On Automorphisms and Commutativity in Semiprime Rings

Pao-Kuei Liau and Cheng-Kai Liu

Abstract. Let R be a semiprime ring with center $Z(R)$. For $x, y \in R$, we denote by $[x, y]=x y-y x$ the commutator of x and y. If σ is a non-identity automorphism of R such that

$$
\left[\left[\cdots\left[\left[\sigma\left(x^{n_{0}}\right), x^{n_{1}}\right], x^{n_{2}}\right], \cdots\right], x^{n_{k}}\right]=0
$$

for all $x \in R$, where $n_{0}, n_{1}, n_{2}, \ldots, n_{k}$ are fixed positive integers, then there exists a map $\mu: R \rightarrow Z(R)$ such that $\sigma(x)=x+\mu(x)$ for all $x \in R$. In particular, when R is a prime ring, R is commutative.

1 Introduction and Results

Let R be a ring with center $Z(R)$. R is said to be semiprime if for $x \in R, x R x=0$ implies $x=0$ and R is said to be prime if for $x, y \in R, x R y=0$ implies $x=0$ or $y=0$. For $x, y \in R$, set

$$
[x, y]_{1}=[x, y]=x y-y x \quad \text { and } \quad[x, y]_{k}=\left[[x, y]_{k-1}, y\right]
$$

for $k>1$. An Engel condition is a polynomial $[x, y]_{k}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} y^{i} x y^{k-i}$ in noncommutative indeterminates x, y. The question of whether a ring is commutative or nilpotent if it satisfies an Engel condition goes back to the well-known result of Engel on Lie algebras [15].

A mapping $f: R \rightarrow R$ is called commuting (centralizing) if $[f(x), x]=0$ (resp. $[f(x), x] \in Z(R))$ for all $x \in R$. The study of commuting and centralizing mappings began in 1955 when Divinsky [11] proved that a simple artinian ring is commutative if it has a commuting non-identity automorphism. In 1970 Luh [27] generalized Divinsky's result to prime rings. In 1976 Mayne [29] showed that a prime ring must be commutative if it possesses a non-identity centralizing automorphism. These results have been now generalized in various directions (see, for instance, [3, 4, 9, 20, 22, 30, 32, 33, 35]). In 1990 Vukman [31] studied the Engel type identities with derivations and proved that a prime ring R of char $R \neq 2$ is commutative if there is a nonzero derivation d of R such that $[d(x), x]_{2}=0$ for all $x \in R$. On the other hand, Deng and Bell [10] proved that a semiprime ring R contains a nonzero central ideal if either R is 6-torsion free and $[d(x), x]_{2} \in Z(R)$ for all $x \in R$ or if R is $n!$-torsion free and $\left[d(x), x^{n}\right] \in Z(R)$ for all $x \in R$, where d is a nonzero derivation

[^0]of R. Later Lee [21] and Lanski [18] independently extended these two results in full generality and studied the situation where $\left[\left[\cdots\left[\left[d\left(x^{n_{0}}\right), x^{n_{1}}\right], x^{n_{2}}\right], \cdots\right], x^{n_{k}}\right]=0$ for all $x \in R$. Several related generalizations can be found in $[1,6,13,14,24,25,34]$. The goal of this paper is to investigate the analogous result for automorphisms. Precisely, we prove the following theorem.
Theorem 1.1 Let R be a semiprime ring with center $Z(R)$. If σ is an automorphism of R such that $\left[\left[\cdots\left[\left[\sigma\left(x^{n_{0}}\right), x^{n_{1}}\right], x^{n_{2}}\right], \cdots\right], x^{n_{k}}\right]=0$ for all $x \in R$, where $k, n_{0}, n_{1}, n_{2}, \ldots, n_{k}$ are fixed positive integer (and independent of x), then there is a map $\mu: R \rightarrow Z(R)$ such that $\sigma(x)=x+\mu(x)$ for all $x \in R$ and $\mu(R)$ is contained in a central ideal of R.

For prime rings, we have the following theorem.
Theorem 1.2 Let R be a prime ring, let I be a nonzero ideal of R, and let σ be a nonidentity automorphism of R. Suppose that $\left[\left[\cdots\left[\left[\sigma\left(x^{n_{0}}\right), x^{n_{1}}\right], x^{n_{2}}\right], \cdots\right], x^{n_{k}}\right]=0$ for all $x \in I$, where $k, n_{0}, n_{1}, n_{2}, \ldots, n_{k}$ are fixed positive integers (and independent of x). Then R is commutative.

2 The Prime Case

Let V_{D} be a right vector space over a division ring D. We denote $\operatorname{End}\left(V_{D}\right)$ the ring of D-linear transformations on V_{D}. A map $T: V \rightarrow V$ is called a semi-linear transformation if $T(u+v)=T u+T v$ for all $u, v \in V$ and there is an automorphism τ of D such that $T(v \alpha)=(T v) \tau(\alpha)$ for all $v \in V$ and $\alpha \in D$.

