Canad. Math. Bull. Vol. **56** (3), 2013 pp. 584–592 http://dx.doi.org/10.4153/CMB-2011-185-5 © Canadian Mathematical Society 2012

On Automorphisms and Commutativity in Semiprime Rings

Pao-Kuei Liau and Cheng-Kai Liu

Abstract. Let *R* be a semiprime ring with center *Z*(*R*). For *x*, $y \in R$, we denote by [x, y] = xy - yx the commutator of *x* and *y*. If σ is a non-identity automorphism of *R* such that

$$\left[\left[\cdots\left[\left[\sigma(x^{n_0}), x^{n_1}\right], x^{n_2}\right], \cdots\right], x^{n_k}\right] = 0$$

for all $x \in R$, where $n_0, n_1, n_2, ..., n_k$ are fixed positive integers, then there exists a map $\mu: R \to Z(R)$ such that $\sigma(x) = x + \mu(x)$ for all $x \in R$. In particular, when *R* is a prime ring, *R* is commutative.

1 Introduction and Results

Let *R* be a ring with center *Z*(*R*). *R* is said to be semiprime if for $x \in R$, xRx = 0 implies x = 0 and *R* is said to be prime if for $x, y \in R$, xRy = 0 implies x = 0 or y = 0. For $x, y \in R$, set

$$[x, y]_1 = [x, y] = xy - yx$$
 and $[x, y]_k = [[x, y]_{k-1}, y]$

for k > 1. An Engel condition is a polynomial $[x, y]_k = \sum_{i=0}^k (-1)^i {k \choose i} y^i x y^{k-i}$ in noncommutative indeterminates x, y. The question of whether a ring is commutative or nilpotent if it satisfies an Engel condition goes back to the well-known result of Engel on Lie algebras [15].

A mapping $f: R \to R$ is called commuting (centralizing) if [f(x), x] = 0 (resp. $[f(x), x] \in Z(R)$) for all $x \in R$. The study of commuting and centralizing mappings began in 1955 when Divinsky [11] proved that a simple artinian ring is commutative if it has a commuting non-identity automorphism. In 1970 Luh [27] generalized Divinsky's result to prime rings. In 1976 Mayne [29] showed that a prime ring must be commutative if it possesses a non-identity centralizing automorphism. These results have been now generalized in various directions (see, for instance, [3, 4, 9, 20, 22, 30, 32, 33, 35]). In 1990 Vukman [31] studied the Engel type identities with derivations and proved that a prime ring R of char $R \neq 2$ is commutative if there is a nonzero derivation d of R such that $[d(x), x]_2 = 0$ for all $x \in R$. On the other hand, Deng and Bell [10] proved that a semiprime ring R contains a nonzero central ideal if either R is 6-torsion free and $[d(x), x]_2 \in Z(R)$ for all $x \in R$ or if R is n!-torsion free and $[d(x), x^n] \in Z(R)$ for all $x \in R$, where d is a nonzero derivation

Received by the editors March 31, 2011; revised June 1, 2011.

Published electronically January 27, 2012.

Corresponding author: Cheng-Kai Liu

AMS subject classification: 16N60, 16W20, 16R50.

Keywords: semiprime ring, automorphism, generalized polynomial identity (GPI).

of *R*. Later Lee [21] and Lanski [18] independently extended these two results in full generality and studied the situation where $[[\cdots [[d(x^{n_0}), x^{n_1}], x^{n_2}], \cdots], x^{n_k}] = 0$ for all $x \in R$. Several related generalizations can be found in [1, 6, 13, 14, 24, 25, 34]. The goal of this paper is to investigate the analogous result for automorphisms. Precisely, we prove the following theorem.

Theorem 1.1 Let R be a semiprime ring with center Z(R). If σ is an automorphism of R such that $[[\cdots [[\sigma(x^{n_0}), x^{n_1}], x^{n_2}], \cdots], x^{n_k}] = 0$ for all $x \in R$, where $k, n_0, n_1, n_2, \ldots, n_k$ are fixed positive integer (and independent of x), then there is a map $\mu: R \to Z(R)$ such that $\sigma(x) = x + \mu(x)$ for all $x \in R$ and $\mu(R)$ is contained in a central ideal of R.

For prime rings, we have the following theorem.

Theorem 1.2 Let R be a prime ring, let I be a nonzero ideal of R, and let σ be a nonidentity automorphism of R. Suppose that $[[\cdots [[\sigma(x^{n_0}), x^{n_1}], x^{n_2}], \cdots], x^{n_k}] = 0$ for all $x \in I$, where $k, n_0, n_1, n_2, \ldots, n_k$ are fixed positive integers (and independent of x). Then R is commutative.

