
From “sense of number” to “sense of
magnitude”: The role of continuous
magnitudes in numerical cognition

Tali Leibovich
Department of Psychology and Brain and Mind Institute, The University of

Western Ontario, London, Ontario N6A 3K7, Canada; Department of
Psychology, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel;
The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev,

Beer-Sheva 8499000, Israel.
tleibovi@uwo.ca
http://www.numericalcognition.org/people.html

Naama Katzin1

Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva
8410501, Israel.

naamaka@post.bgu.ac.il
http://in.bgu.ac.il/en/Labs/CNL/Pages/staff/naamaka.aspx

Maayan Harel1
Department of Life Science, Ben-Gurion University of the Negev, Beer-Sheva

8410501, Israel.
hmaay@post.bgu.ac.il
http://lifeserv.bgu.ac.il/wp/azangen/index.php/personnel-2/maayan-harel/

Avishai Henik
Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva

8410501, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion
University of the Negev, Beer-Sheva 8410501, Israel.

Henik@bgu.ac.il
http://in.bgu.ac.il/en/Labs/CNL/Pages/staff/AvishaiHenik.aspx

Abstract: In this review, we are pitting two theories against each other: the more accepted theory, the number sense theory, suggesting
that a sense of number is innate and non-symbolic numerosity is being processed independently of continuous magnitudes (e.g., size,
area, and density); and the newly emerging theory suggesting that (1) both numerosities and continuous magnitudes are processed
holistically when comparing numerosities and (2) a sense of number might not be innate. In the first part of this review, we discuss
the number sense theory. Against this background, we demonstrate how the natural correlation between numerosities and continuous
magnitudes makes it nearly impossible to study non-symbolic numerosity processing in isolation from continuous magnitudes, and
therefore, the results of behavioral and imaging studies with infants, adults, and animals can be explained, at least in part, by relying
on continuous magnitudes. In the second part, we explain the sense of magnitude theory and review studies that directly demonstrate
that continuous magnitudes are more automatic and basic than numerosities. Finally, we present outstanding questions. Our
conclusion is that there is not enough convincing evidence to support the number sense theory anymore. Therefore, we encourage
researchers not to assume that number sense is simply innate, but to put this hypothesis to the test and consider whether such an
assumption is even testable in the light of the correlation of numerosity and continuous magnitudes.

Keywords: animal studies; cognitive control; continuous magnitudes; functional studies; holistic processing; number sense; numerical
cognition; numerosities

1. Introduction

We all use mathematics in everyday life, whether to
calculate the change given to us in the store, to tell time,
or to choose the shortest line in the grocery store. Not
only humans use math; numerical cognition abilities are

important for survival across species: fish join the larger
shoal to reduce their chances of being eaten, bees can iden-
tify flowers by counting the number of their petals, and so
forth (Agrillo et al. 2016; Gross et al. 2009; Pisa & Agrillo
2008). These efforts have led to the widely accepted view
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that humans and animals are born with a “sense for
number” – the ability to perceive, manipulate, and under-
stand numerosities (Cantlon et al. 2009b; Dehaene 1997;
Feigenson et al. 2004) – and that this ability, along with
general cognitive abilities, enables humans to understand
more complex mathematical principles. Recently,
however, it has been suggested that perceiving numerosi-
ties might not be as innate and automatic as previously
thought. Instead, a new line of theories suggest that a
“sense of magnitude” that enables discrimination between
different continuous magnitudes, such as between the den-
sities of two groups of apples or the total surface areas of
two pizza trays, is even more basic and automatic than a
sense of numbers (Henik et al. 2017; Gebuis & Reynvoet
2012a; Leibovich & Ansari 2016; Leibovich et al. 2015;
2016a; Mix et al. 2002a).
In this review, we introduce the mainstream theories in

the field of numerical cognition (e.g., number sense
theory) and the studies on which these theories are
based. Specifically, we concentrate on studies that
employed comparison of non-symbolic stimuli (i.e.,
groups of items) and point out how the results of such
studies can be explained by a sense of magnitude and
not necessarily number. Later, we explain the sense of
magnitude theory and review studies that directly demon-
strate that continuous magnitudes are more automatic
and basic than numerosities. The idea of a sense of mag-
nitude, or a general system that processes all magnitudes,
is not new (for a review, see Mix & Sandhofer [2007]). In
fact, this idea was popular before the 1990s (e.g., Meck &

Church 1983; Moyer & Landauer 1967) and was
neglected with the increased popularity of the number
sense theory. The current review integrates new evidence
supporting this idea. Importantly, we review empirical
evidence suggesting that processing of continuous magni-
tudes, and not number (i.e., discrete numerosity), is
innate and automatic. We also discuss the role of
domain-general factors such as language and cognitive
control in the acquisition of the concept of number.
Lastly, we discuss possible implications of the sense of
magnitude theory on research in numerical cognition
and the diagnosis and amelioration of learning disabilities
specific for math (i.e., developmental dyscalculia [DD]).

2. Mainstream theories in the field of numerical
cognition

Because numbers play an important role in our lives,
research has long been occupied with the cognitive struc-
tures underlying numerical cognition. We present three
major theories that are at the forefront of the field and
have set the tone for research in numerical cognition
and the procedures for diagnosis of math learning diffi-
culties (MLDs) and DD. The theories are summarized
in Figure 1.
In his seminal book, Dehaene (1997) suggested that

humans and animals are born with a “sense of number,”
the ability to perceive, understand, and manipulate numer-
osities. For example, when encountering six strawberries,
we can sense their “sixness” similarly to the way we sense
their redness (Burr & Ross 2008; Nieder & Dehaene
2009), suggesting that perceiving numerosities is as basic
as perceiving colors. Dehaene and Changeux (1993) sug-
gested a computational model explaining the process of
numerosity estimation. According to this model, items are
first represented spatially, according to their location.
These locations are then mapped onto a topographic
map. This map codes only locations and ignores all other
features of the items, including continuous magnitude
(like the size of an individual item). Finally, specialized
neurons sum the numerosities from this map, allowing us
to estimate the numerosity of a heterogeneous group of
items. This model was later supported by further evidence
in the work of Verguts and Fias (2004) (see Fig. 1A).
Feigenson et al. (2004) expanded on the original concept

of the number sense. They proposed the existence of two
distinct core systems of numerical representation in
humans and animals; core system 1 represents large numer-
osities (>4), and core system 2 represents small numerosi-
ties (1–4) (see Fig. 1B). Both core systems are considered
cross modal and cross species. Core system 1 forms abstract
and approximate representations of large numerosities. This
system allows numerical discrimination from infancy and
recognition of ordinal relationships. This system’s discrimi-
nation depends on the ratio between the quantities, regard-
less of continuous magnitudes; as we get older, the
sensitivity of this system increases, and we can discriminate
relatively similar numerosities. For example, 6-month-old
infants can discriminate numerosities of ratio 1:2 (e.g., 20
from 40 items) but not 2:3, whereas adults can discriminate
7:8 (Barth et al. 2003). This is consistent with Weber’s law,
which states that the difference in intensity needed to detect
a difference between two stimuli (the difference between
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two numerosities, for example) is proportional to the inten-
sities of the stimuli. Studies that reported that numerical
ratio modulates performance even when numbers are pre-
sented as two symbolic numerosities (Moyer & Landauer
1967) led Feigenson et al. to claim that the system allowing
representation of non-symbolic numerosities is later used
for complex mathematical thinking.

Core system 2 forms exact representations of small
numerosities. Contrary to system 1, this system is sensitive
to continuous magnitudes. In infants, this system is limited
to processing and computation of three objects at most, and
in adulthood, it reaches four objects. This ability to quickly,
efficiently, and accurately identify small numerosities is
called subitizing (Kaufman & Lord 1949). Performance in
this range is not ratio dependent. For example, infants
can successfully discriminate between two versus three
items but not between four versus six, despite the identical
ratio (Feigenson & Carey 2003). There is evidence for a
connection between this system and mathematical abilities;
Ashkenazi et al. (2013) found a deficit in subitizing abilities
specific to children with DD. The existence of these two
core systems might explain why some mathematical abili-
ties are basic and intuitive, whereas others are considered
difficult to acquire; estimations utilize core system 1, and
exact numerical judgments in the subitizing range utilize
core system 2. Neither system, however, is equipped to
deal with exact calculations above the subitizing range (Fei-
genson et al. 2004). The studies described in this review
focus mainly on numerosities above the subitizing range.

Unlike Feigenson et al. (2004), Cantlon et al. (2009b)
do not distinguish between the representation of
small and large numerosities. Instead, they suggest that
different magnitudes, both numerical and continuous,
share common representation mechanisms (see Fig. 1C),

specifically that numerosities, as well as other magnitudes,
are represented by an approximate number system (ANS)
(for a similar view, see Cohen Kadosh & Walsh 2008;
Cohen Kadosh et al. 2008). The first evidence supporting
shared representation is that perception of different contin-
uums, like numerosity, space, and loudness of pitch, follows
Weber’s law. In addition, several studies indicate that other
than for numbers, the parietal lobe, and specifically the
intraparietal sulcus (IPS), is activated on estimations of con-
tinuous magnitudes. Cantlon et al. (2009b, p. 89) propose
that “a system that once computed one magnitude (e.g.,
size) could have been hijacked to perform judgments
along a new dimension (e.g., number)” (see also Henik
et al. 2012). It is not yet clear whether neurons in the pari-
etal lobe are general magnitude neurons that are activated
in all magnitude judgments, or whether there are special-
ized neurons for different magnitudes and they are all
intermixed in the same area (for further discussion, see Lei-
bovich & Ansari 2016).
The theories mentioned previously emphasize the exis-

tence of a built-in module that can “sense” numerosities.
There are, however, some theoretical concerns regarding
these theories. Mix et al. (2002a) claim that the evidence
showing that infants can process numerosities is ambigu-
ous. When comparing two sets of stimuli of different
numerosities, in addition to numerosity there are differ-
ences in overall contour length, total surface area, and so
forth. These continuous magnitudes can serve as an alter-
native explanation to a number sense. Previous studies
have referred to these confounds and tried to break the cor-
relation between numerosity and continuous magnitudes.
However, a re-examination of the literature indicates that
the influence of continuous magnitudes on performance
in numerosity comparison tasks cannot be ruled out

Figure 1. Main theories in numerical cognition (based on Leibovich et al. 2016a). (A) The model suggested by Dehaene and Changeux
(1993), emphasizing the existence of an innate “numerosity detector” that sums numerosities regardless of continuous magnitudes. (B)
The two core systems theory (Feigenson et al. 2004) separating processing of small and large numbers; the main difference is ratio-
dependent performance in core system 1 and violation of this dependency in core system 2. (C) The approximate number system
(ANS) theory suggesting that different magnitudes (examples in the figure) are being processed by an approximate analog
representation of numbers.

Leibovich et al.: From “sense of number” to “sense of magnitude”

BEHAVIORAL AND BRAIN SCIENCES, 40 (2017) 3
https://doi.org/10.1017/S0140525X16000960 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X16000960


(Gebuis & Reynvoet 2012a; 2012b; Gebuis et al. 2014;
Hurewitz et al. 2006; Leibovich & Ansari 2016; Leibovich
& Henik 2013; Soltész & Szücs 2014). We now review
the evidence supporting the number sense view and
discuss its validity in the light of theoretical and methodo-
logical considerations.

3. Re-examination of behavioral evidence for the
number sense

Non-symbolic stimuli are useful when studying basic
numerosity processing; they can be used with different
populations – adults, infants, and animals. Non-symbolic
stimuli, however, also contain non-numerical continuous
magnitudes. Because of the potential influence of these
continuous magnitudes and because it is impossible to
create two sets of items that differ in numerosity only (Lei-
bovich & Henik 2013; see also Fig. 2), various studies have
employed different methods to try to minimize the effect of
continuous magnitudes in numerosity comparison tasks.
Three main methods are used to do so. The first method
is to manipulate one of the continuous magnitudes (i.e.,
keep one continuous magnitude constant across different
numerosities) or to manipulate one continuous magnitude
so it is not correlated with numerosity. The second
method is to manipulate different continuous magnitudes
in each trial so that in a given stimulus, only one magnitude
is manipulated, but throughout the experiment, several
magnitudes are manipulated. The third method uses differ-
ent congruency conditions between numerosity and contin-
uous magnitudes. We now demonstrate the different
methods and show why it is still possible that continuous
magnitudes affect participant performance.
The first method is based on the logic that continuous

magnitudes are correlated with each other; therefore, it is
sufficient to manipulate only one continuous magnitude.
For example, as the average size of a set of stimuli
increases, the total circumference of the dots, the total
area they occupy, and so forth also increase. In the study
of Abreu-Mendoza and Arias-Trejo (2015), participants

were presented with two arrays of items and were asked
to decide which array had more items. To prevent partici-
pants from using continuous magnitudes in making their
decision, the total surface areas of the arrays were equal.
It is impossible, however, to change one continuous magni-
tude (total area in this case) without changing the others. In
this example, when equating the areas of two arrays with
different numerosities, the less numerous array has a
greater average diameter necessarily. Hence, participants
can rely on average diameter when making a decision.
Accordingly, in this study, even though it is reasonable to
assume that the numerical decision was not based on
area, it is still possible it was made using other continuous
magnitudes and not necessarily numerosity (for more
studies that used a similar method, see Chassy & Grodd
2012; Im et al. 2016; Mussolin et al. 2010).
In the second method, several continuous magnitudes

are manipulated throughout the experiment, but in a
given stimulus, only one magnitude is manipulated. For
example, Halberda et al. (2008) asked 14-year-olds to
decide which of two colored dots were more numerous in
a single array of yellow and blue dots. In half of the trials,
the average size of the blue dots was equal to the average
size of yellow dots. In the other half, the total areas of
blue and yellow dots were identical. As in the first
method, in a given trial, participants can use the other con-
tinuous magnitudes that were not manipulated. For
example, in trials in which the areas of the dots were
equal, the more numerous dots were smaller. These
other continuous magnitudes can be used as a predictor
of numerosity. Empirical data demonstrate this weakness;
Tokita and Ishiguchi (2010) asked adult participants to
compare target numerosity with standard (5, 10, 20, or 40)
numerosity. In a third of the trials, the areas of individual
dots were equated; in another third, the total area of the
arrays were equated; and in the remaining third, both
were equated. The Weber fraction and the point of subjec-
tive equality (PSE; i.e., the point at which the perceived
numerosities of target and standard stimuli seem equal)
were calculated for all conditions. Participants underesti-
mated numerosity of large elements and overestimated

Figure 2. Correlation between number and continuous magnitudes. As illustrated in the figure, an attempt to equate one continuous
magnitude in two different groups of items changes other continuous magnitudes, so that it is virtually impossible to get two groups of
items that will vary only in their numerosity. Reprinted from Leibovich and Henik (2013).
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numerosity of small elements. Namely, continuous magni-
tudes affected performance even when they were manipu-
lated differently in different trials (for more studies that use
this method, see Barth et al. 2005; Eger et al. 2015; Fazio
et al. 2014; Gomez et al. 2015; Mussolin et al. 2010).

The third method for manipulating continuous magni-
tudes is to employ different congruency conditions
between numerosity and continuous magnitudes. For
example, in the study of Nys and Content (2012), adult par-
ticipants performed a numerical or area comparison task.
The stimuli were composed of dot arrays and different con-
gruency conditions: congruent, meaning that the more
numerous array had more area than the less numerous
array; and incongruent, meaning that the less numerous
array had more area. An interaction was found between
task and congruency. Namely, the difference in perfor-
mance between congruent and incongruent trials (i.e., con-
gruency effect) was greater in the area comparison task
than in the number comparison task. In other words,
number interfered more when it was irrelevant, compared
with area. Accordingly, it was concluded that numerosity is
a more salient cue than continuous magnitudes (for other
studies using congruency, see Barth et al. 2005; Bonny &
Lourenco 2013; Nys & Content 2012). There are,
however, contradictory findings in the literature (Durgin
2008; Gebuis & Reynvoet 2012b; Leibovich et al. 2015;

2016a; Szücs et al. 2013). Hurewitz et al. (2006) conducted
a similar study and found that numbers affected perfor-
mance in the area comparison task only when the numeri-
cal ratio was closer to zero (i.e., very large differences in
numerosity). They reached the opposite conclusion from
Nys and Content and argued that area is a more salient
cue than numerosity. Recently, Leibovich et al. (2015;
2016a) found that number interfered with performance
in a non-symbolic comparison task only if it was prompted
by being the relevant dimension in a previous task.
A very strong line of evidence supporting the ANS, and

especially the claim that number sense is innate, comes
from cross-modal matching tasks with infants and
animals. In such tasks, subjects are exposed to visual and
auditory displays of a number of objects or events (see
Fig. 3D); for example, a visual display of two and three
dots and the sound of three tones. It has been found that
subjects prefer to look at the visual display that matches
the number of tones, that is, two objects when hearing
two tones and three objects when hearing three tones
(e.g., Jordan & Baker 2011; Jordan et al. 2008b). Such evi-
dence, however, should be taken with a grain of salt. As
reviewed by Cantrell and Smith (2013), with 5- to 8-
month-old infants as participants, only two of six studies
reported preferred matching between auditory and visual
quantities (see their Table 7). In studies with newborns