Lemma 2.1 Let σ be an automorphism of $\operatorname{End}\left(V_{D}\right)$. Assume that $\left[\sigma\left(x^{m}\right), x^{n}\right]_{k}=0$ for all $x \in \operatorname{End}\left(V_{D}\right)$, where m, n, k are fixed positive integers. If $\operatorname{dim} V_{D} \geq 2$, then σ is the identity map of $\operatorname{End}\left(V_{D}\right)$.
Proof By [16, Isomorphism Theorem, p. 79], there exists an invertible semi-linear transformation $T: V \rightarrow V$ such that $\sigma(x)=T x T^{-1}$ for all $x \in \operatorname{End}\left(V_{D}\right)$. In particular, there exists an automorphism τ of D such that $T(v \alpha)=(T v) \tau(\alpha)$ for all $v \in V$ and $\alpha \in D$. Hence by assumption, we have

$$
0=\left[\sigma\left(x^{m}\right), x^{n}\right]_{k}=\left[T x^{m} T^{-1}, x^{n}\right]_{k}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{n i}\left(T x^{m} T^{-1}\right) x^{n(k-i)}
$$

for all $x \in R$. We divide the proof into two cases.
Case 1 There exists $v_{0} \in V$ such that v_{0} and $T^{-1} v_{0}$ are D-independent.
Suppose first that $v_{0}, T^{-1} v_{0}, T^{-2} v_{0}$ are D-independent. Let $x \in \operatorname{End}\left(V_{D}\right)$ such that $x v_{0}=0, x T^{-1} v_{0}=T^{-1} v_{0}+T^{-2} v_{0}$, and $x T^{-2} v_{0}=0$. Then $x^{\ell} T^{-1} v_{0}=T^{-1} v_{0}+$ $T^{-2} v_{0} \neq 0$ for all $\ell \geq 1$, and hence

$$
\begin{aligned}
0 & =\left[\sigma\left(x^{m}\right), x^{n}\right]_{k} v_{0}=\left(\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{n i}\left(T x^{m} T^{-1}\right) x^{n(k-i)}\right) v_{0} \\
& =(-1)^{k} x^{n k} T x^{m} T^{-1} v_{0}=(-1)^{k}\left(T^{-1} v_{0}+T^{-2} v_{0}\right)
\end{aligned}
$$

a contradiction.
Suppose next that $v_{0}, T^{-1} v_{0}, T^{-2} v_{0}$ are D-dependent. Then there exist $\alpha, \beta \in D$ such that $T^{-2} v_{0}=v_{0} \alpha+\left(T^{-1} v_{0}\right) \beta$. In particular,

$$
T^{-1} v_{0}=T\left(T^{-2} v_{0}\right)=T\left(v_{0} \alpha+\left(T^{-1} v_{0}\right) \beta\right)=\left(T v_{0}\right) \alpha_{1}+v_{0} \beta_{1}
$$

where $\alpha_{1}=\tau(\alpha)$ and $\beta_{1}=\tau(\beta)$. Clearly, $\alpha_{1} \neq 0$. Thus $T v_{0}=\left(T^{-1} v_{0}\right) \alpha_{1}^{-1}-$ $v_{0} \beta_{1} \alpha_{1}^{-1}$. Let $x \in \operatorname{End}\left(V_{D}\right)$ such that $x v_{0}=0$ and $x T^{-1} v_{0}=T^{-1} v_{0}+v_{0}$. Then $x^{\ell} T^{-1} v_{0}=T^{-1} v_{0}+v_{0}, x^{\ell} T v_{0}=\left(T^{-1} v_{0}+v_{0}\right) \alpha_{1}^{-1} \neq 0$ for all $\ell \geq 1$ and hence

$$
\begin{aligned}
0 & =\left[\sigma\left(x^{m}\right), x^{n}\right]_{k} v_{0}=\left(\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} x^{n i}\left(T x^{m} T^{-1}\right) x^{n(k-i)}\right) v_{0} \\
& =(-1)^{k} x^{n k} T x^{m} T^{-1} v_{0}=(-1)^{k} x^{n k} T\left(T^{-1} v_{0}+v_{0}\right)=(-1)^{k} x^{n k} T v_{0}
\end{aligned}
$$

a contradiction.
Case 2 We have that v and $T^{-1} v$ are D-dependent for every $v \in V$. For each $v \in V$, we write $T^{-1} v=v \alpha_{v}$, where $\alpha_{v} \in D$. Fix $0 \neq u \in V$. Let $0 \neq v \in V$ and write $T^{-1} v=v \alpha_{v}$ where $\alpha_{v} \in D$. Suppose first that v and u are D-independent. Then

$$
(u+v) \alpha_{u+v}=T^{-1}(u+v)=T^{-1} u+T^{-1} v=u \alpha_{u}+v \alpha_{v} .
$$