2 The Prime Case

Let V_D be a right vector space over a division ring D. We denote $\text{End}(V_D)$ the ring of D-linear transformations on V_D . A map $T: V \to V$ is called a semi-linear transformation if T(u + v) = Tu + Tv for all $u, v \in V$ and there is an automorphism τ of D such that $T(v\alpha) = (Tv)\tau(\alpha)$ for all $v \in V$ and $\alpha \in D$.

Lemma 2.1 Let σ be an automorphism of $\text{End}(V_D)$. Assume that $[\sigma(x^m), x^n]_k = 0$ for all $x \in \text{End}(V_D)$, where m, n, k are fixed positive integers. If dim $V_D \ge 2$, then σ is the identity map of $\text{End}(V_D)$.

Proof By [16, Isomorphism Theorem, p. 79], there exists an invertible semi-linear transformation $T: V \to V$ such that $\sigma(x) = TxT^{-1}$ for all $x \in \text{End}(V_D)$. In particular, there exists an automorphism τ of D such that $T(v\alpha) = (Tv)\tau(\alpha)$ for all $v \in V$ and $\alpha \in D$. Hence by assumption, we have

$$0 = \left[\sigma(x^m), x^n\right]_k = \left[Tx^m T^{-1}, x^n\right]_k = \sum_{i=0}^k (-1)^i \binom{k}{i} x^{ni} (Tx^m T^{-1}) x^{n(k-i)}$$

for all $x \in R$. We divide the proof into two cases.

Case 1 There exists $v_0 \in V$ such that v_0 and $T^{-1}v_0$ are *D*-independent.

Suppose first that v_0 , $T^{-1}v_0$, $T^{-2}v_0$ are *D*-independent. Let $x \in \text{End}(V_D)$ such that $xv_0 = 0$, $xT^{-1}v_0 = T^{-1}v_0 + T^{-2}v_0$, and $xT^{-2}v_0 = 0$. Then $x^{\ell}T^{-1}v_0 = T^{-1}v_0 + T^{-2}v_0 \neq 0$ for all $\ell \ge 1$, and hence

$$0 = \left[\sigma(x^m), x^n\right]_k v_0 = \left(\sum_{i=0}^k (-1)^i \binom{k}{i} x^{ni} (Tx^m T^{-1}) x^{n(k-i)}\right) v_0$$

= $(-1)^k x^{nk} Tx^m T^{-1} v_0 = (-1)^k (T^{-1} v_0 + T^{-2} v_0),$

a contradiction.

Suppose next that $v_0, T^{-1}v_0, T^{-2}v_0$ are *D*-dependent. Then there exist $\alpha, \beta \in D$ such that $T^{-2}v_0 = v_0\alpha + (T^{-1}v_0)\beta$. In particular,

$$T^{-1}\nu_0 = T(T^{-2}\nu_0) = T(\nu_0\alpha + (T^{-1}\nu_0)\beta) = (T\nu_0)\alpha_1 + \nu_0\beta_1,$$

where $\alpha_1 = \tau(\alpha)$ and $\beta_1 = \tau(\beta)$. Clearly, $\alpha_1 \neq 0$. Thus $Tv_0 = (T^{-1}v_0)\alpha_1^{-1} - v_0\beta_1\alpha_1^{-1}$. Let $x \in \text{End}(V_D)$ such that $xv_0 = 0$ and $xT^{-1}v_0 = T^{-1}v_0 + v_0$. Then $x^{\ell}T^{-1}v_0 = T^{-1}v_0 + v_0, x^{\ell}Tv_0 = (T^{-1}v_0 + v_0)\alpha_1^{-1} \neq 0$ for all $\ell \geq 1$ and hence

$$0 = \left[\sigma(x^m), x^n\right]_k v_0 = \left(\sum_{i=0}^k (-1)^i \binom{k}{i} x^{ni} (Tx^m T^{-1}) x^{n(k-i)}\right) v_0$$

= $(-1)^k x^{nk} Tx^m T^{-1} v_0 = (-1)^k x^{nk} T (T^{-1} v_0 + v_0) = (-1)^k x^{nk} T v_0$

a contradiction.

Case 2 We have that v and $T^{-1}v$ are *D*-dependent for every $v \in V$. For each $v \in V$, we write $T^{-1}v = v\alpha_v$, where $\alpha_v \in D$. Fix $0 \neq u \in V$. Let $0 \neq v \in V$ and write $T^{-1}v = v\alpha_v$ where $\alpha_v \in D$. Suppose first that v and u are *D*-independent. Then