Figure 3. Examples of tasks for human participants. (A) Comparison task: two stimuli are shown side by side sequentially or
simultaneously. Sometimes, one array with two colored dots is used (Agrillo et al. 2015). (B) Non-symbolic Stroop task (based on
Leibovich et al. 2015; 2016b). In such a task, participants are asked to choose either the group containing more dots (e.g., number
comparison task) or the group containing more area (e.g., area comparison task). All five continuous magnitudes (density, area,
convex hull, etc.) are either congruent or incongruent with numerosity. (C) Castelli et al.’s (2006) task, in which participants need to
indicate whether they see more blue or more green. The left stimulus aims to study numerosity processing, whereas the right
stimulus aims to study processing of continuous magnitudes. It is clear from the left panel that the answer could be reached by both
numerosity processing and continuous magnitude processing. (D) Cross-modal matching task, in which subjects are exposed to a
number of visual and auditory stimuli. Looking time is longer when the numbers match than when the numbers do not match. (E)
Passive habituation task (Cantlon et al. 2006), in which participants are repeatedly presented with a specific numerosity. In the
dishabituation phase, the number changes. To account for general detection of change, a control condition is employed in which the
shape of the items, but not their number, changes.
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as participants (e.g., Izard et al. 2009), because of poor
visual acuity, they are unlikely to be able to see objects
that are placed relatively close to one another as being
separate from one another, and they lack the ability to
separate between object and background or between
one object and another. Therefore, it is hard to interpret
the results as an indication of an innate number sense.
Another possibility might be that when participants
hear “more,” they prefer to look at “more” (Mix et al.
2016). With that being said, pinpointing the exact condi-
tions under which cross-modal matching is observed can
be very informative to further understand magnitude
processing in infancy. Similarly, cross-modal priming
studies were previously taken as evidence for a general-
ized magnitude system and not necessarily as evidence
for the existence of an approximate number system
(e.g., Oppenheimer et al. 2008).
Another line of evidence for the innate nature of the

number sense comes from habituation studies with new-
borns and infants. In habituation studies, subjects are seri-
ally exposed to the same type of stimuli that have a common
feature (e.g., the same number of items). This is done until
subjects’ looking time decreases. The reduction in looking
time is taken as a sign that the common feature has been
detected and the stimuli have lost their novelty. In the
test phase, the subjects are exposed to a new stimulus
(e.g., a different number of items), and the looking time
is measured. When a novelty has been detected, looking
time increases. To ask whether infants are born with a
number sense, such habituation studies included displaying
the same number of items in different spatial locations and
changing the number of items in the test phase. Because
the looking time of infants increased in the test phase,
the conclusion was that infants are able to detect change
in quantities from birth. However, as mentioned previ-
ously, changing the number of items necessarily changes
continuous magnitudes. Hence, the increase in looking
time can occur in response to detecting a change in differ-
ent continuous magnitudes (for a detailed review, see Mix
et al. 2002a). Some works aimed to pit number against con-
tinuous magnitudes in a preferential looking time task. For
example, Libertus et al. (2014) used dot arrays and changed
the number of dots, keeping total surface area constant, or
changed the total surface area, keeping the number cons-
tant. The authors concluded that infants preferred
looking at changes in number compared with changes in
total surface area. However, keeping total surface area
constant does not mean that the dishabituation was to
number. It could have been, for example, to the physical
size of each dot, as physical size correlated with number.
Because there is no way of confirming what infants habitu-
ated to, it is equally possible that these results demonstrate
that “physical size of dots trumps cumulative area” (Liber-
tus et al. 2014, p. 108).
To conclude, in this section we reviewed different

methods that tried to minimize the effect of continuous
magnitudes in numerosity comparison tasks and habitua-
tion tasks. These methods were based on the assumption
that if continuous magnitudes were not relevant and not
correlated with numerosity, they would not influence per-
formance while comparing numerosities. Some empirical
studies, however, show that even under these conditions,
continuous magnitudes affect numerical estimations (Can-
trell et al. 2015b; Gebuis & Reynvoet 2012a). We review

evidence for the role of continuous magnitude in number
processing at length in section 6.

4. The origin of the number sense: Evidence from
animal studies

As stated earlier, the ability to compare magnitudes is not
unique to humans; it is an important ability for survival
across species. Therefore, it has been argued that the
number sense is not specific to humans, but is shared
across species. Put differently, not only humans, but also
animals are born with the ability to process numerosities
(e.g., Dehaene 1997; Feigenson et al. 2004; Nieder 2005).
In this context, the numerical abilities of different

animals were tested – from primates to insects. Cantlon
and Brannon (2006) trained rhesus monkeys to discrimi-
nate a range of 1–9 dots per array and then tested their
ability to discriminate numerosities in the range of 10–30.
The authors reported that the monkeys were able to
extend the numerical rule to the higher numerosity
range. Moreover, response time (RT) and accuracy pat-
terns of the monkeys were similar to those of humans in
the same task; RT and error rates of both monkeys and
humans increased with an increase in the similarity
between the numerosities of the dots (i.e., as the numerical
ratio got closer to 1). Similar findings were also reported by
Beran (2007). In a more recent study, Viswanathan and
Nieder (2013) searched for the underlying brain circuitry
supporting numerosity representation; monkeys performed
a color discrimination task of dot arrays while activity from
neurons in the ventral intraparietal sulcus and the dorsolat-
eral prefrontal cortex was recorded. The monkeys were not
trained on numerosity discrimination. The authors
reported neuronal activity in the tested frontal and parietal
areas that was tuned to specific numerosity; different
neurons showed maximal firing rates in response to differ-
ent numerosities. Taken together, these studies provide
evidence supporting the existence of a spontaneous
number sense, enabled by frontoparietal networks in the
monkey’s brain.
The number sense is not restricted to the visual modality.

Sometimes other senses are used to estimate magnitudes.
This was demonstrated in different mammals. Meck and
Church (1983) revealed that rats can discriminate
between durations and between different numerosities;
rats were trained to choose between pressing on one of
two levers according to a series of light flashes – one lever
was associated with a longer duration, and one was associ-
ated with a shorter duration of the flashing light (see
Fig. 4A). The rats were able to choose the right lever
even when bursts of noise were used instead of light
flashes. A more ecological example comes from the study
of McComb et al. (1994). This study tested the ability of
lions to discriminate numerosity in the auditory modality.
Specifically, McComb et al. tested whether lions (in
nature) can estimate the size of an opponent group based
on the number of roaring sounds. The authors used play-
back of one or three roars to simulate the presence of an
unfamiliar intruder. According to the results, the lions
were able to discriminate the number of roars and act
accordingly – to take flight if the number of roars indicated
the presence of more numerous lions and to stay to fight if
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the number of roars indicated the presence of a group with
fewer lions.

To test how far back the number sense goes in evolution,
studies were conducted with birds and fish whose brain
structures differ from those of mammals and specifically
primates. In these animals too, there is evidence supporting
the existence of an innate number sense: Watanabe (1998)
trained pigeons to respond to four objects and not respond
to two objects. During the test trials, the pigeons
responded to three, four, and five but not to two objects.
Accordingly, the author suggested that pigeons could dis-
criminate numerosities. Discrimination with even larger
numerosities was reported in jungle crows by Bogale
et al. (2011). In this work, jungle crows were trained to dis-
criminate two from five. The crows also received a control
test for non-numerical cues, such as spatial arrangement,
shape, and total area. In the test phase, the crows showed
the ability to discriminate between novel quantities, such
as five and eight (see Fig. 4B). This discrimination, accord-
ing to the authors, was not controlled by continuous magni-
tudes. Hence, the authors argued that much like other
animals, jungle crows have a natural tendency to select
the larger quantity and that this decision is affected by
numerical ratio and stimuli magnitude. In an electrophysi-
ological study by Ditz and Nieder (2015), crows were pre-
sented sequentially with two dot arrays and had to peck the
second display of dots only if both displays contained the
same numerosity. To minimize the influence of continuous
magnitudes on performance, either surface area, total cir-
cumference, or the density of the dots was manipulated
in different stimuli. Despite the very different neuroanat-
omy of birds, it was found that neurons in the endbrain
of the bird (an area termed nidopallium caudolaterale

[NCL]) were tuned to a preferred numerosity. Fish, too,
were shown to rely on numerosity to survive: Larger
groups of fish (i.e., shoals) have less chance of being
attacked by predators. For this reason, a fish that success-
fully chooses to join a larger shoal increases its chances of
survival. This was demonstrated in a study by Agrillo
et al. (2008). In this study, a single fish (mosquitofish)
was placed in a central fish tank. This fish tank was
flanked with two other fish tanks with different numbers
of fish inside. It was found that the single fish spent more
time next to the fish tank containing the larger number of
fish. A later study by the same group (Agrillo et al. 2009)
demonstrated that mosquitofish are able to discriminate
between two and three objects even “when denied access
to non-numerical information” (p. 1). In this study, fish
were trained to discriminate between two and three sets
of geometrical objects that varied in shape, size, brightness,
and viewing distance. During the test phase, the fish were
tested while controlling for one continuous magnitude at a
time (see Fig. 4C). The authors reported that fish were able
to discriminate two from three and that total luminance and
the sum of the perimeters of the stimuli did not affect
performance.
In all of these studies, however, as with humans, it was

still impossible to control all of the continuous magnitudes
and support claim that magnitude comparisons are based
solely on numerosity judgments. For example, Cantlon
and Brannon (2006) had three different types of dot
arrays. In a third of the stimuli, the densities of the two
dot arrays were equal. This means that the convex hull
(the area occupied by all of the dots and the area surround-
ing them) was larger in the array with the larger numeros-
ity. In another third, the surface areas of the two dot arrays

Figure 4. Examples of tasks for animals. (A) Illustration based on Meck and Church (1983). A rat sees a number of light flashes or hears
a number of tones and needs to press a lever a similar number of times to get food. (B) Birds: A jungle crow is presented with two groups
of items, one containing two items and one containing five items, and is trained to peck five items. In the test phase, novel quantities are
presented (Bogale et al. 2011). (C) Fish: Fish are trained to go through the door with the larger number of items painted above it (Agrillo
et al. 2009). (D) Chicks: Chicks are trained to select the screen with the larger number of items (Rugani et al. 2013).
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were equal. This means that the more numerous dots were
smaller. In the remaining third of the dot arrays, the convex
hulls of the two dot arrays were equal. This means that the
more numerous dot array was denser. A similar approach
was taken by Ditz and Nieder (2015). In some studies,
only one or two continuous magnitudes were manipulated.
For example, Bogale et al. (2011) controlled for total
surface area but did not report other magnitudes such as
density and convex hull. Similarly, Agrillo et al. (2009)
reported controlling for item size and brightness, but not
other continuous magnitudes that might have influenced
performance.
The inability to keep all dimensions apart from numeros-

ity constant is true for various modalities. In the study of
Meck and Church (1983), increasing the number of flash-
ing light events during 2 seconds meant that the tempo
would be faster than when fewer flashing light events
occurred in the same duration. In the study of McComb
et al. (1994), increasing the number of roars affected the
loudness of the roars.
As in the case for studies employing non-symbolic stimuli

with humans at different stages of development, the most
common method to rule out the influence of continuous
magnitudes is to manipulate one continuous magnitude in
a given stimulus so that overall, throughout the experiment,
none of the continuous magnitudes can be used as a reliable
cue of numerosity. The assumption is that under these con-
ditions, participants will not use continuous magnitudes but
will base their decision only on numerosity. As we will see,
however, a growing body of evidence suggests that this
assumption is wrong. In fact, participants are able to use
continuous magnitudes even when they are irrelevant to
the task and are not a reliable cue of numerosity (Gebuis
& Reynvoet 2012a; 2013; Leibovich et al. 2015; 2016b).

5. Neural correlates of non-symbolic numerosities

The number sense theory assumes the existence of a
“number detector,” or specific brain tissue in the parietal
lobe that is dedicated to the processing of numerosity
(Piazza et al. 2010). Neuroimaging studies seeking such
brain tissue have used stimuli similar to those used in
behavioral studies (e.g., arrays of items). This poses a
problem because different ways of manipulating continu-
ous magnitudes might result in the activity of different
brain regions (or different levels of activity of the same
brain regions). Studies attempting to find brain areas ded-
icated to the processing of numerosity have used either
comparison tasks (e.g., see Fig. 3A) or passive-viewing
(habituation) tasks (Fig. 3E). We now review some exam-
ples of such studies and demonstrate the difficulty in attrib-
uting activity found for such tasks to pure non-symbolic
numerosity processing.
In a functional magnetic resonance imaging (fMRI)

study, participants compared either the numerosities of
two presented dot arrays (i.e., number comparison task)
or the physical sizes of two presented disks (i.e., size com-
parison task; Chassy & Grodd 2012). The right IPS was acti-
vated in both tasks. The contrast between the tasks
revealed that the right superior parietal lobule (SPL) was
more active in the number comparison than in the size
comparison task, which according to the authors indicates
that the SPL is involved in comparison of exact quantities.

Importantly, all of the dots in the number comparison task
were presented in the same size. Thus, the total area was
perfectly correlated with numerosity. Hence, it is possible
that instead of comparing numerosity processing with size
processing, the study compared continuous magnitude pro-
cessing, which requires summation of the area of all of the
dots (i.e., total dot area), with size processing, which does
not require such summation (i.e., comparison of disk
areas), and the areas found when contrasting activity in
area and dot comparison tasks might reflect this difference
rather than a difference in numerosity.
In the study of Cantlon et al. (2009a), 6- to 7-year-old

children and adults performed a non-symbolic numerosity
comparison task. Some of the continuous magnitudes
were manipulated to prevent participants from using
them as indicators of numerosity. The manipulation
included presenting large numerosities with small dot size
and small numerosities with large dot size, while keeping
the same density for all trials. The left SPL was active in
both children and adults. Although the brain activity in
the study was attributed to numerosity processing,
another way to interpret these results is by considering
the consistent correlation between dot size and numerosity.
By making the more numerous dots consistently smaller
than the less numerous dots, participants could theoreti-
cally have responded according to the size of the dots and
not their numerosity. In addition, keeping density constant
creates a correlation between numerosity and convex hull.
Namely, convex hull increases with numerosity and there-
fore could have been used as an indicator of numerosity.
In the study of Holloway et al. (2010), a different continu-

ous magnitude manipulation was applied; adult participants
were presented with two arrays of squares and were asked
to choose the display side containing more squares. In
these arrays, the individual size of each square varied. To
prevent participants from relying on density and total
surface area, these continuous magnitudes were manipulated
so that in 25% of the trials, both magnitudes were congruent
with numerosity (i.e., the more numerous squares were also
denser, and their overall area was greater than the other
array); in 25% of trials, both density and total surface area
were incongruent with numerosity; and in the other 50% of
trials, only density (25%) or total surface area (25%) was con-
gruent with numerosity. Brain activity in this task was con-
trasted with a control condition in which the same stimuli
were combined into a single irregular shape and participants
were asked to decide which shapemore resembled a diagonal
line. The right inferior parietal lobule (IPL) and right SPL
were found to be more active in the numerosity task com-
pared with the control task. These areas are probably
involved in numerosity comparison, but is that the only expla-
nation? In addition to its role in numerical cognition, the IPL
is also involved in cognitive control; IPL activity increases
with conflict (Brass et al. 2005; Greene et al. 2004). Accord-
ingly, activity of this area can also reflect different levels of
conflict in the two tasks.
Harvey et al. (2013) manipulated continuous magnitudes

by including several control conditions. In each condition, a
different continuous magnitude was held constant. For
example, density was held constant while numerosity
changed (i.e., a small number of dots were presented
using a large dot size, and a large number of dots were pre-
sented using a small dot size to create the same density
level for different numerosities). The task included a
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display of a dot array that could appear in either black or
white (in different trials). Adult participants were asked
to indicate the color of the dots in the array. It was found
that as numerosity increased, brain activity shifted from
medial to lateral areas of the posterior SPL. The interpre-
tation given by Harvey et al. indicates that the topographic
organization evidence was in line with previous reports of
the role of the SPL in numerosity manipulations (Cantlon
et al. 2009a). However, Gebuis et al. (2014) claimed that
it is arguable whether the neural processing was directed
at pure numerosity without the confounding continuous
magnitudes. Gebuis et al. pointed out that the topographic
representation found in each condition actually encoded
the changes in the continuous magnitudes that were not
held constant in each condition. The positive relationship
between numerosity and continuous magnitudes, taken
together with the parietal lobe involvement in sensory inte-
gration (Calton & Taube 2009; Naghavi & Nyberg 2005;
Shafritz et al. 2002; Vallentin & Nieder 2010; Walsh
2003), led Gebuis et al. to propose that the suggested topo-
graphic map “reflects a weighted response of neurons that
encode different sensory cues rather than a pure numeros-
ity estimate” (p. 1).

Castelli et al.’s (2006) study is the only study, to the best
of our knowledge, to directly compare brain areas that were
active during numerosity and continuous magnitude com-
parison tasks. In the continuous condition, the stimulus
was a rectangle containing alternating shades of green
and blue. In the numerosity condition, the rectangle was
composed of individual (and therefore countable) squares
of blue and green rectangles. In both tasks, participants
had to choose whether they were presented with “more
blue or more green” (see Fig. 3C). The authors reported
that bilateral regions of the IPS and regions of the parie-
tal–occipital transition zone were significantly more active
during the processing of numerosities than durig the pro-
cessing of continuous magnitudes. Therefore, the results
of this study were taken as evidence that the IPS is more
strongly activated when numerical magnitudes are pro-
cessed than when continuous magnitudes are processed.
Note, however, that although in the continuous task partic-
ipants were able to judge whether they saw more blue or
more green only by using continuous magnitudes (e.g.,
area), in the numerosity task, participants were also able
to base their decisions on comparison of the area covered
with blue to the area covered with green. Hence, brain
regions found in this contrast are not necessarily specific
to numerosities.