So $u\left(\alpha_{u+v}-\alpha_{u}\right)=v\left(\alpha_{v}-\alpha_{u+v}\right)$, and hence $\alpha_{u+v}=\alpha_{u}=\alpha_{v}$. Suppose next that v and u are D-dependent. Since $\operatorname{dim} V_{D} \geq 2$, there exists $w \in V$ such that w and u are D independent, and then, by the proof above, we have $\alpha_{w}=\alpha_{u}$. Clearly, w and v are D independent. So $\alpha_{w}=\alpha_{v}$, implying that $\alpha_{u}=\alpha_{v}$. Consequently, $T^{-1} v=v \alpha$ for all $v \in V$, where $\alpha=\alpha_{u}$. Now we have $\sigma(x) v=T x T^{-1} v=T(x(v \alpha))=T((x v) \alpha)=x v$ for all $x \in \operatorname{End}\left(V_{D}\right)$ and $v \in V$. In particular, $(\sigma(x)-x) V=0$ for all $x \in \operatorname{End}\left(V_{D}\right)$. Thus $\sigma(x)=x$ for all $x \in \operatorname{End}\left(V_{D}\right)$. This implies σ is the identity map of $\operatorname{End}\left(V_{D}\right)$, proving the lemma.

Throughout the rest in this section, R is always a prime ring with the maximal right ring of quotients $Q=Q_{m r}(R)$. Note that Q is also a prime ring, and the center C of Q, which is called the extended centroid of R, is a field. Moreover, $Z(R) \subseteq C$ (see [2] for details). It is well known that any automorphism of R can be uniquely extended to an automorphism of Q. An automorphism σ of R is called Q-inner if there exists an invertible element $g \in Q$ such that $\sigma(x)=g x g^{-1}$ for all $x \in R$. Otherwise, σ is called Q-outer. An automorphism σ of Q is called Frobenius if, in the case of char $R=0, \sigma(\alpha)=\alpha$ for all $\alpha \in C$ and if, in the case of char $R=p \geq 2$, $\sigma(\alpha)=\alpha^{p^{t}}$ for all $\alpha \in C$, where t is a fixed integer, positive, zero, or negative.

Let $Q *_{C} C\{X\}$ be the free product of Q and the free algebra $C\{X\}$ over C on an infinite set X, of indeterminates. A typical element in $Q *_{C} C\{X\}$ is a finite sum of monomials of the form $\alpha a_{i_{0}} x_{j_{1}} a_{i_{1}} x_{j_{2}} \cdots x_{j_{n}} a_{i_{n}}$, where $\alpha \in C, a_{i_{k}} \in Q$, and $x_{j_{k}} \in X$. We say that R satisfies a nontrivial generalized polynomial identity (GPI) if there exists a nonzero polynomial $\phi\left(x_{i}\right) \in Q *_{C} C\{X\}$ such that $\phi\left(r_{i}\right)=0$ for all $r_{i} \in R$.

Lemma 2.2 Let R be a prime ring and let σ be a non-identity automorphism of R. If σ is Q-inner such that $\left[\sigma\left(x^{m}\right), x^{n}\right]_{k}=0$ for all $x \in R$, where m, n, k are fixed positive integers, then R is commutative.

Proof By assumption, $\sigma(x)=g x g^{-1}$ for all $x \in R$, where g is an invertible element in Q. Note that $g \notin C$; otherwise σ becomes the identity map of R, contrary to our assumption. Since $g \notin C$, it is easy to see that

$$
\phi(x)=\left[\sigma\left(x^{m}\right), x^{n}\right]_{k}=g x^{m} g^{-1} x^{n k}+\sum_{i=1}^{k}(-1)^{i}\binom{k}{i} x^{n i}\left(g x^{m} g^{-1}\right) x^{n(k-i)}
$$

is a nontrivial GPI of R. By [2, Theorem 6.4.4], R and Q satisfy the same GPIs. So we have $\phi(x)=0$ for all $x \in Q$. Denote by F the algebraic closure of C if C is infinite and set $F=C$ for C finite. Then $Q \otimes_{C} F$ is a prime ring with the extended centroid F [12, Theorem 3.5]. Clearly, $Q \cong Q \otimes_{C} C \subseteq Q \otimes_{C} F$. So we may regard Q as a subring of $Q \otimes_{C} F$. By a standard argument [19, Proposition] (or see the proof of [17, Lemma 2]), $\phi(x)$ is also a nontrivial GPI of $Q \otimes_{C} F$. Let $\widetilde{Q}=Q_{m r}\left(Q \otimes_{C} F\right)$, the maximal right rings of quotients of $Q \otimes_{C} F$. By [2, Theorem 6.4.4], $\phi(x)$ is also a nontrivial GPI of \widetilde{Q}. By Martindale's theorem [28], $\widetilde{Q} \cong \operatorname{End}\left(V_{D}\right)$, where V is a vector space over a division ring D and D is finite-dimensional over its center F. Recall that F is either algebraically closed or finite. From the finite dimensionality of D over F, it follows that $D=F$. Hence $\widetilde{Q} \cong \operatorname{End}\left(V_{F}\right)$. By Lemma 2.1, $\operatorname{dim} V_{F}=1$, implying $\widetilde{Q}=F$. Consequently, \widetilde{Q} is commutative and hence R is commutative, as desired.