$$(u+v)\alpha_{u+v} = T^{-1}(u+v) = T^{-1}u + T^{-1}v = u\alpha_u + v\alpha_v.$$

So $u(\alpha_{u+v} - \alpha_u) = v(\alpha_v - \alpha_{u+v})$, and hence $\alpha_{u+v} = \alpha_u = \alpha_v$. Suppose next that v and u are D-dependent. Since dim $V_D \ge 2$, there exists $w \in V$ such that w and u are D-independent, and then, by the proof above, we have $\alpha_w = \alpha_u$. Clearly, w and v are D-independent. So $\alpha_w = \alpha_v$, implying that $\alpha_u = \alpha_v$. Consequently, $T^{-1}v = v\alpha$ for all $v \in V$, where $\alpha = \alpha_u$. Now we have $\sigma(x)v = TxT^{-1}v = T(x(v\alpha)) = T((xv)\alpha) = xv$ for all $x \in \text{End}(V_D)$ and $v \in V$. In particular, $(\sigma(x) - x)V = 0$ for all $x \in \text{End}(V_D)$. Thus $\sigma(x) = x$ for all $x \in \text{End}(V_D)$. This implies σ is the identity map of $\text{End}(V_D)$, proving the lemma.

Throughout the rest in this section, R is always a prime ring with the maximal right ring of quotients $Q = Q_{mr}(R)$. Note that Q is also a prime ring, and the center C of Q, which is called the extended centroid of R, is a field. Moreover, $Z(R) \subseteq C$ (see [2] for details). It is well known that any automorphism of R can be uniquely extended to an automorphism of Q. An automorphism σ of R is called Q-inner if there exists an invertible element $g \in Q$ such that $\sigma(x) = gxg^{-1}$ for all $x \in R$. Otherwise, σ is called Q-outer. An automorphism σ of Q is called Frobenius if, in the case of charR = 0, $\sigma(\alpha) = \alpha$ for all $\alpha \in C$ and if, in the case of char $R = p \ge 2$, $\sigma(\alpha) = \alpha p^{p'}$ for all $\alpha \in C$, where t is a fixed integer, positive, zero, or negative.

Let $Q *_C C\{X\}$ be the free product of Q and the free algebra $C\{X\}$ over C on an infinite set X, of indeterminates. A typical element in $Q *_C C\{X\}$ is a finite sum of monomials of the form $\alpha a_{i_0} x_{j_1} a_{i_1} x_{j_2} \cdots x_{j_n} a_{i_n}$, where $\alpha \in C$, $a_{i_k} \in Q$, and $x_{j_k} \in X$. We say that R satisfies a nontrivial generalized polynomial identity (GPI) if there exists a nonzero polynomial $\phi(x_i) \in Q *_C C\{X\}$ such that $\phi(r_i) = 0$ for all $r_i \in R$.

Lemma 2.2 Let R be a prime ring and let σ be a non-identity automorphism of R. If σ is Q-inner such that $[\sigma(x^m), x^n]_k = 0$ for all $x \in R$, where m, n, k are fixed positive integers, then R is commutative.

Proof By assumption, $\sigma(x) = gxg^{-1}$ for all $x \in R$, where g is an invertible element in Q. Note that $g \notin C$; otherwise σ becomes the identity map of R, contrary to our assumption. Since $g \notin C$, it is easy to see that

$$\phi(x) = [\sigma(x^m), x^n]_k = gx^m g^{-1} x^{nk} + \sum_{i=1}^k (-1)^i \binom{k}{i} x^{ni} (gx^m g^{-1}) x^{n(k-i)}$$

is a nontrivial GPI of *R*. By [2, Theorem 6.4.4], *R* and *Q* satisfy the same GPIs. So we have $\phi(x) = 0$ for all $x \in Q$. Denote by *F* the algebraic closure of *C* if *C* is infinite and set F = C for *C* finite. Then $Q \otimes_C F$ is a prime ring with the extended centroid *F* [12, Theorem 3.5]. Clearly, $Q \cong Q \otimes_C C \subseteq Q \otimes_C F$. So we may regard *Q* as a subring of $Q \otimes_C F$. By a standard argument [19, Proposition] (or see the proof of [17, Lemma 2]), $\phi(x)$ is also a nontrivial GPI of $Q \otimes_C F$. Let $\tilde{Q} = Q_{mr}(Q \otimes_C F)$, the maximal right rings of quotients of $Q \otimes_C F$. By [2, Theorem 6.4.4], $\phi(x)$ is also a nontrivial GPI of $\tilde{Q} \otimes_C F$. Let $\tilde{Q} = Q_{mr}(Q \otimes_C F)$, the maximal right rings of quotients of $Q \otimes_C F$. By [2, Theorem 6.4.4], $\phi(x)$ is also a nontrivial GPI of $\tilde{Q} \otimes_C F$. By $\tilde{Q} \cong \text{End}(V_D)$, where *V* is a vector space over a division ring *D* and *D* is finite-dimensional over its center *F*. Recall that *F* is either algebraically closed or finite. From the finite dimensionality of *D* over *F*, it follows that D = F. Hence $\tilde{Q} \cong \text{End}(V_F)$. By Lemma 2.1, dim $V_F = 1$, implying $\tilde{Q} = F$. Consequently, \tilde{Q} is commutative and hence *R* is commutative, as desired.

