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On Automorphisms and Commutativity in
Semiprime Rings
Pao-Kuei Liau and Cheng-Kai Liu

Abstract. Let R be a semiprime ring with center Z(R). For x, y ∈ R, we denote by [x, y] = xy − yx
the commutator of x and y. If σ is a non-identity automorphism of R such that

[ [
· · ·

[
[σ(xn0 ), xn1 ], xn2

]
, · · ·

]
, xnk

]
= 0

for all x ∈ R, where n0, n1, n2, . . . , nk are fixed positive integers, then there exists a map µ : R→ Z(R)
such that σ(x) = x + µ(x) for all x ∈ R. In particular, when R is a prime ring, R is commutative.

1 Introduction and Results

Let R be a ring with center Z(R). R is said to be semiprime if for x ∈ R, xRx = 0
implies x = 0 and R is said to be prime if for x, y ∈ R, xRy = 0 implies x = 0 or
y = 0. For x, y ∈ R, set

[x, y]1 = [x, y] = xy − yx and [x, y]k =
[

[x, y]k−1, y
]

for k > 1. An Engel condition is a polynomial [x, y]k =
∑k

i=0(−1)i
(k

i

)
yixyk−i in

noncommutative indeterminates x, y. The question of whether a ring is commutative
or nilpotent if it satisfies an Engel condition goes back to the well-known result of
Engel on Lie algebras [15].

A mapping f : R → R is called commuting (centralizing) if [ f (x), x] = 0 (resp.
[ f (x), x] ∈ Z(R)) for all x ∈ R. The study of commuting and centralizing mappings
began in 1955 when Divinsky [11] proved that a simple artinian ring is commu-
tative if it has a commuting non-identity automorphism. In 1970 Luh [27] gener-
alized Divinsky’s result to prime rings. In 1976 Mayne [29] showed that a prime
ring must be commutative if it possesses a non-identity centralizing automorphism.
These results have been now generalized in various directions (see, for instance,
[3, 4, 9, 20, 22, 30, 32, 33, 35]). In 1990 Vukman [31] studied the Engel type identi-
ties with derivations and proved that a prime ring R of char R 6= 2 is commutative if
there is a nonzero derivation d of R such that [d(x), x]2 = 0 for all x ∈ R. On the
other hand, Deng and Bell [10] proved that a semiprime ring R contains a nonzero
central ideal if either R is 6-torsion free and [d(x), x]2 ∈ Z(R) for all x ∈ R or if R is
n!-torsion free and [d(x), xn] ∈ Z(R) for all x ∈ R, where d is a nonzero derivation
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of R. Later Lee [21] and Lanski [18] independently extended these two results in full
generality and studied the situation where [[· · · [[d(xn0 ), xn1 ], xn2 ], · · · ], xnk ] = 0 for
all x ∈ R. Several related generalizations can be found in [1, 6, 13, 14, 24, 25, 34]. The
goal of this paper is to investigate the analogous result for automorphisms. Precisely,
we prove the following theorem.

Theorem 1.1 Let R be a semiprime ring with center Z(R). If σ is an automor-
phism of R such that

[
[· · · [[σ(xn0 ), xn1 ], xn2 ], · · · ], xnk

]
= 0 for all x ∈ R, where

k, n0, n1, n2, . . . , nk are fixed positive integer (and independent of x), then there is a
map µ : R→ Z(R) such that σ(x) = x + µ(x) for all x ∈ R and µ(R) is contained in a
central ideal of R.

For prime rings, we have the following theorem.

Theorem 1.2 Let R be a prime ring, let I be a nonzero ideal of R, and let σ be a non-
identity automorphism of R. Suppose that

[
[· · · [[σ(xn0 ), xn1 ], xn2 ], · · · ], xnk

]
= 0 for

all x ∈ I, where k, n0, n1, n2, . . . , nk are fixed positive integers (and independent of x).
Then R is commutative.

2 The Prime Case

Let VD be a right vector space over a division ring D. We denote End(VD) the ring of
D-linear transformations on VD. A map T : V → V is called a semi-linear transfor-
mation if T(u + v) = Tu + Tv for all u, v ∈ V and there is an automorphism τ of D
such that T(vα) = (Tv)τ (α) for all v ∈ V and α ∈ D.