The following two lemmas are essential to our proof.
Lemma 2.3 ([5, p. 239, Theorem A7]) Let R be a prime ring and $a_{i}, b_{i}, c_{j}, d_{j} \in$ Q. Suppose that $\sum_{i=1}^{m} a_{i} x b_{i}+\sum_{j=1}^{n} c_{j} x d_{j}=0$ for all $x \in R$. If b_{1}, \ldots, b_{m} are C independent, then each a_{i} is a C-linear combination of c_{1}, \ldots, c_{n}.

Lemma 2.4 ([18, Theorem 2]) Let R be a prime ring. If a $\in R$ such that $\left[a, x^{n}\right]_{k}=0$ for all $x \in R$, where n, k are fixed positive integers, then $a \in Z(R)$.

Theorem 2.5 Let R be a prime ring and let σ be a non-identity automorphism of R. Suppose that $\left[\left[\cdots\left[\left[\sigma\left(x^{n_{0}}\right), x^{n_{1}}\right], x^{n_{2}}\right], \cdots\right], x^{n_{k}}\right]=0$ for all $x \in R$, where $n_{0}, n_{1}, n_{2}, \ldots, n_{k}$ are fixed positive integers. Then R is commutative.

Proof Using the identities

$$
\begin{aligned}
\sum_{i=0}^{\ell}\left(x^{t}\right)^{i}\left[y, x^{s}\right]\left(x^{t}\right)^{\ell-i} & =\left[\sum_{i=0}^{\ell}\left(x^{t}\right)^{i} y\left(x^{t}\right)^{\ell-i}, x^{s}\right] \\
\sum_{i=0}^{\ell-1}\left(x^{t}\right)^{i}\left[y, x^{t}\right]\left(x^{t}\right)^{\ell-1-i} & =\left[y, x^{\ell t}\right]
\end{aligned}
$$

and letting $m=n_{0}$ and $n=n_{1} n_{2} \cdots n_{k}$, by assumption we have

$$
\begin{equation*}
\left[\sigma\left(x^{m}\right), x^{n}\right]_{k}=0 \tag{2.1}
\end{equation*}
$$

for all $x \in R$. If σ is Q-inner, then by Lemma 2.2, we are done. So from now on we assume that σ is Q-outer. In this case, $\phi(x)=\left[\sigma\left(x^{m}\right), x^{n}\right]_{k}=\left[\sigma(x)^{m}, x^{n}\right]_{k}$ is a nontrivial GPI of R with automorphisms. By [7, Main Theorem], R must satisfy a nontrivial GPI. By Martindale's theorem [28], $Q \cong \operatorname{End}\left(V_{D}\right)$, where V is a vector space over a division ring D and D is finite-dimensional over its center $C=Z(D)$. Since R and Q satisfy the same GPIs with automorphisms [8, Theorem 1], we have $\left[\sigma\left(x^{m}\right), x^{n}\right]_{k}=0$ for all $x \in Q$. By Lemma 2.1, $\operatorname{dim} V_{D}=1$ and hence $Q \cong D$. If C is finite, then from the finite dimensionality of D over C it follows that $D=C$. Thus $Q=C$ is a field, implying that R is commutative. Hence from now on we may assume that C is infinite. We divide the proof into two cases.

Case 1: σ is not Frobenius. By [8, Main Theorem], replacing $\sigma(x)$ with y, we obtain $\left[y, x^{n}\right]_{k}=0$ for all $x, y \in R$. By Lemma 2.4, R is commutative, as desired.

Case 2: σ is Frobenius. If char $R=0$, then the Frobenius automorphism σ fixes C, that is, $\sigma(\alpha)=\alpha$ for all $\alpha \in C$. By Skolem-Noether theorem [23, Theorem 1.1], σ must be Q-inner, a contradiction. So we may assume that char $R=p \geq 2$. Then there exists an integer t such that $\sigma(\alpha)=\alpha^{p^{t}}$ for all $\alpha \in C$. Clearly $t \neq 0$; otherwise, $\sigma(\alpha)=\alpha$ for all $\alpha \in C$. By [23, Theorem 1.1], σ is Q-inner, a contradiction. Choose an integer ℓ such that $p^{\ell}>k$. By (2.1) we have

$$
\begin{aligned}
0 & =\left[\left[\sigma\left(x^{m}\right), x^{n}\right]_{k}, x^{n}\right]_{p^{\ell}-k}=\left[\sigma\left(x^{m}\right), x^{n}\right]_{p^{\ell}} \\
& =\sum_{i=0}^{p^{\ell}}(-1)^{i}\binom{p^{\ell}}{i} x^{n i} \sigma\left(x^{m}\right) x^{n\left(p^{\ell}-i\right)}=\left[\sigma\left(x^{m}\right), x^{n p^{\ell}}\right],
\end{aligned}
$$

since $\binom{p_{i}^{\ell}}{i}=0$ for $0<i<p^{\ell}$. Let $s=n p^{\ell}$. Then

$$
\begin{equation*}
0=\left[\sigma\left(x^{m}\right), x^{s}\right]=\left[\sigma(x)^{m}, x^{s}\right] \text { for all } x \in Q \tag{2.2}
\end{equation*}
$$