5.1. Habituation studies at the brain level

Another way of revealing areas that are specific to numer-
osity processing is by using habituation studies. The idea
behind such studies is to repeatedly present the same
numerosity (i.e., habituation) and change all other magni-
tudes to find areas that will be more active when a new
numerosity is eventually presented (i.e., during dishabitua-
tion). Such brain areas are assumed to be involved with
the processing of numerosity. Cantlon et al. (2006) hypoth-
esized that non-symbolic numerosity would activate the
IPS in both 4-year-old children and adults. In this study,
participants were repeatedly presented with 16 dots that
differed in density, cumulative area, and spatial arrange-
ment. Then, a novel stimulus was presented. In the novel

stimulus, either the number of dots changed (to 32) or
the shape of the dots changed (to triangles or squares;
see Fig. 3E). The IPS response to novel stimuli that dif-
fered in number versus the response to novel stimuli that
differed in shape was measured. Results indicated that
both 4-year-old children and adults activated the IPS (bilat-
erally) in response to a change in number and not shape;
therefore, the authors claimed that the IPS is specific to
numerosity processing. This study has two limitations.
The first one concerns the manipulation of only three con-
tinuous magnitudes. In a habituation study, it is important
to prevent habituation effects to irrelevant properties by
presenting a variety of exemplars. This principle was
applied to only three continuous magnitudes, leaving all
other possible magnitudes exposed to habituation. If
there is at least one continuous magnitude that correlated
with numerosity and was not varied consistently (total cir-
cumference, for example), the habituation is no longer spe-
cific to numerosity. The second limitation concerns the
contrast between the changes in number versus the
changes in shape during dishabituation. The stimuli
changed by a ratio of 2:1 and from dots to squares or rect-
angles. In a habituation design (without an active task to
reflect saliency), it is impossible to be sure that changing
the number of dots from 16 to 32 has the same saliency
as changing a circle to a square. Therefore, the differences
in IPS activation might reflect differences in saliency.
As far as we know, there is currently only one fMRI study

that was able to show a distance-dependent dishabituation
of a specific brain region to a change in non-symbolic
numerosity. Piazza et al. (2004) habituated participants to
a specific numerosity. The numerosities used for dishabitu-
ation varied in numerical distance from the habituated
numerosity. The results revealed that the activity in the
IPS region (and surrounding areas) during dishabituation
correlated with the numerical distance; activity was
higher for large numerical distance and smaller for small
numerical distance. Accordingly, the authors suggested
that numerosities are extracted automatically from a
visual scene. Gebuis and Reynvoet (2012a), however,
argued that it is possible that participants in the study of
Piazza et al. integrated multiple continuous magnitudes
presented to them, because not all of the continuous mag-
nitudes were discorrelated with numerosity.
So far we have reviewed empirical evidence supporting

the claim that numerosity processing is basic, innate, and
automatic (i.e., supporting the number sense theory).
Specifically, we have reviewed behavioral and neuroimag-
ing studies with animals, infants, children, and adults,
concluding that numerosity processing is evolutionarily
ancient, innate, and automatic; this processing takes
place in dedicated brain circuitries. All of these studies
share the assumption that if a continuous magnitude is
not correlated with numerosity, it will not be processed
and will not affect performance. Unfortunately, as men-
tioned before, it is impossible to avoid a correlation
between numerosity and all of the continuous magni-
tudes at once, nor it is possible to present different
numerosities with the same continuous magnitudes.
Therefore, it is very possible that in the studies discussed
previously, performance was affected, at least partially, by
continuous magnitudes. In the next section, we review
studies that directly tested the role of continuous magni-
tudes in numerosity comparison tasks and suggested that
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when making numerical comparisons, we use both numeros-
ity and continuous magnitudes.

6. Evidence supporting holistic processing of
numerosity and continuous magnitudes

To evaluate the contribution of continuous magnitudes to
numerosity comparisons, adult participants compared dot
arrays containing 5–25 dots each (Leibovich & Henik
2014). In these dot arrays, all continuous magnitudes were
manipulated at once, to be minimally correlated with numer-
osity, so they could not be used as a reliable cue for numer-
osity (Gebuis & Reynvoet 2011). The numerical ratio
between the compared arrays and the ratio between five dif-
ferent continuous magnitudes were used as predictors of
accuracy and RT. For both of these measures, the ratio
between different continuous magnitudes explained about
half of the explained variance. Namely, continuous magni-
tudes affected performance even though they were neither
relevant to the task nor predictive of numerosity. This point
has been recently demonstrated even in the subitizing
range. A work by Salti et al. (2017) revealed that different
manipulations of continuous magnitudes influence perfor-
mance in a non-symbolic Stroop-like task with numerosities
in the subitizing range (e.g., 2–4; for an example of a non-
symbolic Stroop-like stimuli, see Fig. 3B).
Recent studies also suggested that numerosity process-

ing might not be as automatic as previously assumed.
Gebuis and Reynvoet (2013) employed a habituation
paradigm in which participants were adapted to specific
numerosities or to specific continuous magnitudes, while
event-related potentials (ERPs) were recorded. The
results were analyzed twice; one analysis considered
the change in numerosity to be the dishabituation event.
This analysis did not reveal any brain area that detected
the change. In the second analysis, however, the change
in continuous magnitudes was considered to be the disha-
bituation event. This analysis revealed brain areas that
responded to the change in continuous magnitudes. The
same pattern of results was repeated even when partici-
pants were told that the numerosity of the dots would
change. In the light of these results, the authors suggested
that it is continuous magnitudes, and not numerosities, that
are being extracted automatically from arrays of items. Sim-
ilarly, in another ERP study (Soltész & Szücs 2014), partic-
ipants were habituated to either shape or number.
Although shape adaptation occurred fast and in the range
of early visual components, adaptation to number occurred
only later. This pattern goes against the claim that numer-
osity processing is automatic like the processing of shapes
and colors (Burr & Ross 2008). Recently, DeWind and col-
leagues (DeWind et al. 2015; Park et al. 2016b) used a new
method for creating non-symbolic stimuli (groups of dots)
and analyzing the influence of numerosity and of continu-
ous magnitudes. They suggested that numerosity is pro-
cessed automatically and very early in the visual stream.
However, there are both methodological and empirical
caveats concerning the method of DeWind and colleagues.
First, in these works, it is not clear whether there is a cor-
relation between number and continuous magnitudes, and
if there is, how strong it is. This is important because a
strong correlation between number and continuous magni-
tudes can change strategy. Namely, if, for example, the

correlation between area and numerosity is 0.7, then partic-
ipants can reliably choose the larger area. The findings of
DeWind and colleagues can also be accounted for by the
signal clarity view, stating that numbers can be more
salient in habituation studies simply because they have
less variance than continuous magnitudes. For example,
Park et al. (2016b) used five numerosities in their experi-
ment. The variance in the continuous magnitudes was
greater. This facilitates use of numerosity rather than
other continuous magnitudes.
Recent studies also found that numerosity is not processed

independently of continuous magnitudes, as proposed by the
number sense theory. Gebuis and Reynvoet (2014) asked par-
ticipants to passively view ordinal arrays of dots (e.g., groups
of three, four, five, six, and nine dots) while ERPs were
recorded. A trial was composed of five dot arrays, presented
consecutively. Numerosity and five continuous magnitudes
(convex hull, aggregate surface, density, diameter, and
contour length) always increased with numerosity in the
first four-dot arrays. Namely, more dots were denser, occu-
piedmore surface area, and so forth than fewer dots (i.e., con-
gruent). In the fifth and last dot array, the continuous
magnitudes were congruent in half of the trials or incongru-
ent with numerosity in the other half. The authors found con-
gruity-related changes in ERPs above left parietal and mid–
right frontal electrodes. Specifically, these channels showed
greater positive amplitude in response to incongruent trials
than to congruent trials. This result cannot be reconciled
with numerosity processing that is independent of continuous
magnitudes.
Although, as demonstrated previously, it is very difficult

(if not impossible) to isolate brain areas that are specific to
processing of numerosity independent of continuous mag-
nitudes, there is a strong line of evidence showing a great
overlap between the processing of numerosity and contin-
uous magnitudes (Cappelletti et al. 2013; Dormal et al.
2012). For example, in the fMRI study of Pinel et al.
(2004), it was found that numerical size, physical size,
and luminance activated bilateral IPS and occipitotemporal
regions during comparison tasks. Behavioral analysis of the
results revealed that both physical size and luminance
affected performance in the numerical judgment task
even when they were irrelevant. The authors argued that
these results demonstrate distributed processing along
the IPS, with some areas specific for one magnitude and
a considerable overlap between all of them. Such evidence
supports the shared representation of space, time, and
number suggested previously by Walsh (2003).
The majority of non-symbolic comparison studies,

including all imaging studies mentioned so far, examine
numerosity above the subitizing range. One fMRI study
that dealt specifically with performance in the subitizing
range was conducted by Leibovich et al. (2015). The
study manipulated the congruity of numerosity and contin-
uous magnitudes of dot arrays (half of the trials in each task
were congruent, and half were incongruent) and task order
(half of the participants started with the numerosity dis-
crimination task, and half with the area discrimination
task). The results indicated that performance was faster
and more accurate in the area task. Importantly, although
area always affected performance in the numerosity task,
numerosity affected performance in the area task only for
participants who started with the numerosity discrimination
task. Interestingly, the order in which the tasks were
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administered affected activations at the brain level.
Namely, during congruent trials, the group that started
with the numerosity task showed activation in the right
frontoparietal areas, whereas the group that started with
the area task showed activation in homologue left fronto-
parietal areas. This study demonstrates that even in the
subitizing range, continuous magnitudes still influence per-
formance at both behavioral and functional levels, and this
effect is further modulated by task context.

Further evidence supporting shared representation of
different magnitudes derives from neural recording
studies in primates. In the study of Tudusciuc and Nieder
(2007), rhesus monkeys were presented with a sample stim-
ulus (either a group of dots in the numerosity task or a line
in the continuous task). After a short delay, a test stimulus
appeared. The test stimulus matched the sample stimulus
(in either numerosity or length) only in half of the trials.
The monkeys had to respond only when the test stimulus
matched the sample stimulus (i.e., a delayed match-to-
sample task). During training, electrodes recorded the neu-
ronal activity in the depth of the monkeys’ IPS. This study
revealed the existence of a neural population that was active
for both the continuous and numerosity tasks, suggesting
that some neural populations are involved in general mag-
nitude processing. The authors speculated that this neuron
population resides in an area equivalent to that found in
humans by Pinel et al. (2004).

In addition to studies at the brain level presented previ-
ously, molecular studies with animals provide evidence for
molecular mechanisms allowing size discrimination during
early visual processing. In their seminal paper, Lettvin et al.
(1959) noticed that a frog’s choice of food is driven by size
and motion. In their own words, “He [a frog] can be fooled
easily not only by a bit of dangled meat but by any moving
small object” (p. 1940). This observation implies a mecha-
nism that can discriminate between small and large objects
to choose the appropriate behavior. Such size-based decisions
are important for other species too. Zebrafish, for example,
behave differently in response to small and large objects;
the zebrafish approaches small stimuli (having the size of its
prey) and avoids larger stimuli (having the size of its preda-
tors). This pattern of results was replicated even when the
stimuli were not animals, but small and large squares,
further supporting the suggestion of Lettvin et al. that size
alone is sufficient to modify behavior. Preuss et al. (2014)
went further and asked which molecular mechanisms can
explain such behavior. These authors provided direct evi-
dence revealing that neurons in the deeper layer of the
tectum (the uppermost part of the midbrain) provide inhibi-
tory input to the tectum in response to small objects. In con-
trast, the superficial neurons in this area provide inhibitory
output to the tectum, unless a large object comes into view
(see also Abbas & Meyer 2014). These two studies suggest
that the processing of size is very basic and innate. Hence,
it is possible that size and other continuous magnitudes
play an important role not only in evolutionarily older
animals, but also in primates and particularly in humans.

7. The role of continuous magnitudes in numerical
cognition

So far we have reviewed some studies that support the
number sense theory and some that do not. One reason

for these contradicting findings can be the result of differ-
ent ways of manipulating continuous magnitudes. This
possibility was tested recently by Smets et al. (2015; but
see also Gebuis & Reynvoet 2012c). The authors
employed several conditions to directly evaluate the influ-
ence of different methods of continuous magnitude
manipulation on performance in non-symbolic estimation
and comparison tasks. In the first condition, the surface
area was kept constant in half of the trials and diameter
was kept constant in the other half; in the second condi-
tion, four continuous magnitudes (convex hull, total
surface, average diameter, and density) were manipu-
lated at once so they were not correlated with the numer-
ical ratio; and in the third condition, all continuous
magnitudes were correlated with numerosities. Perfor-
mance (measured using the Weber fraction, a measure
based on accuracy that describes the smallest difference
in numerosity that can still be discriminated) was modu-
lated by the method of controlling continuous magni-
tudes; performance was worst when manipulating four
continuous magnitudes simultaneously, better when
only one continuous magnitude was manipulated, and
best when all of the continuous magnitudes were corre-
lated with numerosity. The differences in performance
were more noticeable when the numerosities were
more similar (i.e., having higher numerical ratios). A
similar pattern of results was reported by Clayton et al.
(2015). These studies reflect one of the major problems
in studying non-symbolic numerosity comparisons – per-
formance is highly sensitive to the way researchers
choose to manipulate continuous magnitudes. The ques-
tion then remains, what is really measured in such tasks?
Is it the ability to process numerosity? Is it the ability to
integrate multiple magnitudes to make a decision? Is it
the ability to inhibit irrelevant continuous magnitudes?
Such questions led to a new line of theories suggesting

that continuous magnitudes play an important role in the
development of basic numerical abilities. This new line of
theories takes into account the natural correlation
between numerosity and continuous magnitudes and pro-
poses a general system to process different magnitudes.
The logic behind these theories is that any given group
of items has, in addition to numerosity, different contin-
uous magnitudes that usually correlate with numerosity.
Thus, when required to make a numerical decision, con-
tinuous magnitudes will also be used. In other words, we
use all available cues to make an informed decision rather
than relying on a single magnitude. Accordingly, humans
(and other species) will use any information available to
make decisions. In this context, Gebuis and Reynvoet
(2012b) suggested that developing a system unique for
numbers is redundant and costly. Because numerosity
and continuous magnitudes are usually positively corre-
lated, it is more likely that we have a general magnitude
system that makes numerical decisions according to
both continuous magnitudes and numerosity, as sug-
gested previously (e.g., Cantlon et al. 2009b). In other
words, they propose a holistic process in which people
do not extract numerosity independently from the other
continuous magnitudes. Although the idea of a general-
ized magnitude system is not new and has been explored
in multiple studies (e.g., Meck & Church 1983; Moyer &
Landauer 1967), these studies suggest not only that
number and non-numerical magnitudes are processed
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by the same system, but also that the processing of non-
numerical magnitudes is automatic and hence influences
empirical efforts to measure the ability to compare or
estimate processing of non-symbolic numerosities.
Leibovich and Henik (2013) acknowledged the chal-

lenges in assuming that numerosities are processed inde-
pendently from continuous magnitudes and presented a
developmental model for the acquisition of numerical
knowledge. According to this model, people are not neces-
sarily born with the ability to represent numerosities, but
are able to develop this ability because of the correlation
between numerosity and continuous magnitudes. Their
theoretical model suggests that humans are born with the
innate ability to distinguish between continuous magni-
tudes, not numerosities. With time, infants explore their
environment and learn by experience that usually more
toys will take more space in their toy box, or put more gen-
erally, that numerosity and continuous magnitudes posi-
tively correlate. It is only after understanding this
correlation that the number sense and the idea of numeros-
ity can develop (for a similar ideas see Henik et al. 2017).
Furthermore, a new and important theory, the signal

clarity theory (Cantrell & Smith 2013), suggests that the
influence of numerosity on performance can be a result
of the experimental design. Specifically, this view claims
that an important distinction should be made between
what happens in the natural environment and in an exper-
imental setup. In the environment, numerosity and contin-
uous magnitudes usually correlate. In an experimental
setup, in contrast, researchers control and manipulate con-
tinuous magnitudes by breaking this correlation. This
manipulation creates greater variance of the continuous

magnitudes and very small variance in numerosity. A possi-
ble outcome is that the numerical signal is much more
salient than the continuous signals. For example, if in a
habituation task six items are consecutively presented and
all continuous magnitudes vary, it is much more likely
that participants will pay more attention to changes in
numerosities. According to the signal clarity view, infants
are able to learn “on-line,” during an experimental
session, which dimension has the least variance and to
use the information. Importantly, experiments do not use
environmental scenarios; hence, the results obtained do
not necessarily represent reality (Cantrell & Smith 2013).

8. New outlook on the contribution of cognitive
control to the development of a number sense

The theories mentioned previously and others (e.g.,
Gebuis & Reynvoet 2012b; Gevers et al. 2016; Henik
et al. 2017; Leibovich & Henik 2013; Mix et al. 2016)
suggest that numerosities and continuous magnitudes
are processed holistically because they usually correlate.
This correlation, however, is not perfect. An everyday
example of the violation of this correlation is the following
scenario in a grocery store: When waiting in line, you will
usually choose to wait behind the person with the empti-
est cart because usually less-filled carts carry fewer items
(Fig. 5A). There are, however, exceptions to this rule; you
will wait less time after a full cart containing a few large
items than after a half-empty cart containing many
small items (Fig. 5B).

Figure 5. Numerosity comparison at the grocery store. (A) An example of a typical correlation: Usually, more items will occupy more
space, will have greater surface area, and so forth in comparison with fewer items. In this case, understanding the correlation and using it
facilitate performance, allowing us to make faster and more accurate decisions. Both adults and children are able to indicate which cart
has more items. (B) Violation of this correlation: The full cart on the right contains fewer items, but they still take more space and have
greater surface area than all of the items in the other cart. Although adults can identify the violation of the correlation and choose the
fuller cart because of the ability to inhibit the influence of continuous variables, young children might not be able to understand that
the full cart has fewer items.
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Accordingly, it is possible that both integration and inhi-
bition abilities, which are different aspects of cognitive
control, are required to allow us to use the natural correla-
tion between numerosities and continuous magnitudes,
without being “enslaved” by it, namely, to be able to use
this correlation (i.e., integration) and to deal with its viola-
tions (i.e., inhibition). It is well known that cognitive
control abilities, including inhibition, develop with age
(e.g., Morton 2010). It is also known that cognitive control
correlates with math abilities (e.g., Bull et al. 2008). The
exact role of cognitive control in the process of acquiring
mathematical knowledge, however, is less clear because
performance in different numerical comparison tasks does
not always correlate with cognitive control abilities
(Clayton & Gilmore 2015; Keller & Libertus 2015; Smets
et al. 2015).