The following two lemmas are essential to our proof.

Lemma 2.3 ([5, p. 239, Theorem A7]) Let R be a prime ring and $a_i, b_i, c_j, d_j \in Q$. Suppose that $\sum_{i=1}^{m} a_i x b_i + \sum_{j=1}^{n} c_j x d_j = 0$ for all $x \in R$. If b_1, \ldots, b_m are C-independent, then each a_i is a C-linear combination of c_1, \ldots, c_n .

Lemma 2.4 ([18, Theorem 2]) Let *R* be a prime ring. If $a \in R$ such that $[a, x^n]_k = 0$ for all $x \in R$, where *n*, *k* are fixed positive integers, then $a \in Z(R)$.

Theorem 2.5 Let R be a prime ring and let σ be a non-identity automorphism of R. Suppose that $[[\cdots [[\sigma(x^{n_0}), x^{n_1}], x^{n_2}], \cdots], x^{n_k}] = 0$ for all $x \in R$, where $n_0, n_1, n_2, \ldots, n_k$ are fixed positive integers. Then R is commutative.

Proof Using the identities

$$\sum_{i=0}^{\ell} (x^t)^i [y, x^s] (x^t)^{\ell-i} = \left[\sum_{i=0}^{\ell} (x^t)^i y(x^t)^{\ell-i}, x^s \right],$$
$$\sum_{i=0}^{\ell-1} (x^t)^i [y, x^t] (x^t)^{\ell-1-i} = [y, x^{\ell t}]$$

and letting $m = n_0$ and $n = n_1 n_2 \cdots n_k$, by assumption we have

(2.1)
$$\left[\sigma(x^m), x^n\right]_k = 0$$

for all $x \in R$. If σ is Q-inner, then by Lemma 2.2, we are done. So from now on we assume that σ is Q-outer. In this case, $\phi(x) = [\sigma(x^m), x^n]_k = [\sigma(x)^m, x^n]_k$ is a nontrivial GPI of R with automorphisms. By [7, Main Theorem], R must satisfy a nontrivial GPI. By Martindale's theorem [28], $Q \cong \text{End}(V_D)$, where V is a vector space over a division ring D and D is finite-dimensional over its center C = Z(D). Since R and Q satisfy the same GPIs with automorphisms [8, Theorem 1], we have $[\sigma(x^m), x^n]_k = 0$ for all $x \in Q$. By Lemma 2.1, dim $V_D = 1$ and hence $Q \cong D$. If C is finite, then from the finite dimensionality of D over C it follows that D = C. Thus Q = C is a field, implying that R is commutative. Hence from now on we may assume that C is infinite. We divide the proof into two cases.

Case 1: σ *is not Frobenius.* By [8, Main Theorem], replacing $\sigma(x)$ with y, we obtain $[y, x^n]_k = 0$ for all $x, y \in R$. By Lemma 2.4, R is commutative, as desired.

Case 2: σ *is Frobenius.* If char R = 0, then the Frobenius automorphism σ fixes C, that is, $\sigma(\alpha) = \alpha$ for all $\alpha \in C$. By Skolem–Noether theorem [23, Theorem 1.1], σ must be Q-inner, a contradiction. So we may assume that char $R = p \ge 2$. Then there exists an integer t such that $\sigma(\alpha) = \alpha^{p^t}$ for all $\alpha \in C$. Clearly $t \neq 0$; otherwise, $\sigma(\alpha) = \alpha$ for all $\alpha \in C$. By [23, Theorem 1.1], σ is Q-inner, a contradiction. Choose an integer ℓ such that $p^{\ell} > k$. By (2.1) we have

$$0 = \left[\left[\sigma(x^m), x^n \right]_k, x^n \right]_{p^\ell - k} = \left[\sigma(x^m), x^n \right]_{p^\ell}$$
$$= \sum_{i=0}^{p^\ell} (-1)^i \binom{p^\ell}{i} x^{ni} \sigma(x^m) x^{n(p^\ell - i)} = \left[\sigma(x^m), x^{np^\ell} \right]$$

since $\binom{p^{\ell}}{i} = 0$ for $0 < i < p^{\ell}$. Let $s = np^{\ell}$. Then

(2.2)
$$0 = [\sigma(x^m), x^s] = [\sigma(x)^m, x^s] \text{ for all } x \in Q.$$

Suppose first that $t \ge 1$. Let $x, y \in Q$ and $\alpha \in C$. Then

$$(x + \alpha y)^s = x^s + \sum_{i=1}^s \alpha^i \phi_i(x, y),$$

where $\phi_i(x, y)$ denotes the sum of all monic monomials with *x*-degree s - i and *y*-degree *i* for $0 \le i \le s$. In particular,

$$\phi_1(x, y) = \sum_{i=0}^{s-1} x^{s-1-i} y x^i = x^{s-1} y + x^{s-2} y x + \dots + y x^{s-1}.$$

