =
ℓ2𝛼

𝛿1/2
𝑞 𝜆𝑞

(4.14)

and we consider the smooth solutions of the Euler equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑡𝑣𝑖 + div(𝑣𝑖 ⊗ 𝑣𝑖) + ∇𝑝𝑖 = 0,
div 𝑣𝑖 = 0,
𝑣𝑖 (·, 𝑡𝑖) = 𝑣̃ℓ (·, 𝑡𝑖),

(4.15)

where 𝑡𝑖 � 𝑖𝜏𝑞 . We will see that they are defined in the time interval [𝑡𝑖 − 𝜏𝑞 , 𝑡𝑖 + 𝜏𝑞]. The pressure is
recovered as the unique solution to the equation −Δ 𝑝𝑖 = tr(∇𝑣𝑖∇𝑣𝑖) with the normalization∫

T3
𝑝𝑖 (𝑥, 𝑡) 𝑑𝑥 =

∫
T3

𝑝ℓ (𝑥, 𝑡) 𝑑𝑥. (4.16)

We will see that these solutions remain sufficiently close to 𝑣̃ℓ in their respective intervals. Following
Isett’s ideas, we would like to glue them in time to obtain a subsolution in the whole interval [0, 𝑇]. The
velocity field would remain sufficiently close to 𝑣̃ℓ while the Reynolds stress would be localized to the
intersection of the consecutive time intervals.

However, even if 𝑅̊ℓ is well localized, the solutions 𝑣𝑖 will immediately differ from 𝑣̃ℓ in the whole
space. Furthermore, different solutions 𝑣𝑖 , 𝑣𝑖+1 will also differ in the whole space during the intersection
of their temporal domains. If we tried to apply Isett’s procedure to them we would obtain a Reynolds
stress that spreads throughout the whole space. This is not suitable for our purposes, so we must modify
Isett’s approach.

What we will do is to glue in space the exact solutions 𝑣𝑖 to 𝑣̃ℓ in the region where ˚̃𝑅ℓ is small,
obtaining subsolutions (𝑣̃𝑖 , 𝑝𝑖 ,

˚̃𝑅𝑖). The Reynolds stress will no longer be 0, but it will be so small that
we may ignore it in the current iteration. Since these subsolutions will coincide far from the turbulent
zone, we will be able to glue them in time while keeping the Reynolds stress localized.

The actual process is not so simple because the difference between the exact solutions (𝑣𝑖 , 𝑝𝑖) and
the subsolution (𝑣̃ℓ , 𝑝ℓ ,

˚̃𝑅ℓ) is too big, leading to an unacceptably large error if we try to glue them. Our
approach consists in producing a series of intermediate subsolutions that act as a sort of interpolation
between them. Instead of a single gluing we perform a big number of them, going from 𝑣𝑖 to 𝑣̃ℓ far
from the turbulent zone. The difference between two consecutive intermediate subsolutions will be very
small so that the error introduced in each of these middle gluings is small.

At the end of this process we will obtain subsolutions (𝑣̃𝑖 , 𝑝𝑖 ,
˚̃𝑅𝑖) such that

(𝑣̃𝑖 , 𝑝𝑖 ,
˚̃𝑅𝑖) = (𝑣0, 𝑝0,

˚̃𝑅0) in 𝐵3 × [𝑡𝑖 − 𝜏𝑞 , 𝑡𝑖 + 𝜏𝑞], (4.17)

𝑣̃𝑖 (𝑡𝑖 , ·) = 𝑣̃ℓ (𝑡𝑖 , ·). (4.18)

In addition, for |𝑡 − 𝑡𝑖 | ≤ 𝜏𝑞 and any 𝑁 ≥ 0 we will have the following estimates:

‖
˚̃𝑅𝑖 ‖0 ≤

1
2
𝛿𝑞+2𝜆

−6𝛼
𝑞+1 , (4.19)

‖𝑣̃𝑖 − 𝑣̃ℓ ‖𝑁+𝛼 � 𝜏𝑞𝛿𝑞+1ℓ
−𝑁−1+𝛼, (4.20)��𝐷𝑡 ,ℓ (𝑣̃𝑖 − 𝑣̃ℓ)

��
𝑁+𝛼
� 𝛿𝑞+1ℓ

−𝑁−1+𝛼, (4.21)
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where we write

𝐷𝑡 ,ℓ � 𝜕𝑡 + 𝑣̃ℓ · ∇

for the transport derivative. Furthermore, there exist smooth vector potentials 𝑧̃𝑖 defined in [𝑡𝑖−𝜏𝑞 , 𝑡𝑖+𝜏𝑞]
such that 𝑣̃𝑖 = curl 𝑧̃𝑖 and at the intersection of two intervals we have:

‖ 𝑧̃𝑖 − 𝑧̃𝑖+1‖𝑁+𝛼 � 𝜏𝑞𝛿𝑞+1ℓ
−𝑁+𝛼, (4.22)

‖𝐷𝑡 ,ℓ ( 𝑧̃𝑖 − 𝑧̃𝑖+1)‖𝑁+𝛼 � 𝛿𝑞+1ℓ
−𝑁+𝛼. (4.23)

These estimates are completely analogous to the ones in [7, Proposition 3.3, Proposition 3.4] but we
have the additional benefit of the fields being equal to the initial subsolution far from the turbulent zone.
We do have to pay a price because now we have subsolutions instead of solutions of the Euler equations.
Nevertheless, the errors ˚̃𝑅𝑖 are so small that we may ignore them until the (𝑞 + 1)-th iteration.

All of the steps summarized here will be discussed in full detail in Section 5, where we derive the
claimed estimates.

4.4. Overview of the gluing in time

Once we have our subsolutions (𝑣̃𝑖 , 𝑝𝑖 , ˚̃𝑅𝑖) we will glue them in time. The goal is to obtain a subsolution
defined in all [0, 𝑇] that remains close to 𝑣̃ℓ but in which most of the Reynolds stress is localized to
temporally disjoint regions of the appropriate length. This will allow us to correct the error in each
region separately using Mikado flows. Let

𝑡𝑖 � 𝑖𝜏𝑞 , 𝐼𝑖 �
[
𝑡𝑖 +

1
3
𝜏𝑞 , 𝑡𝑖 +

2
3
𝜏𝑞

]
∩ [0, 𝑇],

𝐽𝑖 �
(
𝑡𝑖 −

1
3
𝜏𝑞 , 𝑡𝑖 +

1
3
𝜏𝑞

)
∩ [0, 𝑇] .

Note that {𝐼 𝑗 , 𝐽𝑖} is a pairwise disjoint decomposition of [0, 𝑇]. We choose a smooth partition of unity
{𝜒𝑖} such that:

• ∑
𝑖 𝜒𝑖 = 1.

• supp 𝜒𝑖 ∩ supp 𝜒𝑖+2 = ∅. Furthermore,

supp 𝜒𝑖 ⊂

(
𝑡𝑖 −

2
3
𝜏𝑞 , 𝑡𝑖 +

2
3
𝜏𝑞

)
,

𝜒𝑖 (𝑡) = 1 ∀𝑡 ∈ 𝐽𝑖 .

(4.24)

• For any i and 𝑁 ≥ 0 we have ��𝜕𝑁
𝑡 𝜒𝑖

��
0 � 𝜏−𝑁

𝑞 . (4.25)

We define

𝑣𝑞 �
∑
𝑖

𝜒𝑖 𝑣̃𝑖 , 𝑝 (1)
𝑞 �

∑
𝑖

𝜒𝑖 𝑝𝑖 , R(1)
𝑞 �

∑
𝑖

𝜒𝑖
˚̃𝑅𝑖 .

It is clear that 𝑣𝑞 is divergence-free and it equals 𝑣0 in 𝐵3 × [0, 𝑇] because of (4.17). In addition, it
inherits the estimates of 𝑣̃𝑖:
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Proposition 4.1. The velocity field 𝑣𝑞 satisfies the following estimates:��𝑣𝑞 − 𝑣̃ℓ
��
𝛼
� 𝛿1/2

𝑞+1ℓ
𝛼, (4.26)��𝑣𝑞 − 𝑣̃ℓ

��
𝑁+𝛼
� 𝜏𝑞𝛿𝑞+1ℓ

−1−𝑁+𝛼, (4.27)��𝑣𝑞��1+𝑁 � 𝛿1/2
𝑞 𝜆𝑞ℓ

−𝑁 , (4.28)����∫
Ω

��𝑣𝑞 �� 2 − |𝑣̃ℓ |
2
���� � 𝛿𝑞+1ℓ

𝛼, (4.29)

for all 𝑁 ≥ 0.

The proof is exactly the same as the proof of [7, Proposition 4.3, Proposition 4.5] because our fields
𝑣̃𝑖 satisfy completely analogous estimates to the solutions 𝑣𝑖 in [7].

We conclude that the new velocity 𝑣𝑞 equals 𝑣0 far from the turbulent zone, it is close to 𝑣̃ℓ and
satisfies suitable bounds. Nevertheless, we must check if it leads to a subsolution. If 𝑡 ∈ 𝐽𝑖 , then in a
neighborhood of t we have 𝜒𝑖 = 1 while the rest of the cutoffs vanish. Thus, for all 𝑡 ∈ 𝐽𝑖 we have

𝑣𝑞 = 𝑣̃𝑖 , 𝑝 (1)
𝑞 = 𝑝𝑖 , R(1)

𝑞 = ˚̃𝑅𝑖 .

Since (𝑣̃𝑖 , 𝑝𝑖 ,
˚̃𝑅𝑖) is a subsolution, we have

𝜕𝑡𝑣𝑞 + div(𝑣𝑞 ⊗ 𝑣𝑞) + ∇𝑝 (1)
𝑞 = divR(1)

𝑞

On the other hand, if 𝑡 ∈ 𝐼𝑖 , then 𝜒 𝑗 = 0 for 𝑗 ≠ 𝑖, 𝑖 + 1 and 𝜒𝑖 + 𝜒𝑖+1 = 1. Hence, on 𝐼𝑖 we have

𝑣𝑞 = 𝜒𝑖 𝑣̃𝑖 + 𝜒𝑖+1𝑣̃𝑖+1, 𝑝 (1)
𝑞 = 𝜒𝑖 𝑝𝑖 + 𝜒𝑖+1𝑝𝑖+1, R(1)

𝑞 = 𝜒𝑖
˚̃𝑅𝑖 + 𝜒𝑖+1

˚̃𝑅𝑖+1.

After a tedious computation we obtain

𝜕𝑡𝑣𝑞 + div(𝑣𝑞 ⊗ 𝑣𝑞) + ∇𝑝 (1)
𝑞 − divR(1)

𝑞 = (4.30)
= 𝜕𝑡 𝜒𝑖 (𝑣̃𝑖 − 𝑣̃𝑖+1) − 𝜒𝑖 (1 − 𝜒𝑖) div((𝑣̃𝑖 − 𝑣̃𝑖+1) ⊗ (𝑣̃𝑖 − 𝑣̃𝑖+1)),

where we have used the fact that (𝑣̃𝑖 , 𝑝𝑖 , ˚̃𝑅𝑖) are subsolutions.
In conclusion, for 𝑡 ∈ 𝐽𝑖 the triplet (𝑣𝑞 , 𝑝

(1)
𝑞 ,R(1)

𝑞 ) is trivially a subsolution, whereas for 𝑡 ∈ 𝐼𝑖
it suffices to express the right-hand side of Equation (4.30) as the divergence of a symmetric matrix.
However, we must do this carefully because it is very important to keep under control the spatial support
of the Reynolds stress. Indeed, since R(1)

𝑞 equals 𝑅̊0 outside 𝐴𝑞+1 × [0, 𝑇], any perturbation in the
Reynolds stress must be contained within 𝐴𝑞+1 × [0, 𝑇] in order to satisfy the inductive property (3.13).
Fortunately, we will be able to achieve this because the right-hand side of Equation (4.30) is supported in
𝐴𝑞 + 𝐵(0, 3𝜎) due to (4.17). We see that performing the gluing in space in the previous stage is crucial.

The logical approach would be to apply Lemma 2.9 to the right-hand side of (4.30) and define the
new Reynolds stress as the sum of the obtained matrix and R(1)

𝑞 . Unfortunately, we cannot simply do
that because we cannot obtain the necessary estimates for the transport derivative from Lemma 2.9.

Nevertheless, this difficulty can be solved. In Section 6 we will find smooth symmetric matrices
R(2)

𝑞 ,R(3)
𝑞 solving the equation

div
(
R(2)

𝑞 +R(3)
𝑞

)
= 𝜕𝑡 𝜒𝑖 (𝑣̃𝑖 − 𝑣̃𝑖+1)
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for 𝑡 ∈ 𝐼𝑖 . We set R(2)
𝑞 ,R(3)

𝑞 = 0 for 𝑡 ∉
⋃

𝑖 𝐼𝑖 . Since the source term is supported in 𝐴𝑞 + 𝐵(0, 3𝜎) due

to (4.17), we will be able to choose R(2)
𝑞 ,R(3)

𝑞 supported in 𝐴𝑞 + 𝐵(0, 4𝜎). The motivation for each
matrix is the following:

• R(2)
𝑞 solves the equation except for a small error. We have good bounds for the derivative of the

material derivative.
• R(3)

𝑞 corrects the errors introduced when fixing the support of R(2)
𝑞 . We do not have good bounds for

its material derivative, but its 𝐶0-norm is very small.

Using these auxiliary matrices, we define

𝑅̊𝑞 (1) � R(1)
𝑞 +R(3)

𝑞 −
1
3

trR(3)
𝑞 Id, (4.31)

𝑅̊𝑞
(2) � R(2)

𝑞 − 𝜒𝑖 (1 − 𝜒𝑖) (𝑣̃𝑖 − 𝑣̃𝑖+1)⊗̊(𝑣̃𝑖 − 𝑣̃𝑖+1) −
1
3

trR(2)
𝑞 Id, (4.32)

𝑅̊𝑞 � 𝑅̊𝑞
(1) + 𝑅̊𝑞

(2) , (4.33)

𝑝𝑞 � 𝑝 (1)
𝑞 − 𝜒𝑖 (1 − 𝜒𝑖) |𝑣̃𝑖 − 𝑣̃𝑖+1 |

2 −
1
3

tr
(
R(2)

𝑞 +R(3)
𝑞

)
. (4.34)

By construction of R(2)
𝑞 and R(3)

𝑞 , we see that (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) is a smooth subsolution. Furthermore, we
have

(𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) = (𝑣0, 𝑝0, 𝑅̊0) in 𝐵4 × [0, 𝑇]

because of (4.17) and the fact that R(2)
𝑞 ,R(3)

𝑞 are supported in 𝐴𝑞 + 𝐵(0, 4𝜎). We emphasize again the
importance of performing a gluing in space to use 𝑣̃𝑖 instead of the solutions 𝑣𝑖 . Otherwise, we would
have no control on the Reynolds stress because 𝑣𝑖 − 𝑣𝑖+1 will in general be spread throughout the whole
space.

We summarize the facts about the new Reynolds stress that we will prove in Section 6:

Proposition 4.2. The smooth symmetric matrices 𝑅̊𝑞
(1) , 𝑅̊𝑞

(2) satisfy

‖ 𝑅̊𝑞
(1) ‖0 ≤

3
4
𝛿𝑞+2𝜆

−3𝛼
𝑞+1 , (4.35)

supp 𝑅̊𝑞
(2) ⊂ [𝐴𝑞 + 𝐵(0, 4𝜎)] ×

⋃
𝑖

𝐼𝑖 , (4.36)

‖ 𝑅̊𝑞
(2) ‖𝑁 � 𝛿𝑞+1ℓ

−𝑁+𝛼, (4.37)

‖(𝜕𝑡 + 𝑣𝑞 · ∇) 𝑅̊𝑞
(2) ‖𝑁 � 𝛿𝑞+1𝛿

1/2
𝑞 𝜆𝑞ℓ

−𝑁−𝛼. (4.38)

Comparing (4.37) with the analogous estimate in [7], we see that we estimate the 𝐶𝑁 -norm instead
of the 𝐶𝑁+𝛼-norm. This difference is immaterial because they merely use the 𝐶𝑁+𝛼-norm to estimate
the 𝐶𝑁 -norm, which leads to the same bound as (4.37).

In conclusion, 𝑅̊𝑞
(1) is so small that we may ignore it for the present iteration, whereas 𝑅̊𝑞

(2) is big
but it is supported in temporally disjoint regions and it satisfies good estimates. The next stage of the
process is aimed at correcting 𝑅̊𝑞

(2) by means of highly oscillatory perturbations.
All of the steps summarized here will be discussed in full detail in Section 6, where we derive the

claimed estimates.
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4.5. Overview of the perturbation step

We have localized most of the Reynolds stress, that is, 𝑅̊𝑞
(2) , to small disjoint temporal regions but to

reduce it we must resort to convex integration.
First of all, we fix a cutoff 𝜙𝑞 ∈ 𝐶∞(R3, [0, 1]) that equals 1 in 𝐴𝑞 + 𝐵(0, 4𝜎) and whose support is

contained in 𝐴𝑞 + 𝐵(0, 5𝜎). In particular, 𝜙𝑞 ≡ 1 on the support of 𝑅̊𝑞
(2) (·, 𝑡) for all 𝑡 ∈ [0, 𝑇].

We follow the construction of [7] with Mikado flows, but there are some differences:

• We control the support of the perturbation by introducing the cutoff 𝜙𝑞 .
• To obtain the desired energy, we must use a slightly different normalization coefficient for the

perturbation to account for the presence of the cutoff 𝜙𝑞 when integrating.
• We construct the new Reynolds stress using Lemma 2.9 so that we have control on its support.

To apply this lemma we must introduce a minor correction 𝑤𝐿 to ensure that the perturbation has
vanishing angular momentum.

Since
��𝜙𝑞

��
𝑁

are much smaller than the 𝐶𝑁 -norms of the other maps involved, the presence of the
cutoff does not affect the estimates. In addition, 𝑤𝐿 will be negligible because its size is determined by
an integral quantity, which is very small for a highly oscillating perturbation.

The form of the perturbation 𝑤𝑞+1 = 𝑣𝑞+1 − 𝑣𝑞 is 𝑤𝑞+1 = 𝑤0 + 𝑤𝑐 + 𝑤𝐿 , where 𝑤0 is the main
perturbation term and it is used to cancel the Reynolds stress, 𝑤𝑐 is a small correction to ensure that
the perturbation is divergence-free and 𝑤𝐿 is a tiny correction that ensures that the perturbation has
vanishing angular momentum. This term is not present in [7] because they do not control the support of
the Reynolds stress, so it suffices to use 𝑤𝑞+1 � 𝑤0 + 𝑤𝑐 .

At the end of the process we will obtain a new subsolution (𝑣𝑞+1, 𝑝𝑞+1, 𝑅̊𝑞+1) that equals (𝑣0, 𝑝0, 𝑅̊0)
outside 𝐴𝑞+1 × [0, 𝑇] and satisfying the following estimates:��𝑣𝑞+1𝑣𝑞

��
0 +

1
𝜆𝑞+1

��𝑣𝑞+1𝑣𝑞
��

1 ≤
3
4
𝑀𝛿1/2

𝑞+1, (4.39)

‖ 𝑅̊𝑞+1‖0 ≤ 𝛿𝑞+2𝜆
−6𝛼
𝑞+1 , (4.40)

𝛿𝑞+2𝜆
−7𝛼
𝑞+1 ≤ 𝑒(𝑡) −

∫
Ω

��𝑣𝑞+1 (𝑥, 𝑡)
�� 2𝑑𝑥 ≤ 𝛿𝑞+1. (4.41)

4.6. Proof of Proposition 3.2

Finally, we are ready to complete the proof of the proposition. The estimate (3.19) is a consequence of
(4.10), (4.11), (4.26), (4.28) and (4.39):��𝑣𝑞+1 − 𝑣𝑞

��
0 + 𝜆−1

𝑞+1
��𝑣𝑞+1 − 𝑣𝑞

��
1 ≤

3
4
𝑀𝛿1/2

𝑞+1 + 𝐶𝛿1/2
𝑞+1ℓ

𝛼 + 𝐶𝛿1/2
𝑞 𝜆𝑞𝜆

−1
𝑞+1,

where the constant C depends on 𝛼, 𝛽, Ω and (𝑣0, 𝑝0, 𝑅̊0), but not on a, b or q. Thus, for any fixed b
(3.19) holds for sufficiently large a. Regarding (3.15), we use the inequality at level q to get��𝑣𝑞+1

��
1 ≤ 𝑀𝛿1/2

𝑞 𝜆𝑞 +
3
4
𝑀𝛿1/2

𝑞+1 + 𝐶𝛿1/2
𝑞+1ℓ

𝛼𝜆𝑞+1 + 𝐶𝛿1/2
𝑞 𝜆𝑞 .

Hence, if we choose a large enough we obtain (3.15). Finally, (3.16) follows from��𝑣𝑞+1
��

0 ≤
��𝑣𝑞��0 +

��𝑣𝑞+1 − 𝑣𝑞
��

0 ≤ 1 − 𝛿1/2
𝑞 + 𝑀𝛿1/2

𝑞+1.

The inductive hypotheses (3.13), (3.14) and (3.17) were obtained in the perturbation step, and we are
done.
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5. Gluing in space

In this section we develop the second step of the proof of Proposition 3.2, which was summarized in
Section 4.3. We do it in three subsections.

5.1. Interpolating sequence

We begin by describing the intermediate subsolutions that we will use. First of all, we recall the following
local existence result. It is standard, but we provide a proof for the sake of completeness.
Proposition 5.1. For any 𝛼 > 0 there exists a constant 𝑐(𝛼) > 0 with the following property. Given any
𝐶∞ initial data 𝑢0 ∈ 𝐻3(R3), any 𝐶∞ force 𝑓 ∈ 𝐿1

loc(R, 𝐻
3 (R3)), let us fix a constant 𝑇 > 0 such that

𝑇 ‖𝑢0‖1+𝛼 + 𝑇2 ‖ 𝑓 ‖1+𝛼 ≤ 𝑐(𝛼). (5.1)

Then there exists a unique solution 𝑢 ∈ 𝐶∞(R3 × [−𝑇, 𝑇]) ∩𝐶 ([−𝑇, 𝑇], 𝐻3 (R3)) to the Euler equation{
𝜕𝑡𝑢 + div(𝑢 ⊗ 𝑢) + ∇𝑝 = 𝑓 , div 𝑢 = 0,
𝑢(·, 0) = 𝑢0.

Moreover, u obeys the bounds

‖𝑢‖𝑁+𝛼 � ‖𝑢0‖𝑁+𝛼 + 𝑇 ‖ 𝑓 ‖𝑁+𝛼

for all 𝑁 ≥ 1, where the implicit constant depends on N and 𝛼 > 0.
Proof. It is classical [48, 37, 50] that the 3d Euler equation is locally well-posed on 𝐻3(R3), and that
the solution, which is defined a priori for some time 𝑇 = 𝑇 (‖𝑢0‖𝐻 3 (R3) ) > 0, can be continued (and stay
smooth, provided that 𝑢0 ∈ 𝐶∞) as long as the norm ‖𝑢(𝑡)‖𝐻 3 (R3) remains bounded. Furthermore, the
weak Beale–Kato–Majda criterion shows [3] that this norm is controlled by ‖∇𝑢‖𝐿1𝐿∞ . More precisely,
one has

‖𝑢(𝑡)‖𝐻 3 (R3) ≤ ‖𝑢0‖𝐻 3 (R3) + 𝐶

∫ |𝑡 |

− |𝑡 |
‖ 𝑓 (𝜏)‖𝐻 3 (R3) 𝑑𝜏

+ 𝐶

∫ |𝑡 |

− |𝑡 |
‖∇𝑢(𝜏)‖𝐿∞ (R3) ‖ 𝑓 (𝜏)‖𝐻 3 (R3) 𝑒

𝐶
∫ |𝜏 |

−|𝜏 |
‖ 𝑓 (𝜏′) ‖𝐻3 (R3 ) 𝑑𝜏

′

𝑑𝜏 .

Therefore, we only need to provide a uniform a priori estimate for ‖∇𝑢‖𝐿∞ for all times 𝑡 < 𝑇 , where
the maximum value 𝑇 > 0 is yet to be determined. To this end, note that for any multi-index 𝜃 with
|𝜃 | = 𝑁 we have

𝜕𝑡𝜕
𝜃𝑢 + 𝑢 · ∇𝜕 𝜃𝑢 + [𝜕 𝜃 , 𝑢 · ∇]𝑢 + ∇𝜕 𝜃 𝑝 = 𝜕 𝜃 𝑓 .

Since the pressure satisfies the equation −Δ 𝑝 = tr(∇𝑢∇𝑢) − div 𝑓 , it follows that��∇𝜕 𝜃 𝑝
��
𝛼
� ‖tr(∇𝑢∇𝑢)‖𝑁−1+𝛼 + ‖ 𝑓 ‖𝑁+𝛼 � ‖𝑢‖1+𝛼 ‖𝑢‖𝑁+𝛼 + ‖ 𝑓 ‖𝑁+𝛼 .

Hence, we have ��(𝜕𝑡𝜕 𝜃 + 𝑢 · ∇𝜕 𝜃 )𝑢
��
𝛼
� ‖𝑢‖1+𝛼 ‖𝑢‖𝑁+𝛼 + ‖ 𝑓 ‖𝑁+𝛼 .

Thus, by Lemma B.2:

‖𝑢(·, 𝑡)‖𝑁+𝛼 � ‖𝑢0‖𝑁+𝛼 + 𝑇 ‖ 𝑓 ‖𝑁+𝛼 +

∫ 𝑡

0
‖𝑢(·, 𝑠)‖1+𝛼 ‖𝑢(·, 𝑠)‖𝑁+𝛼 𝑑𝑠. (5.2)
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Specializing to the case 𝑁 = 1, we note that for all |𝑡 | < 𝑇 one has

‖𝑢(·, 𝑡)‖1+𝛼 ≤ 𝑐(𝛼)
(
‖𝑢0‖1+𝛼 + 𝑇 ‖ 𝑓 ‖1+𝛼

)
+ 𝑐(𝛼)

∫ 𝑡

0
‖𝑢(·, 𝑠)‖2

1+𝛼 𝑑𝑠, (5.3)

for some constant 𝑐(𝛼) > 0. We define the constant 𝑐(𝛼) that appears in the statement of the proposition
as 𝑐(𝛼) � [2𝑐(𝛼)]−2 and then assume that𝑇 > 0 satisfies (5.1). Let 𝑦0 be the first term on the right-hand
side of (5.3) and let 𝑦(𝑡) be the solution to the ODE 𝑦′ = 𝑐(𝛼)𝑦2 with 𝑦(0) = 𝑦0. One finds

‖𝑢‖1+𝛼 ≤ 𝑦(𝑡) =
𝑦0

1 − 𝑐(𝛼)𝑦0𝑡
.

Since 𝑦(𝑡) � 1 for all |𝑡 | < 𝑇 , by our choice of T, we conclude that the solution is well defined for
|𝑡 | < 𝑇 . Furthermore, inserting this estimate in (5.2) and applying Grönwall’s inequality, we obtain the
desired Hölder bounds for 𝑁 > 1. �

To construct the desired sequence of subsolutions, we define

𝑚 �
⌈
𝜆1/2
𝑞

⌉
, (5.4)

𝑅̊𝑘
𝑖 �

𝑘

𝑚
˚̃𝑅ℓ . (5.5)

For 𝑖 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑚 we consider the smooth solutions of the forced Euler equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑡𝑣

𝑘
𝑖 + div(𝑣𝑘𝑖 ⊗ 𝑣𝑘𝑖 ) + ∇𝑝𝑘

𝑖 = div 𝑅̊𝑘
𝑖 ,

div 𝑣𝑘𝑖 = 0,
𝑣𝑘𝑖 (·, 𝑡𝑖) = 𝑣̃ℓ (·, 𝑡𝑖).

(5.6)

Thus, the triplet (𝑣𝑖 𝑘 , 𝑝𝑘
𝑖 , 𝑅̊

𝑘
𝑖 ) is a subsolution. The pressure is recovered as the unique solution to the

equation

−Δ 𝑝𝑘
𝑖 = tr(∇𝑣𝑘𝑖 ∇𝑣

𝑘
𝑖 ) − div div 𝑅̊𝑖

𝑘

with the normalization ∫
T3

𝑝𝑘
𝑖 (𝑥, 𝑡) 𝑑𝑥 =

∫
T3

𝑝ℓ (𝑥, 𝑡) 𝑑𝑥.