Lemma 2.1 Let σ be an automorphism of End(VD). Assume that [σ(xm), xn
]

k
= 0

for all x ∈ End(VD), where m, n, k are fixed positive integers. If dim VD ≥ 2, then σ is
the identity map of End(VD).

Proof By [16, Isomorphism Theorem, p. 79], there exists an invertible semi-linear
transformation T : V → V such that σ(x) = TxT−1 for all x ∈ End(VD). In partic-
ular, there exists an automorphism τ of D such that T(vα) = (Tv)τ (α) for all v ∈ V
and α ∈ D. Hence by assumption, we have

0 =
[
σ(xm), xn]k =

[
TxmT−1, xn

]
k
=

k∑
i=0

(−1)i

(
k

i

)
xni(TxmT−1)xn(k−i)

for all x ∈ R. We divide the proof into two cases.

Case 1 There exists v0 ∈ V such that v0 and T−1v0 are D-independent.
Suppose first that v0,T−1v0,T−2v0 are D-independent. Let x ∈ End(VD) such

that xv0 = 0, xT−1v0 = T−1v0 + T−2v0, and xT−2v0 = 0. Then x`T−1v0 = T−1v0 +
T−2v0 6= 0 for all ` ≥ 1, and hence

0 =
[
σ(xm), xn

]
k
v0 =

( k∑
i=0

(−1)i

(
k

i

)
xni(TxmT−1)xn(k−i)

)
v0

= (−1)kxnkTxmT−1v0 = (−1)k(T−1v0 + T−2v0),
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a contradiction.
Suppose next that v0,T−1v0,T−2v0 are D-dependent. Then there exist α, β ∈ D

such that T−2v0 = v0α + (T−1v0)β. In particular,

T−1v0 = T(T−2v0) = T
(

v0α + (T−1v0)β
)
= (Tv0)α1 + v0β1,

where α1 = τ (α) and β1 = τ (β). Clearly, α1 6= 0. Thus Tv0 = (T−1v0)α−1
1 −

v0β1α
−1
1 . Let x ∈ End(VD) such that xv0 = 0 and xT−1v0 = T−1v0 + v0. Then

x`T−1v0 = T−1v0 + v0, x`Tv0 = (T−1v0 + v0)α−1
1 6= 0 for all ` ≥ 1 and hence

0 =
[
σ(xm), xn

]
k
v0 =

( k∑
i=0

(−1)i

(
k

i

)
xni(TxmT−1)xn(k−i)

)
v0

= (−1)kxnkTxmT−1v0 = (−1)kxnkT(T−1v0 + v0) = (−1)kxnkTv0,

a contradiction.

Case 2 We have that v and T−1v are D-dependent for every v ∈ V . For each v ∈ V ,
we write T−1v = vαv, where αv ∈ D. Fix 0 6= u ∈ V . Let 0 6= v ∈ V and write
T−1v = vαv where αv ∈ D. Suppose first that v and u are D-independent. Then

(u + v)αu+v = T−1(u + v) = T−1u + T−1v = uαu + vαv.

So u(αu+v−αu) = v(αv−αu+v), and hence αu+v = αu = αv. Suppose next that v and
u are D-dependent. Since dim VD ≥ 2, there exists w ∈ V such that w and u are D-
independent, and then, by the proof above, we have αw = αu. Clearly, w and v are D-
independent. So αw = αv, implying that αu = αv. Consequently, T−1v = vα for all
v ∈ V , where α = αu. Now we have σ(x)v = TxT−1v = T(x(vα)) = T((xv)α) = xv
for all x ∈ End(VD) and v ∈ V . In particular, (σ(x)− x)V = 0 for all x ∈ End(VD).
Thus σ(x) = x for all x ∈ End(VD). This implies σ is the identity map of End(VD),
proving the lemma.