For $\alpha \in C$ and $x, y \in Q$, replacing x by $x + \alpha y$ in (2.2) and using the identity

On Automorphisms and Commutativity in Semiprime Rings

$$[x, y + z] = [x, y] + [x, z], \text{ we have}$$

$$0 = \left[\sigma(x + \alpha y)^{m}, (x + \alpha y)^{s}\right] = \left[(\sigma(x) + \sigma(\alpha)\sigma(y))^{m}, (x + \alpha y)^{s}\right]$$

$$= \left[(\sigma(x) + \alpha^{p^{i}}\sigma(y))^{m}, (x + \alpha y)^{s}\right]$$

$$= \left[\sigma(x)^{m} + \sum_{j=1}^{m} \alpha^{jp^{i}}\varphi_{j}(\sigma(x), \sigma(y)), x^{s} + \sum_{i=1}^{s} \alpha^{i}\phi_{i}(x, y)\right]$$

$$= \alpha\left[\sigma(x)^{m}, \phi_{1}(x, y)\right] + \sum_{i=2}^{s} \alpha^{i}\left[\sigma(x)^{m}, \phi_{i}(x, y)\right]$$

$$+ \sum_{j=1}^{m} \alpha^{jp^{i}}\left[\varphi_{j}(\sigma(x), \sigma(y)), x^{s}\right] + \sum_{j=1}^{m} \sum_{i=1}^{s} \alpha^{i+jp^{i}}\left[\varphi_{j}(\sigma(x), \sigma(y)), \phi_{i}(x, y)\right],$$

where $\varphi_j(x, y)$ denotes the sum of all monic monomials with *x*-degree m - j and *y*-degree *j* for $0 \le j \le m$. Since *C* is infinite, it follows from the Vandermonde determinant argument that

(2.3)
$$\left[\sigma(x)^m, \phi_1(x, y)\right] = 0$$

for all $x, y \in Q$. If $x^{ms} \in C$ for all $x \in Q$, then $[y, x^{ms}] = 0$ for all $x, y \in Q$, and hence Q is commutative by Lemma 2.4. This implies that R is commutative, proving the theorem. Thus we may assume that $x^{ms} \notin C$ for some $x \in Q$. Let $1 \leq \ell \leq s - 1$ be the largest integer such that $1, x, \ldots, x^{\ell}$ are C-independent and write $\phi_1(x, y) = \sum_{i=0}^{\ell} g_i(x)yx^i$, where $g_0(x), \ldots, g_{\ell}(x)$ are C-linear combinations of $1, x, \ldots, x^{\ell}$. Note that $g_w(x) \neq 0$ for some $0 \leq w \leq \ell$; otherwise, $\phi_1(x, y) = 0$ for all $y \in Q$ and then $0 = [x, \phi_1(x, y)] = [x^s, y]$ for all $y \in Q$, implying that $x^s \in C$ by Lemma 2.4 and hence $x^{ms} \in C$, a contradiction. By (2.3), we have

(2.4)
$$0 = \left[\sigma(x)^{m}, \phi_{1}(x, y)\right] = \sigma(x)^{m}\phi_{1}(x, y) - \phi_{1}(x, y)\sigma(x)^{m}$$
$$= \sigma(x)^{m}\sum_{i=0}^{\ell} g_{i}(x)yx^{i} - \sum_{i=0}^{s-1} x^{s-1-i}yx^{i}\sigma(x)^{m}$$

for all $y \in Q$. Applying Lemma 2.3 to (2.4), $\sigma(x)^m g_w(x)$ can be expressed as a *C*-linear combination of $1, x, \ldots, x^{s-1}$. Recall that $Q \cong D$ is a division ring and $g_w(x) \neq 0$. So $\sigma(x)^m$ is a *C*-linear combination of $g_w(x)^{-1}, g_w(x)^{-1}x, \ldots, g_w(x)^{-1}x^{s-1}$. Hence $[\sigma(x)^m, x] = 0$. For any $z \in Q$, there exist infinite many $\beta \in C$ such that $(x + \beta z)^s \notin C$; otherwise, from $(x + \beta z)^s = x^s + \sum_{i=1}^s \beta^i \phi_i(x, z) \in C$, it follows that $x^s \in C$ by the Vandermonde determinant argument, a contradiction. For such $\beta \in C$, by the same proof as above, we obtain $[\sigma(x + \beta z)^m, x + \beta z] = 0$. Thus

$$0 = \left[\sigma(x + \beta z)^m, x + \beta z\right] = \left[(\sigma(x) + \beta^{p'} \sigma(z))^m, x + \beta z\right]$$
$$= \beta \left[\sigma(x)^m, z\right] + \sum_{j=1}^m \beta^{jp'} \left[\varphi_j(\sigma(x), \sigma(z)), x + \beta z\right].$$

By the Vandermonde determinant argument again, $[\sigma(x)^m, z] = 0$ for all $z \in Q$. This implies that $\sigma(x)^m = \sigma(x^m) \in C$. Thus $x^m \in C$. In particular, $x^{ms} \in C$, a contradiction.