Note that (in their common interval of existence) the pair (𝑣0
𝑖 , 𝑝

0
𝑖 ) equals the solutions (𝑣𝑖 , 𝑝𝑖) considered

in (4.15), while the pair (𝑣𝑚𝑖 , 𝑝
𝑚
𝑖 ) equals (𝑣̃ℓ , 𝑝ℓ). The rest of the subsolutions form a sort of interpolating

sequence between them.
We claim that (𝑣𝑘𝑖 , 𝑝

𝑘
𝑖 ) are defined in the time interval [𝑡𝑖 − 𝜏𝑞 , 𝑡𝑖 + 𝜏𝑞], where 𝜏𝑞 was defined in

(4.14). Indeed, it follows from (4.11) that

𝜏𝑞 ‖𝑣̃ℓ ‖1+𝛼 � 𝜏𝑞𝛿
1/2
𝑞 𝜆𝑞ℓ

−𝛼 � ℓ𝛼 .

On the other hand, by (4.12) we have

𝜏2
𝑞 ‖

˚̃𝑅ℓ ‖2+𝛼 � 𝜏2
𝑞𝛿𝑞+1ℓ

−2+3𝛼 �

(
ℓ4𝛼

𝛿𝑞𝜆
2
𝑞

) (
𝛿𝑞+1ℓ

3𝛼 𝛿𝑞𝜆
2+6𝛼
𝑞

𝛿𝑞+1

)
= ℓ7𝛼𝜆6𝛼

𝑞 ≤ ℓ𝛼 .
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Hence, for sufficiently large a we have

𝜏𝑞 ‖𝑣̃ℓ ‖1+𝛼 + 𝜏2
𝑞 ‖

˚̃𝑅ℓ ‖2+𝛼 <
1
2
.

By Proposition 5.1, we conclude that solutions (𝑣𝑘𝑖 , 𝑝
𝑘
𝑖 ) of the corresponding forced Euler equations

exist in the claimed interval and they are unique. Furthermore, we have the following bounds:

Corollary 5.2. If a is sufficiently large, for |𝑡 − 𝑡𝑖 | ≤ 𝜏𝑞 and any 𝑁 ≥ 1 we have��𝑣𝑘𝑖 ��𝑁+𝛼
� 𝛿1/2

𝑞 𝜆𝑞ℓ
1−𝑁−𝛼 � 𝜏−1

𝑞 ℓ1−𝑁+𝛼. (5.7)

Proof. It follows from Proposition 5.1 and estimates (4.11) and (4.12) that��𝑣𝑘𝑖 ��𝑁+𝛼
� ‖𝑣̃ℓ (𝑡𝑖)‖𝑁+𝛼 + 𝜏𝑞 ‖

˚̃𝑅ℓ ‖𝑁+1+𝛼 � 𝛿1/2
𝑞 𝜆𝑞ℓ

1−𝑁−𝛼 + 𝜏𝑞𝛿𝑞+1ℓ
−𝑁−1+𝛼

Using definitions (4.1) and (4.14) and the comparison (4.2), we see that

𝜏𝑞𝛿𝑞+1ℓ
−2+𝛼

𝛿1/2
𝑞 𝜆𝑞

=
𝛿𝑞+1ℓ

−2+3𝛼

𝛿𝑞𝜆
2
𝑞

= 𝜆3𝛼
𝑞 ℓ3𝛼 ≤ 1,

from which the first inequality follows. For the second one, we use (4.14) again. �

5.2. Estimates for the interpolating sequence

Now that we have defined our subsolutions, we must ensure that they remain close to 𝑣̃ℓ and to each
other. Taking into account that (𝑣̃ℓ , 𝑝ℓ , ˚̃𝑅ℓ) and (𝑣𝑘𝑖 , 𝑝

𝑘
𝑖 , 𝑅̊

𝑘
𝑖 ) are subsolutions, we see that the difference

satisfies the following transport equation:

𝜕𝑡 (𝑣̃ℓ − 𝑣𝑘𝑖 ) + 𝑣̃ℓ · ∇(𝑣̃ℓ − 𝑣𝑘𝑖 ) = (𝑣𝑘𝑖 − 𝑣̃ℓ) · ∇𝑣
𝑘
𝑖 − ∇(𝑝ℓ − 𝑝𝑘

𝑖 ) +

(
1 −

𝑘

𝑚

)
div ˚̃𝑅ℓ .

Hence, the difference 𝑣̃ℓ − 𝑣𝑘𝑖 satisfies the same equation as 𝑣ℓ − 𝑣𝑖 in [7] except for a factor multiplying
div ˚̃𝑅ℓ , but it is less than or equal to 1. Furthermore, by (4.11) and (5.7) the fields 𝑣̃ℓ and 𝑣𝑘𝑖 satisfy the
same estimates as 𝑣ℓ and 𝑣𝑖 . Therefore, we may argue as in [7, Proposition 3.3], obtaining:

Proposition 5.3. If a is sufficiently large, for |𝑡 − 𝑡𝑖 | ≤ 𝜏𝑞 and any 𝑁 ≥ 0 we have��𝑣𝑘𝑖 − 𝑣̃ℓ
��
𝑁+𝛼
� 𝜏𝑞𝛿𝑞+1ℓ

−𝑁−1+3𝛼, (5.8)��∇(𝑝ℓ − 𝑝𝑘
𝑖 )

��
𝑁+𝛼
� 𝛿𝑞+1ℓ

−𝑁−1+3𝛼, (5.9)��𝐷𝑡 ,ℓ (𝑣
𝑘
𝑖 − 𝑣̃ℓ)

��
𝑁+𝛼
� 𝛿𝑞+1ℓ

−𝑁−1+3𝛼, (5.10)

where we write

𝐷𝑡 ,ℓ � 𝜕𝑡 + 𝑣̃ℓ · ∇

for the transport derivative.

Note that our extra factor ℓ2𝛼 in (4.12) is inherited by these estimates. Next, let us consider the vector
potential associated to the field 𝑣𝑘𝑖 :

𝑧𝑘𝑖 = B𝑣𝑘𝑖 � (−Δ)−1curl 𝑣𝑘𝑖 ,
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where B is the Biot-Savart operator. We have

div 𝑧𝑘𝑖 = 0 and curl, 𝑧𝑘𝑖 = 𝑣𝑘𝑖 −

∫
T3
𝑣𝑘𝑖 .

Since (𝑣𝑘𝑖 , 𝑝
𝑘
𝑖 ,

𝑘
𝑚

˚̃𝑅ℓ) is a subsolution, we have

𝑑

𝑑𝑡

∫
T3
𝑣𝑘𝑖 = −

∫
T3

(
div(𝑣𝑘𝑖 ⊗ 𝑣𝑘𝑖 ) + ∇𝑝𝑘

𝑖 −
𝑘

𝑚
div ˚̃𝑅ℓ

)
= 0.

On the other hand, the average of 𝑣𝑘𝑖 at time 𝑡 = 𝑡𝑖 is the average of 𝑣̃ℓ at that time, which vanishes
because 𝑣̃ℓ (·, 𝑡𝑖) is divergence-free and its support is contained in (0, 1)3. Therefore, 𝑣𝑘𝑖 has zero mean
and we have curl 𝑧𝑘𝑖 = 𝑣𝑘𝑖 .

Since our fields satisfy the same estimates as the fields in [7], we can again argue as in [7, Proposition
3.4], obtaining:

Proposition 5.4. For
��𝑡𝑖 − 𝜏𝑞

�� ≤ 𝜏𝑞 and any 𝑁 ≥ 0 we have��𝑧𝑘𝑖 − 𝑧𝑚𝑖
��
𝑁+𝛼
� 𝜏𝑞𝛿𝑞+1ℓ

−𝑁+3𝛼, (5.11)

‖𝐷𝑡 ,ℓ (𝑧
𝑘
𝑖 − 𝑧𝑚𝑖 )‖𝑁+𝛼 � 𝛿𝑞+1ℓ

−𝑁+3𝛼, (5.12)

where 𝐷𝑡 ,ℓ = 𝜕𝑡 + 𝑣̃ℓ · ∇.

In summary, the difference 𝑣𝑘𝑖 − 𝑣̃ℓ satisfies the same stability estimates as the ones in [7] plus an
additional factor ℓ2𝛼 due to the difference in the definition of ℓ and in the inductive estimate (3.14).
Furthermore, we will see that the difference between consecutive fields is much smaller, which will
allow us to obtain suitable bounds for the gluing. We argue as in [7, Proposition 3.3]. Subtracting the
equation for each field and rearranging we obtain

𝜕𝑡 (𝑣
𝑘+1
𝑖 − 𝑣𝑘𝑖 ) + 𝑣𝑘+1

𝑖 · ∇(𝑣𝑘+1
𝑖 − 𝑣𝑘𝑖 ) = (𝑣𝑘𝑖 − 𝑣𝑘+1

𝑖 ) · ∇𝑣𝑘𝑖 − ∇(𝑝𝑘+1
𝑖 − 𝑝𝑘

𝑖 ) +
1
𝑚

div ˚̃𝑅ℓ . (5.13)

Taking the divergence, we have

Δ (𝑝𝑘+1
𝑖 − 𝑝𝑘

𝑖 ) = div[∇𝑣𝑘+1
𝑖 (𝑣𝑘𝑖 − 𝑣𝑘+1

𝑖 )] + div[∇𝑣𝑘𝑖 (𝑣
𝑘
𝑖 − 𝑣𝑘+1

𝑖 )] +
1
𝑚

div div ˚̃𝑅ℓ .

Since (−Δ)−1 div div is a Calderón-Zygmund operator, we obtain��∇(𝑝𝑘+1
𝑖 − 𝑝𝑘

𝑖 )
��
𝛼
� 𝜏−1

𝑞

��𝑣𝑘𝑖 − 𝑣𝑘+1
𝑖

��
𝛼
+

1
𝑚
𝛿𝑞+1ℓ

−1+𝛼

where we have used (4.12) and (5.7). The additional factor ℓ2𝛼 is not needed here, so we just omit it.
Inserting this estimate into Equation (5.13) and using (4.12) and (5.7) again, we obtain��𝜕𝑡 (𝑣𝑘+1

𝑖 − 𝑣𝑘𝑖 ) + 𝑣𝑘+1
𝑖 · ∇(𝑣𝑘+1

𝑖 − 𝑣𝑘𝑖 )
��
𝛼
�

1
𝑚
𝛿𝑞+1ℓ

−1+𝛼 + 𝜏−1
𝑞

��𝑣𝑘𝑖 − 𝑣𝑘+1
𝑖

��
𝛼
.

Applying Lemma B.2 yields��(𝑣𝑘+1
𝑖 − 𝑣𝑘𝑖 ) (·, 𝑡)

��
𝛼
�

1
𝑚

|𝑡 − 𝑡𝑖 | 𝛿𝑞+1ℓ
−1+𝛼 +

∫ 𝑡

𝑡𝑖

𝜏−1
𝑞

��(𝑣𝑘+1
𝑖 − 𝑣𝑘𝑖 ) (·, 𝑠)

��
𝛼
𝑑𝑠.
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Using Grönwall’s inequality and the assumption |𝑡 − 𝑡𝑖 | ≤ 𝜏𝑞 we conclude��𝑣𝑘+1
𝑖 − 𝑣𝑘𝑖

��
𝛼
�

1
𝑚
𝜏𝑞𝛿𝑞+1ℓ

−1+𝛼 .

If we carry on arguing as in [7, Proposition 3.3] we obtain the following higher-order estimates:��𝑣𝑘+1
𝑖 − 𝑣𝑘𝑖

��
𝑁+𝛼
�

1
𝑚
𝜏𝑞𝛿𝑞+1ℓ

−𝑁−1+𝛼. (5.14)

Let us use this bound to estimate the other fields. We may rewrite the equation for the pressure as

Δ (𝑝𝑘+1
𝑖 − 𝑝𝑘

𝑖 ) = div div
(

1
2
(𝑣𝑘𝑖 + 𝑣𝑘+1

𝑖 ) ⊗ (𝑣𝑘𝑖 − 𝑣𝑘+1
𝑖 ) (5.15)

+
1
2
(𝑣𝑘𝑖 − 𝑣𝑘+1

𝑖 ) ⊗ (𝑣𝑘𝑖 + 𝑣𝑘+1
𝑖 ) +

1
𝑚

˚̃𝑅ℓ

)
because

𝑣𝑘𝑖 ⊗ 𝑣𝑘𝑖 − 𝑣𝑘+1
𝑖 ⊗ 𝑣𝑘+1

𝑖 =
1
2
(𝑣𝑘𝑖 + 𝑣𝑘+1

𝑖 ) ⊗ (𝑣𝑘𝑖 − 𝑣𝑘+1
𝑖 ) +

1
2
(𝑣𝑘𝑖 − 𝑣𝑘+1

𝑖 ) ⊗ (𝑣𝑘𝑖 + 𝑣𝑘+1
𝑖 ).

Interpolating between (3.14) and (3.15) and between (4.10) and (4.11) we have��𝑣𝑘𝑖 + 𝑣𝑘+1
𝑖

��
𝛼
≤ 2

��𝑣𝑞��𝛼 + 2
��𝑣𝑞 − 𝑣̃ℓ

��
𝛼
+

��𝑣𝑘𝑖 − 𝑣̃ℓ
��
𝛼
+

��𝑣𝑘+1
𝑖 − 𝑣̃ℓ

��
𝛼

� (𝛿1/2
𝑞 𝜆𝑞)

𝛼 + (𝛿𝑞+1𝜆
−𝛼
𝑞 )1−𝛼 (𝛿1/2

𝑞 𝜆𝑞)
𝛼 +

1
𝑚
𝜏𝑞𝛿𝑞+1ℓ

−1+𝛼 � 𝜆𝛼
𝑞 .

For the higher-order bounds we use Corollary 5.2. Therefore, from (5.14) we conclude��𝑣𝑘𝑖 ⊗ 𝑣𝑘𝑖 − 𝑣𝑘+1
𝑖 ⊗ 𝑣𝑘+1

𝑖

��
𝛼
� 𝜆𝛼

𝑞 (𝑚
−1𝜏𝑞𝛿𝑞+1ℓ

−𝑁−1+𝛼)

+

𝑁∑
𝑗=1

(𝜏−1
𝑞 ℓ1− 𝑗+𝛼) (𝑚−1𝜏𝑞𝛿𝑞+1ℓ

−(𝑁− 𝑗)−1+𝛼) (5.16)

�
1
𝑚
𝜏𝑞𝛿𝑞+1ℓ

−𝑁−1 �
1
𝑚
𝛿1/2
𝑞+1ℓ

−𝑁 .

Introducing this estimate and (4.12) in Equation (5.15), we finally obtain��𝑝𝑘+1
𝑖 − 𝑝𝑘

𝑖

��
𝑁+𝛼
�

1
𝑚
𝜏𝑞𝛿𝑞+1ℓ

−𝑁−1 �
1
𝑚
𝛿1/2
𝑞+1ℓ

−𝑁 . (5.17)

Let us now estimate the difference in the vector potentials. We recall the identity curl curl = −Δ + ∇ div
and that div 𝑧𝑘𝑖 = 0. Hence, taking the curl in Equation (5.13) and rearranging we arrive at

−Δ
[
𝜕𝑡 (𝑧

𝑘+1
𝑖 − 𝑧𝑘𝑖 )

]
= curl div

(
1
2
(𝑣𝑘𝑖 + 𝑣𝑘+1

𝑖 ) ⊗ (𝑣𝑘𝑖 − 𝑣𝑘+1
𝑖 ) (5.18)

+
1
2
(𝑣𝑘𝑖 − 𝑣𝑘+1

𝑖 ) ⊗ (𝑣𝑘𝑖 + 𝑣𝑘+1
𝑖 ) +

1
𝑚

˚̃𝑅ℓ

)
.

Reasoning as in the case of the pressure, we conclude��𝜕𝑡 (𝑧𝑘+1
𝑖 − 𝑧𝑘𝑖 )

��
𝑁+𝛼
�

1
𝑚
𝜏𝑞𝛿𝑞+1ℓ

−𝑁−1 �
1
𝑚
𝛿1/2
𝑞+1ℓ

−𝑁 . (5.19)
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Since 𝑧𝑘𝑖 (·, 𝑡𝑖) = 𝑧𝑘+1
𝑖 (·, 𝑡𝑖) = B 𝑣̃ℓ (·, 𝑡𝑖), the difference vanishes at 𝑡 = 𝑡𝑖 . Using the assumption

|𝑡 − 𝑡𝑖 | ≤ 𝜏𝑞 we deduce ��𝑧𝑘+1
𝑖 − 𝑧𝑘𝑖

��
𝑁+𝛼
�

1
𝑚
𝜏2
𝑞𝛿𝑞+1ℓ

−𝑁−1 �
1
𝑚
𝜏𝑞𝛿

1/2
𝑞+1ℓ

−𝑁 . (5.20)

5.3. Gluing the interpolating sequence

Now that we have the appropriate estimates, we will start gluing the subsolutions (𝑣𝑘𝑖 , 𝑝
𝑘
𝑖 , 𝑅̊

𝑘
𝑖 ) to one

another to construct a subsolution that equals (𝑣𝑖 , 𝑝𝑖 , 0) in 𝐴𝑞 + 𝐵(0, 2𝜎) and (𝑣0, 𝑝0, 𝑅̊0) in 𝐵3. For
the sake of clarity, we will do it inductively. Let

𝑟 � 𝜆−3/5
𝑞

and for 𝑘 ≥ 0 consider the sets

Ω𝑘 � 𝐴𝑞 + 𝐵(0, 2𝜎 + 𝑘𝑟),

𝑈𝑘 � {𝑥 ∈ R3 : 2𝜎 + 𝑘𝑟 < dist(𝑥, 𝐴𝑞) < 2𝜎 + (𝑘 + 1)𝑟}

and we fix smooth cutoff functions 𝜑𝑘 ∈ 𝐶∞(Ω𝑘+1, [0, 1]) that equal 1 in a neighborhood of Ω𝑘 . By
Lemma B.1, we may assume the bounds ‖𝜑𝑘 ‖𝑁 � 𝑟−𝑁 .

We will construct a sequence of subsolutions (𝑣̃𝑘𝑖 , 𝑝
𝑘
𝑖 ,

˚̃𝑅𝑖
𝑘 ) and potentials 𝑧̃𝑘𝑖 with 𝑣̃𝑘𝑖 = curl 𝑧̃𝑘𝑖 such

that

(𝑣̃𝑘𝑖 , 𝑝
𝑘
𝑖 ,

˚̃𝑅𝑖
𝑘 , 𝑧̃𝑘𝑖 ) (𝑥, 𝑡) = (𝑣𝑘𝑖 , 𝑝

𝑘
𝑖 , 𝑅̊

𝑘
𝑖 , 𝑧

𝑘
𝑖 ) (𝑥, 𝑡) ∀𝑥 ∉ Ω𝑘 , |𝑡 − 𝑡𝑖 | ≤ 𝜏𝑞 , (5.21)

𝑣̃𝑘𝑖 (·, 𝑡𝑖) = 𝑣̃ℓ (·, 𝑡𝑖), (5.22)

Furthermore, for |𝑡 − 𝑡𝑖 | ≤ 𝜏𝑞 and any 𝑁 ≥ 0 they satisfy

‖
˚̃𝑅𝑖

𝑘 ‖0 ≤
1
2
𝛿𝑞+2𝜆

−6𝛼
𝑞+1 , (5.23)��𝑣̃𝑘𝑖 − 𝑣̃ℓ

��
𝑁
� 𝜏𝑞𝛿𝑞+1ℓ

−𝑁−1+3𝛼, (5.24)��𝐷𝑡 ,ℓ (𝑣̃
𝑘
𝑖 − 𝑣̃ℓ)

��
𝑁
� 𝛿𝑞+1ℓ

−𝑁−1+3𝛼, (5.25)��̃𝑧𝑘𝑖 − 𝑧𝑚𝑖
��
𝑁
� 𝜏𝑞𝛿𝑞+1ℓ

−𝑁+3𝛼, (5.26)

‖𝐷𝑡 ,ℓ ( 𝑧̃
𝑘
𝑖 − 𝑧𝑚𝑖 )‖𝑁 � 𝛿𝑞+1ℓ

−𝑁+3𝛼, (5.27)

where we write

𝐷𝑡 ,ℓ � 𝜕𝑡 + 𝑣̃ℓ · ∇

for the transport derivative.
If we could construct such a sequence, setting (𝑣̃𝑖 , 𝑝𝑖 ,

˚̃𝑅𝑖 , 𝑧̃𝑖) � (𝑣̃𝑚𝑖 , 𝑝
𝑚
𝑖 ,

˚̃𝑅𝑖
𝑚, 𝑧̃𝑚𝑖 ) would yield the

subsolution and potential claimed in Section 4.3. Indeed, (4.18) and (4.19) are just (5.22) and (5.23).
The estimates (4.20) and (4.21) follow from (5.24) and (5.25) by interpolation, that is, we use (A.3) to
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estimate the 𝐶𝑁+𝛼 seminorm using the 𝐶0 and 𝐶𝑁+1 norms:

[
𝑣̃𝑘𝑖 − 𝑣̃ℓ

]
𝑁+𝛼
�

��𝑣̃𝑘𝑖 − 𝑣̃ℓ
��1− 𝑁+𝛼

𝑁+1
0

��𝑣̃𝑘𝑖 − 𝑣̃ℓ
�� 𝑁+𝛼

𝑁+1
𝑁+1

�
(
𝜏𝑞𝛿𝑞+1ℓ

−1+3𝛼
)1− 𝑁+𝛼

𝑁+1
(
𝜏𝑞𝛿𝑞+1ℓ

−1−(𝑁+1)+3𝛼
) 𝑁+𝛼

𝑁+1

� 𝜏𝑞𝛿𝑞+1ℓ
−1−𝑁+2𝛼.

This, combined with the estimate for the 𝐶𝑁 norm, yields (4.20). Note that here we have obtained an
extra factor ℓ𝛼, but we discard it because it will not be necessary. Estimate (4.19) follows from (5.25)
by an analogous argument. Meanwhile, to obtain (4.22) and (4.23) from (5.26) and (5.27), we also need
to apply the triangle inequality and use the fact that 𝑧𝑚𝑖+1 − 𝑧𝑚𝑖 = 0. Recall that both vector potentials
are just the restriction of B𝑣̃ℓ to their respective intervals. Finally, (4.17) follows from (5.21) because
𝑚𝑟 � 𝜆−1/10

𝑞 , so by (4.5) it must be smaller than 𝜎 for sufficiently large a.
Let us then construct this sequence. We define the initial term as

(𝑣̃0
𝑖 , 𝑝

0
𝑖 ,

˚̃𝑅𝑖
0, 𝑧̃0

𝑖 ) � (𝑣0
𝑖 , 𝑝

0
𝑖 , 𝑅̊

0
𝑖 ) = (𝑣𝑖 , 𝑝𝑖 , 0, 𝑧0

𝑖 ).

It follows from Corollary 5.2, Proposition 5.3 and Proposition 5.4 that this term satisfies Equations
(5.21) to (5.27). Next, let us suppose that we have defined the k-th term (𝑣̃𝑘𝑖 , 𝑝

𝑘
𝑖 ,

˚̃𝑅𝑖
𝑘 , 𝑧̃𝑘𝑖 ) satisfying these

inductive hypotheses. We will construct the (𝑘 +1)-th term satisfying them, too. To do so, we will apply
Lemma 2.11 to glue (𝑣̃𝑘𝑖 , 𝑝

𝑘
𝑖 ,

˚̃𝑅𝑖
𝑘 ) and (𝑣𝑘+1

𝑖 , 𝑝𝑘+1
𝑖 , 𝑅̊𝑘+1

𝑖 ) in the region𝑈𝑘 . Since these subsolutions are
defined in the whole space, by Remark 2.12 we do not need to check the compatibility conditions (2.16)
and (2.17).

Note that in Lemma 2.11 we use skew-symmetric matrices instead of potential vectors because it
is stated in any dimension 𝑛 ≥ 2. However, it is completely equivalent: given a potential vector z, we
simply define 𝐴𝑖 𝑗 = 𝜀𝑖 𝑗𝑘 𝑧𝑘 , where 𝜀𝑖 𝑗𝑘 is the usual Levi-Civita symbol. It is easy to check that A is
skew-symmetric and curl 𝑧 = div 𝐴.

Hence, applying Lemma 2.11 we obtain a subsolution satisfying:

(𝑣̃𝑘+1
𝑖 , 𝑝𝑘+1

𝑖 , ˚̃𝑅𝑖
𝑘+1) (·, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
(𝑣̃𝑘𝑖 , 𝑝

𝑘
𝑖 ,

˚̃𝑅𝑖
𝑘 ) in Ω𝑘 ,

(𝑣𝑘+1
𝑖 , 𝑝𝑘+1

𝑖 , 𝑅̊𝑘+1
𝑖 ) outside Ω𝑘+1

for |𝑡 − 𝑡𝑖 | ≤ 𝜏𝑞 . In addition, there exists a smooth vector potential 𝑧̃𝑘+1
𝑖 with 𝑣̃𝑘+1

𝑖 = curl 𝑧̃𝑘+1
𝑖 and such

that 𝑧̃𝑘+1
𝑖 (·, 𝑡) ≡ 𝑧𝑘+1

𝑖 (·, 𝑡) outside Ω𝑘+1. Thus, (5.21) is satisfied.
Furthermore, by definition of 𝑣𝑘+1

𝑖 and the inductive hypothesis (5.22) we have

𝑣𝑘+1
𝑖 (·, 𝑡𝑖) = 𝑣̃ℓ (·, 𝑡𝑖) = 𝑣̃𝑘𝑖 (·, 𝑡𝑖).

In addition, by (5.21) we know that 𝑧̃𝑘𝑖 equals 𝑧𝑘𝑖 outside Ω𝑘 . Since 𝑧𝑘𝑖 and 𝑧𝑘+1
𝑖 both equal B 𝑣̃ℓ at time

𝑡 = 𝑡𝑖 , we see that the difference 𝑧𝑘+1
𝑖 − 𝑧̃𝑘𝑖 vanishes outside Ω𝑘 at 𝑡 = 𝑡𝑖 . Inspecting Lemma 2.11 and

replacing skew-symmetric matrices by the equivalent potential vectors, we see that

(𝑣̃𝑘+1
𝑖 − 𝑤𝐿) (·, 𝑡𝑖) =

[
𝜑𝑘 𝑣̃𝑘𝑖 + (1 − 𝜑𝑘 )𝑣𝑘+1

𝑖 + ∇𝜑𝑘 × (𝑧𝑘+1
𝑖 − 𝑧̃𝑘𝑖 )

]
(·, 𝑡𝑖) = 𝑣̃ℓ (·, 𝑡𝑖).

Since only the time derivative of 𝑤𝐿 matters, we may assume that it vanishes at 𝑡 = 𝑡𝑖 , that is, we start
the integration in (2.26) at 𝑡 = 𝑡𝑖 . Hence, (5.22) holds.
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Concerning the estimates, we see in Lemma 2.11 that we only need to consider the bounds in 𝑈𝑘 ,
so by (5.21) we only need to study the difference between (𝑣𝑘𝑖 , 𝑝

𝑘
𝑖 , 𝑅̊

𝑘
𝑖 , 𝑧

𝑘
𝑖 ) and (𝑣𝑘+1

𝑖 , 𝑝𝑘+1
𝑖 , 𝑅̊𝑘+1

𝑖 , 𝑧𝑘+1
𝑖 ).

Since

‖ 𝑅̊𝑘
𝑖 − 𝑅̊𝑘+1

𝑖 ‖0 =
1
𝑚
‖

˚̃𝑅ℓ ‖0 �
1
𝑚
𝛿𝑞+1,

it follows from Equations (5.16), (5.17) and (5.19) that the matrix M that appears in Lemma 2.11 satisfies

‖𝑀 ‖0;𝑈 𝑘 ≤
1
𝑚
𝛿1/2
𝑞+1.