Throughout the rest in this section, R is always a prime ring with the maximal
right ring of quotients Q = Qmr(R). Note that Q is also a prime ring, and the center
C of Q, which is called the extended centroid of R, is a field. Moreover, Z(R) ⊆ C
(see [2] for details). It is well known that any automorphism of R can be uniquely
extended to an automorphism of Q. An automorphism σ of R is called Q-inner if
there exists an invertible element g ∈ Q such that σ(x) = gxg−1 for all x ∈ R.
Otherwise, σ is called Q-outer. An automorphism σ of Q is called Frobenius if, in
the case of charR = 0, σ(α) = α for all α ∈ C and if, in the case of charR = p ≥ 2,
σ(α) = αpt

for all α ∈ C , where t is a fixed integer, positive, zero, or negative.
Let Q ∗C C{X} be the free product of Q and the free algebra C{X} over C on an

infinite set X, of indeterminates. A typical element in Q ∗C C{X} is a finite sum of
monomials of the form αai0 x j1 ai1 x j2 · · · x jn ain , where α ∈ C , aik ∈ Q, and x jk ∈ X.
We say that R satisfies a nontrivial generalized polynomial identity (GPI) if there
exists a nonzero polynomial φ(xi) ∈ Q ∗C C{X} such that φ(ri) = 0 for all ri ∈ R.
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Lemma 2.2 Let R be a prime ring and let σ be a non-identity automorphism of R. If
σ is Q-inner such that [σ(xm), xn

]
k
= 0 for all x ∈ R, where m, n, k are fixed positive

integers, then R is commutative.

Proof By assumption, σ(x) = gxg−1 for all x ∈ R, where g is an invertible element
in Q. Note that g /∈ C ; otherwise σ becomes the identity map of R, contrary to our
assumption. Since g /∈ C , it is easy to see that

φ(x) = [σ(xm), xn]k = gxmg−1xnk +
k∑

i=1

(−1)i

(
k

i

)
xni(gxmg−1)xn(k−i)

is a nontrivial GPI of R. By [2, Theorem 6.4.4], R and Q satisfy the same GPIs. So we
have φ(x) = 0 for all x ∈ Q. Denote by F the algebraic closure of C if C is infinite
and set F = C for C finite. Then Q⊗C F is a prime ring with the extended centroid F
[12, Theorem 3.5]. Clearly, Q ∼= Q⊗C C ⊆ Q⊗C F. So we may regard Q as a subring
of Q⊗C F. By a standard argument [19, Proposition] (or see the proof of [17, Lemma
2]), φ(x) is also a nontrivial GPI of Q⊗C F. Let Q̃ = Qmr(Q⊗C F), the maximal right
rings of quotients of Q ⊗C F. By [2, Theorem 6.4.4], φ(x) is also a nontrivial GPI of
Q̃. By Martindale’s theorem [28], Q̃ ∼= End(VD), where V is a vector space over a
division ring D and D is finite-dimensional over its center F. Recall that F is either
algebraically closed or finite. From the finite dimensionality of D over F, it follows
that D = F. Hence Q̃ ∼= End(VF). By Lemma 2.1, dim VF = 1, implying Q̃ = F.
Consequently, Q̃ is commutative and hence R is commutative, as desired.

The following two lemmas are essential to our proof.

Lemma 2.3 ([5, p. 239, Theorem A7]) Let R be a prime ring and ai , bi , c j , d j ∈
Q. Suppose that

∑m
i=1 aixbi +

∑n
j=1 c jxd j = 0 for all x ∈ R. If b1, . . . , bm are C-

independent, then each ai is a C-linear combination of c1, . . . , cn.

Lemma 2.4 ( [18, Theorem 2]) Let R be a prime ring. If a ∈ R such that [a, xn
]

k
= 0

for all x ∈ R, where n, k are fixed positive integers, then a ∈ Z(R).

Theorem 2.5 Let R be a prime ring and let σ be a non-identity automorphism
of R. Suppose that

[
[· · · [[σ(xn0 ), xn1 ], xn2 ], · · · ], xnk

]
= 0 for all x ∈ R, where

n0, n1, n2, . . . , nk are fixed positive integers. Then R is commutative.