Suppose next that $t \leq -1$. By assumption $\sigma(\alpha) = \alpha^{p^t}$ for all $\alpha \in C$. Let $t' = -t \geq 1$. Then $\sigma(\alpha^{p^t}) = \alpha$ and hence $\sigma^{-1}(\alpha) = \alpha^{p^t}$ for all $\alpha \in C$. This implies that σ^{-1} is a Frobenius automorphism of *R*. By (2.2), $[\sigma^{-1}(x^s), x^m] = 0$ for all $x \in Q$. Proceeding in the same way as above, we obtain that *R* is commutative. The proof is now complete.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Since a prime ring *R* and its nonzero ideal *I* satisfy the same GPIs with automorphisms [7, Theorem 1], we have $[[\cdots [\sigma(x^{n_0}), x^{n_1}], \cdots], x^{n_k}] = 0$ for all $x \in R$. By Theorem 2.5 we are done.

3 The Semiprime Case

Theorem 3.1 Let R be a prime ring and let σ be an epimorphism of R but not a monomorphism. Suppose that $[[\cdots [[\sigma(x^{n_0}), x^{n_1}], x^{n_2}], \cdots], x^{n_k}] = 0$ for all $x \in R$, where $n_0, n_1, n_2, \ldots, n_k$ are fixed positive integers. Then R is commutative.

Proof Let $I = \text{Ker } \sigma$. Then I is a nonzero ideal of R. In view of the proof of Theorem 2.5, we have $[\sigma(x^m), x^n]_k = 0$ for all $x \in R$, where $m = n_0$ and $n = n_1 n_2 \cdots n_k$. For $x \in R$ and $y \in I$, $0 = [\sigma((x + y)^m), (x + y)^n]_k = [\sigma(x^m), (x + y)^n]_k$. Since I and R satisfy the same GPIs [2, Theorem 6.4.4], we have $[\sigma(x^m), (x + y)^n]_k = 0$ for all $x, y \in R$. Next replacing y with y - x, we obtain $[\sigma(x^m), y^n]_k = 0$ for all $x, y \in R$. Hence by Lemma 2.4 $\sigma(x^m) = \sigma(x)^m \in Z(R)$ for all $x \in R$. In particular, $x^m \in Z(R)$ for all $x \in R$. So $[y, x^m] = 0$ for all $x, y \in R$. By Lemma 2.4, R is commutative, proving the theorem.

We are now ready to prove Theorem 1.1

Proof of Theorem 1.1 In view of the proof of Theorem 2.5, we have $[\sigma(x^m), x^n]_k = 0$ for all $x \in R$, where $m = n_0$ and $n = n_1 n_2 \cdots n_k$. Let *P* be a prime ideal of *R* and set $\overline{R} = R/P$. For $x \in R$, we write $\overline{x} = x + P \in \overline{R}$.

Assume first that $\sigma(P) \nsubseteq P$. For $x \in R$ and $p \in P$,

$$\overline{0} = \overline{[\sigma((x+p)^m), (x+p)^n]_k} = [(\overline{\sigma(x)} + \overline{\sigma(p)})^m, \overline{x}^n]_k.$$

Thus $[(\overline{\sigma(x)} + \overline{y})^m, \overline{x}^n]_k = \overline{0}$ for all $x \in R$ and $y \in \sigma(P)$. Since $\sigma(P) \nsubseteq P$, $\overline{\sigma(P)} = (\sigma(P) + P) / P$ is a nonzero ideal of the prime ring \overline{R} . By [2, Theorem 6.4.4], $[(\overline{\sigma(x)} + \overline{y})^m, \overline{x}^n]_k = \overline{0}$ for all $x, y \in R$. Replacing y with $y - \sigma(x)$, we obtain $[\overline{y}^m, \overline{x}^n]_k = \overline{0}$ for all $x, y \in R$. This implies that $\overline{y}^m \in Z(\overline{R})$ for all $y \in R$ by Lemma 2.4. Hence $[\overline{x}, \overline{y}^m] = 0$ for all $x, y \in R$, implying that \overline{R} is commutative by Lemma 2.4. So $[\overline{R}, \overline{R}] = \overline{0}$. Equivalently, $[R, R] \subseteq P$. In particular, $[\sigma(x) - x, y] \in P$ and $[(\sigma(x) - x)z, y] \in P$ for all $x, y, z \in R$.