With this bound we may use the estimates from Lemma 2.11. Let us focus on the vector potential:��̃𝑧𝑘+1
𝑖 − (𝜑𝑘 𝑧̃𝑘𝑖 + (1 − 𝜑𝑘 )𝑧𝑘+1

𝑖 )
��
𝑁
�

1
𝑚
𝜏𝑞𝛿

1/2
𝑞+1𝑟

−𝑁 , (5.28)��𝜕𝑡 ( 𝑧̃𝑘+1
𝑖 − 𝜑𝑘 𝑧̃𝑘𝑖 − (1 − 𝜑𝑘 )𝑧𝑘+1

𝑖 )
��
𝑁
�

1
𝑚
𝛿1/2
𝑞+1𝑟

−𝑁 , (5.29)

To use these estimates, the following inequality will be useful:

𝑚𝛿𝑞+2𝛿
−1/2
𝑞+1 = 𝜆

1/2−2𝑏2𝛽+𝑏𝛽
𝑞 ≥ 𝜆1/20

𝑞 , (5.30)

where we have used that the exponent in the middle term is greater than 1/20 for any 0 < 𝛽 < 1/3 and
1 < 𝑏 < 11/10. We compute��̃𝑧𝑘+1

𝑖 − 𝑧𝑚𝑖
��
𝑁

≤
��̃𝑧𝑘+1

𝑖 − (𝜑𝑘 𝑧̃𝑘𝑖 + (1 − 𝜑𝑘 )𝑧𝑘+1
𝑖 )

��
𝑁

+
��𝜑𝑘 ( 𝑧̃𝑘𝑖 − 𝑧𝑚𝑖 )

��
𝑁
+

��(1 − 𝜑𝑘 ) (𝑧𝑘+1
𝑖 − 𝑧𝑚𝑖 )

��
𝑁

�
1
𝑚
𝜏𝑞𝛿

1/2
𝑞+1𝑟

−𝑁 +

𝑁∑
𝑗=0

𝑟− 𝑗
(��̃𝑧𝑘𝑖 − 𝑧𝑚𝑖

��
𝑁− 𝑗

+
��𝑧𝑘+1

𝑖 − 𝑧𝑚𝑖
��
𝑁− 𝑗

)
�

1
𝑚
𝜏𝑞𝛿

1/2
𝑞+1𝑟

−𝑁 + 𝜏𝑞𝛿𝑞+1ℓ
−𝑁+3𝛼 � 𝜏𝑞𝛿𝑞+1ℓ

−𝑁+3𝛼,

where we have used (5.30) and we have assumed 𝛼 to be sufficiently small. Hence, (5.26) holds for the
(𝑘 + 1)-th term. In addition, (5.24) clearly follows from it.

Note that we have used (5.11) to estimate ‖·‖𝑁 , that is, we lose an 𝛼. This is clearly not optimal, but
it cannot be avoided for 𝑁 = 0. Thus, we pay the price of losing a factor ℓ𝛼 in the estimates for ‖·‖𝑁+𝛼.
To compensate this, we gain an extra factor ℓ2𝛼 from (3.14) and (4.1), which are different from their
counterparts in [7].

Let us now estimate the material derivative. By the triangle inequality:��𝐷𝑡 ,ℓ ( 𝑧̃
𝑘+1
𝑖 − 𝑧𝑚𝑖 )

��
𝑁

≤
��𝜕𝑡 ( 𝑧̃𝑘+1

𝑖 − 𝜑𝑘 𝑧̃𝑘𝑖 − (1 − 𝜑𝑘 )𝑧𝑘+1
𝑖 )

��
𝑁

(5.31)

+
��𝑣̃ℓ · ∇( 𝑧̃𝑘+1

𝑖 − 𝜑𝑘 𝑧̃𝑘𝑖 − (1 − 𝜑𝑘 )𝑧𝑘+1
𝑖 )

��
𝑁

+
��𝐷𝑡 ,ℓ [𝜑

𝑘 ( 𝑧̃𝑘𝑖 − 𝑧𝑚𝑖 )]
��
𝑁

+
��𝐷𝑡 ,ℓ [(1 − 𝜑𝑘 ) (𝑧𝑘+1

𝑖 − 𝑧𝑚𝑖 )]
��
𝑁
.

The last two terms can be estimated in the same manner, so we just study one:��𝐷𝑡 ,ℓ [𝜑
𝑘 ( 𝑧̃𝑘𝑖 − 𝑧𝑚𝑖 )]

��
𝑁
�

𝑁∑
𝑗=0

( ��𝜑𝑘
��
𝑗+1

��̃𝑧𝑘𝑖 − 𝑧𝑚𝑖
��
𝑁− 𝑗

+
��𝜑𝑘

��
𝑗

��𝐷𝑡 ,ℓ ( 𝑧̃
𝑘
𝑖 − 𝑧𝑚𝑖 )

��
𝑁− 𝑗

)
� 𝑟−1𝜏𝑞𝛿𝑞+1ℓ

−𝑁+3𝛼 + 𝛿𝑞+1ℓ
−𝑁+3𝛼 � 𝛿𝑞+1ℓ

−𝑁+3𝛼,
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where we have used
��𝜑𝑘

��
𝑁
� 𝑟−𝑁 � ℓ−𝑁 and 𝜏𝑞𝑟

−1 � 1. Next, taking into account that ‖𝑣̃ℓ ‖𝑁 � ℓ−𝑁 ,
we have

‖𝑣̃ℓ · ∇( 𝑧̃
𝑘+1
𝑖 − 𝜑𝑘 𝑧̃𝑘𝑖 − (1 − 𝜑𝑘 )𝑧𝑘+1

𝑖 )‖𝑁 �
𝑁∑
𝑗=0

ℓ− 𝑗
��̃𝑧𝑘+1

𝑖 − 𝜑𝑘 𝑧̃𝑘𝑖 − (1 − 𝜑𝑘 )𝑧𝑘+1
𝑖

��
𝑁+1− 𝑗

�
1
𝑚𝑟

𝜏𝑞𝛿
1/2
𝑞+1ℓ

−𝑁 � 𝛿𝑞+1ℓ
−𝑁+3𝛼,

where we have used 𝜏𝑞𝑟
−1 � 1, the inequality (5.30) and we have assumed 𝛼 to be sufficiently small.

Using (5.29) along with the same tricks, we obtain the same estimates for the first term in Equation
(5.31), and we conclude that (5.27) holds for the (𝑘 + 1)-th term.

To obtain (5.25), we estimate the commutator [𝐷𝑡 ,ℓ , curl]. We fix an arbitrary vector field u and we
compute (

curl(𝐷𝑡 ,ℓ𝑢) − 𝐷𝑡 ,ℓ curl 𝑢
)
𝑖 = 𝜀𝑖 𝑗𝑘𝜕 𝑗 (𝑣̃ℓ)𝑙𝜕𝑙𝑢𝑘 .

Therefore, we have

��[𝐷𝑡 ,ℓ , curl] ( 𝑧̃𝑘+1
𝑖 − 𝑧𝑚𝑖 )

��
𝑁
�

𝑁∑
𝑗=0

‖𝑣̃ℓ ‖ 𝑗+1
��𝑧̃𝑘+1

𝑖 − 𝑧𝑚𝑖
��
𝑁− 𝑗+1 ,

�
𝑁∑
𝑗=0

(𝛿1/2
𝑞 𝜆𝑞ℓ

− 𝑗 ) (𝜏𝑞𝛿𝑞+1ℓ
−𝑁−1+ 𝑗+3𝛼)

� 𝛿1/2
𝑞 𝜆𝑞𝜏𝑞𝛿𝑞+1ℓ

−𝑁−1+3𝛼 � 𝛿𝑞+1ℓ
−𝑁−1+3𝛼

where we have used (4.11) and that 𝛿1/2
𝑞 𝜆𝑞𝜏𝑞 = ℓ2𝛼 � 1 by definition of 𝜏𝑞 . Hence,��𝐷𝑡 ,ℓ (𝑣̃

𝑘+1
𝑖 − 𝑣̃ℓ)

��
𝑁

≤
��curl[𝐷𝑡 ,ℓ ( 𝑧̃

𝑘+1
𝑖 − 𝑧𝑚𝑖 )]

��
𝑁
+

��[𝐷𝑡 ,ℓ , curl] ( 𝑧̃𝑘+1
𝑖 − 𝑧𝑚𝑖 )

��
𝑁

� 𝛿𝑞+1ℓ
−𝑁−1+3𝛼.

Finally, let us consider the size of the new Reynolds stress. Taking into account that 𝑧̃𝑘𝑖 equals 𝑧𝑘𝑖 in
𝑈𝑘 , it follows from (5.20) and Lemma 2.11 that

‖𝑤‖0 =
��𝑣̃𝑘+1

𝑖 − 𝜑𝑘 𝑣̃𝑘𝑖 − (1 − 𝜑𝑘 )𝑣𝑘+1
𝑖

��
0 � 𝜏𝑞𝑟

−1 1
𝑚
𝛿1/2
𝑞+1 �

1
𝑚
𝛿1/2
𝑞+1,

where we have used 𝜏𝑞𝑟
−1 � 1. Taking into account that 𝑣̃𝑘𝑖 equals 𝑣𝑘𝑖 in 𝑈𝑘 , it follows from (5.14) and

Lemma 2.11 that

‖
˚̃𝑅𝑖

𝑘+1 − (𝜑𝑘 ˚̃𝑅𝑖
𝑘 + (1 − 𝜑𝑘 ) 𝑅̊𝑘+1

𝑖 )‖0 �
1
𝑚
𝛿1/2
𝑞+1.

Taking into account (5.30), we see that for sufficiently small 𝛼 and sufficiently large a we have

‖
˚̃𝑅𝑖

𝑘+1 − (𝜑𝑘 ˚̃𝑅𝑖
𝑘 + (1 − 𝜑𝑘 ) 𝑅̊𝑘+1

𝑖 )‖0 ≤
1
4
𝛿𝑞+2𝜆

−3𝛼
𝑞+1 .

If 𝑥 ∈ Ω𝑘 , then 𝜑𝑘 (𝑥) = 1 and by (5.23) we have

|
˚̃𝑅𝑖

𝑘+1(𝑥, 𝑡) | = |
˚̃𝑅𝑖

𝑘 (𝑥, 𝑡) | ≤
1
2
𝛿𝑞+2𝜆

−3𝛼
𝑞+1 .
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On the other hand, if 𝑥 ∉ Ω𝑘 , then ˚̃𝑅𝑖
𝑘 (𝑥, 𝑡) = 𝑘

𝑚
˚̃𝑅ℓ (𝑥, 𝑡) by (4.17). Furthermore, we also have ˚̃𝑅ℓ (𝑥, 𝑡) =

𝑅̊0 (𝑥, 𝑡) because dist(𝑥, 𝐴𝑞) ≥ 2𝜎. Since 𝑥 ∉ 𝐴𝑞 , it follows from (3.11) that |𝑅̊0 (𝑥, 𝑡) | ≤
1
4𝛿𝑞+2𝜆

−6𝛼
𝑞+1 , so

|
˚̃𝑅𝑖

𝑘+1(𝑥, 𝑡) | ≤ 𝜑𝑘 ‖
˚̃𝑅𝑖

𝑘 ‖0 + (1 − 𝜑𝑘 )‖ 𝑅̊𝑘+1
𝑖 ‖0 + ‖

˚̃𝑅𝑖
𝑘+1 − (𝜑𝑘 ˚̃𝑅𝑖

𝑘 + (1 − 𝜑𝑘 ) 𝑅̊𝑘+1
𝑖 )‖0

≤ 𝜑𝑘 1
4
𝛿𝑞+2𝜆

−6𝛼
𝑞+1 + (1 − 𝜑𝑘 )

1
4
𝛿𝑞+2𝜆

−6𝛼
𝑞+1 +

1
4
𝛿𝑞+2𝜆

−6𝛼
𝑞+1

≤
1
2
𝛿𝑞+2𝜆

−6𝛼
𝑞+1

for 𝑥 ∉ Ω𝑘 . We conclude that (5.23) holds for the (𝑘 + 1)-th term.

6. Gluing in time

In this short section we develop the third step of the proof of Proposition 3.2, which was summarized in
Section 4.4.

By [7, Proposition 4.4] the matrix 𝑆 � ℛ[𝜕𝜒𝑖 (𝑣̃𝑖 − 𝑣̃𝑖+1)] satisfies the following bounds for any
𝑁 ≥ 0:

‖𝑆‖𝑁+𝛼 � 𝛿𝑞+1ℓ
−𝑁+𝛼,

‖(𝜕𝑡 + 𝑣𝑞 · ∇)𝑆‖𝑁+𝛼 � 𝛿𝑞+1𝛿
1/2
𝑞 𝜆𝑞ℓ

−𝑁−𝛼.

We define

𝑚 � �𝜆1/2
𝑞 �, 𝑟 = 𝜆−3/5

𝑞

and we fix smooth cutoff functions 𝜃 𝑗 such that

• 𝜃 𝑗 ≡ 1 in a neighborhood of 𝐴𝑞 + 𝐵(0, 3𝜎 + ( 𝑗 − 1)𝑟),
• the support of 𝜃 𝑗 is contained in 𝐴𝑞 + 𝐵(0, 3𝜎 + 𝑗𝑟)

for 1 ≤ 𝑗 ≤ 𝑚. We define

R(2)
𝑞 �

𝑚∑
𝑖=1

1
𝑚
𝜃 𝑗𝑆.

Note that suppR(2)
𝑞 (·, 𝑡) is contained in 𝐴𝑞 + 𝐵(0, 4𝜎) because 𝑚𝑟 < 𝜎 for a sufficiently large. Since

𝑟−1 � ℓ−1, we have

‖R(2)
𝑞 ‖𝑁 � 𝛿𝑞+1ℓ

−𝑁+𝛼. (6.1)

Let us estimate the material derivative. We compute

(𝜕𝑡 + 𝑣𝑞 · ∇)R(2)
𝑞 =

𝑚∑
𝑖=1

1
𝑚
𝜃 𝑗 (𝜕𝑡 + 𝑣𝑞 · ∇)𝑆 +

𝑚∑
𝑖=1

1
𝑚
𝑣𝑞 · ∇𝜃 𝑗𝑆.

Regarding the second term, it follows from (4.27) and ‖𝑣̃ℓ ‖𝑁 � ℓ−𝑁 that the new field also satisfies��𝑣𝑞��𝑁 � ℓ−𝑁 . Thus, ��𝑣𝑞 · ∇𝜃 𝑗

��
𝑁
� 𝑟−1ℓ−𝑁 .
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Since the support of the ∇𝜃 𝑗 are pairwise disjoint, we have

‖(𝜕𝑡 + 𝑣𝑞 · ∇)R(2)
𝑞 ‖𝑁 � 𝛿𝑞+1𝛿

1/2
𝑞 𝜆𝑞ℓ

−𝑁−𝛼 +
1
𝑚
𝑟−1𝛿𝑞+1ℓ

−𝑁+𝛼 (6.2)

� 𝛿𝑞+1𝛿
1/2
𝑞 𝜆𝑞ℓ

−𝑁−𝛼.

We conclude that the matrix R(2)
𝑞 satisfies the right estimates but we have changed the equation:

divR(2)
𝑞 = div 𝑆 +

𝑚∑
𝑗=1

1
𝑚
∇𝜃 𝑗 · 𝑆,

where we have used that the support of div 𝑆 is contained in 𝐴𝑞 + 𝐵(0, 3𝜎) by (5.21). Let us correct
this. We define 𝜌 𝑗 � ∇𝜃 𝑗 · 𝑆, whose support is contained in

{𝑥 ∈ R3 : 3𝜎 + (𝑖 − 1)𝑟 < dist(𝑥, 𝐴𝑞) < 3𝜎 + 𝑖𝑟}.

Therefore, by Lemma B.4 we have��𝜌 𝑗

��
𝐵−1+𝛼
∞,∞
� 𝑟1−𝛼

��∇𝜃 𝑗 · 𝑆
��

0 � 𝛿𝑞+1.

We wish to apply Lemma 2.9, so we have to check the compatibility conditions. We fix a Killing field
𝜉 and we compute∫

𝜉 · 𝜌 𝑗 =
∫

𝜉 · div(𝜃 𝑗𝑆) −

∫
𝜉 · 𝜃 𝑗 div 𝑆 = −

∫
𝜉 · div 𝑆 = −𝜕𝑡 𝜒𝑖

∫
𝜉 · (𝑣̃𝑖 − 𝑣̃𝑖+1),

where we have used (2.6) and the fact that 𝜃 𝑗 = 1 on the support of div 𝑆. To show that this integral
vanishes, we first compute

𝑑

𝑑𝑟

∫
𝜉 · (𝑣̃𝑖 − 𝑣̃ℓ) =

∫
𝜉 · div

(
𝑣̃ℓ ⊗ 𝑣̃ℓ − 𝑣̃𝑖 ⊗ 𝑣̃𝑖 + 𝑝ℓ Id−𝑝𝑖 Id+ ˚̃𝑅𝑖 −

˚̃𝑅ℓ

)
= 0

because of (2.6) and the fact that the matrix in parentheses is compactly supported due to (4.9) and
(4.17). Since 𝑣̃𝑖 (·, 𝑡𝑖) = 𝑣̃ℓ (·, 𝑡𝑖), we see that

∫
𝜉 · (𝑣̃𝑖 − 𝑣̃ℓ) = 0. Repeating this for 𝑣̃𝑖+1 and subtracting,

we conclude ∫
𝜉 · 𝜌 𝑗 = −𝜕𝑡 𝜒 𝑗

∫
𝜉 · (𝑣̃𝑖 − 𝑣̃𝑖+1) = 0

for any Killing field 𝜉. Therefore, by Lemma 2.9 there exists a smooth symmetric matrix 𝑀 𝑗 such that
div 𝑀 𝑗 = 𝜌 𝑗 and whose support is contained in

{𝑥 ∈ R3 : 3𝜎 + ( 𝑗 − 1)𝑟 < dist(𝑥, 𝐴𝑞) < 3𝜎 + 𝑗𝑟}.

Furthermore, we have the estimate ��𝑀 𝑗

��
0 � 𝑟−𝛼𝛿𝑞+1.

We define

divR(3)
𝑞 � −

1
𝑚

𝑚∑
𝑗=1

𝑀 𝑗 .
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By construction of the 𝑀 𝑗 we have

div
(
R(2)

𝑞 +R(3)
𝑞

)
= 𝜕𝑡 𝜒 𝑗 (𝑣̃𝑖 − 𝑣̃𝑖+1),

as we wanted. Since the supports of the 𝑀 𝑗 are pairwise disjoint, we see that

‖R(3)
𝑞 ‖0 =

1
𝑚

max
𝑗

��𝑀 𝑗

��
0 �

1
𝑚
𝑟−𝛼𝛿𝑞+1.

It follows from our assumption 𝑏 − 1 < 1/10 that

𝛿𝑞+1

𝛿𝑞+2
= 𝜆

𝛽𝑏 (𝑏−1)
𝑞 < 𝜆1/10

𝑞 .

Therefore, for a is sufficiently large and 𝛼 sufficiently small the matrix 𝑅̊𝑞
(1) defined in (4.31) satisfies

‖ 𝑅̊𝑞
(1) ‖0 ≤

3
4
𝛿𝑞+2𝜆

−6𝛼
𝑞+1 ,

where we have used that

‖R(3)
𝑞 ‖0 ≤

1
2
𝛿𝑞+2𝜆

−6𝛼
𝑞+1

due to (5.23). Thus, 𝑅̊𝑞
(1) is so small that it may be ignored until the next iteration.

Finally, let us conclude the estimates for 𝑅̊𝑞
(2) , defined in (4.32). It follows from [7, Proposition 4.4]

that

‖𝜒𝑖 (1 − 𝜒𝑖) (𝑣̃𝑖 − 𝑣̃𝑖+1)⊗̊(𝑣̃𝑖 − 𝑣̃𝑖+1)‖𝑁+𝛼 � 𝛿𝑞+1ℓ
−𝑁+𝛼,

‖(𝜕𝑡 + 𝑣𝑞 · ∇) [𝜒𝑖 (1 − 𝜒𝑖) (𝑣̃𝑖 − 𝑣̃𝑖+1)⊗̊(𝑣̃𝑖 − 𝑣̃𝑖+1)]‖𝑁+𝛼 � 𝛿𝑞+1𝛿
1/2
𝑞 𝜆𝑞ℓ

−𝑁+𝛼.

Combining this with (6.1) and (6.2), we infer (4.37) and (4.38).

7. The perturbation step

In this section we complete the final step in the proof of Proposition 3.2, which is done in Subsections 7.1
to 7.5. The last part, Subsection 7.6, contains the proof of Lemma 3.3.

For simplicity, we will assume that Ω is connected. If it had several connected components Ω 𝑗 and
we wanted to fix an energy profile 𝑒 𝑗 in each of them, we would simply carry out the construction of
this section in each connected component, taking into account Remark 3.1. Note that 𝜙𝑞 can be split
into cutoffs 𝜙 𝑗

𝑞 associated to each Ω 𝑗 .

7.1. Squiggling stripes and the stress ˜𝑹𝒒,𝒊

Before we can define the perturbation, we need to introduce several objects. By [7, Subsection 5.2] there
exist nonnegative cutoff functions 𝜂𝑖 with the following properties:

(i) 𝜂𝑖 ∈ 𝐶∞(T3 × [0, 𝑇], [0, 1]).
(ii) supp 𝜂𝑖 ∩ supp 𝜂 𝑗 = ∅.

(iii) 𝜂𝑖 (𝑥, 𝑡) = 1 for any x and 𝑡 ∈ 𝐼𝑖 .
(iv) supp 𝜂𝑖 ⊂ T3 × (𝑡𝑖 −

1
3𝜏𝑞 , 𝑡𝑖+1 +

1
3𝜏𝑞) ∩ [0, 𝑇].
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(v) There exists a positive geometric constant 𝑐0 > 0 such that for any 𝑡 ∈ [0, 𝑇]∑
𝑖

∫
T3
𝜂𝑖 (𝑥, 𝑡)

2 𝑑𝑥 ≥ 𝑐0.

(vi) For any 𝑘, 𝑁 ≥ 0 there exists constants depending on 𝑘, 𝑁 such that��𝜕𝑘
𝑡 𝜂𝑖

��
𝑁
� 𝜏−𝑁

𝑞 .

We replace 𝜂𝑖 (𝑥, 𝑡) by 𝜂𝑖 (𝑚𝑥, 𝑡) for sufficiently large 𝑚 ∈ N, so that we may assume that the cutoffs
𝜂𝑖 satisfy

𝑐̃0 ≤
∑
𝑖

∫
T3
𝜙𝑞 (𝑥)

2𝜂𝑖 (𝑥, 𝑡)
2 𝑑𝑥 ≤ 2 |Ω| (7.1)

for some constant 𝑐̃0 depending on Ω. This can be done because 𝐴0 will contain one of the cubes of
a grid of sidelength 𝑚−1 for sufficiently large m. This settles the first inequality. Regarding the second
inequality, note that at most 2 of the cutoffs are nonzero at any given time. In addition, the new cutoffs
will still satisfy (i) − (vi) but the constants that appear in (vi) will now depend on Ω, too.

We proceed analogously to [7], defining the amplitudes

𝜌𝑞 (𝑡) �
1
3

(
𝑒(𝑡) −

1
2
𝛿𝑞+2 −

∫
Ω

��𝑣𝑞 �� 2𝑑𝑥

)
, (7.2)

𝜌𝑞,𝑖 (𝑥, 𝑡) �
𝜂𝑖 (𝑥, 𝑡)

2∑
𝑖

∫
T3 𝜙𝑞 (𝑥)2𝜂𝑖 (𝑥, 𝑡)2𝑑𝑥

𝜌𝑞 (𝑡). (7.3)

Note that our definition of 𝜌𝑞,𝑖 differs from the one in [7] in the normalization. Next, we define the
backwards flows Φ𝑖 for the velocity field 𝑣𝑞 as the solution of the transport equation{

(𝜕𝑡 + 𝑣𝑞 · ∇)Φ𝑖 = 0,
Φ𝑖 (𝑥, 𝑡𝑖) = 𝑥.

Finally, we define

𝑅𝑞,𝑖 � 𝜌𝑞,𝑖 Id−𝜂2
𝑖 𝑅̊𝑞

(2) , (7.4)

𝑅𝑞,𝑖 �
∇Φ𝑖𝑅𝑞,𝑖 (∇Φ𝑖)

𝑡

𝜌𝑞,𝑖
. (7.5)

It follows from properties (i) − (iv) of 𝜂𝑖 that

• supp 𝑅𝑞,𝑖 ⊂ supp 𝜂𝑖 ,
• we have

∑
𝑖 𝜂

2
𝑖 = 1 on supp 𝑅̊𝑞

(2) ,
• supp 𝑅𝑞,𝑖 ⊂ T

3 × (𝑡𝑖 −
1
3𝜏𝑞 , 𝑡𝑖+1 +

1
3𝜏𝑞),

• supp 𝑅𝑞,𝑖 ∩ supp 𝑅𝑞, 𝑗 = ∅ for all 𝑖 ≠ 𝑗 .

We collect some other useful estimates:

Lemma 7.1. For 𝑎 � 1 sufficiently large we have

‖∇Φ𝑖 − Id‖0 ≤
1
2

for 𝑡 ∈ supp(𝜂𝑖). (7.6)
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Furthermore, for any 𝑁 ≥ 0

𝛿𝑞+1

8𝜆𝛼
𝑞

≤
��𝜌𝑞 (𝑡)�� ≤ 𝛿𝑞+1 ∀𝑡, (7.7)��𝜌𝑞,𝑖��0 ≤

𝛿𝑞+1

𝑐̃0
, (7.8)��𝜌𝑞,𝑖��𝑁 � 𝛿𝑞+1, (7.9)��𝜕𝑡 𝜌𝑞��0 � 𝛿𝑞+1𝛿

1/2
𝑞 𝜆𝑞 , (7.10)��𝜕𝑡 𝜌𝑞,𝑖��𝑁 � 𝜏−1

𝑞 𝛿𝑞+1, (7.11)

‖𝑅𝑞,𝑖 ‖𝑁 � ℓ−𝑁 , (7.12)

‖𝐷𝑡 ,𝑞𝑅𝑞,𝑖 ‖𝑁 � 𝜏−1
𝑞 ℓ−𝑁 , (7.13)

where 𝐷𝑡 ,𝑞 � 𝜕𝑡 + 𝑣𝑞 · ∇. Moreover, for all (𝑥, 𝑡) we have 𝑅𝑞,𝑖 (𝑥, 𝑡) ∈ 𝐵
(
Id, 1

2

)
⊂ S3.

Proof. Since our subsolution (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) satisfies analogous estimates to the ones in [7], we may use
the same argument to infer (7.6), (7.7) and (7.10). Estimate (7.8) then follows from (7.7) and (7.1). In
fact, since our 𝜌𝑞,𝑖 only differs from the one in [7] in a time-dependent normalization coefficient that is
bounded above and below, the bounds for

��𝜌𝑞,𝑖��𝑁 are the same except for the implicit constant. Next,
it follows from the property (vi) of 𝜂𝑖 that����� 𝑑𝑑𝑡 ∑

𝑖

∫
Ω
𝜙𝑞 (𝑦, 𝑡)

2𝜂𝑖 (𝑦, 𝑡)
2𝑑𝑦

����� � 𝜏−1
𝑞 .

Using this estimate and arguing as in [7] we obtain (7.11). Finally, taking into account these estimates
for 𝜌𝑞,𝑖 and the bounds (4.37) and (4.38), the facts regarding 𝑅𝑞,𝑖 follow as in [7]. �

7.2. Definition of the perturbation

The building blocks of the perturbation are Mikado flows, introduced in [21, Lemma 2.3]:

Lemma 7.2. For any compact subset of positive-definite matrices N ⊂ S3 there exists a smooth vector
field

𝑊 : N × T3 → R3

such that, for every 𝑅 ∈ N {
div𝜉 [𝑊 (𝑅, 𝜉) ⊗𝑊 (𝑅, 𝜉)] = 0,
div𝜉 𝑊 (𝑅, 𝜉) = 0

(7.14)

and ⨏
T3
𝑊 (𝑅, 𝜉) 𝑑𝜉 = 0,

⨏
T3
𝑊 (𝑅, 𝜉) ⊗𝑊 (𝑅, 𝜉) 𝑑𝜉 = 𝑅.
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Since 𝑊 (𝑅, ·) is T3-periodic and has zero mean, we may write

𝑊 (𝑅, 𝜉) =
∑

𝑘∈Z3\{0}

𝑎𝑘 (𝑅)𝑒
𝑖𝑘 ·𝜉 (7.15)

for some 𝑎𝑘 ∈ 𝐶∞(N ,R3). Similarly, for some 𝐶𝑘 ∈ 𝐶∞(N ,S3) we have

𝑊 (𝑅, 𝜉) ⊗𝑊 (𝑅, 𝜉) = 𝑅 +
∑
𝑘≠0

𝐶𝑘 (𝑅)𝑒
𝑖𝑘 ·𝜉 . (7.16)

It follows from (7.14) that

𝑎𝑘 (𝑅) · 𝑘 = 0, 𝐶𝑘 (𝑅)𝑘 = 0. (7.17)

In addition, because of the smoothness we have

sup
𝑅∈N

��𝐷𝑁
𝑅 𝑎𝑘 (𝑅)

�� + sup
𝑅∈N

��𝐷𝑁
𝑅 𝐶𝑘 (𝑅)

�� ≤ 𝐶 (N , 𝑁, 𝑚)

|𝑘 | 𝑚
. (7.18)

In the construction these estimates are used with a particular choice of N (namely 𝐵(Id, 1/2) ⊂ S3)
and m. This choice determines the constant M appearing in Proposition 3.2.