Additionally, in non-symbolic numerosity comparison
tasks, it is virtually impossible to dissociate cognitive
control from ANS acuity. The Weber fraction computed
from a dot discrimination task is considered an indicator
of ANS acuity. It has been demonstrated, though, that
the Weber fraction is influenced by the level of congruity
between numerosity and continuous magnitudes in both
children and adults. Specifically, the Weber fraction was
higher (i.e., performance was worse) in incongruent than
in congruent trials (Tokita & Ishiguchi 2013). On the
other hand, to avoid this confound means eliminating the
conflict, that is, to use pairs of stimuli in which numerical
and continuous magnitude perfectly correlate. However,
in this case, one cannot be sure that participants are basing
their decision on numerosity, continuous magnitude, or a
combination of both. Hence, the ability to discriminate
between very similar numerosities and the ability to inhibit
irrelevant continuous magnitudes are inseparable. This not
only is true in behavioral studies, but also might apply to neu-
roimaging methods; at the brain level, during incongruent
trials it is reasonable to expect parietal areas to be active in
response to processing numerosities, and frontal areas to
be active in response to conflict. This, however, is an over-
simplification because there are areas in the frontoparietal
network that are involved in both cognitive control and pro-
cessing of size (Brass et al. 2005), and frontal areas that are
associated with cognitive control, such as the inferior frontal
gyrus (IFG), are also reported consistently in numerosity
comparison tasks (Kaufmann et al. 2005). Another
example comes from a recent fMRI study by Leibovich
et al. (2015; 2016b). In this study, participants compared
the total area or the number of either congruent or incon-
gruent dot arrays. IPS activity was found only when contrast-
ing congruent versus incongruent trials, but not area versus
dot comparison. Hence, IPS activity in this comparison task
was probably related to conflict. It is possible that methods
that correlate a specific pattern of activity of the same area
in different tasks, such as multivariate voxel pattern analysis
(MVPA), will eventually be able to partially separate ANS
acuity from cognitive control, but as of now, such data do
not exist.

Against this background, we put forward a theoretical
model for the development of mathematical abilities.
This model is similar to some recently suggested
models (Mix et al. 2016) in that it includes the role of
continuous magnitudes and assumes a general system
for processing magnitudes. This model, however, also
has some unique suggestions. First, we hypothesize that

number sense is not innate, but acquired. We emphasize
the role of the correlation between number and continu-
ous magnitudes in the process of learning the concept of
numbers. We also take a more domain-general view and
discuss the role of cognitive abilities such as individua-
tion, language, and cognitive control in the development
of the concept of number. This model expands two pre-
viously suggested models (Leibovich & Henik 2013; Lei-
bovich et al. 2016a).
This model assumes that humans are not born with the

ability to discriminate numerosities. Instead, babies use
continuous magnitudes of groups of objects when compar-
ing them. There are two reasons for this assumption. First,
newborns have very poor visual acuity. Until the age of 4
weeks, babies are unable to focus their vision because
muscles in the eye, fovea, and brain areas related to
visual processing have not fully matured. The result is
very blurry vision (Fig. 6). It is only at the age of 8 weeks
that babies can focus on objects, but only at distances up
to 100 cm (Banks 1980; Dobson & Teller 1978). The
second reason is that babies are not born with the cognitive
ability to individuate objects. In other words, until the age
of about 5 months, babies cannot tell where one object
ends and another one begins (Carey 2001). Without the
ability to individuate, it is unclear how the concept of the
number of items can even be applicable.
Instead of being born with a sense of numbers, we

suggest that a number sense develops from understanding
the correlation between numerosity and continuous magni-
tudes (Fig. 7). Such a process was referred to in the past as
“statistical learning” (e.g., Frost et al. 2013), in the context
of object individuation: When babies notice that some
properties stay together, they understand that these prop-
erties belong to the same object. Statistical learning also
helps with studying language – to understand that some
combinations of sounds go together more frequently (for
an elaborate discussion, seeMix & Sandhofer 2007). There-
fore, it is possible that a similar process can serve in learn-
ing the natural correlation between number and
continuous magnitudes. Once babies are able to individu-
ate items, they are exposed to the natural correlation of
numerosities and continuous magnitudes. For example,
more candies will occupy more space on the plate. It is
because of such experiences that children learn this corre-
lation and even over-apply it by constantly integrating both
numerosity and continuous magnitudes when estimating
numerosities. For that critical stage to occur, first some
notion of numerosity should exist. We hypothesize that it
is through language, or more specifically through number
words, that the discrete quantity of a set (i.e., numerosity)
is emphasized. Please note that Mix et al. (2016) have
recently suggested that number words orient attention
toward numerosities. Over-applyication of such correla-
tions was observed in Piaget’s (1952) number conservation
task. In such a task, a child will see two rows containing the
same number of items (e.g., coins). The items in the two
rows are equally distant from one another (i.e., the two
rows have the same total surface area and convex hull).
The experimenter then asks the child if the two rows
contain the same or different numbers of coins. The child
usually answers “same.” Then, the experimenter changes
the spacing of the items in one row (in front of the child),
creating a larger convex hull in one row, and repeats the
question. As the convex hull differences become larger,
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the child is more likely to indicate that the more spaced row
contains more items. Older children will perform this task
better; namely, they will be less confounded by the convex
hull. More recently, it has been suggested that even though

adults have high accuracy in such a task, they activate
more cognitive control–related areas when the convex
hull and the number of items are incongruent (Leroux
et al. 2009).

Figure 6. Poor visual acuity of newborns. Example of arrays of items and how they look with poor visual acuity. The images in the top
squares demonstrate how groups of toys would look to an adult. The images in the bottom squares demonstrate how the groups of toys
would look to newborns, whose visual acuity is 25 times worse than that of an adult, from a distance of more than 45 cm.

Figure 7. Theoretical model describing developmental landmarks of basic numerical abilities. Because of physiological constraints,
newborns’ vision is not acute enough to focus on specific items (Banks 1980). Only at the age of 5 months are babies able to
individuate items from the background and from one another (Carey 2001). Individuation is critical to understanding the concept of
numerosity. With the development of language and specifically number words, more attention is given to numerosities. With
experience, a child learns correlations; for example, usually, more toys will take more space in the toy box. With the development of
cognitive control and inhibition – general abilities that are related not only to math – a child can understand that correlations can be
violated and compare numerosities even when they do not correlate with continuous variables. We suggest that this is the starting
point required for basic math abilities.
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To be able to deal with the violation of the correlation,
proper cognitive control abilities should be developed.
When inhibition abilities are well developed, it is possible
to both use the correlation between numerosities and con-
tinuous magnitudes when it is appropriate and ignore con-
tinuous magnitudes when they are irrelevant, as in the case
of the grocery store shopping carts mentioned earlier or
when a child is asked to count the number of different-
sized objects. It is only then that a child can really under-
stand the concept of numbers and why, for example, the
quantities of five apples and five watermelons are equal,
even though watermelons are bigger. Count words may
also play an important role in emphasizing numerosity
over continuous magnitudes. As suggested by Mix et al.
(2016), “Count words signal that number is a distinct prop-
erty, independent of these other quantitative dimensions”
(p. 20). In their work, they also review evidence suggesting
that adults in Western cultures that do not have number
words have problems discriminating or estimating large
quantities.

9. Outstanding questions and future directions

9.1. Specifying the role of cognitive control in the
development of basic numerical abilities

The role of cognitive control in the development of basic
numerical abilities is not yet clear. One major challenge is
that cognitive control is in fact a compilation of abilities.
Hence, the first challenge is to find ways to “separate,” if
possible, numerical cognition abilities from cognitive
control abilities. As discussed previously, it is virtually
impossible to create a non-symbolic comparison task
without creating the need to use cognitive control.

A second challenge stems from the fact that there is no
single measure of cognitive control, and different studies
that correlate math abilities with cognitive control test dif-
ferent cognitive control components. For example, one
possible division relates to three major components: inhibi-
tion, updating, and shifting. These components consist of
several sub-components (Miyake et al. 2000). Let us con-
sider the case of inhibition. Two hallmark tasks to
measure inhibition are the Stroop and flanker tasks. In
the Stroop task, a color word is presented in a font color
that is either congruent to the word (e.g., the word RED
printed in red color) or incongruent (e.g., the word RED
printed in green color). In the flanker task, subjects are
asked to report the direction of the middle arrow in a hor-
izontal line consisting of five arrows. Here too, the middle
arrow can be congruent with the flanking arrows (e.g., all
arrows are pointing right: →→→→→) or incongruent
with the flanking arrows (e.g., the middle arrow is pointing
left and the flanking arrows are pointing right:→→←→→).
It has been demonstrated that performance in these two
different tasks, both aimed at measuring inhibition, do
not correlate (Shilling et al. 2002). To examine the role of
cognitive control in the context of numerical abilities, dif-
ferent studies used different tasks to measure cognitive
control, for example, the NEPSY (A Developmental Neu-
ropsychological Assessment)-II inhibition subset, in which
participants view a picture of a circle and need to say
“square” (Gilmore et al. 2013; Keller & Libertus 2015);
the Stroop task with words or numbers (Bull & Scerif
2001; St Clair-Thompson & Gathercole 2006); delayed

response (Espy et al. 2004); peg tapping (Blair & Razza
2007); and many more (for a review see Cragg &
Gilmore 2014). Those different studies drew different con-
clusions regarding the correlation between math abilities
and inhibition abilities, maybe because different tasks tap
into different aspects of inhibition, and some aspects can
be more related to math abilities than others.
It is important to understand the specific mechanisms of

inhibition and cognitive control in general in numerical
cognition. One way to shed light on this topic is to use a
variety of tasks that measure cognitive control and
examine their correlations with numerical abilities. Never-
theless, one should always be aware that correlation is not a
causality, and direct empirical studies should be conducted
to determine the underlying role of cognitive control in the
development of numerical cognition.

9.2. The role of continuous magnitudes in dyscalculia

The reviewed body of work suggests that number sense
may not be innate. Hence, it is important to ask how
number sense develops in typically developed children
and in children and adults with learning difficulties specific
to mathematics (i.e., DD or MLD). DD and MLD mani-
fest in different behaviors, which led Rubinsten and
Henik (2009) to suggest that different brain dysfunctions
may underlie each syndrome. The authors proposed a dis-
tinction between “pure”DD, comorbid DD (with attention
deficit hyperactivity disorder [ADHD]/dyslexia), and MLD
that arises from different brain dysfunctions. With respect
to “pure” DD (which is attributed to dysfunction of the
IPS), one possibility that comes to mind in this context is
that difficulty in understanding the correlation between
numerosity and continuous magnitudes can lead to
impaired number sense and poor math abilities. This sug-
gestion can be tested empirically. For example, by using
a numerosity comparison task with different levels of con-
gruency (Gebuis & Reynvoet 2012b), one can empirically
test the ability of individuals with dyscalculia to rely on con-
tinuous magnitudes when they correlate with numerosity.
Specifically, in typically developed adults, accuracy was
found to increase when the number of continuous magni-
tudes that positively correlated with numerosity increased,
suggesting that participants were able to use the correlation
between continuous magnitudes and numerosities. If
performance of individuals with dyscalculia does not
have a similar pattern, it might mean that individuals
with dyscalculia are not aware of the correlation
between numerosities and continuous magnitudes. This
would be a domain-specific account of dyscalculia (see
also Gliksman et al. 2015).
There are, however, new studies suggesting a more

domain-general account for dyscalculia. For example, in
the study of Bugden and Ansari (2016), children with dys-
calculia and typically developed children performed a non-
symbolic comparison task in which the total area of the dots
was either congruent or incongruent with numerosity.
Although both groups performed similarly in the congruent
trials, children with dyscalculia performed worse in the
incongruent trials. Such a pattern suggests a more
domain-general account of dyscalculia because the only dif-
ference between those with DD and typically developed
children was in incongruent trials that required cognitive
control. Such studies also demonstrate the importance of
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understanding the specific role of cognitive control, facilita-
tion, and inhibition in numerical cognition, as discussed
previously.

9.3. Asking the right question: A neural base for holistic
processing of numerosities

As demonstrated, it is virtually impossible to separate con-
tinuous magnitudes from numerosity processing, especially
without triggering other cognitive processes such as cogni-
tive control. Because number and continuous magnitudes
cannot be separated, it is virtually impossible to empirically
design a study that will show that only continuous magni-
tudes are processed or only numerosities are processed.
Accordingly, at the brain level, it becomes difficult to
define brain areas dedicated to numerosity processing.
We would like to argue that in the light of compelling evi-
dence for holistic processing of numerosity and continuous
magnitudes, a suitable goal would be to ask which brain
areas support integration of different dimensions of magni-
tudes (i.e., holistic processing). It has already been sug-
gested by Walsh (2003) that space, time, and number are
all being processed in the parietal lobe because integration
of this information is needed to direct actions in the real
world, for example, to know when to cross the road when
a car is approaching. Indeed, areas in the parietal lobe,
such as the IPS and the SPL, were found to be active
during numerosity processing but also during tasks requir-
ing integration of information (Graziano 2000; Jancke
2001). This integration might not be limited to these
areas; for example, the right temporoparietal junction was
found to be involved in feature integration. Specifically,
right temporoparietal junction activity was found to be
modulated by the number of congruent features presented
to participants, even from multisensory inputs (Calvert
et al. 2000; Pollmann et al. 2014). Pursuing a line of
research that asks about integration of information
throughout development and testing such integration abil-
ities in individuals with different math abilities can broaden
what we know about brain areas supporting numerical cog-
nition and can help define which abilities should be
improved to improve math abilities.

10. Conclusion

The main goal of this review is to encourage researchers not
to assume that number sense is simply innate, but to put
this hypothesis (almost regarded as an axiom) to the test.
The theoretical model presented in this review raises
more questions than answers. It is important to understand
that the ANS theory and the suggested model are not
mutually exclusive, and therefore, providing evidence
against one theory does not necessarily mean that the
other theory is right. This is especially true in the light of
the methodological challenges of studying numerosity in
isolation from continuous magnitudes. It is our hope that
this review and our theoretical model will start a discussion
that will result in new and exciting research directions
aimed at investigating the possible role of continuous mag-
nitudes and cognitive control abilities in typical and atypical
development of math abilities. Such research directions can
have crucial implications for the way we study behavioral
and neural mechanisms relating to numerical cognition in

humans and other species. Furthermore, these different
directions can also lead to changes in the way basic math
is taught and the way math difficulties are diagnosed and
ameliorated.
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Abstract: Leibovich et al. propose that number sense is not innate but
gradually emergent during ontogeny following experience. We argue
that this hypothesis cannot be reasonably tested in humans, in which the
contribution of neural maturation and experience cannot be
experimentally manipulated. Studies on animals, especially fish, can
more effectively provide critical insights into the innate nature of
numerical abilities.

Various authors have proposed that humans and animals integrate
multiple magnitudes (number, area, density, etc.) when comparing
numerosities; proposed mechanisms range from the idea that
numerical information is more cognitively demanding than contin-
uous magnitudes, and it is processed as a last-resort strategy when
no other information is available, to the idea that the number
system increases its precision by integrating available non-numeri-
cal information in the process of estimation and comparison (Agrillo
et al. 2011; Davis & Perusse 1988; Meck & Church 1983).
What is new in the model proposed in the target article is the

idea that humans and nonhuman species are born with a quanti-
tative system that holistically processes numerosity and continu-
ous magnitudes, and that a “sense of number” would gradually
develop during ontogeny from understanding the correlation
between numerosity and continuous magnitudes.
In the Introduction, the authors acknowledge the importance

of animal studies for understanding the mechanisms of numerical
discrimination. However, the evidence of such studies, whether in
favor of or against their hypotheses, is not discussed. Here we
argue that (1) experiments on animals, specifically fish research,
can be more appropriate than research on humans to test some
of the model’s assumptions, especially to examine the hypothesis
that number sense is not innate, but rather stems from individual
experiences; and (2) evidence from animal studies that would be
useful for evaluating the proposed model is already available.
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Humans, other mammals, and most birds are extremely imma-
ture at birth, and the procedures commonly used to study number
sense with adults (e.g., training procedures or free choice tests)
cannot be employed; conversely, procedures used with young
individuals (e.g., habituation or violation of expectancy) are
usually complex to adapt to testing adults. This prevents research-
ers from comparing the different developmental stages with the
same paradigm. Poor sensory acuity can further prevent testing
for numerical abilities at very young ages (see Leibovich et al.).
On the contrary, most fish species produce offspring that are
completely independent at birth. Newly born fish generally face
the same ecological challenges as adults (i.e., evading predators,
selecting an appropriate diet and catching prey, orienting them-
selves in space, and interacting with conspecifics). This allows
researchers exploiting a number of spontaneous behaviors, such
as preferring the largest amount of food or the largest group of
conspecifics, the same preferences studied in adults. Recently,
we found that guppies can be trained to have numerical discrim-
ination within their first week of life, which makes it a tool avail-
able for cross-age comparisons (Piffer et al. 2013).