Suppose first that $t \geq 1$. Let $x, y \in Q$ and $\alpha \in C$. Then

$$
(x+\alpha y)^{s}=x^{s}+\sum_{i=1}^{s} \alpha^{i} \phi_{i}(x, y)
$$

where $\phi_{i}(x, y)$ denotes the sum of all monic monomials with x-degree $s-i$ and y-degree i for $0 \leq i \leq s$. In particular,

$$
\phi_{1}(x, y)=\sum_{i=0}^{s-1} x^{s-1-i} y x^{i}=x^{s-1} y+x^{s-2} y x+\cdots+y x^{s-1} .
$$

For $\alpha \in C$ and $x, y \in Q$, replacing x by $x+\alpha y$ in (2.2) and using the identity
$[x, y+z]=[x, y]+[x, z]$, we have

$$
\begin{aligned}
0= & {\left[\sigma(x+\alpha y)^{m},(x+\alpha y)^{s}\right]=\left[(\sigma(x)+\sigma(\alpha) \sigma(y))^{m},(x+\alpha y)^{s}\right] } \\
= & {\left[\left(\sigma(x)+\alpha^{p^{t}} \sigma(y)\right)^{m},(x+\alpha y)^{s}\right] } \\
= & {\left[\sigma(x)^{m}+\sum_{j=1}^{m} \alpha^{j p^{t}} \varphi_{j}(\sigma(x), \sigma(y)), x^{s}+\sum_{i=1}^{s} \alpha^{i} \phi_{i}(x, y)\right] } \\
= & \alpha\left[\sigma(x)^{m}, \phi_{1}(x, y)\right]+\sum_{i=2}^{s} \alpha^{i}\left[\sigma(x)^{m}, \phi_{i}(x, y)\right] \\
& +\sum_{j=1}^{m} \alpha^{j p^{t}}\left[\varphi_{j}(\sigma(x), \sigma(y)), x^{s}\right]+\sum_{j=1}^{m} \sum_{i=1}^{s} \alpha^{i+j p^{t}}\left[\varphi_{j}(\sigma(x), \sigma(y)), \phi_{i}(x, y)\right]
\end{aligned}
$$

where $\varphi_{j}(x, y)$ denotes the sum of all monic monomials with x-degree $m-j$ and y-degree j for $0 \leq j \leq m$. Since C is infinite, it follows from the Vandermonde determinant argument that

$$
\begin{equation*}
\left[\sigma(x)^{m}, \phi_{1}(x, y)\right]=0 \tag{2.3}
\end{equation*}
$$

for all $x, y \in Q$. If $x^{m s} \in C$ for all $x \in Q$, then $\left[y, x^{m s}\right]=0$ for all $x, y \in Q$, and hence Q is commutative by Lemma 2.4. This implies that R is commutative, proving the theorem. Thus we may assume that $x^{m s} \notin C$ for some $x \in Q$. Let $1 \leq \ell \leq s-1$ be the largest integer such that $1, x, \ldots, x^{\ell}$ are C-independent and write $\phi_{1}(x, y)=\sum_{i=0}^{\ell} g_{i}(x) y x^{i}$, where $g_{0}(x), \ldots, g_{\ell}(x)$ are C-linear combinations of $1, x, \ldots, x^{\ell}$. Note that $g_{w}(x) \neq 0$ for some $0 \leq w \leq \ell$; otherwise, $\phi_{1}(x, y)=0$ for all $y \in Q$ and then $0=\left[x, \phi_{1}(x, y)\right]=\left[x^{s}, y\right]$ for all $y \in Q$, implying that $x^{s} \in C$ by Lemma 2.4 and hence $x^{m s} \in C$, a contradiction. By (2.3), we have

$$
\begin{align*}
0 & =\left[\sigma(x)^{m}, \phi_{1}(x, y)\right]=\sigma(x)^{m} \phi_{1}(x, y)-\phi_{1}(x, y) \sigma(x)^{m} \tag{2.4}\\
& =\sigma(x)^{m} \sum_{i=0}^{\ell} g_{i}(x) y x^{i}-\sum_{i=0}^{s-1} x^{s-1-i} y x^{i} \sigma(x)^{m}
\end{align*}
$$

for all $y \in Q$. Applying Lemma 2.3 to (2.4), $\sigma(x)^{m} g_{w}(x)$ can be expressed as a C-linear combination of $1, x, \ldots, x^{s-1}$. Recall that $Q \cong D$ is a division ring and $g_{w}(x) \neq 0$. So $\sigma(x)^{m}$ is a C-linear combination of $g_{w}(x)^{-1}, g_{w}(x)^{-1} x, \ldots, g_{w}(x)^{-1} x^{s-1}$. Hence $\left[\sigma(x)^{m}, x\right]=0$. For any $z \in Q$, there exist infinite many $\beta \in C$ such that $(x+\beta z)^{s} \notin$ C; otherwise, from $(x+\beta z)^{s}=x^{s}+\sum_{i=1}^{s} \beta^{i} \phi_{i}(x, z) \in C$, it follows that $x^{s} \in C$ by the Vandermonde determinant argument, a contradiction. For such $\beta \in C$, by the same proof as above, we obtain $\left[\sigma(x+\beta z)^{m}, x+\beta z\right]=0$. Thus

$$
\begin{aligned}
0 & =\left[\sigma(x+\beta z)^{m}, x+\beta z\right]=\left[\left(\sigma(x)+\beta^{p^{t}} \sigma(z)\right)^{m}, x+\beta z\right] \\
& =\beta\left[\sigma(x)^{m}, z\right]+\sum_{j=1}^{m} \beta^{j p^{t}}\left[\varphi_{j}(\sigma(x), \sigma(z)), x+\beta z\right]
\end{aligned}
$$