Proof Using the identities

∑̀
i=0

(xt )i[y, xs](xt )`−i =

[∑̀
i=0

(xt )i y(xt )`−i , xs

]
,

`−1∑
i=0

(xt )i[y, xt ](xt )`−1−i = [y, x`t ]

and letting m = n0 and n = n1n2 · · · nk, by assumption we have

(2.1)
[
σ(xm), xn

]
k
= 0

https://doi.org/10.4153/CMB-2011-185-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-185-5


588 P.-K. Liau and C.-K. Liu

for all x ∈ R. If σ is Q-inner, then by Lemma 2.2, we are done. So from now on
we assume that σ is Q-outer. In this case, φ(x) = [σ(xm), xn]k = [σ(x)m, xn]k is a
nontrivial GPI of R with automorphisms. By [7, Main Theorem], R must satisfy a
nontrivial GPI. By Martindale’s theorem [28], Q ∼= End(VD), where V is a vector
space over a division ring D and D is finite-dimensional over its center C = Z(D).
Since R and Q satisfy the same GPIs with automorphisms [8, Theorem 1], we have
[σ(xm), xn

]
k
= 0 for all x ∈ Q. By Lemma 2.1, dim VD = 1 and hence Q ∼= D. If

C is finite, then from the finite dimensionality of D over C it follows that D = C .
Thus Q = C is a field, implying that R is commutative. Hence from now on we may
assume that C is infinite. We divide the proof into two cases.

Case 1: σ is not Frobenius. By [8, Main Theorem], replacing σ(x) with y, we obtain[
y, xn

]
k
= 0 for all x, y ∈ R. By Lemma 2.4, R is commutative, as desired.

Case 2: σ is Frobenius. If char R = 0, then the Frobenius automorphism σ fixes C ,
that is, σ(α) = α for all α ∈ C . By Skolem–Noether theorem [23, Theorem 1.1], σ
must be Q-inner, a contradiction. So we may assume that char R = p ≥ 2. Then
there exists an integer t such that σ(α) = αpt

for all α ∈ C . Clearly t 6= 0; otherwise,
σ(α) = α for all α ∈ C . By [23, Theorem 1.1], σ is Q-inner, a contradiction. Choose
an integer ` such that p` > k. By (2.1) we have

0 =
[

[σ(xm), xn]k, x
n
]

p`−k
= [σ(xm), xn]p`

=

p`∑
i=0

(−1)i

(
p`

i

)
xniσ(xm)xn(p`−i) =

[
σ(xm), xnp`

]
,

since
(p`

i

)
= 0 for 0 < i < p`. Let s = np`. Then

(2.2) 0 = [σ(xm), xs] = [σ(x)m, xs] for all x ∈ Q.

Suppose first that t ≥ 1. Let x, y ∈ Q and α ∈ C . Then

(x + αy)s = xs +
s∑

i=1

αiφi(x, y),

where φi(x, y) denotes the sum of all monic monomials with x-degree s − i and
y-degree i for 0 ≤ i ≤ s. In particular,

φ1(x, y) =
s−1∑
i=0

xs−1−i yxi = xs−1 y + xs−2 yx + · · · + yxs−1.

For α ∈ C and x, y ∈ Q, replacing x by x + αy in (2.2) and using the identity

https://doi.org/10.4153/CMB-2011-185-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-185-5


On Automorphisms and Commutativity in Semiprime Rings 589

[x, y + z] = [x, y] + [x, z], we have

0 =
[
σ(x + αy)m, (x + αy)s

]
=
[

(σ(x) + σ(α)σ(y))m, (x + αy)s
]

=
[

(σ(x) + αpt

σ(y))m, (x + αy)s
]

=

[
σ(x)m +

m∑
j=1

α j pt

ϕ j(σ(x), σ(y)), xs +
s∑

i=1

αiφi(x, y)

]

= α
[
σ(x)m, φ1(x, y)

]
+

s∑
i=2

αi
[
σ(x)m, φi(x, y)

]
+

m∑
j=1

α j pt [
ϕ j(σ(x), σ(y)), xs

]
+

m∑
j=1

s∑
i=1

αi+ j pt [
ϕ j(σ(x), σ(y)), φi(x, y)