With these building blocks, we define the main perturbation term 𝑤0 as

𝑤0 �
∑
𝑖

𝜙𝑞 (𝑥, 𝑡) (𝜌𝑞,𝑖 (𝑥, 𝑡))
1/2(∇Φ𝑖)

−1𝑊 (𝑅𝑞,𝑖 , 𝜆𝑞+1Φ𝑖) =
∑
𝑖

𝑤0,𝑖 .

Recall that in Lemma 7.1 we saw that 𝑅𝑞,𝑖 takes values in the compact subset of positive-definite
matrices N � 𝐵(Id, 1/2) ⊂ S3. Therefore, the previous expression is well-defined. To shorten the
notation, we set

𝑏𝑖,𝑘 (𝑥, 𝑡) � 𝜙𝑞 (𝑥, 𝑡) (𝜌𝑞,𝑖 (𝑥, 𝑡))
1/2𝑎𝑘 (𝑅𝑞,𝑖 (𝑥, 𝑡)).

Thus, using (7.15) we may write

𝑤0 =
∑
𝑖,𝑘≠0

(∇Φ𝑖)
−1𝑏𝑖,𝑘𝑒

𝑖𝜆𝑞+1𝑘 ·Φ𝑖 .

Although Mikado flows are divergence-free, the perturbation 𝑤0 will not be solenoidal, in general,
due to the other factor. We must add a small correction term 𝑤𝑐 so that 𝑤𝑞+1 � 𝑤0 + 𝑤𝑐 is divergence-
free. We set

𝑤𝑞+1 =
−1
𝜆𝑞+1

curl

( ∑
𝑖,𝑘≠0

(∇Φ)𝑡
(
𝑖𝑘 × 𝑏𝑘,𝑖

|𝑘 | 2

)
𝑒𝑖𝜆𝑞+1𝑘 ·Φ𝑖

)
.

It is clear that 𝑤𝑞+1 is divergence-free and the correction 𝑤𝑞+1 − 𝑤0 can be seen to be a lower-order
term in 𝜆𝑞+1.

Unlike in [7], 𝑤𝑞+1 is not the final correction. We must add another small perturbation 𝑤𝐿 to ensure
the final correction 𝑤𝑞+1 = 𝑤𝑞+1 + 𝑤𝐿 has no angular momentum. We define 𝐿 ∈ 𝐶∞([0, 𝑇],R3) as

𝐿(𝑡) �
1

𝜆𝑞+1

∑
𝑖,𝑘≠0

∫
(∇Φ𝑖)

𝑡

(
𝑖𝑘 × 𝑏𝑘,𝑖

|𝑘 | 2

)
𝑒𝑖𝜆𝑞+1𝑘 ·Φ𝑖 𝑑𝑥,
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where the integration is undestood to be component-wise. We fix a ball 𝐵 ⊂ 𝐴0 and we choose
𝜓 ∈ 𝐶∞

𝑐 (𝐵,R) such that
∫
𝜓 = 1. We define the correction 𝑤𝐿 as

𝑤𝐿 � curl(𝜓𝐿).

By construction, the correction 𝑤𝑞+1 = 𝑤𝑞+1 +𝑤𝐿 is given by 𝑤𝑞+1 = curl 𝑧 for a potential vector z such
that

∫
𝑧 𝑑𝑥 = 0 component-wise. Using the vector identity div(𝜉 × 𝑧) = 𝑧 · curl 𝜉 − 𝜉 · curl 𝑧, we have∫

𝜉 · 𝑤𝑞+1 =
∫

𝜉 · curl 𝑧 = −

∫
𝑧 · curl 𝜉.

Since the curl of any Killing field is constant, we conclude∫
𝜉 · 𝑤𝑞+1 𝑑𝑥 = 0 ∀𝑡 ∈ [0, 𝑇], ∀𝜉 ∈ ker∇sym. (7.19)

7.3. Estimates on the perturbation

Aside from 𝑤𝐿 , our perturbation differs from the one in [7] in the presence of the factor 𝜙𝑞 . Nevertheless,
the factor 𝜙𝑞 appears multiplying 𝑎𝑘 (𝑅𝑞,𝑖). Thus, if we show that 𝜙𝑞𝑎𝑘 (𝑅𝑞,𝑖) satisfies the same bounds
as 𝑎𝑘 (𝑅𝑞,𝑖), the same estimates that are derived in [7] will apply here. It follows from (7.18), (7.12) and
(7.13) that

‖𝑎𝑘 (𝑅𝑞,𝑖)‖𝑁 �
ℓ−𝑁

|𝑘 | 6 , ‖𝐷𝑡 ,𝑞𝑎𝑘 (𝑅𝑞,𝑖)‖𝑁 �
𝜏−1
𝑞 ℓ−𝑁

|𝑘 | 6 .

Since
��𝜙𝑞

��
𝑁
� 𝜆−𝑁 /10

𝑞 � 𝜏−𝑁
𝑞 � ℓ−𝑁 we also have

‖𝜙𝑞𝑎𝑘 (𝑅𝑞,𝑖)‖𝑁 �
ℓ−𝑁

|𝑘 | 6 , ‖𝐷𝑡 ,𝑞 [𝜙𝑞𝑎𝑘 (𝑅𝑞,𝑖)]‖𝑁 �
𝜏−1
𝑞 ℓ−𝑁

|𝑘 | 6 .

We conclude that all of the estimates in [7] are also valid here. In particular, we have

Lemma 7.3. Assuming a is sufficiently large, the perturbations 𝑤0, 𝑤𝑐 and 𝑤𝑞 satisfy the following
estimates:

‖𝑤0‖0 +
1

𝜆𝑞+1
‖𝑤0‖1 ≤

𝑀

4
𝛿1/2
𝑞+1,

‖𝑤𝑐 ‖0 +
1

𝜆𝑞+1
‖𝑤𝑐 ‖1 � 𝛿1/2

𝑞+1ℓ
−1𝜆−1

𝑞+1,��𝑤𝑞+1
��

0 +
1

𝜆𝑞+1

��𝑤𝑞+1
��

1 ≤
𝑀

2
𝛿1/2
𝑞+1,

where the constant M depends solely on the constant 𝑐̃0 in (7.1).

We carry out the estimates for 𝑤𝐿 with more detail. First, due to (7.18) we have
��𝑏𝑖,𝑘��0 ���𝜌𝑖,𝑞��1/2

0 |𝑘 | −6 � 𝛿1/2
𝑞+1 |𝑘 |

−6. Next, it follows from (7.6) that ‖∇Φ‖0 � 1. Introducing these estimates
in the definition of L we obtain

|𝐿(𝑡) | �
∑
𝑘≠0

1
𝜆𝑞+1

‖∇Φ𝑖 ‖0
��𝑏𝑖,𝑘��0 �

∑
𝑘≠0

𝛿1/2
𝑞+1

|𝑘 | 6𝜆𝑞+1
� 𝛿1/2

𝑞+1𝜆
−1
𝑞+1,
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where we have used that at most two of the 𝑏𝑖,𝑞 are nonzero at any given time. Since𝜓 is fixed throughout
the iterative process, we conclude

‖𝑤𝐿 ‖𝑁 � 𝛿1/2
𝑞+1𝜆

−1
𝑞+1. (7.20)

Therefore, the correction 𝑤𝐿 is really small. We see that for sufficiently large a the perturbation 𝑤𝑞+1
then satisfies ��𝑤𝑞+1

��
0 +

1
𝜆𝑞+1

��𝑤𝑞+1
��

1 ≤
3
4
𝑀𝛿1/2

𝑞+1.

Regarding 𝜕𝑡𝑤𝐿 , we must first estimate

‖𝐷𝑡 ,𝑞𝑏𝑖,𝑘 ‖0 � ‖𝜕𝜌𝑞,𝑖 + 𝑣𝑞 · ∇𝜌𝑞,𝑖 ‖0 ‖𝜙𝑞𝑎𝑘 (𝑅𝑞,𝑖)‖0 +
��𝜌𝑞,𝑖��0 ‖𝐷𝑡 ,𝑞 [𝜙𝑞𝑎𝑘 (𝑅𝑞,𝑖)]‖0

� 𝜏−1
𝑞 𝛿1/2

𝑞+1 |𝑘 |
−6.

Next, we compute

𝐿 ′(𝑡) =
1

𝜆𝑞+1

∑
𝑖,𝑘≠0

∫
𝐷𝑡 ,𝑞

[
(∇Φ)𝑡

(
𝑖𝑘 × 𝑏𝑘,𝑖

|𝑘 | 2

)
𝑒𝑖𝜆𝑞+1𝑘 ·Φ𝑖

]
𝑑𝑥

=
1

𝜆𝑞+1

∑
𝑖,𝑘≠0

∫ [
− ∇𝑣𝑞 (∇Φ)𝑡

(
𝑖𝑘 × 𝑏𝑘,𝑖

|𝑘 | 2

)
+ (∇Φ)𝑡

(
𝑖𝑘 × 𝐷𝑡 ,𝑞𝑏𝑘,𝑖

|𝑘 | 2

) ]
𝑒𝑖𝜆𝑞+1𝑘 ·Φ𝑖 𝑑𝑥,

where we have computed the material derivative of ∇Φ𝑖 taking into account that Φ𝑖 solves the transport
equation. Since

��∇𝑣𝑞��0 � 𝛿1/2
𝑞 𝜆𝑞 by (4.28), we have

|𝐿 ′(𝑡) | � 𝜆−1
𝑞+1𝛿

1/2
𝑞+1 (𝛿

1/2
𝑞 𝜆𝑞 + 𝜏−1

𝑞 ) �
𝛿1/2
𝑞+1𝛿

1/2
𝑞 𝜆𝑞

𝜆1−3𝛼
𝑞+1

because 𝜏−1
𝑞 = 𝛿1/2

𝑞 𝜆𝑞ℓ
−2𝛼 � 𝛿1/2

𝑞 𝜆𝑞𝜆
−3𝛼
𝑞+1 by (4.2). Since 𝜓 is fixed, we conclude

‖𝜕𝑡𝑤𝐿 ‖𝑁 �
𝛿1/2
𝑞+1𝛿

1/2
𝑞 𝜆𝑞

𝜆1−3𝛼
𝑞+1

. (7.21)

7.4. The final Reynolds stress

Taking into account that 𝜙𝑞 and
∑

𝑖 𝜂
2
𝑖 equal 1 on supp 𝑅̊𝑞

(2) , it follows from the definition of 𝑅𝑞,𝑖 that∑
𝑖

𝜙2
𝑞𝑅𝑞,𝑖 = −𝑅̊𝑞

(2) +
∑
𝑖

𝜙2
𝑞𝜌𝑞,𝑖 Id .

Using this along with the fact that
(
𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞

(1) + 𝑅̊𝑞
(2)

)
is a subsolution, we obtain:

𝜕𝑡𝑣𝑞+1 + div(𝑣𝑞+1 ⊗ 𝑣𝑞+1) + ∇𝑝𝑞

= div
(
𝑅̊𝑞

(1) + 𝑤𝐿 ⊗ 𝑣𝑞 + 𝑣𝑞 ⊗ 𝑤𝐿 + 𝑤𝐿 ⊗ 𝑤𝐿

)
+ ∇

(∑
𝑖

𝜙2
𝑞𝜌𝑞,𝑖

)
+ (𝜕𝑡𝑤𝑞+1 + 𝑣𝑞 · ∇𝑤𝑞+1) + 𝑤𝑞+1 · ∇𝑣𝑞 + div

(
𝑤𝑞+1 ⊗ 𝑤𝑞+1 −

∑
𝑖

𝜙2
𝑞𝑅𝑞,𝑖

)
.
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Hence, we conclude that we may construct a new subsolution (𝑣𝑞+1, 𝑝𝑞+1, 𝑅̊𝑞+1) by setting

𝑅̊𝑞+1 � 𝑅̊𝑞
(1) + 𝑤𝐿 ⊗̊𝑣𝑞 + 𝑣𝑞 ⊗̊𝑤𝐿 + 𝑤𝐿 ⊗̊𝑤𝐿 + 𝑆 −

1
3
(tr 𝑆) Id,

𝑝𝑞+1 � 𝑝𝑞 −
∑
𝑖

𝜙2
𝑞𝜌𝑞,𝑖 − |𝑤𝐿 |

2 − 2 𝑣𝑞 · 𝑤𝐿 −
1
3

tr 𝑆,

where the smooth symmetric matrix S satisfies

div 𝑆 = 𝜕𝑡𝑤𝐿 + (𝜕𝑡𝑤𝑞+1 + 𝑣𝑞 · ∇𝑤𝑞+1)︸�����������������������︷︷�����������������������︸
transport error

+𝑤𝑞+1 · ∇𝑣𝑞︸�������︷︷�������︸
Nash error

+ div

(
𝑤𝑞+1 ⊗ 𝑤𝑞+1 −

∑
𝑖

𝜙2
𝑞𝑅𝑞,𝑖

)
︸������������������������������������︷︷������������������������������������︸

oscillation error

and the support of 𝑆(·, 𝑡) is contained in 𝐴𝑞 + 𝐵(0, 5𝜎) for all 𝑡 ∈ [0, 𝑇]. If such a matrix existed, the
new subsolution (𝑣𝑞+1, 𝑝𝑞+1, 𝑅̊𝑞+1) would equal (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) in 𝐴𝑞+1 × [0, 𝑇] because the support of
𝜙𝑞 and 𝑤𝑞+1 (·, 𝑡) is contained in 𝐴𝑞 + 𝐵(0, 5𝜎). Therefore, it equals (𝑣0, 𝑝0, 𝑅̊0) in 𝐴𝑞+1 × [0, 𝑇].

We will show that it is possible to construct S and we will derive the necessary estimates. Let
𝑓 � div 𝑆. Note that the support of 𝑓 (·, 𝑡) is contained in 𝐴𝑞 + 𝐵(0, 5𝜎) for all 𝑡 ∈ [0, 𝑇] because so is
the support of 𝜙𝑞 and the perturbation. Next, we see that for any Killing field 𝜉 we have∫

𝜉 · 𝑓 𝑑𝑥 =
𝑑

𝑑𝑡

∫
𝜉 · 𝑤𝑞+1 +

∫
𝜉 · div

(
𝑣𝑞 ⊗ 𝑤𝑞+1 + 𝑤𝑞+1 ⊗ 𝑣𝑞 + 𝑤𝑞+1 ⊗ 𝑤𝑞+1 −

∑
𝑖

𝜙2
𝑞𝑅𝑞,𝑖

)
= 0

because of (7.19) and (2.6). Therefore, by Lemma 2.9 there exists a symmetric matrix 𝑆 ∈ 𝐶∞(R3 ×

[0, 𝑇],S3) such that div 𝑆 = 𝑓 and with the stated support. We will now estimate the 𝐶𝛼-norm of
the potential theoretic solution of the equation. Arguing as in Lemma 2.9, this yields a bound for the
𝐶0-norm of S.

We begin by studying the first term in f. It follows from (7.21) and the fact that ℛ is bounded on
Hölder spaces that

‖ℛ(𝜕𝑡𝑤𝐿)‖𝛼 ≤ ‖ℛ(𝜕𝑡𝑤𝐿)‖1+𝛼 � ‖𝜕𝑡𝑤𝐿 ‖𝛼 �
𝛿1/2
𝑞+1𝛿

1/2
𝑞 𝜆𝑞

𝜆1−3𝛼
𝑞+1

. (7.22)

The remaining three error terms are analogous to the ones in [7]. Since our fields satisfy the same
estimates as in [7], the estimates for the potential-theoretic solution are completely analogous. We do
have to take into account that the oscillation error has a slightly different expression than the one in [7]:

div

(
𝑤𝑞+1 ⊗ 𝑤𝑞+1 −

∑
𝑖

𝜙2
𝑞𝑅𝑞,𝑖

)
= div

(
𝑤0 ⊗ 𝑤0 −

∑
𝑖

𝜙2
𝑞𝑅𝑞,𝑖

)
+ div(𝑤0 ⊗ 𝑤𝑐 + 𝑤𝑐 ⊗ 𝑤0 + 𝑤𝑐 ⊗ 𝑤𝑐) ≡ O1 +O2.

The second term O2 is the same as in [7]. Regarding O1, it follows from the fact that the cutoffs 𝜂𝑖 have
pairwise disjoint support that

O1 =
∑
𝑖

div(𝑤0,𝑖 ⊗ 𝑤0,𝑖 − 𝜙2
𝑞𝑅𝑞,𝑖).
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We use the definition of 𝑤0,𝑖 and (7.16) to write

𝑤0,𝑖 ⊗ 𝑤0,𝑖 = 𝜙2
𝑞𝜌𝑞,𝑖∇Φ

−1
𝑖 (𝑊 ⊗𝑊) (𝑅𝑞,𝑖 , 𝜆𝑞+1Φ𝑖)∇Φ

−𝑡
𝑖

= 𝜙2
𝑞∇Φ

−1
𝑖 𝑅𝑞,𝑖∇Φ

−𝑡
𝑖 +

∑
𝑘≠0

𝜙2
𝑞𝜌𝑞,𝑖∇Φ

−1
𝑖 𝐶𝑘 (𝑅𝑞,𝑖)∇Φ

−𝑡
𝑖 𝑒𝑖𝜆𝑞+1𝑘 ·Φ𝑖

= 𝜙2
𝑞𝑅𝑞,𝑖 +

∑
𝑘≠0

𝜙2
𝑞𝜌𝑞,𝑖∇Φ

−1
𝑖 𝐶𝑘 (𝑅𝑞,𝑖)∇Φ

−𝑡
𝑖 𝑒𝑖𝜆𝑞+1𝑘 ·Φ𝑖 . (7.23)

On the other hand, it follows from (7.17) that

∇Φ−1
𝑖 𝐶𝑘∇Φ

−𝑡
𝑖 ∇Φ𝑡

𝑖 𝑘 = 0,

so

O1 =
∑
𝑖,𝑘≠0

div(𝜙2
𝑞𝜌𝑞,𝑖∇Φ

−1
𝑖 𝐶𝑘 (𝑅𝑞,𝑖)∇Φ

−𝑡
𝑖 )𝑒𝑖𝜆𝑞+1𝑘 ·Φ𝑖 ,

which is the same as in [7] except for the presence of 𝜙2
𝑞 . Nevertheless, it is easy to check, as in Section 7.3,

that 𝜙2
𝑞𝐶𝑘 (𝑅𝑞,𝑖) satisfies the same estimates as 𝐶𝑘 (𝑅𝑞,𝑖). Hence, we obtain the same bounds for O1.

Aside from the presence of the cutoff, there is another subtle difference that we have to take into
account. The proof in [7] uses that the following inequality holds for a suitable choice of the parameters:

1
𝜆𝑁−𝛼
𝑞+1 ℓ𝑁+𝛼

≤
1

𝜆1−𝛼
𝑞+1

.

Since our definition of ℓ is slightly different, we must check that this inequality holds. Remember that
𝜆𝑞+1 � 𝜆𝑏

𝑞 by (4.4). Hence, we have

𝜆𝑁−𝛼
𝑞+1 ℓ𝑁+𝛼

𝜆1−𝛼
𝑞+1

= 𝜆
𝑁−1−𝛽 (𝑁+𝛼)
𝑞+1 𝜆

−(𝑁+𝛼) (1−𝛽+3𝛼)
𝑞 � 𝜆

[ (𝑏−1) (1−𝛽)−3𝛼]𝑁−𝑏 (1+𝛽𝛼)−𝛼(1−𝛽+3𝛼)
𝑞 .

Note that (𝑏 − 1) (1 − 𝛽) > 0 so by choosing 𝛼 sufficiently small we can ensure that the coefficient
multiplying N is positive. Thus, for sufficiently large N the exponent is positive and choosing a sufficiently
large beats any geometrical constant. We conclude that with this choice of parameters the claimed
inequality holds.

A similar argument is used several times, for instance, to obtain the inequality 𝜆𝑞+1ℓ ≥ 1. Neverthe-
less, in all of them the difference in the definition of ℓ is quite harmless and it only leads to choosing a
smaller 𝛼 and a slightly larger N.

In conclusion, the estimates from [7] apply to our case. Combining them with (7.22) we obtain

‖ℛ 𝑓 ‖𝛼 �
𝛿1/2
𝑞+1𝛿

1/2
𝑞 𝜆𝑞

𝜆1−4𝛼
𝑞+1

.

Since
∫
𝜉 · 𝑓 𝑑𝑥 = 0 for all 𝑡 ∈ [0, 𝑇] and any Killing field 𝜉, we may use the construction of Lemma 2.9

to modify ℛ 𝑓 into a smooth symmetric matrix S such that

• div 𝑆 = 𝑓 ,
• supp 𝑆(·, 𝑡) ⊂ 𝐴𝑞 + 𝐵(0, 5𝜎) for all 𝑡 ∈ [0, 𝑇],
• ‖𝑆‖0 � 𝛿1/2

𝑞+1𝛿
1/2
𝑞 𝜆𝑞𝜆

−(1−4𝛼)
𝑞+1 .
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Combining this with (7.20) we have����𝑤𝐿 ⊗̊𝑣𝑞 + 𝑣𝑞 ⊗̊𝑤𝐿 + 𝑤𝐿 ⊗̊𝑤𝐿 + 𝑆 −
1
3
(tr 𝑆) Id

����
0
�

𝛿1/2
𝑞+1𝛿

1/2
𝑞 𝜆𝑞

𝜆1−4𝛼
𝑞+1

. (7.24)

We claim that with a suitable choice of the parameters

𝛿1/2
𝑞+1𝛿

1/2
𝑞 𝜆𝑞

𝜆𝑞+1
≤ 𝛿𝑞+2𝜆

−11𝛼
𝑞+1 . (7.25)

In that case, (4.35) and (7.24) would yield (4.40) for sufficiently large a, as we wanted. To prove the
claimed inequality, we compute

𝜆1−11𝛼
𝑞+1 𝛿𝑞+2

𝛿1/2
𝑞+1𝛿

1/2
𝑞 𝜆𝑞

= 𝜆
1+𝛽−11𝛼
𝑞+1 𝜆

−2𝛽
𝑞+2𝜆

−1+𝛽
𝑞 � 𝜆

𝑏 (1+𝛽−11𝛼)−2𝑏2𝛽−1+𝛽
𝑞 .

The condition (3.18) ensures that

𝑏 − 1 + 𝛽 + 𝑏𝛽 − 2𝑏2𝛽 > 0,

so the exponent is positive for sufficiently small 𝛼 > 0. Thus, choosing a sufficiently large beats any
numerical constant and (7.25) follows.

7.5. The new energy profile

By definition ∫
Ω

��𝑣𝑞+1
�� 2𝑑𝑥 =

∫
Ω

��𝑣𝑞 �� 2𝑑𝑥 + 2
∫
Ω
𝑣𝑞 · 𝑤𝑞+1𝑑𝑥 +

∫
Ω

��𝑤𝑞+1
�� 2𝑑𝑥.

Note that in the last two terms we can integrate on the whole T3 because the perturbation is supported
in Ω. Arguing as in [7] yields the estimate����∫

T3

(
2 𝑣𝑞 · 𝑤𝑞+1 + 2𝑤0 · 𝑤𝑐 + |𝑤𝑐 |

2
)
𝑑𝑥

���� � 𝛿1/2
𝑞 𝛿1/2

𝑞+1𝜆
1+2𝛼
𝑞

𝜆𝑞+1
.

On the other hand, any term containing 𝑤𝐿 will be smaller than this bound by (7.20). The remaining
term is ∫

T3
|𝑤0 |

2𝑑𝑥 =
∑
𝑖

∫
T3
𝜙2
𝑞 tr 𝑅𝑞,𝑖𝑑𝑥 +

∫
T3

∑
𝑖,𝑘≠0

𝜙2
𝑞𝜌𝑞,𝑖∇Φ

−1
𝑖 tr𝐶𝑘 (𝑅𝑞,𝑖)∇Φ

−𝑡
𝑖 𝑒𝑖𝜆𝑞+1𝑘 ·Φ𝑖 ,

where we have used (7.23). The second term can be estimated as in [7] because 𝜙2
𝑞𝐶𝑘 (𝑅𝑞,𝑖) satisfies

the same estimates as 𝐶𝑘 (𝑅𝑞,𝑖), as argued several times. Regarding the first term:∑
𝑖

∫
T3
𝜙2
𝑞 (𝑥) tr 𝑅𝑞,𝑖 (𝑥, 𝑡) 𝑑𝑥 = 3

∑
𝑖

∫
T3
𝜙2
𝑞 (𝑥)𝜌𝑞,𝑖 (𝑥, 𝑡) 𝑑𝑥 = 3𝜌𝑞 (𝑡) = 𝑒(𝑡) −

1
2
𝛿𝑞+2 −

∫
Ω

��𝑣𝑞 �� 2.
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We conclude that ����𝑒(𝑡) − ∫
Ω

��𝑣𝑞+1
�� 2𝑑𝑥 −

𝛿𝑞+2

2

���� � 𝛿1/2
𝑞 𝛿1/2

𝑞+1𝜆
1+2𝛼
𝑞

𝜆𝑞+1

(7.25)
� 𝛿𝑞+2𝜆

−9𝛼
𝑞+1 ,

which yields (4.41) for sufficiently large a.

7.6. Proof of Lemma 3.3

This lemma is just a simplified version of the construction presented in the previous subsections, so we
will just sketch its proof. Since the initial Reynolds stress 𝑅̊0 and its derivatives vanish at 𝜕Ω × [0, 𝑇],
for any 𝑘 ∈ N there exist a constant 𝐶𝑘 such that for any 𝑥 ∈ Ω we have

|𝑅̊0 (𝑥, 𝑡) | ≤ 𝐶𝑘 dist(𝑥, 𝜕Ω)𝑘 .

Therefore, if dist(𝑥, 𝜕Ω) < 3𝜆−1/12 we have

|𝑅̊0 (𝑥, 𝑡) | ≤ 𝐶6 (3𝜆−1/12)6 �
1

𝜆1/2 .

We fix a smooth cutoff function 𝜙 ∈ 𝐶∞
𝑐 (Ω, [0, 1]) such that

𝜙(𝑥) =

{
1 if dist(𝑥, 𝜕Ω) ≥ 3𝜆−1/12,

0 if dist(𝑥, 𝜕Ω) ≤ 2𝜆−1/12.

It can be chosen so that ‖𝜙‖𝑁 � 𝜆𝑁 /12. This function will control the support of the perturbation.
Next, we define the backwards flowsΦ for the velocity field 𝑣0 as the solution of the transport equation{

(𝜕𝑡 + 𝑣0 · ∇)Φ𝑖 = 0,
Φ𝑖 (𝑥, 𝑡𝑖) = 𝑥

and we define

𝑅 � ∇Φ
(
Id−(2‖ 𝑅̊0‖0)

−1 𝑅̊0

)
∇Φ𝑡 .

Let N ⊂ S3 be the compact subset of positive definite matrices whose eigenvalues take values between
1/2 and 3/2. We see that 𝑅 takes values in N . Thus, we may apply Lemma 7.2 and define

𝑤0 � (2‖ 𝑅̊0‖0)
1/2𝜙 (∇Φ)−1𝑊 (𝑅, 𝜆Φ) =

∑
𝑘≠0

(∇Φ)−1𝑏𝑘𝑒
𝑖𝜆𝑘 ·Φ,

with 𝑏𝑘 � (2‖ 𝑅̊0‖0)
1/2𝜙 𝑎𝑘 (𝑅). We also have

𝑤0 ⊗ 𝑤0 = 2‖ 𝑅̊0‖0 𝜙
2 𝑅 +

∑
𝑘≠0

2‖ 𝑅̊0‖0 𝜙
2∇Φ−1𝐶𝑘 (𝑅)∇Φ

−𝑡𝑒𝑖𝜆𝑘 ·Φ. (7.26)

Next, the correction 𝑤𝑐 is then defined so that 𝑤 � 𝑤0 + 𝑤𝑐 is divergence-free:

𝑤0 + 𝑤𝑐 =
−1
𝜆

curl

(∑
𝑘≠0

(∇Φ)𝑡
(
𝑖𝑘 × 𝑏𝑘

|𝑘 | 2

)
𝑒𝑖𝜆𝑘 ·Φ

)
. (7.27)
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Regarding the angular momentum, we define

𝐿(𝑡) �
1
𝜆

∑
𝑘≠0

∫
(∇Φ)𝑡

(
𝑖𝑘 × 𝑏𝑘

|𝑘 | 2

)
𝑒𝑖𝜆𝑞+1𝑘 ·Φ 𝑑𝑥.