By the Vandermonde determinant argument again, $\left[\sigma(x)^{m}, z\right]=0$ for all $z \in Q$. This implies that $\sigma(x)^{m}=\sigma\left(x^{m}\right) \in C$. Thus $x^{m} \in C$. In particular, $x^{m s} \in C$, a contradiction.

Suppose next that $t \leq-1$. By assumption $\sigma(\alpha)_{,}=\alpha^{p^{t}}$ for all $\alpha \in C$. Let $t^{\prime}=$ $-t \geq 1$. Then $\sigma\left(\alpha^{t^{t^{t}}}\right)=\alpha$ and hence $\sigma^{-1}(\alpha)=\alpha^{t^{t}}$ for all $\alpha \in C$. This implies that σ^{-1} is a Frobenius automorphism of R. By (2.2), $\left[\sigma^{-1}\left(x^{s}\right), x^{m}\right]=0$ for all $x \in Q$. Proceeding in the same way as above, we obtain that R is commutative. The proof is now complete.

We are now ready to prove Theorem 1.2.
Proof of Theorem 1.2 Since a prime ring R and its nonzero ideal I satisfy the same GPIs with automorphisms [7, Theorem 1], we have $\left[\left[\cdots\left[\sigma\left(x^{n_{0}}\right), x^{n_{1}}\right], \cdots\right], x^{n_{k}}\right]=0$ for all $x \in R$. By Theorem 2.5 we are done.

3 The Semiprime Case

Theorem 3.1 Let R be a prime ring and let σ be an epimorphism of R but not a monomorphism. Suppose that $\left[\left[\cdots\left[\left[\sigma\left(x^{n_{0}}\right), x^{n_{1}}\right], x^{n_{2}}\right], \cdots\right], x^{n_{k}}\right]=0$ for all $x \in R$, where $n_{0}, n_{1}, n_{2}, \ldots, n_{k}$ are fixed positive integers. Then R is commutative.

Proof Let $I=\operatorname{Ker} \sigma$. Then I is a nonzero ideal of R. In view of the proof of Theorem 2.5, we have $\left[\sigma\left(x^{m}\right), x^{n}\right]_{k}=0$ for all $x \in R$, where $m=n_{0}$ and $n=n_{1} n_{2} \cdots n_{k}$. For $x \in R$ and $y \in I, 0=\left[\sigma\left((x+y)^{m}\right),(x+y)^{n}\right]_{k}=\left[\sigma\left(x^{m}\right),(x+y)^{n}\right]_{k}$. Since I and R satisfy the same GPIs [2, Theorem 6.4.4], we have $\left[\sigma\left(x^{m}\right),(x+y)^{n}\right]_{k}=0$ for all $x, y \in R$. Next replacing y with $y-x$, we obtain $\left[\sigma\left(x^{m}\right), y^{n}\right]_{k}=0$ for all $x, y \in R$. Hence by Lemma $2.4 \sigma\left(x^{m}\right)=\sigma(x)^{m} \in Z(R)$ for all $x \in R$. In particular, $x^{m} \in Z(R)$ for all $x \in R$. So $\left[y, x^{m}\right]=0$ for all $x, y \in R$. By Lemma 2.4, R is commutative, proving the theorem.

We are now ready to prove Theorem 1.1
Proof of Theorem 1.1 In view of the proof of Theorem 2.5, we have $\left[\sigma\left(x^{m}\right), x^{n}\right]_{k}=$ 0 for all $x \in R$, where $m=n_{0}$ and $n=n_{1} n_{2} \cdots n_{k}$. Let P be a prime ideal of R and set $\bar{R}=R / P$. For $x \in R$, we write $\bar{x}=x+P \in \bar{R}$.

Assume first that $\sigma(P) \nsubseteq P$. For $x \in R$ and $p \in P$,

$$
\overline{0}=\overline{\left[\sigma\left((x+p)^{m}\right),(x+p)^{n}\right]_{k}}=\left[(\overline{\sigma(x)}+\overline{\sigma(p)})^{m}, \bar{x}^{n}\right]_{k} .
$$

Thus $\left[(\overline{\sigma(x)}+\bar{y})^{m}, \bar{x}^{n}\right]_{k}=\overline{0}$ for all $x \in R$ and $y \in \sigma(P)$. Since $\sigma(P) \nsubseteq P$, $\overline{\sigma(P)}=(\sigma(P)+P) / P$ is a nonzero ideal of the prime ring \bar{R}. By [2, Theorem 6.4.4], $\left[(\overline{\sigma(x)}+\bar{y})^{m}, \bar{x}^{n}\right]_{k}=\overline{0}$ for all $x, y \in R$. Replacing y with $y-\sigma(x)$, we obtain $\left[\bar{y}^{m}, \bar{x}^{n}\right]_{k}=\overline{0}$ for all $x, y \in R$. This implies that $\bar{y}^{m} \in Z(\bar{R})$ for all $y \in R$ by Lemma 2.4. Hence $\left[\bar{x}, \bar{y}^{m}\right]=0$ for all $x, y \in R$, implying that \bar{R} is commutative by Lemma 2.4. So $[\bar{R}, \bar{R}]=\overline{0}$. Equivalently, $[R, R] \subseteq P$. In particular, $[\sigma(x)-x, y] \in P$ and $[(\sigma(x)-x) z, y] \in P$ for all $x, y, z \in R$.