]
,

where ϕ j(x, y) denotes the sum of all monic monomials with x-degree m − j and
y-degree j for 0 ≤ j ≤ m. Since C is infinite, it follows from the Vandermonde
determinant argument that

(2.3)
[
σ(x)m, φ1(x, y)

]
= 0

for all x, y ∈ Q. If xms ∈ C for all x ∈ Q, then [y, xms] = 0 for all x, y ∈ Q,
and hence Q is commutative by Lemma 2.4. This implies that R is commutative,
proving the theorem. Thus we may assume that xms /∈ C for some x ∈ Q. Let
1 ≤ ` ≤ s − 1 be the largest integer such that 1, x, . . . , x` are C-independent and
write φ1(x, y) =

∑`
i=0gi(x)yxi , where g0(x), . . . , g`(x) are C-linear combinations of

1, x, . . . , x`. Note that gw(x) 6= 0 for some 0 ≤ w ≤ `; otherwise, φ1(x, y) = 0 for
all y ∈ Q and then 0 = [x, φ1(x, y)] = [xs, y] for all y ∈ Q, implying that xs ∈ C by
Lemma 2.4 and hence xms ∈ C , a contradiction. By (2.3), we have

0 =
[
σ(x)m, φ1(x, y)

]
= σ(x)mφ1(x, y)− φ1(x, y)σ(x)m

= σ(x)m
∑̀
i=0

gi(x)yxi −
s−1∑
i=0

xs−1−i yxiσ(x)m

(2.4)

for all y ∈ Q. Applying Lemma 2.3 to (2.4), σ(x)mgw(x) can be expressed as a C-linear
combination of 1, x, . . . , xs−1. Recall that Q ∼= D is a division ring and gw(x) 6= 0.
So σ(x)m is a C-linear combination of gw(x)−1, gw(x)−1x, . . . , gw(x)−1xs−1. Hence
[σ(x)m, x] = 0. For any z ∈ Q, there exist infinite many β ∈ C such that (x + βz)s /∈
C ; otherwise, from (x +βz)s = xs +

∑s
i=1 β

iφi(x, z) ∈ C , it follows that xs ∈ C by the
Vandermonde determinant argument, a contradiction. For such β ∈ C , by the same
proof as above, we obtain [σ(x + βz)m, x + βz] = 0. Thus

0 =
[
σ(x + βz)m, x + βz

]
=
[

(σ(x) + β pt

σ(z))m, x + βz
]

= β
[
σ(x)m, z

]
+

m∑
j=1

β j pt [
ϕ j(σ(x), σ(z)), x + βz

]
.
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By the Vandermonde determinant argument again, [σ(x)m, z] = 0 for all z ∈ Q.
This implies that σ(x)m = σ(xm) ∈ C . Thus xm ∈ C . In particular, xms ∈ C , a
contradiction.

Suppose next that t ≤ −1. By assumption σ(α) = αpt

for all α ∈ C . Let t ′ =
−t ≥ 1. Then σ(αpt ′

) = α and hence σ−1(α) = αpt ′

for all α ∈ C . This implies that
σ−1 is a Frobenius automorphism of R. By (2.2), [σ−1(xs), xm] = 0 for all x ∈ Q.
Proceeding in the same way as above, we obtain that R is commutative. The proof is
now complete.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Since a prime ring R and its nonzero ideal I satisfy the same
GPIs with automorphisms [7, Theorem 1], we have [[· · · [σ(xn0 ), xn1 ], · · · ], xnk ] = 0
for all x ∈ R. By Theorem 2.5 we are done.

3 The Semiprime Case

Theorem 3.1 Let R be a prime ring and let σ be an epimorphism of R but not a
monomorphism. Suppose that

[
[· · · [[σ(xn0 ), xn1 ], xn2 ], · · · ], xnk

]
= 0 for all x ∈ R,

where n0, n1, n2, . . . , nk are fixed positive integers. Then R is commutative.