Assume next that $\sigma(P) \subseteq P$. Define $\overline{\sigma} : \overline{R} \to \overline{R}$ by $\overline{\sigma}(\overline{x}) = \overline{\sigma(x)}$ for $x \in R$. Then $\overline{\sigma}$ is an epimorphism of \overline{R} . Then $\overline{0} = \overline{[\sigma(x^m), x^n]_k} = [\overline{\sigma}(\overline{x}^m), \overline{x}^n]_k$ for all $x \in R$.

By Theorems 3.1 and 2.5, $\overline{\sigma}$ is the identity automorphism of \overline{R} or \overline{R} is commutative. Hence $\sigma(x) - x \in P$ for all $x \in R$ or $[R, R] \subseteq P$. In both cases, we have $[\sigma(x) - x, y] \in P$ and $[(\sigma(x) - x)z, y] \in P$ for all $x, y, z \in R$.

Since *R* is semiprime, $\cap P = 0$, where *P* runs over all prime ideals of *R*. So we conclude that $[\sigma(x) - x, y] = 0$ and $[(\sigma(x) - x)z, y] = 0$ for all $x, y, z \in R$. Hence $\sigma(x) - x \in Z(R)$ and $(\sigma(x) - x)R \subseteq Z(R)$ for all $x \in R$. Let $\mu(x) = \sigma(x) - x$ for $x \in R$. Then $\mu(R) \subseteq Z(R)$ and $\mu(R)R \subseteq Z(R)$. So $\mu(R) + \mu(R)R$ is a central ideal of *R*. This proves the theorem.

Finally, we construct a noncommutative semiprime ring that admits a commuting non-identity automorphism.

Example Let *F* be a field, let $M_2(F)$ be the 2 × 2 matrix ring over *F*, and let $R = M_2(F) \times F \times F$. Let σ be the automorphism of *R* defined by $\sigma((x_1, x_2, x_3)) = (x_1, x_3, x_2)$ for $x_1 \in M_2(F)$ and $x_2, x_3 \in F$. Then $[\sigma(x), x] = 0$ and $\mu(x) = \sigma(x) - x$ for all $x \in R$, where $\mu((x_1, x_2, x_3)) = (0, x_3 - x_2, x_2 - x_3)$ for $x_1 \in M_2(F)$ and $x_2, x_3 \in F$. Clearly, $\mu(R)$ is contained in the central ideal $\{0\} \times F \times F$ of *R*.

Acknowledgement The authors are thankful to the referee for the very thorough reading of the paper and for valuable suggestions.

References

- E. Albas, N. Argac, and V. De Filippis, *Generalized derivations with Engel conditions on one-sided ideals*. Comm. Algebra 36(2008), no. 6, 2063–2071. http://dx.doi.org/10.1080/00927870801949328
- [2] K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, *Rings with generalized identities*. Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.
- H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings. Canad. Math. Bull. 30(1987), no. 1, 92–101. http://dx.doi.org/10.4153/CMB-1987-014-x
- M. Brešar, Centralizing mappings and derivations in prime rings. J. Algebra 156(1993), no. 2, 385–394. http://dx.doi.org/10.1006/jabr.1993.1080
- [5] M. Brešar, M. A. Chebotar, and W. S. Martindale III, Functional Identities. Frontiers in mathematics. Birkhäuser Verlag, Basel, 2007.
- [6] M.-C. Chou and C.-K. Liu, An Engel condition with skew derivations. Monatsh. Math. 158(2009), 259-270. http://dx.doi.org/10.1007/s00605-008-0043-5
- [7] C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms. I. J. Algebra 149(1992), no. 2, 371–404. http://dx.doi.org/10.1016/0021-8693(92)90023-F
- [8] _____, Differential identities with automorphisms and antiautomorphisms. II. J. Algebra 160(1993), no. 1, 130–171. http://dx.doi.org/10.1006/jabr.1993.1181
- C.-L. Chuang and C.-K. Liu, Extended Jacobson density theorem for rings with skew derivations. Comm. Algebra 35(2007), no. 4, 1391–1413. http://dx.doi.org/10.1080/00927870601142207
- [10] Q. Deng and H. E. Bell, On derivations and commutativity in semiprime rings. Comm. Algebra 23(1995), no. 10, 3705–3713. http://dx.doi.org/10.1080/00927879508825427
- [11] N. Divinsky, On commuting automorphisms of rings. Trans. Roy. Soc. Canada. Sect. III. 49(1955), 19–22.
- [12] T. S. Erickson, W. S. Martindale III, and J. M. Osborn, *Prime nonassociative algebras*. Pacific J. Math. 60(1975), 49–63.
- [13] V. De Filippis, An Engel condition with generalized derivations on multilinear polynomials. Israel J. Math. 162(2007), 93–108. http://dx.doi.org/10.1007/s11856-007-0090-y
- [14] _____, Generalized derivations with Engel condition on multilinear polynomials. Israel J. Math. 171(2009), 325–348. http://dx.doi.org/10.1007/s11856-009-0052-7
- [15] N. Jacobson, *Lie algebras*. Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers, New York, 1962.