Innate cognitive abilities often appear later in life, not because
they need experience to develop, but because the maturation of
the nervous system is required or because a given cognitive
ability is not necessary for survival in early life (a fact that was
not considered by Leibovich et al.). In these cases, answering
the question of number sense innateness requires the manipula-
tion of experience to disentangle the relative contribution of cere-
bral maturation and individual experiences on the development of
numerical abilities. For both practical and ethical reasons, in
higher vertebrates it is difficult, if not impossible, to devise exper-
iments that dissociate the role of these two factors (e.g., LeVay
et al. 1980; Ridley & Baker 1982). Such research is more feasible
in fish. For example, one experiment found that in guppies that
are prevented from experiencing different numbers of objects,
the discrimination of large numerosities appears spontaneously
at around 40 days of age; this capacity can, however, be antici-
pated at 20 days of age if guppies are reared in an environment
that offers such experiences from birth (Bisazza et al. 2010).

Though none has been specifically designed to test the hypoth-
eses of Leibovich et al., several fish studies provide information
relevant to the present debate. Concerning the existence of a
holistic system for processing numerical and continuous magni-
tudes, data on fish research generally support this view. For
example, Agrillo et al. (2011) found that mosquitofish routinely
integrate numerical information and continuous magnitudes.
Their performance was more accurate when both pieces of infor-
mation were simultaneously available, compared with when only
numerical information or only continuous information was pro-
vided. However, not all continuous magnitudes are equally impor-
tant. Mosquitofish appear to rely on the total surface area and
convex hull, whereas total luminance and contour length appear
to be irrelevant. Interestingly, interindividual differences in the
use of continuous magnitudes were observed in this species
(Agrillo et al. 2009). Likewise, fish can rapidly discriminate four
from five companions (Lucon-Xiccato et al. 2017), but their per-
formance drops dramatically when prevented from using the
total surface area or total activity of the stimulus fish (Agrillo
et al. 2008).

Regarding the question of whether number sense is innate,
available data on fish seem to contradict the authors’ core hypoth-
esis. In one experiment, 1-day-old fish were able to select the
larger group of companions even when they were tested in an
apparatus that allowed them to see only one fish at time, thus pre-
cluding the possibility of summing up areas or contours and
gauging the density or convex hull of the groups (Bisazza et al.
2010). In another study in which guppies were trained in their
first week of life to discriminate either between two numerical
quantities controlled for the total surface area and other continu-
ous magnitudes or between two figures differing in area by the
same ratio (a condition in which numerical information was

made irrelevant), only fish trained with numbers learned how to
discriminate (Piffer et al. 2013). Therefore, if a temporal mis-
match between the number sense and the discrimination of con-
tinuous magnitudes does exist, in fish this appears to be opposite
to that predicted by the model.

We acknowledge that the aforementioned data were not col-
lected with these working hypotheses in mind and that alternative
explanations are available in some cases. Nonetheless, we believe
the cited examples convincingly demonstrate the possibility of
investigating in fish the interesting issues raised by Leibovich
et al. in a way that cannot as easily be done in higher vertebrates.
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primary import

doi:10.1017/S0140525X16002065, e166

Michael J. Berana and Audrey E. Parrishb
aDepartment of Psychology, Georgia State University, Atlanta, GA 30302-
5010; bDepartment of Psychology, The Citadel, Charleston, SC 29409.
mberan1@gsu.edu audrey.parrish@citadel.edu
www.mjberan.com

Abstract: Leibovich et al. argue that evidence for an innate sense of
number in children and animals may instead reflect the processing of
continuous magnitude properties. However, some comparative research
highlights responding on the basis of numerosity when non-numerical
confounds are controlled. Future comparative tests might evaluate how
early experience with continuous magnitudes affects the development of
a sense of number.

Leibovich et al. offered the provocative thesis that the idea of an
innate “number sense” in humans and other animals may be mis-
leading given the empirical tests that are used to assess such a
sense. They proposed that most research in this area confounds
numerical properties of stimuli with continuous properties such
as area and density, and it is these continuous features that
control responding more than true numerosity. We agree, in prin-
ciple, with this position regarding typically used methods in com-
parative research, having also argued that tasks given to nonhuman
animals may not be directly related to number, concepts but instead
rely on non-numerical cues to guide responding (Beran et al. 2015a;
2015b). We also agree that comparative contributions to the
broadly defined area of “numerical cognition” research need to
carefully assess the competencies that are reported in adult
humans, human children, and nonhuman animals by paying
close attention to non-numerical confounds that may contribute
to performance on these tasks (Beran & Parrish 2016).

However, we also believe that there are instances in which
judgments by some animals are made on the basis of numerosity,
where careful controls have eliminated the possibility they are
using non-numerical, continuous quantitative information. For
example, Beran (2012) showed that chimpanzees listened to
food items being dropped into an opaque container and then com-
pared that number of items with a visible, static set and chose the
larger amount even though there were no continuous properties
that would account for such performances (also see Beran et al.
2008). Animals also were trained with number symbols represent-
ing specific cardinal values, rather than specific magnitudes of
stimuli. These include Arabic numeral-based studies with chim-
panzees in which they labeled arrays of items with numerals
(e.g., Matsuzawa 1985) and even combined multiple sets of
items before labeling them (e.g., Boysen & Berntson 1989). A
parrot also learned to vocally label arrays, even when queries
about the number of items involved subsets of a specific class of
items within a larger array (e.g., reporting the number of blue
keys in a mixed array of blue and red keys and trucks [Pepperberg
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1994]). In addition, chimpanzees learned to collect sets of items to
match a presented Arabic numeral using a computerized enumer-
ation task (e.g., Beran & Rumbaugh 2001). In these cases, we
argue that numerosity is the dimension to which animals are
responding, even though their performances typically showed
the same “fuzziness” in representational acuity that is seen in mag-
nitude judgment tasks (see Cantlon et al. 2009b), and training
often took months or years to establish. These studies suggest
that number concepts can emerge in a variety of nonhuman
species, but may not do so as easily as representations of non-
numerical magnitudes.

When numerical and non-numerical properties co-vary in
tasks, this does not mean that non-numerical properties must
be controlling responding. Brannon and Terrace (2000) showed
that across combinations of stimulus presentation formats
where density, area, size, and contour length each co-varied to
different degrees with number in a relative discrimination task,
rhesus monkeys still used number in some cases. Beran (2007)
showed that after training monkeys to discriminate which of
two sequentially presented arrays of items on a computer
screen was greater, the monkeys’ performance withstood the
introduction of trials where item size and rate of presentation
offered potential distractions if monkeys were using those prop-
erties. This does not mean that monkeys or other animals do not
use non-numerical properties when they can. And they may even
preferentially use them, a point that is also true for human per-
formance in many tasks. But when such performance can survive
the control of such confounds, it suggests that a number sense is
at work, even if it is not the dominant sensory signal to which a
nonhuman animal may be attuned. The question then is whether
an innate sense of number requires that numerosity operates as a
dominant stimulus property in the face of other properties that
compete to control responding. We do not see why this must
be true.

Hence, we do not advocate abandoning the idea of an innate
number sense in some nonhuman species or in humans. Rather,
we acknowledge that this number sense likely emerged through
evolution from a more generalized analog magnitude system for
perceiving and representing quantitative information, and that
the “number sense” and “magnitude sense” of nonhuman
animals both suffer from the same processing and representa-
tional constraints (Cantlon et al. 2009b). In this perspective, an
innate number sense can exist, and can be activated and used
by many species, even if it is not a dominant conceptual system
within a cognitive architecture. At the same time, this does not
mean it is a “last resort” (Davis & Memmott 1982), but rather
that it is an available system that can be accessed when other
more generalized perceptual-discriminative processes for magni-
tude-based stimuli are insufficient to generate adaptive responses.
For example, Cantlon and Brannon (2007) presented rhesus
monkeys with a number matching-to-sample task in which
monkeys could match on one of two dimensions, including
number and some non-numerical cue such as color, surface
area, or shape. Although monkeys preferred color and shape
cues to number cues, they responded on the basis of number
when the numerical difference between the sets was high (and
therefore easier to discriminate).

The alternate view offered in the target article (and see Lei-
bovich & Henik 2013) that a sense of number is not present in
nonhuman animals (or perhaps even humans) at birth, but
emerges through experiencing the correlation between numer-
osity and continuous magnitudes is an interesting proposal. If
true, developmental research with pre-counting age children
and a longitudinal comparison of true numerical processes for
individuals with and without a history of experiences with con-
tinuous quantities would be particularly valuable. The latter
approach would be a test that could only be conducted with
nonhuman species, for obvious reasons, and would offer
another chance for comparative research to make an important
contribution.

Evidence for a number sense
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Abstract: Numerosity is inherently confounded by related stimulus
attributes such as density and area, and many studies have reported
interactions of various strengths between area, density, and numerosity.
However, direct measurements of sensitivity within the area-density-
numerosity space show that numerosity emerges as the most
spontaneous and sensitive dimension, strongly supporting the existence
of a dedicated number sense.

In the target article, Leibovich et al. rightly conclude that
researchers should not simply assume the existence of a number
sense, but put the hypothesis to the test. Cicchini et al. (2016)
recently did so in a direct and rigorous manner. Borrowing from
color science, they measured the equivalent of “MacAdam ellip-
ses”: discrimination thresholds in two-dimensional color space,
whose short axis corresponds to the most sensitive direction,
implying the action of specific mechanisms (MacAdam 1942).
Numerosity is the product of density and area, which defines a

two-dimensional “numerosity space,” with numerosity following
the positive diagonal (Fig. 1). Wemeasured discrimination thresh-
olds within this space, using an “odd-one-out” technique (see
Fig. 1A). Discriminations are well described by an elongated
ellipse, with the short axis defining maximum sensitivity aligned
to the numerosity diagonal. Sensitivity along this axis was 16
times higher than the orthogonal direction, showing that numer-
osity is the most sensitive dimension: just as red-green is a sensi-
tive direction in color-space.
There was no a priori guarantee that numerosity would be the

most sensitive dimension. This was clearly demonstrated by the
fact that at high densities, where items were too crowded to be
segregated, and numerosity discriminations are subject to differ-
ent psychophysical laws (for review, see Anobile et al. 2016c),
the results were quite different. The discrimination ellipses
become more circular and are well predicted by independent
encoding of area and density (Cicchini et al. 2016). The clear dif-
ferences in processing of sparse and dense arrays highlight the
action of specialized mechanisms for numerosity, which operate
only under conditions where the items can be perceptually
segregated.
Cross-modal and cross-format studies lend further support for

the number sense, which may be more generalized than previ-
ously thought. Adapting to rapid or slow sequences of auditory
or visual elements strongly affects the apparent numerosity of sub-
sequent sequences of items, both visual and auditory (Arrighi et al.
2014). Importantly, the numerosity of spatial arrays is also affected
by adaptation to temporal sequences, implying that the number of
items – however presented – is encoded by a truly abstract system
that transcends sensory modality, as well as space and time.
It is, however, important to note that the existence of special-

ized numerosity mechanisms does not preclude the possibility of
interactions with other related attributes. Cicchini et al. (2016)
also measured discrimination ellipses with a more subjective tech-
nique, where subjects were asked to make explicit judgments
about numerosity, density, or area for stimuli within the area/
density space. Clear interactions emerged. Discrimination bound-
aries for number judgments were not oriented exactly along the
number axis, but at 37°, slightly toward the area axis and away
from density (by about 17%), agreeing with other studies (e.g.,
Dakin et al. 2011; Gebuis & Reynvoet 2012c). However, the
boundary for area judgments was drawn toward number by
53%, suggesting that number was as important as area in
judging area, and that for density was drawn toward number by
78%, suggesting that density judgments are mediated by
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numerosity (rather than the other way round). These results are
not at odds with those discussed in the target article showing
that number estimates can be slightly influenced by area or
density, but indicate that interactions in the other direction are
in fact far stronger: Number strongly influences both area and
density, suggesting that number is the more basic attribute.

Interactions between seemingly unrelated perceptual attributes
abound: Apparent speed depends on luminance, contrast, and
color (Gegenfurtner & Hawken 1996; Thompson 1982); interval
duration depends on speed (Brown, 1995; Kanai et al. 2006;
Kaneko & Murakami 2009); event duration depends on size
(Xuan et al. 2007); number depends not only on size and density,
but also on eye movements (Binda et al. 2012; Burr et al. 2010)
and the region of visual space where stimuli are displayed
(Dehaene et al. 1993; Hubbard et al. 2005). More recently, we
demonstrated interactions between action and number estimation,
for both sequentially presented items and spatial arrays (Anobile
et al. 2016a), pointing to even more far-reaching interconnections.

The fact that systems interact with each other does not preclude
the existence of specialized mechanisms. That duration depends
on speed and size does equate time with space, and very few
would deny the existence of dedicated motion mechanisms,
despite clear interactions with contrast, color, form, and time
(Burr & Ross 1986; Burr & Thompson 2011). As Leibovich
et al. point out, Harvey et al. (2013) have demonstrated a clear
neuronal map for numerosity, robust to changes in low-level fea-
tures. More recently, they have shown that the same area contains
a tuning map for size (Harvey et al. 2015). The two maps do not
superimpose and may not involve the same neurons; however,
they coexist in the same area of brain, highly consistent with the
notion of a brain area dedicated to magnitude estimation (Walsh
2003). The mapping for the two properties is clearly separable:
This would allow for the independent estimation of size and
number, but with a certain amount of cross talk.

To conclude, a great deal of evidence suggests that humans
perceive number spontaneously, with dedicated mechanisms.
Whether these mechanisms are innate is harder to prove.

However, developmental studies show that thresholds for numer-
osity discrimination are more adultlike at 6 years of age than are
those for dense-texture discrimination (Anobile et al. 2016b), rein-
forcing other studies (Izard et al. 2009) reporting early emergence
of number discrimination. Importantly, precision for numerosity,
but not texture density, correlates with mathematics achievement
in school-age children (Anobile et al. 2016b), adding weight to the
idea that numerosity mechanisms act as a “start-up tool” for later
acquisition of mathematics (Halberda et al. 2008; Piazza 2010).
This strong link with mathematics provides a further motivation
to understand fully the mechanisms underlying the perception
of number and, possibly, the foundations for mathematics.

Approximate number sense theory or
approximate theory of magnitude?
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Abstract: Leibovich et al. argue that the evidence in favor of a perceptual
mechanism devoted to the extraction of numerosity from visual collections
is unsatisfactory and propose to replace it with an unspecific mechanism
capturing approximate magnitudes from continuous dimensions. We
argue that their representation of the evidence is incomplete and that
their theoretical proposal is too vague to be useful.

Leibovich et al. review evidence about the extraction of numeros-
ity from visual sets and question the view that numerosity is appre-
hended directly, through a dedicated system, from the number of
elements in the display. They propose instead that numerosity

Figure 1. (Burr). Discrimination boundaries in two-dimensional log area-density space. (A) Example of stimuli used in the odd-one-out
task. Two are identical “standards,” defined as the origin of the space of panel B (24 dots, 40 square degrees); the other is the target,
randomly positioned (lower right in this case), defined by a randomly chosen position in the colored part of the space (double
numerosity in this example). (B) Thresholds in log area-density space. The abscissa defines the logarithmic difference in area between
target and standard, and the ordinate, the logarithmic difference in density. Numerosity, the sum of log density and log area,
increases along the positive diagonal. The heat map plots percent correct performance for all conditions. The two ellipses show 50%
and 75% right responses, obtained from a two-dimensional Gaussian fit to the data. The aspect ratio of the ellipses is 4:1 octaves,
implying a 16-fold difference between discriminations in numerosity and the orthogonal direction. Reproduced with permission from
Cicchini et al. (2016).
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results from the combination of several continuous dimensions
that correlate with number, via a system that is built and refined
throughout development.

Although we praise the enterprise, which makes current
debates in the field visible, the empirical review does not do
justice to the wealth and complexity of the evidence. As their
declared aim is to challenge what they refer to as “number
sense theory,” Leibovich et al. often appear selective and biased
in their overview. For example, they reject Nys and Content’s
(2012) claim that both number and area are extracted. In this
study, subjects compared collections either for total area or for
numerosity, and the congruency between number and aggregated
area was manipulated orthogonally. The results showed effects of
the irrelevant dimension in both tasks, suggesting that both
dimensions are extracted automatically. Leibovich et al. discard
this conclusion, citing as counterevidence studies that showed
the influence of continuous dimensions on comparison perfor-
mance, but did not examine the interference of numerosity on
area. They further support their argument by referring to two
studies that directly compared the interference of each dimension
(number and area) on judgments of the other. Hurewitz et al.
(2006) reported no numerical interference on area comparison,
but in their stimuli, the largest numerical ratio was half as large
as the largest area ratio. Leibovich et al. (2015) used numerosities
in the subitizing range (2–4), so the largest numerosity ratio was
2:1. Based on the three examples of incongruent pairs in their
figure 1, we calculated that the total area ratios were around
5:1. Both studies thus failed to adequately match the range of var-
iation of the two dimensions, and our point still holds.