We fix a ball 𝐵 � Ω and we choose 𝜓 ∈ 𝐶∞
𝑐 (𝐵) such that

∫
𝜓 = 1. We add the correction 𝑤𝐿 so that

the perturbation has vanishing angular momentum:

𝑤𝐿 � curl(𝜓𝐿).

If Ω has several connected components Ω 𝑗 , we will have to consider the partial angular momentum 𝐿 𝑗 .
We will need to add one such vortex to each Ω 𝑗 to cancel the angular momentum in each connected
component of Ω. We still denote the total correction as 𝑤𝐿 .

The new velocity field is 𝑣 � 𝑣0 + 𝑤0 + 𝑤𝑐 + 𝑤𝐿 . Note that by taking a larger 𝜆 we may force
𝐵 ⊂ supp 𝜙, so the perturbation vanishes for dist(𝑥, 𝜕Ω) ≤ 2𝜆−1/12.

Since ‖𝜙‖𝑁 � 𝜆𝑁 /12, the dominant term is the exponential. Hence, from (7.27) and the definition of
𝐿(𝑡) we conclude

‖𝑣‖𝑁 � 𝜆𝑁 .

Let us denote 𝐷𝑡 � 𝜕𝑡 + 𝑣0 · ∇. Since 𝐷𝑡Φ = 0, we see that |𝐿 ′(𝑡) | � 𝜆−(1−1/12) . We conclude

‖𝜕𝑡𝑤𝐿 ‖𝑁 � 𝜆−(1−1/12) .

Finally, we define

𝑅̊ � (1 − 𝜙2) 𝑅̊0 + 𝑣 ⊗ 𝑤𝐿 + 𝑤𝐿 ⊗ 𝑣 − 𝑤𝐿 ⊗ 𝑤𝐿 + 𝑆 −
1
3

[
2𝑣 · 𝑤𝐿 − |𝑤𝐿 |

2 + tr(𝑆)
]

Id,

𝑝 � 𝑝0 − 2‖ 𝑅̊0‖0𝜙
2 −

1
3

[
2𝑣 · 𝑤𝐿 − |𝑤𝐿 |

2 + tr(𝑆)
]
,

where the smooth symmetric matrix S satisfies

div 𝑆 = 𝜕𝑡𝑤𝐿 +
[
𝐷𝑡𝑤 + 𝑤 · ∇𝑣0 + div

(
𝑤 ⊗ 𝑤 − 2‖ 𝑅̊0‖0𝜙

2𝑅
)]

≡ 𝑓 . (7.28)

It is easy to check that (𝑣, 𝑝, 𝑅̊) is a subsolution. Furthermore, the fact that the perturbation has vanishing
angular momentum ensures that we may choose S with support contained in 𝐴∗ by using Lemma 2.9.
Therefore, the (𝑣, 𝑝, 𝑅̊) equals the initial subsolution outside 𝐴∗.

Regarding the estimates, by (7.26) we may write the term in brackets in (7.28) as∑
𝑘≠0

𝑐𝑘𝑒
𝑖𝜆𝑘 ·Φ

for certain vectors 𝑐𝑘 such that ‖𝑐𝑘 ‖𝑁 � |𝑘 | −6𝜆 (𝑁+1)/12. The standard stationary phase lemma (see [7])
yields

‖ℛ 𝑓 ‖1/4 �
𝜆2/12

𝜆1−1/4 ≤ 𝜆−1/2.

Continuing the construction of Lemma 2.9, the claimed bound for 𝑅̊ follows.
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Regarding the energy, (7.26) and a standard stationary phase lemma (see [7]) yield:∫
Ω
|𝑣 | 2𝑑𝑥 =

∫
Ω
|𝑣0 |

2𝑑𝑥 +

∫
Ω
|𝑤0 |

2𝑑𝑥 +𝑂

(
1

𝜆1−1/12

)
=

∫
Ω
|𝑣0 |

2𝑑𝑥 +

∫
Ω

2‖ 𝑅̊0‖𝜙
2 tr(𝑅) 𝑑𝑥.

Since 𝑅̊0 is trace-free, tr 𝑅 = 3. We conclude that (3.20) holds for sufficiently large 𝜆.

8. Proof of Theorem 1.1

We are ready to prove our main theorem using Theorems 1.6 and 1.7. First, we show that the conditions
are necessary. Suppose that such a weak solution (𝑣, 𝑝) exists. We fix a connected component Σ of 𝜕Ω
and 𝑎 ∈ R3. In order to give us some room to mollify the subsolution, we also fix a smooth surface
Σ′ ⊂ Ω that will be used to approximate Σ from the inside of Ω. Given 𝜀 > 0, if follows from the
smoothness of (𝑣0, 𝑝0) that Σ′ can be chosen sufficiently close to Σ so that����∫

Σ
𝑣0 · 𝜈 −

∫
Σ′

𝑣0 · 𝜈

���� < 𝜀,����∫
Σ
[(𝑎 · 𝑥)𝜕𝑡𝑣0 + (𝑎 · 𝑣)𝑣0 + 𝑝0𝑎] · 𝜈 −

∫
Σ′

[(𝑎 · 𝑥)𝜕𝑡𝑣0 + (𝑎 · 𝑣)𝑣0 + 𝑝0𝑎] · 𝜈

���� < 𝜀

for any 𝑡 ∈ [0, 𝑇].
Next, we fix a mollification kernel 𝜓 ∈ 𝐶∞

𝑐 (R3 × R) whose support is contained in the unit ball and
for 0 < ℓ < 𝜀 we define

𝑣ℓ � 𝑣 ∗ 𝜓ℓ ,

𝑝ℓ � 𝑝 ∗ 𝜓ℓ +
��𝑣𝑞 �� 2 ∗ 𝜓ℓ − |𝑣ℓ |

2,

𝑅̊ℓ � 𝑣ℓ ⊗̊𝑣ℓ − (𝑣⊗̊𝑣) ∗ 𝜓ℓ ,

where 𝑓 ⊗̊𝑔 denotes the traceless part of the tensor 𝑓 ⊗ 𝑔. Since (𝑣, 𝑝) is a weak solution, it is easy to see
that (𝑣ℓ , 𝑝ℓ , 𝑅̊ℓ) is a smooth subsolution in R3 × (𝜀, 𝑇 − 𝜀). On the other hand, the values of (𝑣ℓ , 𝑝ℓ , 𝑅̊ℓ)

on Σ′ depend only on (𝑣0, 𝑝0) for ℓ < dist(Σ′, 𝜕Ω) because (𝑣, 𝑝) equals (𝑣0, 𝑝0) on Ω × [0, 𝑇]. In
particular, we have,

lim
ℓ→0

(𝑣ℓ , 𝑝ℓ , 𝑅̊ℓ) (𝑥, 𝑡) = (𝑣0, 𝑝0, 0) (𝑥, 𝑡) uniformly in (𝑥, 𝑡) ∈ Σ′ × [𝜀, 𝑇 − 𝜀],

lim
ℓ→0

𝜕𝑡𝑣ℓ (𝑥, 𝑡) = 𝜕𝑡𝑣0(𝑥, 𝑡) uniformly in (𝑥, 𝑡) ∈ Σ′ × [𝜀, 𝑇 − 𝜀] .

Hence, for sufficiently small ℓ, for any 𝑡 ∈ [𝜀, 𝑇 − 𝜀] we have����∫
Σ′

𝑣0 · 𝜈 −

∫
Σ′

𝑣ℓ · 𝜈

���� < 𝜀,����∫
Σ′

[(𝑎 · 𝑥)𝜕𝑡𝑣0 + (𝑎 · 𝑣)𝑣0 + 𝑝0𝑎] · 𝜈 −

∫
Σ′

[
(𝑎 · 𝑥)𝜕𝑡𝑣ℓ + (𝑎 · 𝑣)𝑣ℓ + 𝑝ℓ𝑎 − 𝑎𝑡 𝑅̊ℓ

]
· 𝜈

���� < 𝜀.

However, these integrals vanish:∫
Σ′

𝑣ℓ · 𝜈 =
∫
Σ′

[
(𝑎 · 𝑥)𝜕𝑡𝑣ℓ + (𝑎 · 𝑣)𝑣ℓ + 𝑝ℓ𝑎 − 𝑎𝑡 𝑅̊ℓ

]
· 𝜈 = 0 ∀𝑡 ∈ (𝜀, 𝑇 − 𝜀)
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because (𝑣ℓ , 𝑝ℓ , 𝑅̊ℓ) is a smooth subsolution (see the proof of Lemma 2.11, equations (2.18) and (2.19)).
We conclude that for all 𝑡 ∈ (𝜀, 𝑇 − 𝜀) we have����∫

Σ
𝑣0 · 𝜈

���� + ����∫
Σ
[(𝑎 · 𝑥)𝜕𝑡𝑣0 + (𝑎 · 𝑣)𝑣0 + 𝑝0𝑎] · 𝜈

���� < 4𝜀.

Since 𝜀 > 0 is arbitrary and (𝑣0, 𝑝0) is smooth up to the endpoints of the interval, we deduce∫
Σ
𝑣0 · 𝜈 =

∫
Σ
[(𝑎 · 𝑥)𝜕𝑡𝑣0 + (𝑎 · 𝑣)𝑣0 + 𝑝0𝑎] · 𝜈 = 0 ∀𝑡 ∈ [0, 𝑇] .

Taking into account that 𝑎 ∈ R3 and the connected component Σ of 𝜕Ω are arbitrary, we see that the
conditions in Theorem 1.1 are, indeed, necessary.

Next, we prove that the conditions are also sufficient. First of all, we may assume that Ω′ ⊃ Ω is
a bounded set with smooth boundary and with a finite number of connected components. Next, by
Theorem 1.6 there exists a subsolution (𝑣̃0, 𝑝0,

˚̃𝑅0) ∈ 𝐶∞(R3 × [0, 𝑇]) that extends (𝑣0, 𝑝0, 0) outside
Ω and whose spatial support is contained in Ω′. In particular, supp ˚̃𝑅0 (·, 𝑡) will be contained in Ω

′
\Ω.

Applying Theorem 1.7, we obtain a weak solution of the Euler equations (𝑣, 𝑝) that equals (𝑣̃0, 𝑝0)

outside Ω
′
\Ω. Therefore, its support is contained in Ω

′
and it extends (𝑣0, 𝑝0). On the other hand, when

applying Theorem 1.7 we may prescribe any energy profile 𝑒 ∈ 𝐶∞([0, 𝑇]) such that

𝑒(𝑡) >

∫
R3

|𝑣̃0(𝑥, 𝑡) |
2𝑑𝑥 + 6‖ ˚̃𝑅0‖0 |Ω

′\Ω| .

Hence, we can define the constant 𝑒0 that appears in the statement of Theorem 1.1 as any number greater
than the right-hand side of the previous inequality. Finally, 𝑣 ∈ 𝐶𝛽 (R3 × [0, 𝑇]), as we wanted, thus
completing the proof of the theorem.

Sketch of the proof of Remark 1.2. If we construct the spatial extension (𝑣̃0, 𝑝0,
˚̃𝑅0) ∈ 𝐶∞(R3 × [0, 𝑇])

so that 𝑣̃0 has vanishing total angular momentum, we can easily extend in time to a subsolution
(𝑣̂0, 𝑝0,

˚̂𝑅0) ∈ 𝐶∞(R3 × [0, +∞) whose temporal support is contained in [0, 𝑇 ′). By taking the energy
profile e larger, if necessary, we may extend it to [0, 𝑇 ′] maintaining an analogue of the condition (1.3).

We then carry out the same construction as in Theorem 1.7 with some minor modifications:

• in Lemma 3.3 and in the perturbation step of Proposition 3.2 we introduce a temporal cutoff so that
we do not modify the subsolution at the times when the Reynolds stress is identically 0 and

• in the perturbation step of Proposition 3.2 we define 𝜌𝑞,𝑖 � 𝜂2
𝑖 𝛿𝑞+1 instead of (7.3) if the interval

(𝑡𝑖 −
1
3𝜏𝑞 , 𝑡𝑖+1 +

1
3𝜏𝑞) is disjoint from [0, 𝑇].

With such an scheme we only prescribe the energy profile in [0, 𝑇]. However, the energy profile in
[𝑇, 𝑇 ′] does not differ much (depending on the initial Reynolds stress) from

∫
|𝑣̂0(𝑥, 𝑡) |

2𝑑𝑥. Hence, if
we choose 𝑒(0) sufficiently large, the final weak solution will be admissible.

9. Open time interval

In this section we study what happens when the fields are defined in an open interval (0, 𝑇) and there is
some singular behavior at the endpoints of the interval. So far we have always considered the supremum
in time of the spatial Hölder norms of our fields. This is not an option for the situation that we have in
mind, which is the setting for our applications.
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9.1. Main result

Our approach consists in decomposing (0, 𝑇) as a countable union of closed intervals {I𝑘 }
∞
𝑘=0 meeting

only at their endpoints and trying to work in each of them independently. While some parts of the
iterative scheme that we have discussed in the previous sections depend only on what is happening at the
current time (solving the symmetric divergence equation, for instance), many others do not (whenever we
have dealt with transport). Therefore, if the Reynolds stress is nonzero at the endpoints of the intervals,
when we try to correct it the subsolution in one interval will affect its neighbor. This propagates the bad
estimates from near 𝑡 = 0 and 𝑡 = 𝑇 to any I𝑘 after enough iterations of the scheme.

Hence, if we want to isolate the closed intervals and work in each of them independently, we must
ensure that the Reynolds stress vanishes identically at their endpoints:

Lemma 9.1. Let (𝑣, 𝑝, 𝑅) ∈ 𝐶∞(R3 × [0, 𝑇]) be a subsolution of the Euler equations. Let 𝑡0 ∈ (0, 𝑇)
and let 𝑠 > 0 be sufficiently small. Suppose that the support of 𝑅(·, 𝑡0) is contained in an open set Ω
and that div div 𝑅(·, 𝑡0) = 0. Then, there exists a smooth subsolution (𝑣̃, 𝑝, 𝑅) such that 𝑅(·, 𝑡0) ≡ 0 and
such that (𝑣̃, 𝑝, 𝑅) = (𝑣, 𝑝, 𝑅) outside Ω× (𝑡0 − 𝑠, 𝑡0 + 𝑠). Furthermore, we have the following estimates:

‖𝑣̃ − 𝑣‖𝑁 ≤ 𝐶 (𝑁) 𝑠 ‖𝑅(·, 𝑡0)‖𝐶𝑁+1 ,

‖𝑅 − 𝑅‖0 ≤ 𝐶
(
‖𝑅(·, 𝑡0)‖𝐶0 + 𝑠 ‖𝑅(·, 𝑡0)‖𝐶1 ‖𝑣‖0 + 𝑠2 ‖𝑅(·, 𝑡0)‖

2
𝐶1

)
for some constants independent of s and (𝑣, 𝑝, 𝑅).

Proof. We fix a smooth cutoff function 𝜒 ∈ 𝐶∞
𝑐 ((−1, 1),R) that equals 1 in a neighborhood of the

origin. Consider the field

𝑣̃(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝑤(𝑥, 𝑡) � 𝑣(𝑥, 𝑡) − (𝑡 − 𝑡0) 𝜒
( 𝑡 − 𝑡0

𝑠

)
div 𝑅(𝑥, 𝑡0).

The condition div div 𝑅(·, 𝑡0) = 0 ensures that 𝑣̃ is divergence-free. By definition of 𝜒, we see that w
vanishes unless |𝑡 − 𝑡0 | < 𝑠 so we deduce ‖𝑤‖𝑁 ≤ 𝐶 𝑠 ‖𝑅(·, 𝑡0)‖𝐶𝑁+1 . Next, we define

𝑅(𝑥, 𝑡) �𝑅(𝑥, 𝑡) − 𝜒
( 𝑡 − 𝑡0

𝑠

)
𝑅(𝑥, 𝑡0) −

𝑡 − 𝑡0
𝑠

𝜒′
( 𝑡 − 𝑡0

𝑠

)
𝑅(𝑥, 𝑡0)

+ 𝑤 ⊗ 𝑣 + 𝑣 ⊗ 𝑤 + 𝑤 ⊗ 𝑤.

It is easy to see that (𝑣̃, 𝑝, 𝑅̊) is a subsolution. Furthermore, it follows from our choice of 𝜒 and the fact
that w vanishes at 𝑡 = 𝑡0 that 𝑅̊(·, 𝑡0) is identically 0. On the other hand, the bound for ‖𝑤‖0 yields the
claimed estimate for 𝑅.

On the other hand, since the support of 𝜒 is contained in (−1, 1) and the support of 𝑅(·, 𝑡0) is
contained in Ω, we see that the support of 𝑣̃ − 𝑣 and 𝑅 − 𝑅 is contained in Ω × (𝑡0 − 𝑠, 𝑡0 + 𝑠).

Finally, we absorb the trace of 𝑅̊ into the pressure, which preserves the other properties that we have
discussed. �

Remark 9.2. The condition div div 𝑅(·, 𝑡0) = 0 is quite restrictive, but it can be removed if one is willing
to relinquish spatial control of the velocity field. Indeed, we may decompose div 𝑅(·, 𝑡0) as the sum
of a divergence-free field and a gradient, which we absorb into the pressure. The divergence-free part
is canceled using the previous lemma. The issue is that the divergence-free component of div 𝑅(·, 𝑡0)
does not have compact support, in general. Thus, we modify the subsolution outside supp 𝑅 and we
loose the spatial control, which has been our main concern so far. This approach could yield interesting
applications in T3, nevertheless. However, in R3 we would have to modify the construction to address
the fact that we have to add perturbations in the whole space. We do not pursue this path here.

Since our construction relies on keeping the velocity fixed at the endpoints of the intervals I𝑘 , we
cannot expect to obtain a nonincreasing energy profile for the final weak solution. Indeed, by weak-strong
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uniqueness it should equal the smooth solution with that initial data (in its domain of definition) and
that is not what will will obtain with the convex integration scheme.

Thus, instead of trying to fix the energy with this construction, we will focus on keeping the changes
small after each iteration. Our goal is to ensure that the energy profile can be extended to a continuous
function in [0, 𝑇]. In that case, we may use Theorem 1.7 to add a (nonsingular) perturbation elsewhere
so that the total energy achieves the desired profile.

Hence, the main result that we will prove in this section, which is a nontrivial variation of Theorem 1.7,
is:

Theorem 9.3. Let 0 < 𝛽 < 1/3. Let 𝑇 > 0 and let {I𝑘 }
∞
𝑘=0 be a sequence of closed intervals meeting

only at their endpoints and such that (0, 𝑇) =
⋃

𝑘≥0 I𝑘 . Let Ω𝑘 � (0, 1)3 be a bounded domain with
smooth boundary for 𝑘 ≥ 0. Let (𝑣0, 𝑝0, 𝑅̊0) ∈ 𝐶∞(R3 × (0, 𝑇)) be a subsolution of the Euler equations
such that supp 𝑅̊0(·, 𝑡) ⊂ Ω𝑘 for 𝑡 ∈ I𝑘 . In addition, assume that div div 𝑅̊0 vanishes. Then, there exists
a weak solution of the Euler equations 𝑣 ∈ 𝐶

𝛽
loc(R

3 × (0, 𝑇)) that equals 𝑣0 in (R3\Ω𝑘 ) × I𝑘 for any
𝑘 ≥ 0. In addition, 𝑣 = 𝑣0 at the endpoints of the intervals I𝑘 . Furthermore,

‖(𝑣 − 𝑣0) (·, 𝑡)‖𝐶0 ≤ 𝐶 sup
𝑡 ∈I𝑘

‖ 𝑅̊(·, 𝑡)‖1/2
𝐶0 ∀𝑘 ≥ 0

for some universal constant C.

9.2. The iterative process

As in Proposition 3.2, we are given an initial subsolution (𝑣0, 𝑝0, 𝑅̊0) ∈ 𝐶∞(R3 × [0, 𝑇]) and we will
iteratively construct a sequence of subsolutions {(𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞)}

∞
𝑞=0 whose limit will be the desired weak

solution. To construct the subsolution at step q from the one in step 𝑞 − 1, we will add an oscillatory
perturbation with frequency 𝜆𝑞 . Meanwhile, the size of the Reynolds stress will be measured by an
amplitude 𝛿𝑞 . These parameters are given by

𝜆𝑞 = 2𝜋�𝑎𝑏𝑞
�, (9.1)

𝛿𝑞 = 𝜆
−2𝛽
𝑞 , (9.2)

The parameters 𝑎, 𝑏 > 1 are very large and very close to 1, respectively. They will be chosen depending
on the exponent 0 < 𝛽 < 1/3 that appears in Theorem 9.3, on Ω and on the initial subsolution. We
introduce another parameter 𝛼 > 0 that will be very small. The necessary size of all the parameters will
be discovered in the proof.

We will assume that the support of (𝑣0, 𝑝0, 𝑅̊0) (·, 𝑡) is contained in (0, 1)3. Meanwhile, the support
of 𝑅̊ is contained in Ω × [0, 𝑇] for a potentially smaller domain Ω with smooth boundary. The main
difference with respect to Proposition 3.2 is that we also assume that 𝑅̊0 (·, 𝑡) vanishes for 𝑡 = 0 and 𝑡 = 𝑇 .

It will be convenient to do an additional rescaling in our problem. In the rescaled problem the
initial subsolution will depend on a, but we assume that nevertheless there exists a sequence {𝑦𝑁 }∞𝑁=0
independent of the parameters such that

‖𝑣0‖𝑁 + ‖𝜕𝑡𝑣0‖𝑁 ≤ 𝑦𝑁 , (9.3)

‖𝑝0‖𝑁 ≤ 𝑦𝑁 , (9.4)

‖ 𝑅̊0‖𝑁 + ‖𝜕𝑡 𝑅̊0‖𝑁 ≤ 𝑦𝑁 . (9.5)

Since the initial Reynolds stress 𝑅̊0 and its derivatives vanish at 𝜕Ω × [0, 𝑇], for any 𝑘 ∈ N there
exist a constant 𝐶𝑘 such that for any 𝑥 ∈ Ω we have

|𝑅̊0 (𝑥, 𝑡) | ≤ 𝐶𝑘 dist(𝑥, 𝜕Ω)𝑘 .
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Note that the constants 𝐶𝑘 are independent of a by (9.5). We define

𝑑𝑞 �

(
𝛿𝑞+2𝜆

−6𝛼
𝑞+1

4𝐶10

)1/10

, (9.6)

𝐴𝑞 � {𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) ≥ 𝑑𝑞}. (9.7)

Hence, we have
|𝑅̊0 (𝑥, 𝑡) | ≤

1
4
𝛿𝑞+2𝜆

−6𝛼
𝑞+1 if 𝑥 ∉ 𝐴𝑞 .

On the other hand, since 𝑅̊0(·, 𝑡) vanishes for 𝑡 = 0 and 𝑡 = 𝑇 there exists a constant 𝐶𝑡 depending on
‖𝜕𝑡 𝑅̊0‖0 such that

|𝑅̊0 (𝑥, 𝑡) | ≤ 𝐶𝑡 min{𝑡, 𝑇 − 𝑡}.

Again, the constant 𝐶𝑡 does not depend on a because of (9.5). It depends only on the initial subsolution
(before the rescaling). We define

𝑠𝑞 �
𝛿𝑞+2𝜆

−6𝛼
𝑞+1

4𝐶𝑡
, (9.8)

J𝑞 � [𝑠𝑞 , 𝑇 − 𝑠𝑞] (9.9)

so that

|𝑅̊0 (𝑥, 𝑡) | ≤
1
4
𝛿𝑞+2𝜆

−6𝛼
𝑞+1 if 𝑡 ∈ [0, 𝑇]\J𝑞 . (9.10)

At step q the perturbation will be localized in 𝐴𝑞×J𝑞 so that (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) equals the initial subsolution
in (R3\𝐴𝑞) ×

(
[0, 𝑇]\J𝑞

)
. In this region the Reynolds stress is so small that we will ignore it. We will

focus on reducing the error in 𝐴𝑞 × J𝑞 .
The complete list of inductive estimates is the following:

(𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) = (𝑣0, 𝑝0, 𝑅̊0) outside 𝐴𝑞 × J𝑞 , (9.11)

‖ 𝑅̊𝑞 ‖0 ≤ 𝛿𝑞+1𝜆
−6𝛼
𝑞 , (9.12)

��𝑣𝑞��1 ≤ 𝑀𝛿1/2
𝑞 𝜆𝑞 , (9.13)

��𝑣𝑞��0 ≤ 1 − 𝛿1/2
𝑞 , (9.14)

where M is a geometric constant that depends on Ω and is fixed throughout the iterative process. The
following instrumental result is key to the proof of Theorem 9.3, and is analogous to Proposition 3.2:

Proposition 9.4. There exists a universal constant M with the following property: Let 𝑇 ≥ 1 and let
Ω ⊂ (0, 1)3 ⊂ R3 be a bounded domain with smooth boundary. Let (𝑣0, 𝑝0, 𝑅̊0) ∈ 𝐶∞(R3 × [0, 𝑇])
be a subsolution whose support is contained in (0, 1)3 × [0, 𝑇] and such that supp 𝑅̊0 ⊂ Ω × [0, 𝑇].
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Furthermore, assume that (9.3)−(9.5) are satisfied for some sequence of positive numbers {𝑦𝑁 }∞𝑁=0.
Let 0 < 𝛽 < 1/3 and

1 < 𝑏2 < min
{

1 − 𝛽

2𝛽
,

11
10

}
. (9.15)

Then, there exists an 𝛼0 depending on 𝛽 and b such that for any 0 < 𝛼 < 𝛼0 there exists an 𝑎0 depending
on 𝛽, b,𝛼,Ω and {𝑦𝑁 }∞𝑁=0 such that for any 𝑎 ≥ 𝑎0 the following holds: Given a subsolution (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞)

satisfying (9.11)−(9.14), there exists a subsolution (𝑣𝑞+1, 𝑝𝑞+1, 𝑅̊𝑞+1) satisfying (9.11)−(9.14) with q
replaced by 𝑞 + 1. Furthermore, we have��𝑣𝑞+1 − 𝑣𝑞

��
0 +

1
𝜆𝑞+1

��𝑣𝑞+1 − 𝑣𝑞
��

1 ≤ 𝑀𝛿1/2
𝑞+1. (9.16)

As in Theorem 1.7, we need an auxiliary lemma to start the iterative process. This is the analogue of
Lemma 3.3:
Lemma 9.5. Let 𝑇 > 0 and let Ω ⊂ (0, 1)3 ⊂ R3 be a bounded domain with smooth boundary.
Let (𝑣0, 𝑝0, 𝑅̊0) ∈ 𝐶∞(R3 × [0, 𝑇]) be a subsolution whose support is contained in (0, 1)3 × [0, 𝑇]
and such that supp 𝑅̊0 ⊂ Ω × [0, 𝑇]. Let 𝜆 > 0 be sufficiently large. There exists a subsolution
(𝑣, 𝑝, 𝑅̊) ∈ 𝐶∞(R3 × [0, 𝑇]) that equals the initial subsolution outside the set{

𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) > 𝜆−1/12
}
× (𝜆−1/3, 𝑇 − 𝜆−1/3)

and such that

‖𝑣‖𝑁 � 𝜆𝑁 ∀𝑁 ≥ 0,

‖ 𝑅̊‖0 ≤ 𝜆−1/2,

where the implicit constants are independent of 𝜆. Furthermore, there exist geometric constants 𝐾1, 𝐾2
such that if 𝐾1𝑇 ‖𝑣0‖1 ≤ 1, then

‖𝑣 − 𝑣0‖0 ≤ 𝐾2‖ 𝑅̊0‖
1/2
0 .

9.3. Proof of Proposition 9.4

The proof is very similar to the proof of Proposition 3.2, but we will only perturb the subsolution at
times 𝑡 ∈ J𝑞+1. It will be convenient to define

𝛾 �
1
2
(𝑠𝑞 − 𝑠𝑞+1),

J̃𝑞 � [𝑠𝑞 − 𝛾, 𝑇 − 𝑠𝑞 + 𝛾] .

The parameters ℓ and 𝜏𝑞 are defined as in Proposition 3.2. Let us compare the time parameters:

𝑠𝑞

𝜏𝑞
� 𝛿𝑞+2𝜆

−6𝛼
𝑞+1 𝛿

1/2
𝑞 𝜆𝑞ℓ

−2𝛼 � (𝜆3
𝑞+1ℓ)

−2𝛼𝜆
1−𝛽−2𝑏2𝛽
𝑞 .