Assume next that $\sigma(P) \subseteq P$. Define $\bar{\sigma}: \bar{R} \rightarrow \bar{R}$ by $\bar{\sigma}(\bar{x})=\overline{\sigma(x)}$ for $x \in R$. Then $\bar{\sigma}$ is an epimorphism of \bar{R}. Then $\overline{0}=\overline{\left[\sigma\left(x^{m}\right), x^{n}\right]_{k}}=\left[\bar{\sigma}\left(\bar{x}^{m}\right), \bar{x}^{n}\right]_{k}$ for all $x \in R$.

By Theorems 3.1 and 2.5, $\bar{\sigma}$ is the identity automorphism of \bar{R} or \bar{R} is commutative. Hence $\sigma(x)-x \in P$ for all $x \in R$ or $[R, R] \subseteq P$. In both cases, we have $[\sigma(x)-x, y] \in$ P and $[(\sigma(x)-x) z, y] \in P$ for all $x, y, z \in R$.

Since R is semiprime, $\cap P=0$, where P runs over all prime ideals of R. So we conclude that $[\sigma(x)-x, y]=0$ and $[(\sigma(x)-x) z, y]=0$ for all $x, y, z \in R$. Hence $\sigma(x)-x \in Z(R)$ and $(\sigma(x)-x) R \subseteq Z(R)$ for all $x \in R$. Let $\mu(x)=\sigma(x)-x$ for $x \in R$. Then $\mu(R) \subseteq Z(R)$ and $\mu(R) R \subseteq Z(R)$. So $\mu(R)+\mu(R) R$ is a central ideal of R. This proves the theorem.

Finally, we construct a noncommutative semiprime ring that admits a commuting non-identity automorphism.

Example Let F be a field, let $M_{2}(F)$ be the 2×2 matrix ring over F, and let $R=M_{2}(F) \times F \times F$. Let σ be the automorphism of R defined by $\sigma\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=$ $\left(x_{1}, x_{3}, x_{2}\right)$ for $x_{1} \in M_{2}(F)$ and $x_{2}, x_{3} \in F$. Then $[\sigma(x), x]=0$ and $\mu(x)=\sigma(x)-x$ for all $x \in R$, where $\mu\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(0, x_{3}-x_{2}, x_{2}-x_{3}\right)$ for $x_{1} \in M_{2}(F)$ and $x_{2}, x_{3} \in F$. Clearly, $\mu(R)$ is contained in the central ideal $\{0\} \times F \times F$ of R.

Acknowledgement The authors are thankful to the referee for the very thorough reading of the paper and for valuable suggestions.