Leibovich et al. argue that various continuous dimensions such
as cumulated area of the elements, length of the contour, and
density, are most often confounded with numerosity, and that

they affect comparison performance despite efforts to control
them. The conclusion is undisputable (and undisputed). But
whether these effects have an impact on early extraction processes
or later decision mechanisms is currently unclear. In adults, the
influence of continuous cues seems much more limited in estima-
tion than in comparison tasks (Gebuis & Reynvoet 2012c). More-
over, Content and Nys (2016) observed no influence of
continuous cues at all in nonverbal numerosity estimation with
4-year-olds.
Therefore, the influence of continuous dimensions does not

challenge the hypothesis that numerosity is automatically
extracted and used, as Nys and Content’s results suggest (see
also Cicchini et al. [2016] for a similar argument). Leibovich
et al. seem to have neglected some of the most convincing findings
in this regard. Strong behavioral evidence that numerical magni-
tude is extracted independently of continuous dimensions
comes from studies showing that numerosity estimation is
changed by connecting some elements together without any mod-
ification, which would alter the continuous cues (Franconeri et al.
2009; He et al. 2009, Kirjakovski & Matsumoto 2016). Adaptation
effects (Anobile et al. 2016c) also indicate the existence of a ded-
icated perceptual mechanism for numerosity.
Leibovich et al.’s conclusion is neither new nor controversial. It

does not discredit number sense theory, as the authors acknowl-
edge in the concluding section. Continuous dimensions are
indeed most often correlated with number in our experience of
the world. No wonder that we would tend to use them, when pos-
sible, in comparing collections. Rather, the thrust of the theory is
that humans and other species are equipped with a mechanism
making it possible to extract and encode discrete magnitudes
directly from sensory stimulations. The proposal put forward by
the authors aims at offering an alternative to number sense

Figure 1. (Content et al.). Three examples of collections varying in numerosity. In each triplet, there are correlations between
numerosity, contour length, occupancy, aggregated area, and so forth. These continuous cues can help order the collections, but they
cannot serve to determine the numerosity, as the nature of the predictive relation changes from one triplet to another.
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theory. It takes the form of a developmental scenario, whereby
numerical competence emerges from learning “the correlation
between numerosity and continuous magnitudes.”

There are at least two logical flaws with this view. The first is its
circularity. Capturing the correlation between numerosity and
other dimensions requires representing numerosity in the first
place. The authors acknowledge it and simply propose that
number words would serve to trigger the emergence of numeros-
ity. But how would number words make contact with numerosi-
ties? No answer is offered. The second and even more serious
issue is that it is unclear whether continuous dimensions are suf-
ficient to extract a representation of number, because the natural
correlations between numerosity and continuous magnitudes
even if most often present, are not stable in the world (see
Figure 1). Sometimes numerosity could be predicted from
contour area rather than occupancy, and sometimes it is the
other way round. Therefore, whereas multiple cues may serve
as proxies to order collections by numerosity, it is unclear how
they could subserve the estimation of number.

To conclude, we would argue that a minimal requirement for
future theoretical endeavours about numerosity processing
would be to seriously consider and implement distinctions
between the mechanism of numerosity extraction, the format of
numerosity representation, and the decision processes that are
required to perform a given task. That (some) continuous magni-
tudes would be extracted and combined in some weighted average
to deliver a representation of number is one logical possibility.
How the weights are determined without reference to numerosity
remains, however, to be clarified. Yet another possibility would be
that continuous magnitude information only affects late decision
stages. Other scenarios are also possible, and we believe, more
plausible. One is a specific, direct, numerosity extraction mecha-
nism based on sampling the visual scene for individual elements
feeding into a common magnitude representation system (see
Cantlon et al. 2009b).

Perceiving numerosity from birth
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Abstract: Leibovich et al. opened up an important discussion on the
nature and origins of numerosity perception. The authors rightly point
out that non-numerical features of stimuli influence this ability. Despite
these biases, there is evidence that from birth, humans perceive and
represent numerosities, and not just non-numerical quantitative features
such as item size, density, and convex hull.

Although it is impossible to simultaneously control for all contin-
uous quantities in a single numerosity display, some studies have
developed ingenious designs controlling these variables across all
of the experiment’s displays, as for example in Xu and Spelke’s
(2000) seminal study. Six-month-old infants saw first several
arrays of a fixed numerosity (either 8 or 16, in different groups),

varying in dot size and position. Once habituated, all infants
were tested with two numerosities in alternation (8 and 16). Cru-
cially, different aspects of stimuli were controlled in the habitua-
tion and test phases: the summed area of all dots (as well as
brightness and contour length) and the array area were matched
on average between the 8 and 16 habituation groups, while the
density and dot size were matched between the two tested numer-
osities. Therefore, if infants attend to dot size or density, they will
respond in the same way to test numerosities 8 and 16; whereas if
infants attend to summed area or array area, the two groups will
respond similarly to the test stimuli. Sensitivity to non-numerical
parameters, either a single parameter or a combination of them,
thus cannot explain the interaction pattern observed: In both
groups, infants looked longer at the novel numerosity. This
finding has been replicated by a different group (Brannon et al.
2004), using different numerical values (Xu 2003), in the auditory
modality (Lipton & Spelke 2003), and the same parameter control
strategy was employed to demonstrate sensitivity to numerosity at
the brain level (Izard et al. 2008, Piazza et al. 2004).

Similar controls for non-numerical features were used to dem-
onstrate newborns’ sensitivity to number (Izard et al. 2009). While
hearing a fixed value of numerosity (e.g., 12), newborns looked
longer to arrays matched in numerosity than to non-matching
arrays (e.g., 4). Because the stimuli were presented across two dif-
ferent modalities (auditory and visual), the newborns’ response
was necessarily based on an abstract property of the stimuli. Fol-
lowing the logic of Xu and Spelke (2000), extensive parameters
were controlled in the auditory stimuli across the two groups by
equating the duration, and intensive parameters across the two
test numerosities in the visual modality by equating density and
item size. Therefore, infants’ preference for the matching
stimuli could be explained only by numerosity, not by sensitivity
to an abstract notion of amount, or rate. Moreover, as infants
received only one numerosity in the auditory modality, they
could not be responding to relative quantity (“more” or “less”).
In that respect, the numerosity paradigm departed crucially
from another paradigm used later (de Hevia et al. 2014), in
which newborns matched two values, one small and one large,
across the two dimensions of numerosity and spatial extent. New-
borns are able to relate increases versus decreases of quantities
at a generic level, but also to perceive numerosities, calibrated
across senses.

In line with these findings, studies investigating newborns’
visual perception have demonstrated that they are able to repre-
sent individual objects, at the same age as in the numerosity
study. In particular, human newborns can perceive complete
shapes over partial occlusion (Valenza et al. 2006), and they
can both distinguish individual elements of a stimulus or
group them into a holistic percept (Antell and Caron 1985,
Farroni et al. 2000, Turati et al. 2013). Moreover, newborns
respond differently to faces displaying direct versus averted
gaze (Guellai & Streri 2011), a much finer cue than the shapes
used in the numerosity experiment. Perceptual abilities to indi-
viduate items from the background and from one another likely
fed into the numerosity percept evidenced by Izard et al.’s
(2009) study.

Despite the common belief that numerosity perception must be
more complex, and therefore a later developmental achievement,
than the perception of continuous quantity, developmental
studies have provided evidence that numerosity discrimination is
easier and more automatic. In particular, infants show higher sen-
sitivity to, and prefer to look at, changes in numerosity over
changes in item or total surface area, when difference ratios are
equated across dimensions (Brannon et al. 2004; Cordes &
Brannon 2008; 2011), and even when variations in number are
smaller (Libertus et al. 2014). Similarly, children show higher sen-
sitivity to number than to density (Anobile et al. 2016b). That per-
ception of numerosity is more automatic than other continuous
quantities is true in adults too: Even without an explicit task,
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numerosity of visual arrays is processed faster than other continu-
ous features of those arrays (Park et al. 2016b). In this context, it is
important to note that although Stroop studies on adults indicate
that continuous quantities interfere with number perception,
much of the behavioral and neuroscientific evidence cited by Lei-
bovich et al. is based on interference paradigms in which non-
numerical quantities varied by considerably larger ratios (and,
thus, likely had higher perceptual discriminability and salience)
than numerosity.

At the brain level, areas in the intraparietal sulcus respond to
numerosity, and not simply to non-numerical cues. In particular,
Eger et al. (2009) used intraparietal sulcus activations to train a
classifier to discriminate between patterns evoked by different
numerosities across which item size was equated and found that
this classifier generalized without accuracy loss to patterns
evoked by numerosities across which total surface area was
equated (and vice versa). Numerosity was also decodable from
the intraparietal sulcus when low-level factors such as contrast
energy were equated (Castaldi et al. 2016). Finally, in the right
superior parietal lobe Harvey et al. (2013) observed an orderly
topographical structure of numerosity responses, correlated
across stimulus sets implementing different controls. Although
the same region also responds to object size (Harvey et al.
2015), the tuning curves and map organization differ, thus high-
lighting the specificity of the numerosity response.

In summary, the literature brings uncontroversial evidence
that humans perceive and represent numerosity from birth
on. As pointed out by Leibovich et al., the literature also
brings uncontroversial evidence that numerosity perception is
imperfect, often subject to the influence of non-numerical
aspects of stimuli. These phenomena are fascinating, as they
open up a new research agenda – if perception of numerosity
relies on an imperfect algorithm, we now need to crack up its
functioning.

Multitudes are adaptable magnitudes in the
estimation of number
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Abstract: Visual number comparison does not require participants to
choose a unit, whereas units are fundamental to the definition of
number. Studies using magnitude estimation rather than comparison
show that number perception is compressed dramatically past about 20
units. Even estimates of 5–20 items are increasingly susceptible to
effects of visual adaptation, suggesting a rather narrow range in which
subitizing-like categorization processes blend into greater reliance on
adaptable magnitude information.

When people perceive a collection as having an amount, do they
assign a conceptual category (number) to something that is expe-
rienced as a multitude of units, or is that conceptualization depen-
dent on language? In Book 7 of Euclid’s Elements (300 BC/1956),
Euclid famously defined a number as “a multitude of units” after
having defined a unit, quite wonderfully, as “that by virtue of
which each of the things that exist is called one” (p. 277). Leibo-
vich et al. propose that whether nervous systems treat perceptual
number as a multitude rather than a magnitude may be unknow-
able because perceived number cannot be isolated from all con-
founding perceptual continuous magnitudes that are typically
correlated with number. But multiple information-processing
systems in perception might work together to help obviate this
concern. Here I consider how the fragile boundary between

magnitudes and multitudes might be manifest in numerosity
estimation.
Unlike most perceptual magnitudes (loudness, area, bright-

ness), numerosity has a built in unit. To compare the numbers
of two collections is to try to identify a relative quantity of units.
For small collections of two or three, special geometrical or atten-
tion processes may differentiate categories, but for large numbers,
clearly any estimate must be an approximation. Is it simply a
sensed magnitude? There is evidence that even a collection as
small as five fails to form a discriminable numeric category in
human adults in the absence of linguistic labels (Gordon 2004).
For some, the adaptability of visually perceived number is to

strongly suggest that large visual number is estimated based on
correlated features (Durgin 1995). How else could 200 dots
appear perceptually equivalent to 400 dots? It could not be that
some of the dots are missing. Rather, some visual property is
clearly being adapted, and locally rescaled, and that property
seems to act like a continuous magnitude (like brightness, loud-
ness, etc.). Durgin argued that effects of adaptation produced
multiple visual consequences including the underestimation of
apparent numerosity –which was most pronounced for high
numbers (in the hundreds), but also changes in perceived
spacing or distribution. Adaptation, like number comparison, pro-
vides no obvious way to unconfound number, except insofar as
adaptation fails (i.e., true number triumphs).
Number comparisons may be thought of as comparing several

visual magnitudes correlated with numerosity (including area,
Allik & Tuulmets [1991], and density). Whereas Anobile et al.
(2014) sought to distinguish between number perception and
density perception using differential Weber fractions, as Leibo-
vich et al. point out, even distinguishing two distinct sources of
judgment does not show that either one of them is number itself.
Still, the existence of multiple sources of information relevant

to estimating numbers does not show that number perception
does not occur. Having multiple sources of information about
depth that get combined into a common perceptual estimate
does not mean that we do not perceive depth, but it is hard to
infer the information content of perceptual experience solely
from discriminations tasks or categorization tasks.
An alternative approach to studying number with humans is to

use magnitude estimation rather than magnitude discrimination.
That is, human participants who have a linguistic number
system can estimate how many units are present, just as they
can estimate other psychophysical properties. Studies by
Krueger (1972) and by Kaufman et al. (1949) have shown that
dot collections as high as 200 dots are grossly underestimated, sug-
gesting that “number” is (under) estimated rather than sensed for
numbers of this magnitude. Perhaps this is just a translation
problem of converting perceptions into words or maybe approxi-
mate “number” perception is just an adaptable continuous magni-
tude that humans conceptualize as being composed of units.
Alex Huk and I (Durgin 2016; Huk & Durgin 1996) tested how

density adaptation affects number estimation. Participants who
were adapted to dense texture to one side of fixation were
briefly shown either one field of dots on one side or the other,
or two fields of dots (one on each side). When only one field
was flashed, they reported its apparent numerosity; when both
fields flashed, they were to indicate which side appeared more
numerous. The effect of adaptation on numerosity comparison
was stronger as numerosity increased, and a similar pattern
emerged for numerosity estimation.
The estimation data are shown in Figure 1. Number estimates

were unaffected for 5 dots. But for more numerous collections (40
dots or more), estimates were about 25% lower in retinotopic
regions adapted to dense (high numerosity) random dots fields
than in unadapted regions. The average estimate for 256 actual
dots, for example, was 154 in the unadapted region, and only
117 in the adapted region. Significantly, the numerosity estima-
tion functions shown here in log-log space seem to bend signifi-
cantly between 20 and 40 dots.
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So what can we learn from magnitude estimates of numerosity?
Magnitude estimation (i.e., assigning linguistic or symbolic
numbers) for large non-symbolic numerosities behaves much
like magnitude estimation data for other psychophysical magni-
tudes. It is consistently found that numeric estimates of large
numbers of texture units are compressive in their scaling (have
a slope less than 1 in log-log space). Additionally, the break
between low and high numbers depicted in the graph is quite dra-
matic, and it encourages us to think, as Anobile et al. (2014) also
seem to propose, that numerosity is not a single perceptual dimen-
sion. In visual number perception, at least, number investigation
probably ought to think of numbers higher than about 20 as per-
ceptual magnitudes, not multitudes. But what does the growing
effect of adaptation mean between 5 and 20? Five uniformly
colored dots seem to be unaffected by adaptation. Our subjects,
who have a linguistic number system, found this multitude of
units easy to identify even when briefly flashed peripherally in a
dense-adapted region. Beyond 5, performance seems quite differ-
ent. Beyond 20, it seems different again.

NOTE
1. Supported by Award R15 EY021026 from the National Eye

Institute.

Why try saving the ANS? An alternative
proposal
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Abstract: Leibovich et al. propose that continuous magnitudes and a
number sense are used holistically to judge numerosity. We point out
that their proposal is incomplete and implausible: incomplete, as it does
not explain how continuous magnitudes are calculated; implausible, as it
cannot explain performance in estimation tasks. We propose that we do
not possess a number sense. Instead, we assume that numerosity
judgments are accomplished by weighing the different continuous
magnitudes constituting numerosity.

How do we approximate large numerosities? The dominant view
is that this is accomplished via the “approximate number system”
(ANS), an innate number system that is able to process pure
numerosity (e.g., Dehaene 2003). Recently, others and we high-
lighted the role of continuous magnitudes (e.g., density, size,
total surface of the dots, etc.) in numerosity judgments (e.g.,
Allik & Tuulmets 1991; Gebuis et al. 2016; Gevers et al. 2016).
Leibovich et al. therefore challenge, in the current article, the
idea that number sense is innate. They note that a natural corre-
lation exists between continuous magnitudes and numerosity and
argue that both types of information are used “holistically”1 to
judge numerosity. Their ideas are presented in a developmental
framework within which processing of continuous magnitudes is
innate but a number sense develops over time.

We fully agree with the authors that something is wrong with
the ANS theory. We also agree that continuous magnitudes play
an important role. The proposed idea of holistic processing of
numerosity using both a number sense and continuous magni-
tudes is appealing at first sight. However, a closer inspection of
the proposal makes us conclude it is both incomplete and
implausible.

First, the account is incomplete, as it does not explain exactly
how continuous magnitudes are judged and how they would
bias the numerosity estimate. One possibility is that subjects can
estimate all continuous magnitudes (size, density, diameter,
contour length, etc.) simultaneously. This would allow the subjects
to make an exact calculation of the numerosity, and hence, the
numerosity estimate should be free from any bias. This result is
clearly inconsistent with the literature, and this possibility can
therefore be rejected. Another possibility is that the subject only
decides which of the two stimuli contains “larger” or “more” con-
tinuous magnitudes. This could indeed cause the observed bias,
but how would this work in cases in which only a few continuous
magnitudes are larger in one stimulus compared with the other?
Take for example two stimuli with the convex hull being larger
but the surface smaller in one stimulus compared to the other.

Figure 1. (Durgin) Number estimation in adapted and unadapted regions (Durgin 2016; Huk & Durgin 1996). Data are re-plotted in a
log-log scale and fit with power functions for values of 5–18 dots or 40–1,152 dots.
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Do the subjects now rely only on the most prominent continuous
magnitude? This is unlikely, as results have shown that the bias
increases with the number of continuous magnitudes being
manipulated (Gebuis & Reynvoet 2012b). Another alternative is
that each continuous magnitude contributes to the final response
relative to its size. Unless the authors have another suggestion on
how continuous magnitudes could help in making numerosity
judgments, the previously discussed reasoning leaves us with the
latter solution. We already proposed this solution and imple-
mented it in a model that relies only on continuous magnitudes
(Gebuis et al. 2016; Gevers et al. 2016).