Proof Let I = Kerσ. Then I is a nonzero ideal of R. In view of the proof of Theo-
rem 2.5, we have [σ(xm), xn]k = 0 for all x ∈ R, where m = n0 and n = n1n2 · · · nk.
For x ∈ R and y ∈ I, 0 = [σ((x + y)m), (x + y)n]k = [σ(xm), (x + y)n]k. Since I and
R satisfy the same GPIs [2, Theorem 6.4.4], we have [σ(xm), (x + y)n]k = 0 for all
x, y ∈ R. Next replacing y with y − x, we obtain [σ(xm), yn]k = 0 for all x, y ∈ R.
Hence by Lemma 2.4 σ(xm) = σ(x)m ∈ Z(R) for all x ∈ R. In particular, xm ∈ Z(R)
for all x ∈ R. So [y, xm] = 0 for all x, y ∈ R. By Lemma 2.4, R is commutative,
proving the theorem.

We are now ready to prove Theorem 1.1

Proof of Theorem 1.1 In view of the proof of Theorem 2.5, we have [σ(xm), xn]k =
0 for all x ∈ R, where m = n0 and n = n1n2 · · · nk. Let P be a prime ideal of R and
set R = R/P. For x ∈ R, we write x = x + P ∈ R.

Assume first that σ(P) * P. For x ∈ R and p ∈ P,

0 = [σ((x + p)m), (x + p)n]k = [(σ(x) + σ(p))m, xn]k.

Thus [(σ(x) + y)m, xn]k = 0 for all x ∈ R and y ∈ σ(P). Since σ(P) * P,
σ(P) =

(
σ(P) + P

)
/P is a nonzero ideal of the prime ring R. By [2, Theorem 6.4.4],

[(σ(x) + y)m, xn]k = 0 for all x, y ∈ R. Replacing y with y − σ(x), we obtain
[ym, xn]k = 0 for all x, y ∈ R. This implies that ym ∈ Z(R) for all y ∈ R by
Lemma 2.4. Hence [x, ym] = 0 for all x, y ∈ R, implying that R is commutative by
Lemma 2.4. So [R,R] = 0. Equivalently, [R,R] ⊆ P. In particular, [σ(x)− x, y] ∈ P
and [(σ(x)− x)z, y] ∈ P for all x, y, z ∈ R.

Assume next that σ(P) ⊆ P. Define σ : R → R by σ(x) = σ(x) for x ∈ R. Then
σ is an epimorphism of R. Then 0 = [σ(xm), xn]k = [σ(xm), xn]k for all x ∈ R.
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By Theorems 3.1 and 2.5, σ is the identity automorphism of R or R is commutative.
Hence σ(x)−x ∈ P for all x ∈ R or [R,R] ⊆ P. In both cases, we have [σ(x)−x, y] ∈
P and [(σ(x)− x)z, y] ∈ P for all x, y, z ∈ R.

Since R is semiprime, ∩P = 0, where P runs over all prime ideals of R. So we
conclude that [σ(x) − x, y] = 0 and [(σ(x) − x)z, y] = 0 for all x, y, z ∈ R. Hence
σ(x) − x ∈ Z(R) and (σ(x) − x)R ⊆ Z(R) for all x ∈ R. Let µ(x) = σ(x) − x for
x ∈ R. Then µ(R) ⊆ Z(R) and µ(R)R ⊆ Z(R). So µ(R) + µ(R)R is a central ideal of
R. This proves the theorem.

Finally, we construct a noncommutative semiprime ring that admits a commuting
non-identity automorphism.

Example Let F be a field, let M2(F) be the 2 × 2 matrix ring over F, and let
R = M2(F) × F × F. Let σ be the automorphism of R defined by σ((x1, x2, x3)) =
(x1, x3, x2) for x1 ∈ M2(F) and x2, x3 ∈ F. Then [σ(x), x] = 0 and µ(x) = σ(x) − x
for all x ∈ R, where µ((x1, x2, x3)) = (0, x3 − x2, x2 − x3) for x1 ∈ M2(F) and
x2, x3 ∈ F. Clearly, µ(R) is contained in the central ideal {0} × F × F of R.
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[4] M. Brešar, Centralizing mappings and derivations in prime rings. J. Algebra 156(1993), no. 2,

385–394. http://dx.doi.org/10.1006/jabr.1993.1080
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