- [16] _____, *Structure of rings*. American Mathematical Society Colloquium Publications, 37, American Mathematical Society, Providence, RI, 1964.
- [17] C. Lanski, An Engel condition with derivation. Proc. Amer. Math. Soc. 118(1993), no. 3, 731–734. http://dx.doi.org/10.1090/S0002-9939-1993-1132851-9
- [18] _____, An Engel condition with derivation for left ideals. Proc. Amer. Math. Soc. 125(1997), no. 2, 339–345. http://dx.doi.org/10.1090/S0002-9939-97-03673-3
- [19] P.-H. Lee and T.-L. Wong, *Derivations cocentralizing Lie ideals*. Bull. Inst. Math. Acad. Sinica 23(1995), no. 1, 1–5.
- [20] P.-H. Lee and Yu Wang, Supercentralizing maps in prime superalgebras. Comm. Algebra 37(2009), 840–854. http://dx.doi.org/10.1080/00927870802271672
- [21] T.-K. Lee, Semiprime rings with hypercentral derivations. Canad. Math. Bull. 38(1995), no. 4, 445–449. http://dx.doi.org/10.4153/CMB-1995-065-2
- [22] T.-K. Lee and T.-L. Wong, On certain subgroups of prime rings with automorphisms. Comm. Algebra 30(2002), no. 10, 4997–5009. http://dx.doi.org/10.1081/AGB-120014681
- [23] T.-K. Lee and K.-S. Liu, The Skolem-Noether theorem for semiprime rings satisfying a strict identity. Comm. Algebra 35(2007), no. 6, 1949–1955. http://dx.doi.org/10.1080/00927870701247062
- [24] T.-K. Lee and Y. Zhou, An identity with generalized derivations. J. Algebra Appl. 9(2009), no. 3, 307–317. http://dx.doi.org/10.1142/S021949880900331X
- [25] C.-K. Liu, Derivations with Engel and annihilator conditions on multilinear polynomials. Comm. Algebra 33(2005), no. 3, 719–725. http://dx.doi.org/10.1081/AGB-200049880
- [26] _____, Derivations cocentralizing multilinear polynomials on left ideal. Monatsh. Math. 162(2011), no. 3, 297–311. http://dx.doi.org/10.1007/s00605-009-0179-y
- [27] J. Luh, A note on commuting automorphisms of rings. Amer. Math. Monthly 77(1970), 61–62. http://dx.doi.org/10.2307/2316858
- [28] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity. J. Algebra 12(1969), 576–584. http://dx.doi.org/10.1016/0021-8693(69)90029-5
- [29] J. H. Mayne, Centralizing automorphisms of prime rings. Canad. Math. Bull. 19(1976), no. 1, 113–115. http://dx.doi.org/10.4153/CMB-1976-017-1
- [30] _____, Centralizing automorphisms of Lie ideals in prime rings. Canad. Math. Bull. 35(1992), no. 4, 510–514. http://dx.doi.org/10.4153/CMB-1992-067-0
- [31] J. Vukman, Commuting and centralizing mappings in prime rings. Proc. Amer. Math. Soc. 109(1990), no. 1, 47–52. http://dx.doi.org/10.1090/S0002-9939-1990-1007517-3
- [32] Yu Wang, A note on Lie automorphisms, subrings, and Lie ideals of prime rings. Comm. Algebra 33(2005), no. 11, 4057–4062. http://dx.doi.org/10.1080/00927870500261363
- [33] _____, Power-centralizing automorphisms of Lie ideals in prime rings. Comm. Algebra **34**(2006), no. 2, 609–615. http://dx.doi.org/10.1080/00927870500387812
- [34] _____, Annihilator conditions of derivations on multilinear polynomial. Comm. Algebra 39(2011), no. 1, 237–246. http://dx.doi.org/10.1080/00927870903337992
- [35] T.-L. Wong, On Lie automorphisms, additive subgroups, and Lie ideals of prime rings. Comm. Algebra 31(2003), 969–979. http://dx.doi.org/10.1081/AGB-120017353

Department of Mathematics, National Changhua University of Education, Changhua 500, Taiwan e-mail: d96211001@mail.ncue.edu.tw ckliu@cc.ncue.edu.tw