Second, the model provides an explanation only for compari-
sons tasks, but not for estimations (e.g., How many objects are
presented?). We argue that performance in estimation tasks
uncovers why the model is implausible. The model cannot
explain how the biases or congruency effects as observed in a com-
parison task occur in estimation tasks. The reason is that in an esti-
mation task, only a single numerosity is presented and the
continuous magnitudes of this numerosity are not informative
about the number presented. For example, knowledge about
the diameter of the individual objects does not provide informa-
tion about the numerosity presented. Related to the previous dis-
cussion, more detail is needed about how the continuous
magnitudes influence a numerosity judgement and, more specifi-
cally, numerosity estimation. As outlined previously, an exact cal-
culation/estimation of the exact size of each sensory cue would
enable us to calculate the exact value presented. This means
that our number sense and our continuous magnitudes would
derive the same result and thus would not induce a bias. Further-
more, when a single set of objects has to be estimated, it is impos-
sible to make a small/large judgment given that there is no other
stimulus with which to compare it. The continuous magnitudes on
their own are simply not informative for estimation and therefore
should, according to the current model, not bias numerosity esti-
mation. However, this is not right, as multiple studies have shown
a bias induced by the continuous magnitudes when estimates are
performed (e.g., Gebuis & Reynvoet 2012c; Izard & Dehaene
2008). The authors could argue that subjects calculate a running
average based on the set of stimuli used in the experiment and
compare the continuous magnitudes with this running average.
However, even in a study where only a single stimulus was pre-
sented (and hence no running average could be calculated), a
bias was induced by the continuous magnitudes (Krueger 1982).

The proposed review makes it clear that the influence of contin-
uous magnitudes on numerosity processing challenges the ANS
theory. However, the alternative proposal made by Leibovich
et al. can be rejected based on both logical and empirical
grounds. We therefore propose a different solution, which is
more parsimonious, stepping out of the comfort zone where
researchers try to adapt the idea of an ANS to preserve it. We
put forward the simple suggestion that we do not possess nor
develop an ANS. Instead, we argue that it is much more straight-
forward to assume that numerosity estimations or comparisons are
accomplished by weighing the different sensory cues constituting
numerosity, whereas language is used to describe this numerosity
(for an extensive review on this matter, see Gebuis et al. [2016]
and Gevers et al. [2016]). Contrary to the current model, it does
explain how numerosity can be derived from the sensory cues.
This proposal will therefore spark the debate on the ANS, not
when it comes into existence, but if it exists at all.

NOTE
1. Note that Gebuis and Reynvoet (2012b), Gevers et al. (2016), and

Mix et al. (2002a) are cited incorrectly. They do not support the claim
that a number sense and sensory cues are processed holistically. Instead,
Gebuis and colleagues suggest that numerosity judgments are based
solely on continuous magnitudes, Mix et al. propose that number sense
is not innate, and several ideas are proposed about how number sense
could develop.

The evolvement of discrete representations
from continuous stimulus properties: A
possible overarching principle of cognition
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Abstract: Leibovich et al. propose that non-symbolic numerosity abilities
develop from the processing of more basic, continuous magnitudes such as
size, area, and density. Here I review similar arguments arising in the visual
perception field and further propose that the evolvement of discrete
representations from continuous stimulus properties may be a
fundamental characteristic of cognitive development.

Ever since early research on the building blocks of visual percep-
tion, basic stimulus properties such as line orientation and move-
ment have been shown to be mapped in a graded fashion within
early visual cortex (e.g., Hubel & Wiesel 1977). Relatedly, a hall-
mark of spatial coding within this region is retinotopic mapping, in
which the external space is represented continuously within
neural tissue. With the emergence of hemodynamic neuroimaging
techniques, investigation of the nature of higher-level object rec-
ognition mechanisms was accelerated, revealing several subre-
gions within ventral temporal cortex that are dedicated to
processing discrete visual categories, such as faces (Kanwisher
et al. 1997; McCarthy et al. 1997), places/scenes (Aguirre et al.
1998; Epstein & Kanwisher 1998; Maguire et al. 1998), human
body parts (e.g., Downing et al. 2001), and even letters/words
(Fiez and Petersen 1998; Puce et al. 1996). These regions, or net-
works of functionally specialized processing units, are typically
referred to as domain-specific, as they are uniquely (albeit not
exclusively) activated by specific stimulus categories (e.g., Kanw-
isher 2010; Yovel & Kanwisher 2004) and are tied to rather
well-defined anatomical structures (see Grill-Spector & Weiner
2014). The discovery of such functionally dedicated “islands,” or
modules, within ventral visual cortex served as a window to the
understanding of the underlying mechanisms of high-level visual
perception, as clearly, we perceive the world as a collection of
meaningful, individuated objects grounded within background
sceneries, not of arbitrary orientations, colors, or motion direc-
tions. Visual categorization, or the ability to detect and recognize
objects by representing them in a separable, discrete fashion, is
thus one of the key functions of the visual system (Grill-Spector
& Weiner 2014; Kanwisher 2010).
Yet more recent advances have shifted the pendulum back to

acknowledging the importance of domain-general processes in
visual recognition, by revealing various large-scale mapping prin-
ciples that may in fact underlie categorical representation along
the ventral visual cortex. Thus, for example, one such organizing
principle is visual field eccentricity, according to which face- and
word-selective regions reside within foveally biased regions
(because of their requirement for high-resolution vision),
whereas place- and scene-selective regions lie along peripherally
biased areas within the visual cortex (because of their dependence
on large-scale visual integration [e.g., Hasson et al. 2002; Levy
et al. 2001]). Other organizing principles are real-world object
size (e.g., Konkle & Oliva 2012), motion/mobility (Chao et al.
1999; Huth et al. 2012), animacy (Connolly et al. 2012; Kriege-
skorte et al. 2008), and semantic meaning (Huth et al. 2012).
Importantly, a common feature of most of these organizing prin-
ciples is their gradient nature, where categories are represented as
locations in a continuous space mapped smoothly across the cor-
tical surface. From a developmental perspective, it may well be
the case that the domain-specific “modules” specialized to
process faces or places have evolved from earlier gradient maps,
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which encode more basic visual properties such as eccentricity
and motion.

Indeed, the extent to which the ability to process “unique” cate-
gories is innate, or acquired with experience and with cortical mat-
uration, is still heavily disputed. From an evolutionary perspective,
the existence of certain hardwired modules, dedicated to processing
a specific type of content, can be easily justified for at least some of
the aforementioned domains (e.g., face processing is necessary for
infant bonding with caregiver, body-part processing is important
to action understanding and social interaction). When discussing
face perception, which is at the heart of scientific controversy,
studies have demonstrated a genetic basis for face recognition abil-
ities (Shakeshaft & Plomin 2015; Wilmer et al. 2010; Zhu et al.
2010), along with prioritized processing of face-like configurations
during early infancy (Goren et al. 1975; Johnson et al. 1991).
Both types of findings strongly support an innate account of face
processing. Other developmental research, however, has revealed
a rather complex, protracted profile of face-expertise development,
according to which face recognition behavior and its underlying
neural mechanisms develop gradually during childhood and do
not reach full maturation until early adulthood (e.g., Cohen
Kadosh et al. 2010; Gathers et al. 2004; Germine et al. 2011;
O’Hearn et al. 2010; Scherf et al. 2007). Furthermore, according
to some models, despite their seemingly dissociated nature, face-
and word-processing abilities emerge from shared, overlapping
neural systems, both relying on high-acuity cortical regions (e.g.,
Hasson et al. 2002). It is only with formal education and the acquire-
ment of orthographic symbols, which are represented most domi-
nantly in the left hemisphere, that face-recognition mechanisms
are “forced” to become right-lateralized and, consequently, attain
partial independence (Behrmann & Plaut 2013; 2014; Dundas
et al. 2013; 2014). According to this view, the cortical mechanisms
that support visual cognition at adulthood develop from a common,
distributed neural network, rather than from a set of distinct, innate
regions that each subserve a particular visual function.

As for the discussion regarding the innateness and independence
of a potential “number sense” mechanism, although there are
clearly differences in the nature of numerosity and visual categori-
zation abilities, a possible common feature of the two types of pro-
cessing is their emergence from more basic, continuous
representations, which gradually develop into discrete representa-
tional entities. As Leibovitch et al. propose in their new theoretical
framework, developments such as parsing stimuli one from another
(visual individuation), the acquisition of language (counting), and
the ability to abstract an exact number of objects from their
variant physical properties (abstraction and inhibition), eventually
allow one to represent magnitudes in a discrete, numerical
fashion. Clearly, much research is still required to fully characterize
the developmental profile of continuous and discrete magnitude
processing and their interdependent nature (see, e.g., Gabay et al.
2013; 2016; Pinel et al. 2004; Walsh 2003), along with their interac-
tions with other domain-general systems (such as cognitive control
mechanisms [e.g., Leroux et al. 2009]). The current model may
serve as an overarching framework for such future study.

Magnitude rather than number: More evidence
needed
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Abstract: Leibovich et al. do not present enough empirical support to
overturn decades of work supporting a number sense nor to convince

the reader that a magnitude sense provides a better explanation of the
literature. Here we highlight what we feel are the main points of
weakness and the types of evidence that could be provided to be more
convincing.

Leibovich et al. propose that findings of a number sense in human
infants, children, adults, and nonhuman primates can be alterna-
tively explained by a magnitude sense.
Possible or unclear is not enough. The main argument the

authors lay out is that it is impossible to control for all non-numer-
ical magnitude properties that co-vary with numerosity at once,
and, as such, all previous work attempting to control for non-
numerical magnitude properties to study numerical processing
cannot be straightforwardly interpreted as having to do with
“number.”Unfortunately, simply saying that all magnitude dimen-
sions were not controlled in a given study does not provide any
empirical support for the position that the observed responses
were non-numerical. To be taken seriously, the authors need to
say not only which particular magnitudes confounded number
in each example, but also why the empirical evidence favors that
particular non-numerical magnitude interpretation over a numer-
ical one in each of those cases. More broadly, the authors need to
explain how alternatively explaining the literature by various and
different non-numerical confounds in each experimental context
provides a more comprehensive and consistent explanation of
the literature than the number sense.

The authors also seem to misunderstand the controls used in
neural adaptation (e.g., Piazza et al. 2004), where the impossibil-
ity of controlling for all non-numerical magnitude properties in a
single stimulus (or pair of stimuli) is avoided by requiring a more
complex pattern of responses across many stimuli (see Kourtzi &
Grill-Spector 2005). In adaptation experiments, participants see
a sequence of novel images that vary on many non-numerical
magnitude dimensions. A majority are “adaptation” images
with the same number of items. Occasionally, “deviant” test
images are presented that deviate on numerical or non-numeri-
cal parameters (e.g., shape). Critically, adaptation and test
images are drawn from different control distributions where
number and non-numerical magnitude properties share differ-
ent relationships to one another. Although researchers focus
on equating different magnitude dimensions across adaptation
and test image sets (e.g., item size and item spacing vs. total
area and luminance), many magnitude dimensions are interre-
lated, and systematically changing relationships between some
dimensions necessarily changes the others. For example, chang-
ing the relationship between item size and number also changes
the relationship between number and item spacing, item
contour length, total area, total contour length, brightness, and
so forth. Even if a particular undefined non-numerical magni-
tude dimension was inadvertently confounded with number
and led to attenuation in the brain response during the adapta-
tion images, the relationship between that particular dimension
and number would change in test images. Thus, one would not
observe differential release from adaptation between numerical
and non-numerical deviants (e.g., shape) because the relation-
ship between the particular (undefined) non-numerical magni-
tude and number that was confounded during adaptation
necessarily changes in all test types, as test images are drawn
from a different set of controls. In contrast, if the brain response
attenuates to repeated presentation of the same number of items
and selectively recovers with a change in number despite these
sorts of controls, it can be concluded that the response was
numerical (see Kourtzi & Grill-Spector 2005).
An influence on number does not equal non-numerical. The

main positive empirical evidence drawn upon by the authors to
support the hypothesis that previously observed responses are
non-numerical comes from studies showing influences of non-
numerical properties on numerical judgments or neural process-
ing (e.g., Gebuis & Reynvoet 2014; Leibovich & Henik 2014; Lei-
bovich et al. 2015). Although this point highlights the fact that the
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field currently lacks a model of how exactly number is extracted
from visual arrays and provides evidence that non-numerical prop-
erties may be used to do so, evidence of an influence of non-
numerical magnitudes on number is not evidence that the
response is not numerical in nature. In a similar vein, the existence
of a brain region that processes both numerical and non-numeri-
cal magnitudes (e.g., Walsh 2003) is not evidence that number is
not represented distinctly at other levels or regions. To be taken
seriously, the authors would need to provide evidence that
responses thought to be numerical are not only influenced, but
also better explained by non-numerical magnitudes.
No actual developmental evidence provided. The authors fail

to provide any positive empirical evidence in support of their
main developmental claim: Continuous magnitude representa-
tion is innate and number representation is not. Moreover,
the authors disregard some of the strongest evidence to date
for an innate number sense, cross-modal numerical processing
in infants (e.g., Feigenson 2011; Izard et al. 2009; Jordan &
Brannon 2006). Cross-modal number studies with infants are
the smoking gun here, as they provide evidence of an innate
number sense while avoiding the challenge of controlling for
non-numerical magnitudes within a single sense modality.
Leibovich et al. assert that cross-modal number studies with
neonates (e.g., Izard et al. 2009) cannot be trusted because neo-
natal vision is too “blurry,” not allowing object individuation
until about 5 months. Furthermore, they claim that results
from cross-modal numerical matching studies with infants are
highly inconsistent and, therefore, should not be trusted. The
claim that infants cannot perceptually individuate objects until
5 months is simply false. Moreover, the authors inaccurately
estimate study reliability (not considering the different predic-
tions of preferential matching vs. violation of expectation para-
digms). In both cases, the cited references (Cantrell & Smith
2013; Carey 2001) do not support the authors’ claims. The
authors are right that neonatal vision is much worse than child
or adult vision. However, to convince the reader to disregard
the cross-modal number studies with neonates, the authors
would need to provide actual evidence that typical newborn
visual acuity is below the threshold needed to see the stimuli
used in these particular studies (e.g., estimates from Fantz
et al. [1962] and Kellman & Arterberry [2007] suggest
otherwise).

In the words of David Hume (1748/2007), “A wise man [sic],
therefore, proportions his belief to the evidence” (p. 80). Although
the magnitude sense proposal is intriguing and highlights impor-
tant gaps of knowledge in the field, the authors would need to
present stronger empirical evidence to actually overturn the
number sense literature and garner widespread support for
their own view.

Is the ANS linked to mathematics
performance?
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Abstract: Leibovich et al. argue persuasively that researchers should not
assume that approximate number system (ANS) tasks harness an innate

sense of number. However, some studies have reported a causal link
between ANS tasks and mathematics performance, implicating the ANS
in the development of numerical skills. Here we report a p-curve
analysis, which indicates that these experimental studies do not contain
evidential value.

As Leibovich et al. point out, the dominant view is that mecha-
nisms involved in performing “number sense” or approximate
number system (ANS) tasks underlie the basis of symbolic math-
ematical skill. This view is based on findings from two main exper-
imental paradigms: In comparison tasks, participants select which
of two arrays contains more dots; in addition tasks, they assess
whether two sequentially displayed arrays contain more dots
than a third array. Researchers have assumed that such ANS
tasks harness an innate sense of number, but Leibovich et al.
argue that this assumption is not warranted.
In our view, there are three main sources of evidence for the

view critiqued by Leibovich et al.:
1. Face validity. Tasks in which children or adults compare, for

example, the number of yellow and blue dots do, on the face of it,
seem to be about number.
2. Correlational evidence. Recent meta-analyses have reported

that performance on standardized mathematics tests and ANS
tasks correlate at r = 0.2 to 0.3 (Chen & Li 2014; Fazio et al.
2014; Schneider et al., 2017).
3. Causal evidence. Some recent experimental studies have

claimed that improving performance on ANS tasks causes
higher mathematics achievement and faster mathematics
performance.
Leibovich et al. argue compellingly that evidence from compar-

ison tasks is insufficient to conclude that ANS tasks involve
numerical processing, at least not as currently conceived by pro-
ponents of the “number sense” theory (cf. Gebuis et al. 2016).
Further, accounting for the ANS/mathematics achievement cor-
relation does not require the assumption of an innate sense of
number, because of the inhibitory control demands of incongru-
ent trials on ANS tasks (e.g., Fuhs & McNeil 2013; Gilmore
et al. 2013). However, this inhibition confound does not account
for the third source of evidence, which Leibovich et al. do not
address.
The causal evidence comes from two sources. One line of

research has found training on ANS tasks leads to improved per-
formance and faster responses on mathematics tests (Hyde et al.
2014; Khanum et al. 2016; Park & Brannon, 2013; 2014; Park
et al. 2016a). Another has found that manipulating the order
in which ANS trials are presented (easy-to-difficult or difficult-
to-easy) improves mathematics performance (Wang et al.
2016). These findings present a problem for the inhibition
account. Earlier research found that inhibition training does
not transfer to non-trained tasks (Thorell et al. 2009), so poten-
tial inhibitory control demands of ANS tasks cannot explain
these findings.
Although there has been a debate about the quality of this

evidence (e.g., Lindskog & Winman 2016; Merkley et al.
2017; Park & Brannon 2016; Wang et al. 2017), here we ask
whether, taken together at face value, current experimental
studies provide sufficient evidence to conclude that there is a
causal link between the ANS and mathematics performance.
To this end, we performed a p-curve analysis on the set of all
studies we are aware of that report a causal link between the
ANS and mathematics performance (Hyde et al. 2014;
Khanum et al. 2016; Park & Brannon 2013; 2014; Park et al.
2016a; Wang et al. 2016).
P-Curve analyses (Simonsohn et al. 2014; 2015) rely on

the fact that p-values follow a uniform distribution under the
null hypothesis. In contrast, when the null is false, p-values
are right skewed (i.e., there are more low values than
high values). This is true not only for the full 0-to-1 interval,
but also for the interval from 0 to 0.05. Simonsohn et al.
proposed that the shape of the distribution of significant
p-values in a set of studies can be used to assess if they
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collectively contain evidential value. If the significant p-values
follow a roughly uniform distribution, publication bias might
explain the results.