Note that the exponent of 𝜆𝑞 is greater than 0 by our assumption on b. Since we may assume that
2𝑑𝑞+1 ≤ 𝑑𝑞 , we conclude that for sufficiently small 𝛼 and sufficiently large a we have

𝛾 � 𝜏𝑞 .

Hence, the temporal cutoffs that we will need to use will not be too sharp.
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After these definitions, we can prove the result in a similar manner to Proposition 3.2. As before, we
divide the proof in four steps:

1. Preparing the subsolution. The beginning of the iterative process is identical to the one in Proposi-
tion 3.2: we use a convolution kernel in space 𝜓ℓ to mollify (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) into (𝑣ℓ , 𝑝ℓ , 𝑅̊ℓ) and then
we glue it in space to (𝑣0, 𝑝0, 𝑅̊0), obtaining a subsolution (𝑣̃ℓ , 𝑝ℓ ,

˚̃𝑅ℓ) that equals (𝑣0, 𝑝0, 𝑅̊0) in 𝐵2.
We must, however, introduce a minor modification: we add a correction 𝑤𝐿 to ensure that 𝑣̃ℓ +𝑤𝐿

has the same angular momentum as 𝑣0. Note that 𝑣𝑞 has the same angular momentum as 𝑣0 because
they are equal at 𝑡 = 0 and subsolutions preserve angular momentum, as argued several times. In
addition, it is easy to check that mollifying does not change the total angular momentum, so 𝑣ℓ − 𝑣0
has 0 total angular momentum. This may not be true for 𝑣̃ℓ − 𝑣0. Nevertheless, since we are gluing
in a (small) region where 𝑣ℓ is very similar to 𝑣0 (in terms of the parameters), the change in the
angular momentum will be very small. Therefore, we may add a small correction 𝑤𝐿 to 𝑣̃ℓ in 𝐴𝑞

while keeping the desired estimates. Of course, we modify the pressure and the Reynolds stress
accordingly to obtain a subsolution, which we still denote as (𝑣̃ℓ , 𝑝ℓ , ˚̃𝑅ℓ), for simplicity.

2. Gluing in space. In the intervals such that [𝑡𝑖 − 𝜏𝑞 , 𝑡𝑖 + 𝜏𝑞] ∩ J𝑞 ≠ ∅ the process is exactly the same
as in Proposition 3.2. In the rest of the intervals it suffices to take (𝑣̃𝑖 , 𝑝𝑖 ,

˚̃𝑅𝑖) = (𝑣0, 𝑝0, 𝑅̊0) because
outside J𝑞 we have |𝑅̊ |0 ≤ 1

4𝛿𝑞+2𝜆
−6𝛼
𝑞+1 , as required by (4.19).

Regarding the estimates (4.20)−(4.23), remember that (𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞) equals the initial subsolution
for 𝑡 ∉ J𝑞 . Therefore, it follows from (9.3)−(9.5) and standard estimates for mollifiers that for 𝑡 ∉ J𝑞

we have

‖(𝑣ℓ − 𝑣0) (·, 𝑡)‖𝐶𝑁 + ‖(𝜕𝑡𝑣ℓ − 𝜕𝑡𝑣0) (·, 𝑡)‖𝐶𝑁 � ℓ2,

‖(𝑝ℓ − 𝑝0) (·, 𝑡)‖𝐶𝑁 � ℓ2,

‖(𝑅̊ℓ − 𝑅̊0) (·, 𝑡)‖𝐶𝑁 � ℓ2.

The same bounds hold for (𝑣̃ℓ , 𝑝ℓ ,
˚̃𝑅ℓ). Therefore, this choice of (𝑣̃𝑖 , 𝑝𝑖 ,

˚̃𝑅𝑖) for the rest of the
intervals satisfies (4.20)−(4.23). Although (4.18) is not satisfied, its only use in the following step is
to ensure that 𝑣̃𝑖 and 𝑣̃ℓ have the same angular momentum. This is exactly what we did at the end of
the previous step.

3. Gluing in time. The construction is the same as in Proposition 3.2 but due to our choice of (𝑣̃𝑖 , 𝑝𝑖 , ˚̃𝑅𝑖)

we are actually gluing only in J̃𝑞 (remember that 𝜏𝑞 � 𝛾). We see that (𝑣𝑞 , 𝑣𝑞 , 𝑅̊𝑞) equals (𝑣0, 𝑝0, 𝑅̊0)

for 𝑡 ∉ J̃𝑞 and the support of 𝑅̊𝑞
(2) is contained in [𝐴𝑞 + 𝐵(0, 4𝜎)] × J̃𝑞 .

4. Perturbation. There are only two changes with respect to Proposition 3.2:
– We define the amplitudes 𝜌𝑞,𝑖 as 𝜌𝑞,𝑖 (𝑥, 𝑡) � 𝜂𝑖 (𝑥, 𝑡)

2𝛿𝑞+1.
– Instead of the cutoff 𝜙𝑞 we use 𝜙𝑞 (𝑥, 𝑡) � 𝜙𝑞 (𝑥)𝜃𝑞 (𝑡) for some smooth cutoff 𝜃𝑞 ∈ 𝐶∞

𝑐 (𝐼𝑞+1)

that equals 1 in J̃𝑞 . Hence, 𝜙𝑞 = 1 in the support of 𝑅̊𝑞
(2) .

The amplitudes 𝜌𝑞,𝑖 (𝑥, 𝑡) clearly satisfy the same estimates as in Proposition 3.2. In particular,
𝑅̊𝑞,𝑖 takes values in 𝐵(Id, 1/2). On the other hand, 𝜙𝑞𝑎(𝑅̊𝑞,𝑖) will satisfy the same estimates as
𝑎(𝑅̊𝑞,𝑖) because we may choose 𝜃𝑞 so that

��𝜕𝑡𝜃𝑞 �� � 𝛾−1 ≤ 𝜏−1
𝑞 .

We conclude that we may carry out the same construction as in the perturbation step of Proposi-
tion 3.2 (except for fixing the energy). The new subsolution will satisfy (9.12)−(9.16). In addition,
the cutoff 𝜙𝑞 ensures that the support of the perturbation is contained in 𝐴𝑞+1 ×J𝑞+1, as required by
the inductive hypothesis (9.11).

Finally, we emphasize an important difference: the constant M in this case is universal. In Propo-
sition 3.2 it depended on Ω because so did the amplitudes 𝜌𝑞,𝑖 . Since here they are independent of
Ω, arguing as in [7] yields a universal M.
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9.4. Proof of Lemma 9.5

We fix a cutoff 𝜃 ∈ 𝐶∞
𝑐 ((0, 𝑇)) such that

𝜃 (𝑡) =

{
1 if 𝑡 ∈ (2𝜆−1/3, 𝑇 − 2𝜆−1/3),

0 if 𝑡 ∉ (𝜆−1/3, 𝑇 − 𝜆−1/3).

Since 𝑅̊0 vanishes at 𝑡 = 0 and 𝑡 = 𝑇 , it is clear that | (1 − 𝜃) 𝑅̊0 | � 𝜆−1/2.
We then carry out the same construction as in Lemma 3.3 but replacing the cutoff 𝜙(𝑥) by 𝜙(𝑥, 𝑡) �

𝜙(𝑥)𝜃 (𝑡). This ensures that the perturbation vanishes if 𝑡 ∉ (𝜆−1/3, 𝑇 − 𝜆−1/3). It does worsen the
estimates, but it is not catastrophic. The most significant change is that when we write the term in
brackets in (7.28) as

∑
𝑘≠0 𝑐𝑘𝑒

𝑖𝜆𝑘 ·Φ, the vectors 𝑐𝑘 now satisfy the estimates

‖𝑐𝑘 ‖𝑁 � |𝑘 | −6𝜆1/3+𝑁 /12.

Applying the stationary phase lemma now yields

‖ℛ 𝑓 ‖1/15 �
𝜆1/3+(1+1/15)/12

𝜆1−1/15 < 𝜆−1/2,

which, continuing the construction in Lemma 3.3, yields the desired bound for 𝑅̊. Since the exponent is
actually smaller than −1/2, we can expend the extra factor in beating any geometric constant.

Finally, let us derive a precise estimate for 𝑣 − 𝑣0. Recall that

𝑤0 = 2‖ 𝑅̊0‖0 𝜙
2(∇Φ)−1𝑊 (𝑅, 𝜆Φ).

The last term can be bounded by a geometric constant depending on the compact subset N used when
applying Lemma 7.2. On the other hand, by standard estimates for the transport equation there exists a
geometric constant 𝐾1 such that

‖∇Φ − Id‖0 ≤
1
2
𝐾1𝑇 ‖𝑣0‖1 .

By our assumption on 𝑇 ‖𝑣0‖1, we have ‖∇Φ − Id‖0 ≤ 1/2, so ‖(∇Φ)−1‖0 ≤ 2. We conclude that

‖𝑤0‖0 ≤
1
2
𝐾2‖ 𝑅̊0‖0

for some geometric constant 𝐾2. Since 𝑤𝑐 + 𝑤𝐿 = 𝑂 (𝜆−1), it is clear that the required estimate holds
for sufficiently large 𝜆.

9.5. Proof of Theorem 9.3

To simplify the notation of this proof, given a map f defined in R3 × 𝐼 for some interval I, we will write

‖ 𝑓 ‖𝑁 ,𝐼 � supp𝑡 ∈𝐼 ‖ 𝑓 (·, 𝑡)‖𝐶𝑁 .

By dividing in half the intervals I𝑘 as many times as necessary, we may assume that

2𝐾1 |I𝑘 | ‖𝑣0‖1,I𝑘
≤ 1,

where |I𝑘 | is the length of the interval I𝑘 and 𝐾1 is the constant that appears in Lemma 9.5.
We apply Lemma 9.1 at the endpoints of each interval I𝑘 , obtaining a new subsolution (𝑣̃0, 𝑝0,

˚̃𝑅0)
in which the Reynolds stress vanishes at the endpoints of all the intervals I𝑘 . In addition, we have
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(𝑣̃0, 𝑝0,
˚̃𝑅0) = (𝑣0, 𝑝0, 𝑅̊0) outside Ω𝑘 for 𝑡 ∈ I𝑘 . By taking s sufficiently small in each application of

Lemma 9.1, we may assume that

‖𝑣̃0 − 𝑣0‖0,I𝑘
≤ ‖ 𝑅̊0‖0,I𝑘 ,

‖𝑣̃0‖1,I𝑘
≤ 2 ‖𝑣0‖1,I𝑘

,

‖
˚̃𝑅0‖0,I𝑘 ≤ 2‖ 𝑅̊0‖0,I𝑘 .

Once we have a subsolution in which the Reynolds stress vanishes at the endpoints of the intervals
I𝑘 , we may work in each of them independently. Indeed, our constructions keep the subsolution fixed
near the endpoints of the intervals.

We fix 𝑘 ≥ 0, and we fix a sequence of positive numbers {𝑦𝑁 ,𝑘 }
∞
𝑁=0 such that

‖𝑣̃0‖𝑁 ,I𝑘
+ ‖𝜕𝑡 𝑣̃0‖𝑁 ,I𝑘

≤ 𝑦𝑁 , (9.17)

‖𝑝0‖𝑁 ,I𝑘
≤ 𝑦𝑁 , (9.18)

‖
˚̃𝑅0‖𝑁 ,I𝑘 + ‖𝜕𝑡

˚̃𝑅0‖𝑁 ,I𝑘 ≤ 𝑦𝑁 . (9.19)

We choose b satisfying (9.15) and we choose 𝛼 smaller than the threshold given by Proposition 9.4. Let
𝑎0,𝑘 be the threshold given by Proposition 9.4 when applied to Ω𝑘 and our sequence {𝑦𝑁 ,𝑘 }

∞
𝑁=0. For

𝑎𝑘 ≥ 𝑎0,𝑘 we consider the parameters 𝜆𝑞,𝑘 and 𝛿𝑞,𝑘 defined as in (9.1) and (9.2).
Taking 𝑎𝑘 larger if necessary, we apply Lemma 9.5 with the parameter 𝜆12𝛼

1,𝑘 , obtaining a subsolution

(𝑣1, 𝑝1, 𝑅̊1) that equals (𝑣̃0, 𝑝0,
˚̃𝑅0) outside{

(𝑥, 𝑡) ∈ Ω𝑘 × I𝑘 : dist((𝑥, 𝑡), 𝜕 (Ω𝑘 × I𝑘 )) > 𝜆−4𝛼
1,𝑘

}
and satisfying the following estimates:

‖𝑣1‖𝑁 ,I𝑘
≤ 𝐶𝑁 ,𝑘𝜆

12𝑁 𝛼
1,𝑘 , ‖ 𝑅̊1‖0,I𝑘 ≤ 𝜆−6𝛼

1,𝑘 ,

where the constants 𝐶𝑁 ,𝑘 are independent of 𝜆1,𝑘 but they will depend on Ω𝑘 , I𝑘 and the initial
subsolution. Furthermore, we have

‖𝑣1 − 𝑣̃0‖0,I𝑘
≤ 𝐾2‖

˚̃𝑅0‖0,I𝑘 ≤ 2𝐾2‖ 𝑅̊0‖0,I𝑘 ,

where we have used that 𝐾1 |I𝑘 | ‖𝑣̃0‖1,I𝑘
≤ 1.

Next, we consider the scale invariance of the Euler equations and subsolutions:

𝑣(𝑥, 𝑡) ↦→ Γ𝑣(𝑥, Γ𝑡), 𝑝(𝑥, 𝑡) ↦→ Γ2𝑝(𝑥, Γ𝑡), 𝑅̊(𝑥, 𝑡) ↦→ Γ2 𝑅̊(𝑥, Γ𝑡).

We choose Γ = 𝛿1/2
2,𝑘 and we begin to work in this rescaled setting, which we will indicate with

a superscript r. Note that (𝑣̃𝑟0 , 𝑝
𝑟
0 ,

˚̃𝑅𝑟
0) still satisfies (9.3)−(9.5) with the same sequence {𝑦𝑁 ,𝑘 }

∞
𝑁=0.

Regarding (𝑣𝑟1 , 𝑝
𝑟
1 , 𝑅̊

𝑟
1), it follows from the definition of the rescaling that

‖ 𝑅̊𝑟
1 ‖0,I𝑟

𝑘
≤ 𝛿2,𝑘𝜆

−6𝛼
1,𝑘 .

On the other hand, since the constants 𝐶𝑁 ,𝑘 are independent of 𝜆1,𝑘 , for sufficiently large 𝑎𝑘 we have��𝑣𝑟1��0,I𝑟
𝑘
= 𝛿1/2

2,𝑘 ‖𝑣1‖0,I𝑘
≤ 𝛿1/2

2,𝑘𝐶0,𝑘 ≤ 1 − 𝛿1/2
1,𝑘 ,��𝑣𝑟1��1,I𝑟

𝑘
= 𝛿1/2

2,𝑘 ‖𝑣1‖1,I𝑘
≤ 𝛿1/2

2,𝑘𝐶1,𝑘𝜆
12𝛼
1,𝑘 ≤ 𝑀𝛿1/2

1,𝑘𝜆1,𝑘 .
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Finally, (𝑣𝑟1 , 𝑝
𝑟
1 , 𝑅̊

𝑟
1) = (𝑣̃𝑟0 , 𝑝

𝑟
0 ,

˚̃𝑅𝑟
0) outside{

(𝑥, 𝑡) ∈ Ω𝑘 × I𝑟
𝑘 : dist((𝑥, 𝑡), 𝜕 (Ω𝑘 × I𝑟

𝑘 )) > 𝜆−4𝛼
1

}
.

Let us consider the sets 𝐴𝑞,𝑘 and J𝑞,𝑘 that we obtain when we apply the definition of (9.7) and (9.9)
to Ω𝑘 and I𝑟

𝑘 . We see that (𝑣𝑟1 , 𝑝
𝑟
1 , 𝑅̊

𝑟
1) = (𝑣̃𝑟0 , 𝑝

𝑟
0 ,

˚̃𝑅𝑟
0) outside 𝐴1,𝑘 × J1,𝑘 for sufficiently small 𝛼 and

sufficiently large 𝑎𝑘 .
We conclude that (𝑣𝑟1 , 𝑝

𝑟
1 , 𝑅̊

𝑟
1) satisfies the inductive hypotheses (9.11)−(9.14) in the interval I𝑟

𝑘 with
initial subsolution (𝑣̃𝑟0 , 𝑝

𝑟
0 ,

˚̃𝑅𝑟
0). In addition, for 𝑡 ∈ I𝑟

𝑘 the initial subsolution satisfies (9.3)−(9.5) with
the sequence {𝑦𝑁 ,𝑘 }

∞
𝑁=0 and the support of ˚̃𝑅𝑟

0 (·, 𝑡) is contained in Ω𝑘 . Finally, by taking 𝑎𝑘 even larger,
we may assume that

��I𝑟
𝑘

�� ≥ 1.
Applying Proposition 9.4 in each interval I𝑟

𝑘 and undoing the scaling, we obtain a sequence of
subsolutions {(𝑣𝑞 , 𝑝𝑞 , 𝑅̊𝑞)}

∞
𝑞=1 ∈ 𝐶∞(R3 × (0, 𝑇)) that equal (𝑣0, 𝑝0, 0) in (R3\Ω𝑘 ) ×I𝑘 for any 𝑘 ≥ 0.

In addition, for 𝑡 ∈ I𝑘 we have:

‖ 𝑅̊𝑞 (·, 𝑡)‖𝐶0 ≤ 𝛿𝑞+1,𝑘 , (9.20)��(𝑣𝑞+1 − 𝑣𝑞) (·, 𝑡)
��
𝐶0 +

1
𝜆𝑞+1,𝑘

��(𝑣𝑞+1 − 𝑣𝑞) (·, 𝑡)
��
𝐶1 ≤ 𝑀𝛿−1/2

1,𝑘 𝛿1/2
𝑞+1,𝑘 . (9.21)

We see that 𝑣𝑞 converges uniformly in compact subsets of R3 × (0, 𝑇) to some continuous map v. On
the other hand, note that the pressure is the only compactly supported solution of

Δ 𝑝𝑞 = div div(−𝑣𝑞 ⊗ 𝑣𝑞 + 𝑅̊𝑞).

Therefore, 𝑝𝑞 also converges to some pressure 𝑝 ∈ 𝐿𝑠 (R3) for any 1 ≤ 𝑠 < ∞. Since 𝑅̊𝑞 converges to
0 uniformly in compact subsets of R3 × (0, 𝑇), we conclude that (𝑣, 𝑝) is a weak solution of the Euler
equations in R3 × (0, 𝑇).

Furthermore, using (9.21) we obtain

∞∑
𝑞=1

��𝑣𝑞+1 − 𝑣𝑞
��
𝛽′,I𝑘

≤

∞∑
𝑞=1

𝐶 (𝛽′, 𝛽)
��𝑣𝑞+1 − 𝑣𝑞

��1−𝛽′

0,I𝑘

��𝑣𝑞+1 − 𝑣𝑞
��𝛽′

1,I𝑘

≤ 𝐶 (𝛽′, 𝛽)
∞∑
𝑞=1

(𝑀𝛿−1/2
1,𝑘 𝛿1/2

𝑞,𝑘 )
1−𝛽′

(𝑀𝛿−1/2
1,𝑘 𝛿1/2

𝑞,𝑘 )
𝛽′

≤ 𝑀 𝐶 (𝛽′, 𝛽)𝛿−1/2
1,𝑘

∞∑
𝑞=1

𝜆
𝛽′−𝛽
𝑞,𝑘 ,

so {𝑣𝑞}
∞
𝑞=1 is uniformly bounded in 𝐶0

𝑡 𝐶
𝛽′

𝑥 in any compact subset 𝐼 ⊂ (0, 𝑇) for all 𝛽′ < 𝛽. Arguing as
in [7] we obtain (local) time regularity. We conclude that 𝑣 ∈ 𝐶

𝛽′′

loc (R
3 × (0, 𝑇)), with 𝛽′′ < 𝛽′ < 1/3

arbitrary.
Finally, we compute the difference between 𝑣0 and v. We write 𝑏 = 1+𝛾, so that 𝑏𝑞 −1 ≥ 𝛾𝑞. Taking

𝑎𝑘 sufficiently large, we have

‖𝑣 − 𝑣1‖0,I𝑘
≤

∞∑
𝑞=1

��𝑣𝑞+1 − 𝑣𝑞
��

0,I𝑘
≤

∞∑
𝑞=1

𝑀𝛿−1/2
1,𝑘 𝛿1/2

𝑞+1,𝑘 �
∞∑
𝑞=1

𝑎
𝛽𝑏 (1−𝑏𝑞 )

𝑘 �
∞∑
𝑞=1

𝑎
−𝛽𝑏𝛾𝑞
𝑘

� 𝑎
−𝛽𝑏𝛾
𝑘

∑
𝑞=0

(𝑎
𝛽𝑏𝛾
𝑘 )−𝑞 � 𝑎

−𝛽𝑏𝛾
𝑘 .
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Thus, by further increasing 𝑎𝑘 , we have ‖𝑣 − 𝑣1‖0,I𝑘
≤ ‖ 𝑅̊0‖0,I𝑘 . We conclude

‖𝑣 − 𝑣0‖0,I𝑘
≤ ‖𝑣 − 𝑣1‖0,I𝑘

+ ‖𝑣1 − 𝑣̃0‖0,I𝑘
+ ‖𝑣̃0 − 𝑣0‖0,I𝑘

≤ (2 + 2𝐾2)‖ 𝑅̊0‖0,I𝑘 .

10. Vortex sheet

This section is devoted to the proof of Theorem 1.4. The key ingredient is Theorem 9.3, which is applied
to an initial subsolution with the appropriate behavior. We fix a parameter 0 < 𝜆 < (4𝑇)−1. We choose
an even function 𝑓 ∈ 𝐶∞

𝑐 ((−1, 1)) such that
∫

𝑓 = 2 and we define

𝐹 (𝑥) �
∫ 𝑥

−1
𝑓 (𝑠) 𝑑𝑠, 𝐺 (𝑥) �

∫ 𝑥

−1
𝑠 𝑓 (𝑠) 𝑑𝑠.

Let 𝑣0 and 𝑅0 be the periodic extension of

𝑣0 (𝑥, 𝑡) �
[
1 − 𝐹

(
𝑥3 − 1/4

𝜆𝑡

)
+ 𝐹

(
𝑥3 − 3/4

𝜆𝑡

)]
𝑒1,

𝑅̊0 (𝑥, 𝑡) � 𝜆

[
𝐺

(
𝑥3 − 1/4

𝜆𝑡

)
− 𝐺

(
𝑥3 − 3/4

𝜆𝑡

)]
(𝑒1 ⊗ 𝑒3 + 𝑒3 ⊗ 𝑒1).

Direct computation shows that 𝜕𝑡𝑣0 = div 𝑅̊0. It is also clear that 𝑣0 · ∇𝑣0 = 0. Therefore, the triplet
(𝑣0, 0, 𝑅̊0) is a subsolution.

Since f is even, the support of G is contained in (−1, 1). For 𝑘 ≥ 0 let us defineI𝑘 � [2−(𝑘+1)𝑇, 2−𝑘𝑇]
and

Ω𝑘 � T2 ×

[(
1
4
− 2−𝑘𝜆𝑇,

1
4
+ 2−𝑘𝜆𝑇

)
∪

(
3
4
− 2−𝑘𝜆𝑇,

3
4
+ 2−𝑘𝜆𝑇

)
+ Z

]
.

We see that (𝑣0, 0, 𝑅̊0) equals (𝑢0, 0, 0) outside Ω𝑘 for 𝑡 ∈ I𝑘 . Since div div 𝑅̊0 = 0, we may apply
Theorem 9.3, obtaining a weak solution of the Euler equations 𝑣 ∈ 𝐶

𝛽
loc(T

3×(0, 𝑇)) that equals (𝑢0, 0, 0)
outside Ω𝑘 for 𝑡 ∈ I𝑘 (in fact, for 𝑡 ∈ (0, 2−𝑘𝑇) because Ω 𝑗 ⊂ Ω𝑘 for all 𝑗 ≤ 𝑘). In particular, the initial
datum is 𝑢0. Furthermore, there exists a universal constant C such that for any 𝑘 ≥ 0 we have

‖𝑣 − 𝑣0‖0,I𝑘
≤ 𝐶‖ 𝑅̊‖0,I𝑘 ≤ 𝐶 ′𝜆. (10.1)

Let us estimate the energy. First, we define

𝛿 � 2 −

∫ 1

−1
[1 − 𝐹 (𝑠)]2𝑑𝑠.

Note that 𝛿 > 0 because the continuous function F takes values in [0, 2] and it satisfies 𝐹 (0) = 1, since
f is even. We compute∫

T3
|𝑣0 (𝑥, 𝑡) |

2 𝑑𝑥 = 1 − 4𝜆𝑡 +
∫ 1/4+𝜆𝑡

1/4−𝜆𝑡

[
1 − 𝐹

(
𝑥3 − 1/4

𝜆𝑡

)]3
𝑑𝑥3

+

∫ 3/4+𝜆𝑡

3/4−𝜆𝑡

[
−1 + 𝐹

(
𝑥3 − 3/4

𝜆𝑡

)]3
𝑑𝑥3 = 1 − 2𝛿𝜆𝑡,

where we have used that 𝑣0 = 𝑢0 except close to 𝑥3 = 1/4 and 𝑥3 = 3/4. Next, we write∫
T3

|𝑣 | 2 =
∫
T3

|𝑣0 |
2 +

∫
T3

|𝑣 − 𝑣0 |
2 + 2

∫
T3
𝑣0 · (𝑣 − 𝑣0).
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Let us choose 𝜆 sufficiently small so that 𝜆 < (32𝐶 ′)−1𝛿, where 𝐶 ′ is the constant in (10.1). Hence, for
𝑡 ∈ I𝑘 we have����∫

T3
|𝑣 | 2 −

∫
T3

|𝑣0 |
2
���� ≤ [(𝐶 ′𝜆)2 + 2(𝐶 ′𝜆)] |Ω𝑘 | < [𝛿/8] (4 · 2−𝑘𝜆𝑇) = 2−(𝑘+1)𝛿𝜆𝑇,

where we have used that 𝑣 = 𝑣0 outside Ω𝑘 for 𝑡 ∈ I𝑘 . By definition of I𝑘 , we see that 2−(𝑘+1)𝑇 ≤ 𝑡 for
any 𝑡 ∈ I𝑘 . We conclude that

1 − 3𝛿𝜆𝑡 <
∫
T3

|𝑣(𝑥, 𝑡) | 2 𝑑𝑥 < 1 − 𝛿𝜆𝑡.

Therefore, the weak solution v is admissible. In addition, we see that we obtain a sequence of different
solutions {𝑣𝑖}∞𝑖=𝑖0 by repeating the construction with 𝜆𝑖 = 4−𝑖 for sufficiently large 𝑖0.

11. Blowup

In this final section we prove Theorem 1.5 on the existence of Hölder continuous weak solutions of
the 3d Euler equations that exhibit a singular set of maximal dimension. The proof makes use of some
technical lemmas that are presented in Subsections 11.1 and 11.2.

11.1. Building blocks

The fundamental element in our construction is the following simple blowup, whose proof is postponed
to Subsection 11.2:

Lemma 11.1. Let 0 < 𝛽 < 1/3 and let 𝑞 > 2. Let 𝑎 ∈ 𝐶∞(R,R3) be a bounded map. Given 𝜀 > 0,
there exists a weak solution of the Euler equations (𝑣𝜀 , 𝑝𝜀) in R3 × R such that:

• (𝑣𝜀 , 𝑝𝜀) = (𝑎,−𝜕𝑡𝑎 · 𝑥) outside 𝐵(0, 𝜀) × (0, 𝜀),
• the q-singular set of 𝑣𝜀 is 𝒮𝑞

𝑣𝜀 = {(0, 𝜀)},
• 𝑣𝜀 ∈ 𝐶

𝛽
loc (R

3 × R\𝒮
𝑞
𝑣𝜀 ),

• the relative energy 𝑒𝜀 (𝑡) � ‖𝑣𝜀 (·, 𝑡) − 𝑎‖2
𝐿2 (R3)

is continuous and so is the map 𝑡 ↦→
∫
𝑎 · (𝑣𝜀−𝑎)𝑑𝑥.

Furthermore, there exists a constant 𝐶 > 0 depending on ‖𝑎‖𝐿∞ < ∞ but not on 𝜀 such that

‖𝑣𝜀 (·, 𝑡) − 𝑎(𝑡)‖2
𝐿2 (R3)

+ ‖𝑝𝜀 (·, 𝑡) + 𝜕𝑡𝑎(𝑡) · 𝑥‖𝐿1 (R3) ≤ 𝐶𝜀3 ∀𝑡 ∈ R. (11.1)

Once we known how to construct a single blowup, as stated in the previous lemma, we will use the
following result to glue many of them together. Its proof is completely independent of Lemma 11.1.