References

[1] E. Albas, N. Argac, and V. De Filippis, Generalized derivations with Engel conditions on one-sided ideals. Comm. Algebra 36(2008), no. 6, 2063-2071. http://dx.doi.org/10.1080/00927870801949328
[2] K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with generalized identities. Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.
[3] H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings. Canad. Math. Bull. 30(1987), no. 1, 92-101. http://dx.doi.org/10.4153/CMB-1987-014-x
[4] M. Brešar, Centralizing mappings and derivations in prime rings. J. Algebra 156(1993), no. 2, 385-394. http://dx.doi.org/10.1006/jabr.1993.1080
[5] M. Brešar, M. A. Chebotar, and W. S. Martindale III, Functional Identities. Frontiers in mathematics. Birkhäuser Verlag, Basel, 2007.
[6] M.-C. Chou and C.-K. Liu, An Engel condition with skew derivations. Monatsh. Math. 158(2009), 259-270. http://dx.doi.org/10.1007/s00605-008-0043-5
[7] C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms. I. J. Algebra 149(1992), no. 2, 371-404. http://dx.doi.org/10.1016/0021-8693(92)90023-F
[8] Differential identities with automorphisms and antiautomorphisms. II. J. Algebra 160(1993), no. 1, 130-171. http://dx.doi.org/10.1006/jabr. 1993.1181
[9] C.-L. Chuang and C.-K. Liu, Extended Jacobson density theorem for rings with skew derivations. Comm. Algebra 35(2007), no. 4, 1391-1413. http://dx.doi.org/10.1080/00927870601142207
[10] Q. Deng and H. E. Bell, On derivations and commutativity in semiprime rings. Comm. Algebra 23(1995), no. 10, 3705-3713. http://dx.doi.org/10.1080/00927879508825427
[11] N. Divinsky, On commuting automorphisms of rings. Trans. Roy. Soc. Canada. Sect. III. 49(1955), 19-22.
[12] T. S. Erickson, W. S. Martindale III, and J. M. Osborn, Prime nonassociative algebras. Pacific J. Math. 60(1975), 49-63.
[13] V. De Filippis, An Engel condition with generalized derivations on multilinear polynomials. Israel J. Math. 162(2007), 93-108. http://dx.doi.org/10.1007/s11856-007-0090-y
[14] , Generalized derivations with Engel condition on multilinear polynomials. Israel J. Math. 171(2009), 325-348. http://dx.doi.org/10.1007/s11856-009-0052-7
[15] N. Jacobson, Lie algebras. Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers, New York, 1962.
[16] \longrightarrow Structure of rings. American Mathematical Society Colloquium Publications, 37, American Mathematical Society, Providence, RI, 1964.
[17] C. Lanski, An Engel condition with derivation. Proc. Amer. Math. Soc. 118(1993), no. 3, 731-734. http://dx.doi.org/10.1090/S0002-9939-1993-1132851-9
[18] An Engel condition with derivation for left ideals. Proc. Amer. Math. Soc. 125(1997), no. 2, 339-345. http://dx.doi.org/10.1090/S0002-9939-97-03673-3
[19] P.-H. Lee and T.-L. Wong, Derivations cocentralizing Lie ideals. Bull. Inst. Math. Acad. Sinica 23(1995), no. 1, 1-5.
[20] P.-H. Lee and Yu Wang, Supercentralizing maps in prime superalgebras. Comm. Algebra 37(2009), 840-854. http://dx.doi.org/10.1080/00927870802271672
[21] T.-K. Lee, Semiprime rings with hypercentral derivations. Canad. Math. Bull. 38(1995), no. 4, 445-449. http://dx.doi.org/10.4153/CMB-1995-065-2
[22] T.-K. Lee and T.-L. Wong, On certain subgroups of prime rings with automorphisms. Comm. Algebra 30(2002), no. 10, 4997-5009. http://dx.doi.org/10.1081/AGB-120014681
[23] T.-K. Lee and K.-S. Liu, The Skolem-Noether theorem for semiprime rings satisfying a strict identity. Comm. Algebra 35(2007), no. 6, 1949-1955. http://dx.doi.org/10.1080/00927870701247062
[24] T.-K. Lee and Y. Zhou, An identity with generalized derivations. J. Algebra Appl. 9(2009), no. 3, 307-317. http://dx.doi.org/10.1142/S021949880900331X
[25] C.-K. Liu, Derivations with Engel and annihilator conditions on multilinear polynomials. Comm. Algebra 33(2005), no. 3, 719-725. http://dx.doi.org/10.1081/AGB-200049880
[26] , Derivations cocentralizing multilinear polynomials on left ideal. Monatsh. Math. 162(2011), no. 3, 297-311. http://dx.doi.org/10.1007/s00605-009-0179-y
[27] J. Luh, A note on commuting automorphisms of rings. Amer. Math. Monthly 77(1970), 61-62. http://dx.doi.org/10.2307/2316858
[28] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity. J. Algebra 12(1969), 576-584. http://dx.doi.org/10.1016/0021-8693(69)90029-5
[29] J. H. Mayne, Centralizing automorphisms of prime rings. Canad. Math. Bull. 19(1976), no. 1, 113-115. http://dx.doi.org/10.4153/CMB-1976-017-1
[30] , Centralizing automorphisms of Lie ideals in prime rings. Canad. Math. Bull. 35(1992), no. 4, 510-514. http://dx.doi.org/10.4153/CMB-1992-067-0
[31] J. Vukman, Commuting and centralizing mappings in prime rings. Proc. Amer. Math. Soc. 109(1990), no. 1, 47-52. http://dx.doi.org/10.1090/S0002-9939-1990-1007517-3
[32] Yu Wang, A note on Lie automorphisms, subrings, and Lie ideals of prime rings. Comm. Algebra 33(2005), no. 11, 4057-4062. http://dx.doi.org/10.1080/00927870500261363
[33] Power-centralizing automorphisms of Lie ideals in prime rings. Comm. Algebra 34(2006), no. 2, 609-615. http://dx.doi.org/10.1080/00927870500387812
[34] Annihilator conditions of derivations on multilinear polynomial. Comm. Algebra 39(2011), no. 1, 237-246. http://dx.doi.org/10.1080/00927870903337992
[35] T.-L. Wong, On Lie automorphisms, additive subgroups, and Lie ideals of prime rings. Comm. Algebra 31(2003), 969-979. http://dx.doi.org/10.1081/AGB-120017353
Department of Mathematics, National Changhua University of Education, Changhua 500, Taiwan e-mail: d96211001@mail.ncue.edu.tw ckliu@cc.ncue.edu.tw

[^0]: Received by the editors March 31, 2011; revised June 1, 2011.
 Published electronically January 27, 2012.
 Corresponding author: Cheng-Kai Liu
 AMS subject classification: 16N60, 16W20, 16R50.
 Keywords: semiprime ring, automorphism, generalized polynomial identity (GPI).