Lemma 11.2. Let 𝑎 ∈ 𝐶∞(R,R3). Let {(𝑣𝑖 , 𝑝𝑖)}
∞
𝑖=0 be a sequence of weak solutions of the Euler

equations in R3 × R. Suppose that the sets 𝐹𝑖 given by the closure of

{(𝑥, 𝑡) ∈ R4 : (𝑣𝑖 , 𝑝𝑖) (𝑥, 𝑡) ≠ (𝑎(𝑡),−𝜕𝑡𝑎(𝑡) · 𝑥)}

are pairwise disjoint and that

∞∑
𝑖=0

(
‖𝑣𝑖 − 𝑎‖𝐿2 (R4) + ‖𝑝𝑖 + 𝜕𝑡𝑎 · 𝑥‖𝐿1 (R4)

)
< ∞.
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Then, the pair (𝑣, 𝑝) given by

𝑣 � 𝑎 +

∞∑
𝑖=0

(𝑣𝑖 − 𝑎), 𝑝 � −𝜕𝑡𝑎 · 𝑥 +
∞∑
𝑖=1

(𝑝𝑖 + 𝜕𝑡𝑎 · 𝑥)

is a weak solution of the Euler equations.

Proof. The hypotheses readily yield 𝑣 ∈ 𝐿2
loc (R

4) and 𝑝 ∈ 𝐿1
loc(R

4). Furthermore, it is easy to see that
any partial sum

𝑣̃𝑘 � 𝑎 +

𝑘∑
𝑖=0

(𝑣𝑖 − 𝑎), 𝑝𝑘 � 𝜕𝑡𝑎 · 𝑥 +
𝑘∑

𝑖=0
(𝑝𝑖 − 𝜕𝑡𝑎 · 𝑥)

is a subsolution. Indeed, fix 𝜒𝑖 ∈ 𝐶∞(R4) such that 𝜒−1
𝑖 ({0}) = 𝐹𝑖 and consider 𝜃1 � 𝜒1/(𝜒1 + 𝜒2) and

𝜃2 � 1− 𝜃1. They are well defined because 𝐹1 ∩ 𝐹2 = ∅. We see that 𝜃1 vanishes in 𝐹2 and 𝜃2 vanishes
in 𝜃1, so for any 𝜙 ∈ 𝐶∞

𝑐 (R4,R3) we have∫
R4

(𝜕𝑡𝜙 · 𝑣̃2 + ∇𝜙 : (𝑣̃2 ⊗ 𝑣̃2 + 𝑝2 Id)) =
∫
R4

(𝜕𝑡 (𝜃1𝜙) · 𝑣̃2 + ∇(𝜃1𝜙) : (𝑣̃2 ⊗ 𝑣̃2 + 𝑝2 Id))

+

∫
R4

(𝜕𝑡 (𝜃2𝜙) · 𝑣̃2 + ∇(𝜃2𝜙) : (𝑣̃2 ⊗ 𝑣̃2 + 𝑝2 Id))

=
∫
R4

(𝜕𝑡 (𝜃1𝜙) · 𝑣1 + ∇(𝜃1𝜙) : (𝑣1 ⊗ 𝑣1 + 𝑝1 Id))

+

∫
R4

(𝜕𝑡 (𝜃2𝜙) · 𝑣2 + ∇(𝜃2𝜙) : (𝑣2 ⊗ 𝑣2 + 𝑝2 Id))

= 0,

which follows from the definition of (𝑣𝑖 , 𝑝𝑖) being a weak solution of the Euler equations using the test-
function 𝜃𝑖𝜙. An analogous argument proves that 𝑣̃2 is weakly divergence-free. Therefore, (𝑣̃2, 𝑝2) is a
weak solution of the Euler equations. Furthermore, iterating this argument we conclude that (𝑣̃𝑘 , 𝑝𝑘 ) is
a weak solution of the Euler equations for any 𝑘 ≥ 1. Since 𝑣̃𝑘 converges to v in 𝐿2 (𝐾) and 𝑝𝑘 converges
to p in 𝐿1 (𝐾) for any compact subset 𝐾 ⊂ R4, it is easy to see that (𝑣, 𝑝) is a weak solution of the Euler
equations. �

11.2. Proof of Lemma 11.1

Note it suffices to prove the result for 𝜀 = 1 because for 𝜀 ≠ 1 we could simply take

(𝑣𝜀 , 𝑝𝜀) (𝑥, 𝑡) � (𝑣1, 𝑝1) (𝑥/𝜀, 𝑡/𝜀)

with a rescaled accordingly. It is clear that this scaling preserves the q-singular set, that is,

𝒮
𝑞
𝑣𝜀 = {(𝑥, 𝑡) ∈ R3 × R : (𝑥/𝜀, 𝑡/𝜀) ∈ 𝒮

𝑞
𝑣1 } = {(0, 𝜀)}.

Furthermore, since 𝑝1 + 𝜕𝑡𝑎 · 𝑥 will be the only compactly supported solution of

−Δ (𝑝1 + 𝜕𝑡𝑎 · 𝑥) = div div(𝑣1 ⊗ 𝑣1) = div div(𝑣1 ⊗ 𝑣1 − 𝑎 ⊗ 𝑎)

= div div[(𝑣1 − 𝑎) ⊗ (𝑣1 − 𝑎) + (𝑣1 − 𝑎) ⊗ 𝑎 + 𝑎 ⊗ (𝑣1 − 𝑎)],
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standard Calderón-Zygmund estimates yield

‖𝑝1 (·, 𝑡) + 𝜕𝑡𝑎(𝑡) · 𝑥‖𝐿1 (R3) ≤ 𝐶 ‖𝑣1(·, 𝑡) − 𝑎(𝑡)‖2
𝐿2 (R3)

.

Thus, to prove (11.1) it suffices to show that (𝑣1 − 𝑎) ∈ 𝐿∞
𝑡 𝐿

2
𝑥 .

From now on, we will assume 𝜀 = 1 and drop the subscript 1 for simplicity. By [32] there exists a
nontrivial steady solution of the Euler equations with compact support (𝑢, 𝜋) ∈ 𝐶∞

𝑐 (R3). By rescaling,
we may assume that its support is contained in the ball 𝐵(0, 1/4). We define

𝑈 (𝑥) � 𝑢 (𝑥 − 𝑒1/4) − 𝑢 (𝑥 + 𝑒1/4) ,
𝑃(𝑥) � 𝜋 (𝑥 − 𝑒1/4) − 𝜋 (𝑥 + 𝑒1/4) .

Therefore, (𝑈, 𝑃) ∈ 𝐶∞
𝑐 (𝐵(0, 1)) is a nontrivial steady solution of the Euler equations such that∫

𝜉 ·𝑈 = 0 ∀𝜉 ∈ ker∇sym.

Hence, by Lemma 2.9 there exists 𝑆0 ∈ 𝐶∞
𝑐 (𝐵(0, 1),S3) such that div 𝑆0 = 𝑈. We introduce a parameter

𝛼 ∈ (−1, 0) that will be fixed later and we define

𝑆 � (1 + 𝛼) (𝑥 ⊗ 𝑈 +𝑈 ⊗ 𝑥) − (4 + 5𝛼)𝑆0.

Since div(𝑥 ⊗ 𝑈 +𝑈 ⊗ 𝑥) = 4𝑈 + 𝑥 · ∇𝑈 and U is divergence-free, we have

div div 𝑆 = div (−𝛼𝑈 + (1 + 𝛼)𝑥 · ∇𝑈) = 0. (11.2)

Furthermore, we see that the triplet (𝑈, 𝑃, 𝑆) satisfies

−𝛼𝑈 + (1 + 𝛼)𝑥 · ∇𝑈 + div(𝑈 ⊗ 𝑈 + 𝑃 Id) = div 𝑆. (11.3)

Consider the self-similar ansatz

𝑣̃0(𝑥, 𝑡) � (1 − 𝑡)𝛼𝑈

(
𝑥

(1 − 𝑡)1+𝛼

)
,

𝑝0 (𝑥, 𝑡) � (1 − 𝑡)2𝛼𝑃

(
𝑥

(1 − 𝑡)1+𝛼

)
,

𝑅0(𝑥, 𝑡) � (1 − 𝑡)2𝛼𝑆

(
𝑥

(1 − 𝑡)1+𝛼

)
.

It follows from Equation (11.3) that the triplet (𝑣̃0, 𝑝0, 𝑅0) is a subsolution of the Euler equations in
R

3 × [0, 1) (in which the Reynolds stress is not normalized to be trace-free, yet). Regarding the scaling,
we see that

‖𝑣̃0 (·, 𝑡)‖𝐿𝑟 = (1 − 𝑡)𝛼+3(1+𝛼)/𝑟 ‖𝑈‖𝐿𝑟 .

We choose

𝛼 � −
3

10
−

3
2(3 + 𝑞)

,

which ensures that

lim
𝑡→1

‖𝑣̃0(·, 𝑡)‖𝐿2 = 0, lim
𝑡→1

‖𝑣̃0 (·, 𝑡)‖𝐿𝑞 = +∞.
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Next, we fix 𝜒 ∈ 𝐶∞([0, 1]) that vanishes in a neighborhood of 0 and is identically 1 in a neighborhood
of 1. Since (𝑣̃0, 𝑝0, 𝑅0) is a subsolution, is is easy to see that the triplet (𝑣0, 𝑝0, 𝑅0) given by

𝑣0(𝑥, 𝑡) � 𝑎(𝑡) + 𝜒(𝑡)𝑣̃0(𝑥, 𝑡),

𝑝0 (𝑥, 𝑡) � −𝜕𝑡𝑎 · 𝑥 + 𝜒(𝑡)2𝑝0 (𝑥, 𝑡),

𝑅0(𝑥, 𝑡) � 𝜒(𝑡)𝑅0 + 𝜒′(𝑡) (1 − 𝑡)−1𝑆0 ((1 − 𝑡)−1/2𝑥) + 𝜒(𝑡) (𝑎 ⊗ 𝑣̃0 + 𝑣̃0 ⊗ 𝑎) (𝑥, 𝑡)

is also a subsolution and that div div 𝑅0 vanishes. Let I𝑘 � [1 − 2−𝑘 , 1 − 2−(𝑘+1) ] and Ω𝑘 �
𝐵(0, 2−(1+𝛼)𝑘 ). We see that the support of 𝑅0 (·, 𝑡) is contained in Ω𝑘 for 𝑡 ∈ I𝑘 . In fact, so is the
support of (𝑣0, 𝑝0, 𝑅0) (·, 𝑡). In addition, we see that

‖𝑣0 − 𝑎‖0,I𝑘
� 2−𝛼(𝑘+1) , ‖𝑅0‖0,I𝑘

� 2−2𝛼(𝑘+1) ,

where the implicit constant depends on ‖𝑎‖𝐿∞ but not on k.
We would like to apply Theorem 9.3. While our current situation does not exactly meet the hypotheses

of Theorem 9.3, this is not really an issue. In spite of the fact that our subsolution is not compactly
supported, what matters is the support of the Reynolds stress, as argued in Subsection 3.3. Furthermore,
although 𝑅0 is not trace-free, this can be easily solved in the proof of Theorem 9.3. After applying
Lemma 9.1, one simply has to replace (𝑣̃0, 𝑝0, 𝑅0) by(

𝑣̃0, 𝑝0 −
1
3

tr(𝑅0), 𝑅0 −
1
3

tr(𝑅0) Id
)
.

Therefore, there exists a weak solution (𝑣, 𝑝) of the Euler equations in R3 × (0, 1) with 𝑣 ∈ 𝐶
𝛽
loc(R

3 ×

(0, 1)) and (𝑣, 𝑝) = (𝑎, 0) in (R3\Ω𝑘 ) × I𝑘 for 𝑘 ≥ 0. Furthermore, since (𝑣0, 𝑝0, 𝑅0) = (𝑎, 0, 0) for
t sufficiently close to 0, a careful revision of Theorem 9.3 will convince us that (𝑣, 𝑝) = (𝑎, 0) in a
neighborhood of 𝑡 = 0. Thus, we may extend (𝑣, 𝑝) to the interval (−∞, 1).

On the other hand, for 𝑡 ∈ I𝑘 we have

‖𝑣 − 𝑎‖0,I𝑘
≤ ‖𝑣0 − 𝑎‖0,I𝑘

+ ‖𝑣 − 𝑣0‖0,I𝑘
≤ ‖𝑣0 − 𝑎‖0,I𝑘

+ 𝐶 ‖𝑅0‖
1/2
0,I𝑘

≤ 𝐶 2−𝛼𝑘 ,

where the constant changes after each inequality and it is allowed to depend on ‖𝑎‖𝐿∞ but not on k.
Hence,

‖𝑣 − 𝑎‖0,I𝑘
|Ω𝑘 | ≤ 𝐶 2−(3+4𝛼)𝑘 , ‖𝑣 − 𝑎‖2

0,I𝑘
|Ω𝑘 | ≤ 𝐶 2−(3+5𝛼)𝑘 . (11.4)

Our choice of 𝛼 ensures that both quantities go to 0 when 𝑘 → ∞. We conclude that the maps
𝑡 ↦→ ‖𝑣(·, 𝑡) − 𝑎‖2

𝐿2 (R3)
and 𝑡 ↦→

∫
𝑎 · (𝑣𝜀 − 𝑎)𝑑𝑥 can be extended by 0 to a continuous function in the

whole R.
Next, we show that we may extend our weak solution to R3 × R by setting (𝑣, 𝑝) = (𝑎, 0) for 𝑡 ≥ 1.

For simplicity, we still denote this extension as (𝑣, 𝑝). It will be a weak solution in R3 × R if and only
if for any solenoidal test-function 𝜙 ∈ 𝐶∞

𝑐 (R3 × R) we have∫
R

∫
R3
[𝜕𝑡𝜙 · 𝑣 + ∇𝜙 : (𝑣 ⊗ 𝑣)]𝑑𝑥𝑑𝑡 = 0.

We split the integral:∫ ∞

1

∫
R3
[𝜕𝑡𝜙 · 𝑣 + ∇𝜙 : (𝑣 ⊗ 𝑣)]𝑑𝑥𝑑𝑡 =

∫ ∞

1

∫
R3
[𝜕𝑡𝜙 · 𝑎 + ∇𝜙 : (𝑎 ⊗ 𝑎)]𝑑𝑥𝑑𝑡

=
∫ ∞

1

∫
R3
[𝜕𝑡𝜙(𝑥, 𝑡) · 𝑎(𝑡)]𝑑𝑥𝑑𝑡 = 0,
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where we have used that, for a fixed time t, 𝑎(𝑡) is just a constant vector and 𝜕𝑡𝜙(·, 𝑡) is a compactly
supported divergence-free. Thus, the spatial integral vanishes for each time t. We conclude that (𝑣, 𝑝)
will be a weak solution in R3 × R if and only if∫ 1

−∞

∫
R3
[𝜕𝑡𝜙 · 𝑣 + ∇𝜙 : (𝑣 ⊗ 𝑣)]𝑑𝑥𝑑𝑡 = 0. (11.5)

We choose a cutoff function 𝜃 ∈ 𝐶∞(R) that equals 0 if 𝑡 ≤ 0 and equals 1 if 𝑡 ≥ 1/2. For 𝑗 ≥ 1
consider 𝜃 𝑗 (𝑡) � 𝜃 (1 + 2 𝑗 (𝑡 − 1)). Since (1 − 𝜃 𝑗 )𝜙 ∈ 𝐶∞

𝑐 (R3 × (−∞, 1)) is solenoidal and (𝑣, 𝑝) is a
weak solution in R3 × (−∞, 1), we see that∫ 1

−∞

∫
R3
[𝜕𝑡𝜙 · 𝑣 + ∇𝜙 : (𝑣 ⊗ 𝑣)]𝑑𝑥𝑑𝑡 =

∫ 1

1−2− 𝑗

∫
R3
[𝜕𝑡 (𝜃 𝑗𝜙) · 𝑣 + ∇(𝜃 𝑗𝜙) : (𝑣 ⊗ 𝑣)]𝑑𝑥𝑑𝑡. (11.6)

Let us study the second term on the right-hand side. We fix 𝑡 ∈ I𝑘 and we write∫
R3

∇(𝜃 𝑗𝜙) : (𝑣 ⊗ 𝑣) 𝑑𝑥 =
∫
R3

∇(𝜃 𝑗𝜙) : (𝑣 ⊗ 𝑣 − 𝑎 ⊗ 𝑎) 𝑑𝑥.

Taking into account that

𝑣 ⊗ 𝑣 − 𝑎 ⊗ 𝑎 = (𝑣 − 𝑎) ⊗ (𝑣 − 𝑎) + 𝑎 ⊗ (𝑣 − 𝑎) + (𝑣 − 𝑎) ⊗ 𝑎

and (11.4), we surmise that for 𝑡 ∈ I𝑘����∫
R3

∇(𝜃 𝑗𝜙) : (𝑣 ⊗ 𝑣) 𝑑𝑥

���� ≤ 𝐶 ‖𝜙‖1 2−(3+5𝛼)𝑘 .

Therefore,����∫ 1

1−2− 𝑗

∫
R3

∇(𝜃 𝑗𝜙) : (𝑣 ⊗ 𝑣) 𝑑𝑥𝑑𝑡

���� ≤ 𝐶 ‖𝜙‖1

∞∑
𝑘= 𝑗

2−(3+5𝛼)𝑘 |I𝑘 | ≤ 𝐶 ‖𝜙‖1 2−(4+5𝛼) 𝑗

because 3 + 5𝛼 > 0 by our choice of 𝛼. Regarding the first term on the right-hand side of (11.6), we
split the integral into∫ 1

1−2− 𝑗

∫
R3

𝜕𝑡 (𝜃 𝑗𝜙) · 𝑣 𝑑𝑥𝑑𝑡 =
∫ 1

1−2− 𝑗

∫
R3

𝜕𝑡 (𝜃 𝑗𝜙) · 𝑎 𝑑𝑥𝑑𝑡 +

∫ 1

1−2− 𝑗

∫
R3

𝜕𝑡 (𝜃 𝑗𝜙) · (𝑣 − 𝑎) 𝑑𝑥𝑑𝑡.

Again, the first term vanishes because if we keep t fixed 𝑎(𝑡) is just a constant vector and 𝜕𝑡 (𝜃 𝑗𝜙) (·, 𝑡)
is a compactly supported divergence-free field. Thus, the spatial integral vanishes for each time t.
Concerning the second term, we estimate����∫ 1

1−2− 𝑗

∫
R3

𝜕𝑡 (𝜃 𝑗𝜙) · (𝑣 − 𝑎) 𝑑𝑥𝑑𝑡

���� ≤ ∞∑
𝑘= 𝑗

��𝜕𝑡 (𝜃 𝑗𝜙)
��

0 ‖𝑣 − 𝑎‖0,I𝑘
|Ω𝑘 | |I𝑘 |

≤ 𝐶 (‖𝜙‖0 + ‖𝜕𝑡𝜙‖0)2 𝑗
∞∑
𝑘= 𝑗

2−(3+4𝛼)𝑘2−𝑘

≤ 𝐶 (‖𝜙‖0 + ‖𝜕𝑡𝜙‖0)2−(3+4𝛼) 𝑗 .
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Hence, ����∫ 1

−∞

∫
R3
[𝜕𝑡𝜙 · 𝑣 + ∇𝜙 : (𝑣 ⊗ 𝑣)]𝑑𝑥𝑑𝑡

���� ≤ 𝐶 (‖𝜙‖1 + ‖𝜕𝑡𝜙‖0)2−(3+4𝛼) 𝑗 ,

where the constant may depend on a but it is independent of j. Since 3 + 4𝛼 > 0 and 𝑗 ≥ 1 is arbitrary,
we conclude that (11.5) holds, so (𝑣, 𝑝) is a weak solution in R3 × R.

Regarding the q-singular set, fix a spatial ball 𝐵(0, 𝑟) and let 𝑡𝑘 � 1− 2−𝑘 for 𝑘 ≥ 1. For sufficiently
large k we have 𝜒(𝑡𝑘 ) = 1 and, since the velocity is unchanged at the endpoints of the intervals I𝑘 , we
have

𝑣(𝑥, 𝑡𝑘 ) = 𝑎 + 2−𝛼𝑘𝑈
(
2(1+𝛼)𝑘𝑥

)
.

We compute

‖𝑣(·, 𝑡𝑘 )‖𝐿𝑞 (𝐵 (0,𝑟 )) ≥ ‖𝑣(·, 𝑡𝑘 ) − 𝑎‖𝐿𝑞 (𝐵 (0,𝑟 )) − ‖𝑎‖𝐿𝑞 (𝐵 (0,𝑟 ))

≥ − ‖𝑎‖𝐿∞

(
4
3
𝜋𝑟3

)1/𝑞
+ 2−[𝛼+3(1+𝛼)/𝑞]𝑘 ‖𝑈‖𝐿𝑞 (R3) ,

where we have used that for sufficiently large k the ball 𝐵(0, 2(1+𝛼)𝑘𝑟) contains the support of U. By
our choice of 𝛼 we have 𝛼 + 3(1 + 𝛼)/𝑞 < 0, so

lim
𝑘→∞

‖𝑣(·, 𝑡𝑘 )‖𝐿𝑞 (𝐵 (0,𝑟 )) = +∞.

Since the ball 𝐵(0, 𝑟) is arbitrary, we see that (0, 1) ∈ 𝒮
𝑞
𝑣 .

Finally, since 𝑣 ∈ 𝐶
𝛽
loc (R

3 × (−∞, 1)) and 𝑣 = 𝑎 in (R3\𝐵(0, 2−𝑘 )) × (1 − 2−𝑘 , 1) for any 𝑘 ≥ 0,
we conclude that 𝑣 ∈ 𝐶

𝛽
loc(R

3 × R\{(0, 1)}). In particular, the q-singular set reduces to {(0, 1)}. This
completes the proof of the lemma.

11.3. Proof of Theorem 1.5

After a temporal rescaling, we may assume that 𝑇 = 1. After a translation, we may assume that 𝐵(0, 4𝜌)
is contained in U for sufficiently small 𝜌 > 0. By subtracting a time dependent constant, we may assume
that 𝑝0 (0, 𝑡) = 0. Let 𝑎(𝑡) = 𝑣0 (0, 𝑡). We glue (𝑣0, 𝑝0) and (𝑎,−𝜕𝑡𝑎 · 𝑥) using Lemma 2.11, obtaining a
subsolution (𝑣1, 𝑝1, 𝑅̊1) such that

(𝑣1, 𝑝1, 𝑅̊1) (𝑥, 𝑡) =

{
(𝑣0, 𝑝0, 0) if 𝑥 ∉ 𝐵(0, 4𝜌),
(𝑎(𝑡),−𝜕𝑡𝑎(𝑡) · 𝑥, 0) if 𝑥 ∈ 𝐵(0, 3𝜌).

It is not difficult to deduce from Lemma 2.14 that by reducing 𝜌 we can obtain ‖𝑣1 − 𝑣0‖0 and 𝜌3‖ 𝑅̊1‖
1/2
0

arbitrarily small.
We apply Theorem 1.7 to obtain a weak solution of the Euler equations (𝑣2, 𝑝2) that equals (𝑣0, 𝑝0)

outside 𝐵(0, 4𝜌) × [0, 1] and (𝑎,−𝜕𝑡𝑎 · 𝑥) in 𝐵(0, 3𝜌) × [0, 1]. Note that we may choose a nonincreasing
energy profile that is arbitrarily close to the original one but still satisfies (1.3) because 𝜌3‖ 𝑅̊1‖

1/2
0 is

arbitrarily small. Since ‖𝑣1 − 𝑣0‖0 is arbitrarily small, we conclude that ‖𝑣2 − 𝑣0‖0 may be chosen to
be arbitrarily small.

Next, we construct the blowup in 𝐵(0, 𝜌) × (0, 1]. By [4], for any 𝑘 ≥ 1 there exists a function
𝑓 𝑘 ∈ 𝐶2−𝑘 (𝐵(0, 𝜌)) taking values in [1−2 ·4−𝑘 , 1−4−𝑘 ] and whose graph 𝐺𝑘 has Hausdorff dimension
4 − 2−𝑘 . We want the q-singular set 𝒮𝑞 of the final solution to contain all of these 𝐺𝑘 so that its
Hausdorff dimension is 4. To do that, we choose a sequence {𝑥𝑖}

∞
𝑖=1 dense in 𝐵(0, 𝜌) and we denote
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𝜏𝑘𝑖 � 𝑓 𝑘 (𝑥𝑖). We see that {(𝑥𝑖 , 𝜏𝑘𝑖 )}
∞
𝑖=1 is dense in 𝐺𝑘 . Using Lemma 11.1 we will construct a sequence

of blowups converging to each of the points (𝑥𝑖 , 𝜏
𝑘
𝑖 ). Thus, these blowups would accumulate at every

point in
⋃

𝑘≥1 𝐺
𝑘 , which means that this set will be contained in the singular set, as we wanted.

In order to glue the blowups given by Lemma 11.1 using Lemma 11.2, they must have disjoint
supports. Hence, we have study the geometry of the situation. Let

𝑡𝑘𝑖 𝑗 � 𝜏𝑘𝑖 − 4−(𝑘+ 𝑗)

so that the sequence {𝑡𝑘𝑖 𝑗 }
∞
𝑗=1 is contained in (1 − 4−(𝑘−1) , 1 − 4−𝑘 ) and converges to 𝜏𝑘𝑖 . We want to

apply Lemma 11.1 to construct a blowup in

𝑈𝑘
𝑖 𝑗 � 𝐵(𝑥𝑖 , 𝜀

𝑘
𝑖 𝑗 ) × (𝑡𝑘𝑖 𝑗 , 𝑡

𝑘
𝑖 𝑗 + 𝜀𝑘𝑖 𝑗 ).

It is clear that choosing 𝜀𝑘𝑖 𝑗 sufficiently small ensures that the sets 𝑈𝑘
𝑖 𝑗 are disjoint for a fixed i and k, but

it is not so clear if i is not kept fixed.
We will try to isolate the sequence corresponding to a fixed i. Let 𝐿𝑘 �

�� 𝑓 𝑘��
𝐶2−𝑘 and consider the

sets

C𝑘
𝑖 �

{
(𝑥, 𝑡) ∈ R3 × [1 − 4−(𝑘−1) , 𝜏𝑘𝑖 ] :

��𝑡 − 𝜏𝑘𝑖
�� ≥ (𝐿𝑘 + 1) |𝑥 − 𝑥𝑖 |

2−𝑘
}
.

By the definition of 𝐿𝑘 , for any 𝑖 ≠ 𝑖′ ≥ 1 we have (𝑥𝑖 , 𝜏
𝑘
𝑖 ) ∉ C𝑘

𝑖′ . We define 𝑗0 (1) = 1 and for 𝑖 > 1 we
define 𝑗0(𝑖) to be the minimum 𝑗0 ≥ 1 such that[

C𝑘
𝑖 ∩ [R3 × (𝑡𝑘𝑖 𝑗0 , 𝜏

𝑘
𝑖 )]

]
∩ C𝑘

𝑖′ = ∅ ∀𝑖′ < 𝑖.

As we have mentioned, (𝑥𝑖 , 𝜏𝑘𝑖 ) ∉ C𝑘
𝑖′ for 𝑖′ < 𝑖, so there exists a neighborhood of (𝑥𝑖 , 𝜏𝑘𝑖 ) disjoint from

the union of these sets. Since C𝑘
𝑖 ∩ [R3 × (𝑡𝑘𝑖 𝑗0 , 𝜏

𝑘
𝑖 )] will be contained in this neighborhood of (𝑥𝑖 , 𝜏𝑘𝑖 )

for sufficiently large 𝑗0, 𝑗0 (𝑖) is well defined. The point is that we will only add blowups for 𝑗 ≥ 𝑗0 (𝑖).
Next, let us define

𝜀𝑘𝑖 𝑗 � 4−2𝑘 [𝑖+ 𝑗+𝑘+log4 (𝐿
𝑘+1) ]𝛿,

where 0 < 𝛿 ≤ 1 will be chosen later. Since 𝜀𝑘𝑖 𝑗 ≤ 4−(𝑘+ 𝑗+1) , we see that the {𝑈𝑘
𝑖 𝑗 }

∞
𝑗=1 are pairwise

disjoint for fixed 𝑘, 𝑖. Furthermore, this definition ensures that

4−(𝑘+ 𝑗) − 𝜀𝑘𝑖 𝑗 ≥ (𝐿𝑘 + 1) (𝜀𝑘𝑖 𝑗 )
2−𝑘 ,

which means that 𝑈𝑘
𝑖 𝑗 ⊂ C𝑘

𝑖 . Therefore, it follows from the definition of 𝑗0(𝑖) that the sets

{𝑈𝑘
𝑖 𝑗 : 𝑖, 𝑘 ≥ 1, 𝑗 ≥ 𝑗0(𝑖)}

are pairwise disjoint, as claimed.
Let (𝑣𝑘𝑖 𝑗 , 𝑝

𝑘
𝑖 𝑗 ) be the weak solution of the Euler equations given by Lemma 11.1 using the parameter

𝜀𝑘𝑖 𝑗 . After a translation, we may assume that the set where (𝑣𝑘𝑖 𝑗 , 𝑝
𝑘
𝑖 𝑗 ) ≠ (𝑎,−𝜕𝑡𝑎 · 𝑥) is contained in 𝑈𝑘

𝑖 𝑗 .
We define

𝑣3 � 𝑎 +
∑
𝑘,𝑖≥1

∑
𝑗≥ 𝑗0 (𝑖)

(𝑣𝑘𝑖 𝑗 − 𝑎),

𝑝3 � −𝜕𝑡𝑎 · 𝑥 +
∑
𝑘,𝑖≥1

∑
𝑗≥ 𝑗0 (𝑖)

(𝑝𝑘
𝑖 𝑗 + 𝜕𝑡𝑎 · 𝑥).
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By Lemma 11.2, the pair (𝑣3, 𝑝3) is a weak solution of the Euler equations in R3 × R. Note that any
point (𝑥, 𝑡) not in the closure of

⋃
𝑘≥1 𝐺

𝑘 has a neighborhood V that intersects only a finite number
of the 𝑈𝑘

𝑖 𝑗 . We conclude that the q-singular set of the weak solution is the closure of the union of the
q-singular sets of the 𝑣𝑘𝑖 𝑗 , that is,

𝒮𝑞 = {(𝑥𝑖 , 𝑡
𝑘
𝑖 𝑗 + 𝜀𝑘𝑖 𝑗 ) : 𝑘, 𝑖 ≥ 1, 𝑗 ≥ 𝑗0 (𝑖)} ∪

⋃
𝑘≥1

𝐺𝑘 ∪
(
𝐵(0, 𝜌) × {1}

)
and 𝑣 ∈ 𝐶

𝛽
loc (R

4\𝒮𝑞). Regarding the energy, let us consider the partial sums

𝑣̃𝑘𝑖 𝑗 � 𝑎 +

𝑘∑
𝑘′=1

𝑖∑
𝑖′=1

𝑗∑
𝑗′= 𝑗0 (𝑖′)

(𝑣𝑘
′

𝑖′ 𝑗′ − 𝑎),

𝑒𝑘𝑖 𝑗 (𝑡) �
∫
𝐵 (0,2𝜌)

���̃𝑣𝑘𝑖 𝑗 (𝑥, 𝑡)��� 2𝑑𝑥.

Taking into account the identity 𝑣2 = (𝑣 − 𝑎)2 + 𝑎2 + 2𝑎 · (𝑣 − 𝑎), we may write

𝑒𝑘𝑖 𝑗 (𝑡) =
32
3
𝜋𝜌3𝑎(𝑡)2 +

𝑘∑
𝑘′=1

𝑖∑
𝑖′=1

𝑗∑
𝑗′= 𝑗0 (𝑖′)

(∫
|𝑣𝑘

′

𝑖′ 𝑗′ − 𝑎 |2𝑑𝑥 + 2
∫

𝑎 · (𝑣𝑘
′

𝑖′ 𝑗′ − 𝑎) 𝑑𝑥

)

because the support of the (𝑣𝑘
′

𝑖′ 𝑗′ −𝑎) are pairwise disjoint. We see that 𝑒𝑘𝑖 𝑗 is continuous by Lemma 11.1.
Furthermore, by Equation (11.1) and our choice of 𝜀𝑘𝑖 𝑗 it converges uniformly to

∫
𝐵 (0,2𝜌) |𝑣4 (𝑥, 𝑡) |

2𝑑𝑥

which is, therefore, continuous. In addition, it can get arbitrarily close to 32
3 𝜋𝜌3𝑎(𝑡)2 by reducing 𝛿 > 0.

Let us glue this blowup to (𝑣2, 𝑝2). Since 𝑥𝑖 ∈ 𝐵(0, 𝜌) and we may assume that 𝜀𝑘𝑖 𝑗 ≤ 𝜌 by further
reducing 𝛿, we see that 𝑈𝑘

𝑖 𝑗 ⊂ 𝐵(0, 2𝜌) × (0, 1), so (𝑣4, 𝑝4) = (𝑎,−𝜕𝑡𝑎 · 𝑥) outside 𝐵(0, 2𝜌) × (0, 1).
Hence, it glues well with (𝑣2, 𝑝2). We conclude that there exists a weak solution of the Euler equations
(𝑣4, 𝑝4) that equals (𝑣0, 𝑝0) outside 𝐵(0, 4𝜌) × (0, 1) and has a q-singular set𝒮𝑞 ⊂ 𝐵(0, 𝜌) × (0, 1] with
Hausdorff dimension 4. In addition, 𝑣 ∈ 𝐶

𝛽
loc((R

3 × [0, 1])\𝒮𝑞). Furthermore, ‖𝑣4 (·, 0) − 𝑣0 (·, 0)‖𝐶0 is
arbitrarily small and 𝑡 ↦→

∫
|𝑣4 (𝑥, 𝑡) |

2𝑑𝑥 is continuous and arbitrarily close to 𝑡 ↦→
∫
|𝑣0(𝑥, 𝑡) |

2𝑑𝑥.
To complete the proof it suffices to modify (𝑣4, 𝑝4) in (𝐵(0, 3𝜌)\𝐵(0, 2𝜌)) × [0, 1] to ensure

that the energy profile is nonincreasing. Let 𝑒̃(𝑡) �
∫
|𝑣4(𝑥, 𝑡) |

2𝑑𝑥 and fix a nonincreasing function
𝑒(𝑡) > 𝑒4 (𝑡). It is easy to obtain a sequence of strictly positive smooth functions {𝛿𝑘 }∞𝑘=1 whose sum is
𝑒(𝑡) − 𝑒̃(𝑡) and such that ‖𝛿𝑘 ‖𝐿∞ � 2−𝑘 . Let 𝑟𝑘 � 𝑟0𝜌2−𝑘/3. By reducing 𝑟0 if necessary, we can find a
sequence of pairwise disjoint balls 𝐵(𝑥𝑘 , 𝑟𝑘 ) ⊂ 𝐵(0, 3𝜌)\𝐵(0, 2𝜌).

Fix 𝑘 ≥ 1 and let 𝑒𝑘 (𝑡) � 𝑎(2−𝑘/3𝑡)2 |𝐵(0, 𝑟0𝜌) | + 2𝑘𝛿𝑘 (2−𝑘/3𝑡). We use Theorem 1.7 to construct a
weak solution of the Euler equations (𝑢𝑘 , 𝜋𝑘 ) that equals (𝑎(2−𝑘/3𝑡),−(𝜕𝑡𝑎) (2−𝑘/3𝑡)·𝑥) for 𝑥 ∉ 𝐵(0, 𝑟0𝜌)
and such that

∫
𝐵 (0,𝑟0𝜌)

|𝑢𝑘 |
2𝑑𝑥 = 𝑒𝑘 (𝑡). In addition, 𝑣 ∈ 𝐶𝛽 .

Finally, we consider

𝑣5 (𝑥, 𝑡) � 𝑎(𝑡) +
∞∑
𝑘=1

[𝑢𝑘 (2𝑘/3(𝑥 − 𝑥𝑘 ), 2𝑘/3𝑡) − 𝑎(𝑡)],

𝑝5 (𝑥, 𝑡) � −𝜕𝑡𝑎(𝑡) · 𝑥 +
∞∑
𝑘=1

[𝜋𝑘 (2𝑘/3𝑥, 2𝑘/3𝑡) + 𝜕𝑡𝑎(𝑡) · 𝑥] .
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The pair (𝑣5, 𝑝5) is a weak solution of the Euler equations that equals (𝑎,−𝜕𝑡𝑎 · 𝑥) for 𝑥 ∉
𝐵(0, 3𝜌)\𝐵(0, 2𝜌) and 𝑣5 ∈ 𝐶𝛽 . Regarding the energy∫

𝐵 (0,3𝜌)\𝐵 (0,2𝜌)
|𝑣5 (𝑥, 𝑡) |

2𝑑𝑥 = 𝑎(𝑡)2
���𝐵(0, 3𝜌)\𝐵(0, 2𝜌)���

+

∞∑
𝑘=1

∫
𝐵 (𝑥𝑘 ,𝑟𝑘 )

[
|𝑢5 (2𝑘/3(𝑥 − 𝑥𝑘 ), 𝑡) |

2 − 𝑎(𝑡)2
]
𝑑𝑥

= 𝑎(𝑡)2
���𝐵(0, 3𝜌)\𝐵(0, 2𝜌)��� + ∞∑

𝑘=1
𝛿𝑘 (𝑡)

=
∫
𝐵 (0,3𝜌)\𝐵 (0,2𝜌)

|𝑣4(𝑥, 𝑡) |
2𝑑𝑥 + 𝑒(𝑡) − 𝑒̃(𝑡).

We glue (𝑣5, 𝑝5) to (𝑣4, 𝑝4), obtaining the desired weak solution of the Euler equations (𝑣6, 𝑝6). Note
that ‖(𝑣6 − 𝑣0) (·, 0)‖𝐶0 can be taken to be arbitrarily small because we can do so with ‖𝑣2 − 𝑣0‖0 and
𝑒 − 𝑒̃. This completes the proof.

A. Hölder and Besov spaces

LetΩ be an open subset of Euclidean space. We denote by𝐶0 (Ω) the set of bounded continuous functions
on Ω, which we equip with the supremum norm, denoted by ‖ 𝑓 ‖0 � sup𝑥∈Ω | 𝑓 (𝑥) |. More generally, for
any 𝑁 ≥ 0 we define the space 𝐶𝑁 (Ω) as the set of functions that have bounded continuous derivatives
of any order 𝑘 ≤ 𝑁 . On this space, we define the following seminorms and norms, respectively:

[ 𝑓 ]𝑁 � max
|𝛽 |=𝑁

��𝐷𝛽 𝑓
��

0 , ‖ 𝑓 ‖𝑁 �
𝑁∑
𝑗=0

[ 𝑓 ] 𝑗 .

Here 𝛽 denotes a multi-index and |𝛽 | denotes its length. Given 𝑁 ≥ 0 and 𝛼 ∈ (0, 1), we define the
Hölder space 𝐶𝑁+𝛼 (Ω) as the set of functions 𝑓 ∈ 𝐶𝑁 (Ω) such that the following quantity is finite:

[ 𝑓 ]𝑁+𝛼 � max
|𝛽 |=𝑁

sup
𝑥≠𝑦

��𝐷𝛽 𝑓 (𝑥) − 𝐷𝛽 𝑓 (𝑦)
��

|𝑥 − 𝑦 | 𝛼
.

This set becomes a Banach space when equipped with the following norm:

‖ 𝑓 ‖𝑁+𝛼 � ‖ 𝑓 ‖𝑁 + [ 𝑓 ]𝑁+𝛼 .

When we work in a subset 𝐸 ⊂ Ω instead of the whole Ω, we will write ‖·‖𝑁 ;𝐸 . When the functions
also depend on time, we also take the supremum in 𝑡 ∈ [0, 𝑇].

The Hölder norms satisfy the following inequalities:

[ 𝑓 ]𝑠 ≤ 𝐶
(
𝜀𝑡−𝑠 [ 𝑓 ]𝑡 + 𝜀−𝑠 ‖ 𝑓 ‖0

)
(A.1)

for 0 ≤ 𝑠 ≤ 𝑡 and all 𝜀 > 0, and

[ 𝑓 𝑔]𝑠 ≤ [ 𝑓 ]𝑠 ‖𝑔‖0 + ‖ 𝑓 ‖0 [𝑔]𝑠 (A.2)

for 0 ≤ 𝑠 ≤ 1. The constant C only depends on the Hölder exponents involved and on the domain Ω.
For the applications in this article, since f will be a compactly supported function defined on the whole
R

𝑛, C will just depend on the Hölder exponents. From (A.1) with 𝜀 = ‖ 𝑓 ‖1/𝑟
0 [ 𝑓 ]−1/𝑟

𝑟 we obtain the
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following interpolation inequality:

[ 𝑓 ]𝑠 ≤ 𝐶 ‖ 𝑓 ‖1−𝑠/𝑟
0 [ 𝑓 ]𝑠/𝑟𝑟 . (A.3)

Let 𝛽 by a multi-index. By induction on |𝛽 | and the rule for the first derivative of a product, one
easily deduces

𝐷𝛽 ( 𝑓 𝑔) =
∑

|𝛾 |+ |𝛿 |= |𝛽 |

𝐶 |𝛽 |,𝛾, 𝛿 𝐷
𝛾 𝑓 𝐷 𝛿𝑔,

from which it immediately follows that

[ 𝑓 𝑔]𝑁 ≤ 𝐶𝑁

𝑁∑
𝑗=0

[ 𝑓 ] 𝑗 [𝑔]𝑁− 𝑗 . (A.4)

The following proposition is standard:

Proposition A.1. Let 𝑁 ∈ N and 𝛼 ∈ (0, 1). Let 𝑓 ∈ 𝐶𝑁 ,𝛼
𝑐 (R𝑚,R) and 𝐹 ∈ 𝐶𝑁 ,𝛼

𝑐 (R𝑚,R𝑚). There
exists a constant 𝐶 = 𝐶 (𝑁, 𝛼) such that the potential-theoretic solutions of

Δ𝜙 = 𝑓 , Δ𝜓 = div 𝐹

satisfy

‖𝜙‖𝑁+2+𝛼 ≤ 𝐶 ‖ 𝑓 ‖𝑁+𝛼 , ‖𝜓‖𝑁+1+𝛼 ≤ 𝐶 ‖𝐹‖𝑁+𝛼 .

Note that in the previous proposition, one does not get any information about the 𝐶𝛼 norm of the
solution, aside from estimating it by higher-order norms. For this, we will need to introduce negative
regularity spaces. Let us consider a Littlewood–Payley decomposition, for example, as in [2, Section
2.2]. For this, we take smooth radial functions 𝜒, 𝜑 : R3 → [0, 1], whose supports are contained in the
ball 𝐵(0, 4

3 ) and in the annulus { 3
4 < |𝜉 | < 8

3 } respectively, with the property that

𝜒(𝜉) +
∞∑

𝑁=0
𝜑(2−𝑁 𝜉) = 1

for all 𝜉 ∈ R3. In terms of the Fourier multipliers 𝑃< := 𝜒(𝐷) and 𝑃𝑁 := 𝜑(2−𝑁𝐷), the Besov norm
𝐵𝑠
∞,∞ (which is equivalent to the Hölder norm 𝐶𝑠 if 𝑠 ∈ R+\N, and strictly weaker if 𝑠 ∈ N) can be

written as

‖ 𝑓 ‖𝐵𝑠
∞,∞

:= ‖𝑃< 𝑓 ‖0 + sup
𝑁 ≥0

2𝑁𝑠 ‖𝑃𝑁 𝑓 ‖0 . (A.5)

Here 𝑠 ∈ R is any real number. Again, when dealing with time-dependent functions, we consider the
supremum in time of ‖ 𝑓 (𝑡)‖𝐵𝑠

∞,∞
.

B. Some auxiliary estimates

The first lemma of this appendix shows that we can find a cutoff function with well-behaved bounds on
its derivatives:

Lemma B.1. Let 𝐴 ⊂ R𝑛 be a measurable set and let 𝑟 > 0. There exists a cutoff function 𝜑𝑟 ∈

𝐶∞(R𝑛, [0, 1]) whose support is contained in 𝐴 + 𝐵(0, 𝑟) and such that 𝜑𝑟 ≡ 1 in a neighborhood of A.
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Furthermore, for any 𝑁 ≥ 0 we have

‖𝜑𝑟 ‖𝑁 ≤ 𝐶 (𝑁, 𝑛) 𝑟−𝑁 .

Proof. We choose a nonnegative function 𝜓 ∈ 𝐶∞
𝑐 (𝐵(0, 1)) such that

∫
𝜓 = 1. For 𝜀 > 0 we denote

𝐴𝜀 � 𝐴 + 𝐵(0, 𝜀), 𝜓𝜀 (𝑥) = 𝜀−𝑛 𝜓(𝑥/𝜀).

Note that
∫
𝜓𝜀 = 1. The desired cutoff function is:

𝜑𝑟 (𝑥) �
(
1𝐴𝑟/2 ∗ 𝜓𝑟/2

)
(𝑥) =

∫
𝐴𝑟/2

𝜓𝑟/2 (𝑥 − 𝑦) 𝑑𝑦.

It is easy to see that its support is contained in 𝐴 + 𝐵(0, 𝑟) and that 𝜑𝑟 ≡ 1 in a neighborhood of A.
Furthermore, it is smooth and

𝜕𝛼𝜑𝑟 (𝑥) =
(
1𝐴𝑟/2 ∗ 𝜕

𝛼𝜓𝑟/2

)
(𝑥) =

∫
𝐴𝑟/2

𝜕𝛼
𝑥

[
(𝑟/2)−𝑛 𝜓

(
𝑥 − 𝑦

𝑟/2

)]
𝑑𝑦

= (𝑟/2)−|𝛼 |

∫
𝐴𝑟/2

(𝑟/2)−𝑛 (𝜕𝛼𝜓)

(
𝑥 − 𝑦

𝑟/2

)
𝑑𝑦.

Hence,

|𝜕𝛼𝜑𝑟 (𝑥) | ≤ (𝑟/2)−|𝛼 |

∫
𝐴𝑟/2

(𝑟/2)−𝑛
����(𝜕𝛼𝜓)

(
𝑥 − 𝑦

𝑟/2

)���� 𝑑𝑦
≤ (𝑟/2)−|𝛼 |

∫
R𝑛

(𝑟/2)−𝑛
����(𝜕𝛼𝜓)

(
𝑥 − 𝑦

𝑟/2

)���� 𝑑𝑦
≤ (𝑟/2)−|𝛼 |

∫
R𝑛

|𝜕𝛼𝜓(𝑦) | 𝑑𝑦,

from which the result follows. �

The second instrumental lemma provides a bound for the solution to a transport equation. The proof
is standard, see, for example, [6].

Lemma B.2. Let 𝑓 ∈ 𝐶∞(R3 × R) be the solution of the transport equation{
𝜕𝑡 𝑓 + 𝑣 · ∇ 𝑓 = 𝑔,

𝑓 (·, 0) = 𝑓0

for some vector field 𝑣 ∈ 𝐶∞(R3 × R,R3) and 𝑔 ∈ 𝐶∞(R3 × R). Then, for 0 ≤ 𝛼 ≤ 1 and |𝑡 | ‖𝑣‖1 ≤ 1
we have

‖ 𝑓 (·, 𝑡)‖𝛼 ≤ 𝑒𝛼
(
‖ 𝑓0‖𝛼 +

∫ 𝑡

0
‖𝑔(·, 𝜏)‖𝛼 𝑑𝜏

)
.

In this article we also need and extension theorem for Hölder continuous functions defined on a
domain Ω:

Theorem B.3. Let 𝑁 ≥ 0 and 𝛼 ∈ (0, 1). Let Ω ⊂ R𝑛 be a domain with smooth boundary. Then, there
exists a linear map 𝑇 : 𝐶𝑁+𝛼 (Ω) → 𝐶𝑁+𝛼 (R𝑛) such that

• 𝑇 𝑓 = 𝑓 on Ω for each 𝑓 ∈ 𝐶𝑁+𝛼 (Ω) and
• the norm of T is bounded by a constant depending only on Ω and N.
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Proof. The proof is essentially [33, Lemma 6.37] and is based on a rectification of the boundary and
a reflection. We must, however, make some remarks. In [33] they assume 𝑁 ≥ 1 because they are
considering sets with less regular boundaries. In the case of a smooth boundary, the result also holds
for 𝐶𝛼 functions. We must warn the reader that they are using the notation 𝐶𝑁+𝛼

(
Ω

)
to denote Hölder

continuous functions because they use𝐶𝑁+𝛼 (Ω) to denote locally Hölder continuous functions. Finally,
it is also interesting to note that the form of operator T itself does not depend on N and 𝛼, although its
norm as an operator 𝐶𝑁+𝛼 (Ω) → 𝐶𝑁+𝛼 (R𝑛) does, of course. This holds provided that we follow the
construction of [33] but use smooth parametrizations of Ω, instead of less regular ones. �

The last result of this appendix is a lemma that establishes a bound for a Besov norm of functions
that are compactly supported in a collared neighborhood of an (𝑛 − 1)-dimensional surface. This can
be seen as a Poincaré inequality with negative regularity.

Lemma B.4. Let Ω ⊂ R𝑛, 𝑛 ≥ 2, be a bounded domain with smooth boundary. Let 𝛼 ∈ (0, 1) and
let 𝑟 > 0 be sufficiently small (depending on Ω). Consider a function 𝑓 ∈ 𝐶∞

𝑐 (R𝑛) supported in
{𝑥 ∈ R𝑛 : 0 < dist(𝑥,Ω) < 𝑟}. We have

‖ 𝑓 ‖𝐵−1+𝛼
∞,∞

≤ 𝐶 (Ω, 𝛼) 𝑟1−𝛼 ‖ 𝑓 ‖0 .

Proof. Let us denote 𝑈 � {𝑥 ∈ R𝑛 : 0 < dist(𝑥,Ω) < 𝑟}. We begin by computing

|𝑃𝑁 𝑓 (𝑥) | ≤ 2𝑛𝑁

∫
𝑈

��ℎ(2𝑁 (𝑥 − 𝑦))
�� | 𝑓 (𝑦) | 𝑑𝑦 � ‖ 𝑓 ‖0 2𝑛𝑁

∫
𝑈
〈2𝑁 (𝑥 − 𝑦)〉−8𝑛 𝑑𝑦,

where we have used that |ℎ(𝑥) | � 〈𝑥〉−8𝑛 because h is in the Schwartz class. Here 𝑃𝑁 𝑓 stands for the
nonhomogeneous dyadic blocks in the Littlewood-Paley decomposition of f, and h is the corresponding
convolution kernel.

We claim that the following estimate holds:

2𝑛𝑁

∫
𝑈
〈2𝑁 (𝑥 − 𝑦)〉−8𝑛 𝑑𝑦 � min{1, 2𝑁 𝑟}. (B.1)

Using this, the bound for f readily follows:

‖ 𝑓 ‖𝐵−1+𝛼
∞,∞

= sup
𝑁

2𝑁 (−1+𝛼) ‖𝑃𝑁 𝑓 ‖𝐿∞

� sup
2𝑁<𝑟−1

2𝑁 (−1+𝛼) (‖ 𝑓 ‖0 2𝑁 𝑟) + sup
2𝑁 ≥𝑟−1

2𝑁 (−1+𝛼) ‖ 𝑓 ‖0

� 𝑟1−𝛼 ‖ 𝑓 ‖0 .

Therefore, the problem is reduced to estimating the integral above.
Let

𝑈𝑅 � {𝑥 ∈ R𝑛 : 0 < dist(𝑥,Ω) < 𝑅}.

For each point 𝑥 ∈ 𝜕Ω and for each small enough 𝑅 > 0, there is a boundary normal chart

𝑋𝑥,𝑅 : 𝑄𝑅 → 𝑈2𝑅 ,

where 𝑄𝑅 := [0, 𝑅) × (−𝑅, 𝑅)𝑛−1, such that Ψ𝑥,𝑅 (0) = 𝑥 and

𝑋𝑥,𝑅 (𝑄𝑅) ⊃ {𝑦 ∈ 𝑈𝑅 : |𝑥 − 𝑦 | < 𝑅/2} .
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Recall that, by the definition of boundary normal coordinates, the pullback 𝑋∗
𝑥,𝑅𝑔0 of the Euclidean

metric 𝑔0 := (𝛿𝑖 𝑗 ) to this chart satisfies 𝑋∗
𝑥,𝑅𝑔0 (0) = 𝑔0. One can also assume that ∇𝑋𝑥,𝑅 (0) is the

identity matrix, and that

|𝑥 − 𝑦 | >
𝑅

4
(B.2)

for all 𝑦 ∈ 𝑋𝑥,𝑅 (𝑄𝑅/2) and all 𝑥 ∉ 𝑋𝑥,𝑅 (𝑄𝑅/2) ∪Ω.
Since 𝜕Ω is a smooth compact hypersurface of R𝑛, it is standard that there is some small enough

𝑅 > 0 and a finite collection of charts {𝑋 𝑗 := 𝑋𝑥 𝑗 ,𝑅}
𝐽
𝑗=1 as above such that {𝑈 𝑗 := 𝑋 𝑗 (𝑄𝑅/2)}

𝐽
𝑗=1 is a

cover of the set 𝑈𝑅/2 and which satisfy

‖(𝑋 𝑗 )∗𝑔0 − 𝑔0‖𝐶2 (𝑄𝑅)
<

1
100

(B.3)

and

|𝑋 𝑗 (𝑧) − 𝑋 𝑗 (𝑧) | ≥
1
2
|𝑧 − 𝑧 | (B.4)

for all 𝑧, 𝑧 ∈ 𝑄𝑅. Moreover, the distance between the point 𝑋 𝑗 (𝑧) and the boundary is comparable to its
first coordinate, in the sense that

𝑧1
2

≤ dist(𝑋 𝑗 (𝑧),Ω) ≤ 2𝑧1

for all 𝑧 ∈ 𝑄𝑅.
Let us now estimate the integral (B.1) over the subset 𝑈 𝑗 ∩𝑈, with 𝑥 ∈ 𝑈. If 𝑥 ∉ 𝑋 𝑗 (𝑄𝑅), by (B.2),

one immediately has

2𝑛𝑁

∫
𝑈 𝑗∩𝑈

〈2𝑁 (𝑥 − 𝑦)〉−8𝑛 𝑑𝑦 � 2𝑛𝑁 〈2𝑁 𝑅〉−8𝑛 |𝑈 𝑗 ∩𝑈 | � 𝑟 ≤ {1, 2𝑁 𝑟} ,

where we have also used that |𝑈 | � 𝑟 . If 𝑥 ∈ 𝑋 𝑗 (𝑄𝑅), one can write 𝑥 = 𝑋 𝑗 (𝑧) for some 𝑧 ∈ 𝑄𝑅. By
(B.4), one then has

2𝑛𝑁

∫
𝑈 𝑗∩𝑈

〈2𝑁 (𝑥 − 𝑦)〉−8𝑛 𝑑𝑦 � 2𝑛𝑁

∫ 2𝑟

0

∫
(−𝑅,𝑅)𝑛−1

〈2𝑁 (𝑧 − 𝑧)〉−8𝑛 𝐽𝑋 𝑗 (𝑧) 𝑑𝑧1 𝑑𝑧
′

� 2𝑛𝑁

∫ 2𝑟

0

∫
(−𝑅,𝑅)𝑛−1

〈2𝑁 (𝑧1 − 𝑧1)〉
−4𝑛 〈2𝑁 (𝑧′ − 𝑧′)〉−4𝑛 𝑑𝑧1 𝑑𝑧

′ .

Here we have used the notation 𝑧 = (𝑧1, 𝑧
′) ∈ [0, 𝑅) × (−𝑅, 𝑅)𝑛−1 and the fact that the Jacobian 𝐽𝑋 𝑗 is

bounded by (B.3).
We can now carry out the integrations in 𝑧1 and 𝑧′ separately. Since

2(𝑛−1)𝑁
∫
(−𝑅,𝑅)𝑛−1

〈2𝑁 (𝑧′ − 𝑧′)〉−4𝑛 𝑑𝑧1 𝑑𝑧
′ ≤ 2(𝑛−1)𝑁

∫
R𝑛−1

〈2𝑁 (𝑧′ − 𝑧′)〉−4𝑛 𝑑𝑧1 𝑑𝑧
′ � 1 ,

the estimate follows from the fact that

2𝑁

∫ 2𝑟

0
〈2𝑁 (𝑧1 − 𝑧1)〉

−4𝑛 𝑑𝑧1 ≤ 2𝑁

∫ 4𝑟

−4𝑟
〈2𝑁 𝑠〉−4𝑛 𝑑𝑠 =

∫ 2𝑁+2𝑟

−2𝑁+2𝑟
〈𝑠〉−4𝑛 𝑑𝑠 � min{1, 2𝑁 𝑟} .

The estimate (B.1) then follows by summing over j. �
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