We followed Simonsohn et al.’s (2015) procedure and, for each
reported study, extracted the test statistic associated with the
hypothesis of interest (whether the experimental manipulation
influenced mathematics performance). If there was doubt about
which statistic to select (e.g., the study contained two control
groups), we conservatively selected the comparison with the
smaller p-value (retaining the other for a robustness check).
Details are given in our p-curve disclosure table at https://fig-
share.com/s/e6188771f048ecc6f881.

We analyzed the test statistics using the p-curve app v4.05
(http://www.p-curve.com/app4/). The p-value distribution is
shown in Figure 1. Of nine p-values, five were below 0.025, a fre-
quency not significantly different to the 4.5 expected under the
null hypothesis, one-tailed binomial test, p = 0.5. Stouffer’s
method (Simonsohn et al. 2015) also indicated that these
studies do not contain evidential value (p-values = 0.206, 0.299).
The p-curve method also provides an estimate of the power of
the studies. Here this was 13% (90% confidence interval: 5%,
54%), indicating insufficient evidence to reject the null of 33%
power (which Simonsohn et al. would take to indicate that eviden-
tial value was absent and that replications would not be expected
to succeed).

Our findings indicate that the published literature to date does
not contain evidence of a causal link between performance on
ANS tasks and standardized mathematics tests. To be clear, we
have not demonstrated there is no causal connection between
the ANS and mathematics performance, only that the existing lit-
erature does not provide evidence for one. However, we can
definitively conclude that existing studies are substantially under-
powered, rendering their interpretation difficult. In the future,
researchers should address this limitation through preregistration
and larger samples.

To conclude, we endorse Leibovich et al.’s suggestion that
the assumption that ANS tasks involve number sense is not jus-
tified. Although Leibovich et al. did not address it, we believe
that existing evidence of a causal link between the ANS and
mathematics performance is insufficient to challenge their
argument.

Magnitude, numerosity, and development of
number: Implications for mathematics
disabilities
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Abstract: Leibovich et al. challenge the prevailing view that non-symbolic
number sense (e.g., sensing number the same way one might sense color) is
innate, that detection of numerosity is distinct from detection of continuous
magnitude. In the present commentary, the authors’ viewpoint is discussed
in light of the integrative theory of numerical development along with
implications for understanding mathematics disabilities.

In their article, “From ‘Sense of Number’ to ‘Sense of Magnitude’:
The Role of Continuous Magnitudes in Numerical Cognition,”
Leibovich et al. challenge the prevailing view that non-symbolic
number sense (e.g., sensing “sixness” in a group of six objects in
the same way one might sense color [Dehaene 1997]) is innate,
that detection of numerosity is distinct from detection of contin-
uous magnitude. Rather, the researchers argue that infants are
hardwired to sense continuous magnitudes (e.g., objects’ areas,
contour lengths, spacing) and that this information supports per-
ception of numerosity. Non-symbolic number sense “develops
from understanding the correlation between numerosity and con-
tinuous magnitudes” (sect. 8, para. 6). For example, infants might
learn through their everyday experiences that more objects typi-
cally take up more space. However, in cases where this rule is vio-
lated (e.g., a line of three long toy trucks that is longer than a line
of five short trucks), general cognitive control or executive func-
tion may be needed to inhibit a response based on the expected
correlation of continuous magnitude and numerosity. In the
present commentary, we discuss Liebovich et al.’s viewpoint in
light of the integrative theory of numerical development
(Siegler & Lortie-Forgues 2014), which was not considered in
the article, along with implications for understanding mathematics
disabilities.

The integrative theory “proposes that the continuing growth of
understanding magnitudes provides a unifying theme for numerical
development” (Siegler & Lortie-Forgues 2014, p. 144). A mental
number line, Siegler and Lortie-Forgues contend, coordinates
knowledge of different forms of magnitude ranging from non-sym-
bolic continuous quantities and numerosities to symbolic whole
numbers, fractions, and decimals. Arguably, a mental number
line could be grounded in core knowledge of continuous magni-
tudes, which allows children to perceive non-symbolic numerosities
and eventually symbolic numbers. However, we believe that the
argument that an innate sense of non-symbolic magnitude is
more fundamental than non-symbolic number sense is less impor-
tant than is the notion that an understanding of how discrete and
continuous quantities are related is critical for constructing the
beginnings of a mental number line. According to the integrative
theory, the construction of a mental number line structures math-
ematics learning, and early experiences with both continuous mag-
nitudes and discrete objects in the external world shape children’s
understandings of quantity right from the start.

Leibovich et al. present implications of their view for under-
standing mathematics disabilities, including dyscalculia, as well as
mathematics disabilities that co-occur with other conditions (e.g.,
dyslexia or attention deficits). The possibility that children at risk
for mathematics disabilities have trouble grasping the correlation
between continuous magnitudes and numerosities is intriguing.
Previous work has shown that core deficits in understanding
numerical magnitudes in symbolic contexts underpin mathematics
disabilities (e.g., Butterworth 1999; 2005; Butterworth & Reigosa-
Crespo 2007; Landerl et al. 2004). For example, children with

Figure 1. (Inglis et al.). Distribution of p-values for studies
finding a causal connection between the ANS and mathematics
performance. The observed p-curve includes nine statistically
significant (p < .05) results, five of which are p < .025, No
nonsignificant values were entered.
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dyscalculia perform much more poorly than do their typically
achieving peers when asked to identify which of two numerals is
larger and to relate quantities to their symbols (Butterworth &
Reigosa-Crespo 2007; Landerl et al. 2004; Rousselle & Noel
2007). Moreover, ability to estimate the placement of numbers
on a number line strongly predicts whether children will go on
to struggle in mathematics (Hansen et al. 2015; Resnick et al.
2016). It is possible children’s difficulties with symbolic represen-
tations of quantity may be at least partly rooted in the detection of
non-symbolic continuous magnitudes. For example, Matthews
et al. (2016) showed that mathematics competencies that depend
on an understanding of fractions are predicted by non-symbolic
processing of ratio information, which is inherently continuous.

Nonetheless, we generally argue against the “domain-general
account of dyscalculia” discussed by Leibovich et al. Although
general cognitive competencies partially explain why some chil-
dren struggle with mathematics (Jordan et al. 2013; Rousselle &
Noel 2007), basic weaknesses in understanding numerical magni-
tudes have been shown to be the more definitive characteristic of
mathematics disabilities (Clarke & Shinn 2004; Hansen et al.
2015; Jordan et al. 2013; Mazzocco & Thompson 2005). We rec-
ognize, however, that children’s core difficulties with numerical
understanding are exacerbated by weaknesses in executive func-
tioning related to inhibition and set shifting, which constrain child-
ren’s later numerical development (e.g., Hassinger-Das et al.
2014). Being able to focus on number while ignoring irrelevant
information helps children master foundational number skills
more quickly. Preschoolers’ “spontaneous focusing on numeros-
ity” (SFON) predicts rational number understanding 6 years
later (McMullen et al., 2015). Cognitive control may be especially
important for learning fractions, where a larger number in a frac-
tion’s denominator may not always correspond to its magnitude (e.
g., 2/6 is smaller than 2/3). In fact, attention emerges as a strong
and unique predictor of fraction learning among a constellation
of variables (Hansen et al. 2015; Jordan et al. 2013; Rinne et al.
2017). Not surprisingly, attention deficits frequently co-occur
with mathematics disabilities (Zentall et al. 1994). Recognizing
the correlation between continuous magnitudes and numerosities
may be an important cue for determining numerical magnitude,
but it is likely just one cue among a number of others, and
an inability to use such cues in general likely reflects a domain-
specific core deficit in processing magnitudes numerically.

Finally, the term number sense has been used by some to indi-
cate a fundamental ability that has been interpreted as being rel-
atively impervious to change. A similar interpretation might be
made for “magnitude sense.” However, we and others define
number sense more broadly to include core symbolic knowledge
of number and numerical magnitudes or relations (Jordan &
Dyson 2016; National Research Council 2009). A growing body
of experimental evidence – at least at the symbolic level, which
is most closely related to learning mathematics – indicates that
number sense can be developed in all or most children (Frye
et al. 2013; Jordan & Dyson 2016). Rather than separating contin-
uous magnitude sense from number sense, as Leibovich et al.
propose, it might be more useful to view these understandings
as interacting along a continuum of numerical development.

Infants discriminate number: Evidence against
the prerequisite of visual object individuation
and the primacy of continuous magnitude
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Abstract: Leibovich et al. hypothesize that the absence of visual object
individuation limits infants’ numerical skills and necessitates a reliance
on continuous magnitudes. We argue that parallels between infants’
numerical discrimination in the visual and auditory modalities, their
abilities to match numerosities across modalities, and their greater
ability to discriminate changes in number compared with continuous
magnitudes contradict the authors’ assumptions.

The authors present a provocative theoretical model describing
how the development of the number concept unfolds based on
children’s experiences of the correlations between continuous
magnitudes and number in their environment. This theory rests
on the assumption that infants cannot readily represent number
because they cannot individuate visually presented objects early
in life and that continuous magnitudes do not suffer from this con-
straint and are hence easier to represent. We question this
assumption based on three lines of empirical evidence: (1) paral-
lels between infants’ abilities to represent numerical information
presented in the visual and auditory modalities, (2) infants’
ability to match numerical information across sensory modalities,
and (3) infants’ greater facility in discriminating number com-
pared with continuous magnitudes in the visual modality.
First, audition develops already in utero (Hepper & Shahidullah

1994), and infants are born with sophisticated auditory abilities such
as the ability to discriminate their mother’s voice from a female
stranger’s voice (DeCasper & Fifer 1980). With respect to numer-
ical skills, 6-month-old infants are able to discriminate sequences of
tones when the numbers differ by a 1:2 ratio (e.g., 8 tones vs. 16
tones) but fail when they differ only by a 2:3 ratio (Lipton &
Spelke 2003). Auditory numerical stimuli obviate the need for indi-
viduation because tones are typically presented sequentially.
However, infants’ ability to discriminate auditory numerical
stimuli is remarkably similar to their ability to discriminate simulta-
neously presented visual arrays of objects (i.e., 6-month-old infants
can discriminate visually presented numerosities that differ by a 1:2
ratio, but not a 2:3 ratio [Xu & Spelke 2000]). If, as hypothesized by
Leibovich et al., visual object individuation only emerges around 5
months of age and visual number discrimination relies on the ability
to individuate objects, it is unclear why infants’ number discrimina-
tion abilities in the visual and auditory modalities are subject to the
same thresholds. Similarly, based on their hypothesis, one would
expect that visual number discrimination should be improved if
visual stimuli are presented sequentially and visual object individu-
ation is no longer an obstacle. However, 6-month-olds are unable to
discriminate a unimodal visual sequence when numbers differ by a
2:3 ratio, similar to what is found for simultaneously presented
visual stimuli (Jordan et al. 2008b).
Second, infants are able to match numerical information across

sensory modalities from birth (Feigenson 2011; Izard et al. 2009).
For example, newborns look longer at a visual stimulus that con-
tains the same number of objects as a sequence of tones they hear
(Izard et al. 2009). Similar to the ratio-dependent discrimination
observed with unimodal stimuli, newborns’ cross-modal matching
of numerical information is ratio dependent; that is, they are able
to match the number of sounds to the right number of objects
when the correct and incorrect numbers of objects differ by a
1:3 ratio, but not when they differ by a 1:2 ratio. These findings
suggest that infants are able to match numerical information
across sensory modalities and across simultaneous and sequential
presentation formats. If infants were only able to represent con-
tinuous magnitudes as hypothesized by Leibovich et al., it is
unclear which continuous dimensions infants would match
across sensory modalities and how they would do so without a ref-
erence point to determine which value in a given dimension is
more or less. For example, should the average tone duration be
matched to an average object size, and if so, which duration
should correspond to which size? Without familiarization to a
range of tone durations and object sizes, it seems impossible for
infants to create the reference frame that is necessary to match
continuous dimensions. Relying on number is the most parsimo-
nious explanation for the observed patterns in infants’ behavior.
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Third, infants show greater facility in discriminating number than
continuous magnitudes. For example, 6-month-old infants need a
1:4 ratio difference to detect a change in cumulative surface area
and a 1:3 ratio difference to detect a change in cumulative perim-
eter, but only a 1:2 ratio difference to detect a change in number
(Cordes & Brannon 2008; Starr & Brannon 2015). Furthermore,
when a change in cumulative surface area is directly pitted
against a change in number, infants prefer to look at the change
in number (Libertus et al. 2014). This preference cannot be attrib-
uted to detecting a change in individual element sizes as Leibovich
et al. argue (see sect. 3) because individual element size changed by
the same ratio as change in number and change in cumulative
surface area; that is, when a 1:3 ratio change in number was
pitted against a 1:3 ratio change in cumulative surface area, the
size of individual elements in both cases changed by a 1:3 ratio.
When a 1:3 ratio change in number was pitted against a 1:5 ratio
change in cumulative surface area, the size of the individual ele-
ments changed by 1:3 and 1:5 ratios, respectively. Despite the
greater change in individual element size that accompanied the
change in cumulative surface area, infants looked significantly
longer at the change in number that was accompanied by a
smaller change in individual element size. Therefore, changes in
individual element size cannot explain why infants would attend
more to a change in number than a change in cumulative surface
area. The most parsimonious explanation for the observed findings
is that infants are more sensitive to changes in number than contin-
uous magnitudes and not vice versa as Leibovich et al. suggest.

Taken together, these three lines of research suggest that it is
most parsimonious to assume that the concept of number is
present early in development and that its acquisition does not
rest on the acquisition of visual object individuation and experi-
ences with correlations between number and continuous magni-
tude representations.

Right idea, wrong magnitude system
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Abstract: Leibovich et al. claim that number representations are non-
existent early in life and that the associations between number and
continuous magnitudes reside in stimulus confounds. We challenge both
claims – positing, instead, that number is represented independently of
continuous magnitudes already in infancy, but is nonetheless more
deeply connected to other magnitudes through adulthood than
acknowledged by the “sense of magnitude” theory.

Leibovich et al. argue that it is time to reconsider mainstream
“number sense” theories, and as an alternative, they propose a
“sense of magnitude” theory based on two central claims. The
first is that mental representations of number are non-existent
early in human life because number is not represented indepen-
dently of continuous magnitudes prior to experience with lan-
guage or the development of executive control. The second is
that the associations between number and continuous magnitudes
reside in stimulus confounds, making it virtually impossible to
examine the true nature of magnitude representations, even in
adults. Here, we challenge both claims, positing instead that
number may be represented independently early in development,

Figure 1. (Lourenco et al.). (A) Examples of congruent and incongruent trials in the numerical judgment task administered to preschool
(3.5-year-old) children in the longitudinal study of Lourenco and Aulet (submitted). Children were asked to judge which character (Bert
or Ernie) had the larger numerosity. On the congruent trials, the array with the larger numerosity was also larger in cumulative area and
item size. On the incongruent trials, the array with the larger numerosity was smaller in cumulative area and item size. It is worth noting
that mean accuracy on the incongruent trials was significantly above chance, confirming the use of number on this task while ensuring an
assessment of the influence of area on number. (B) Scatterplot relating magnitude congruency effects across the two time points: infancy
and preschool age. For the purpose of this commentary, we depict a subset of children (N = 25) whose scores were equal to or above 0.50
at time point 1 (infancy) and 0 at time point 2 (preschool), each of which indicates no association between magnitudes. Infant scores were
computed as the proportion of looking time toward the novel test trials as a function of their total looking time (novel+familiar trials; see
Lourenco & Longo [2010] for procedural details). Preschool scores were computed as the difference in errors between the two types of
trials (incongruent−congruent). Children’s performance at 9 months of age was significantly correlated with their performance at 3.5
years of age, suggesting that the association between magnitudes apparent in preverbal children remained relatively stable into
preschool age. The scatterplot includes the best-fitting regression line and the 95% confidence interval (shaded area).
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but nonetheless shows deep underlying connections with other
magnitudes throughout life.

The idea that young infants lack number representations is based
on a false premise, namely, that infants are unable to individuate
objects. On the contrary, studies of object individuation suggest
that by 4 months, infants are skilled at using motion, spatial separa-
tion, and featural cues such as shape and size to segment visual
scenes, including distinguishing figure from ground, delineating
the boundaries of connected or partially occluded objects, and track-
ing individual objects across time (Atkinson & Braddick 1992;
Johnson & Aslin 1995; Kellman & Spelke 1983; Kestenbaum
et al. 1987; Needham 1998; Slater et al. 1990; Valenza et al. 2006;
Wilcox 1999). Although infants of this age certainly have difficulty
with object identification (i.e., what an object is [Carey & Xu
2001; Leslie et al. 1998]), object individuation independent of iden-
tity is well within their capacity. Moreover, our own analysis of visual
stimuli used to assess “number sense” in newborn infants challenges
Leibovich et al.’s contention that object individuation is impossible
because of newborns’ poor vision (see sect. 8, e.g., Fig. 6). We cal-
culated spatial frequency (SF) for 50 visual displays using the param-
eters (e.g., viewing distance: 60 cm) specified by Izard et al. (2009).
This analysis yielded a mean SF of 0.5 cycles/degree, well within the
normal acuity of a newborn viewing a high-contrast image (Atkinson
et al. 1974; Banks & Salapatek 1981; Brown & Yamamoto 1986).
Even the most cluttered portions of these displays averaged 1.4
cycles/degree, a value lower than the upper limit of 1.8–2 cycles/
degree of newborns’ visual acuity.

Leibovich et al. argue that even after infants come to individuate
objects, they still cannot differentiate number from continuous mag-
nitudes because this ability depends on linguistic experience (e.g.,
number words) and executive control (e.g., inhibition). However,
this claim is challenged by recent longitudinal data from our lab
showing that individual differences in the associations of various
magnitudes (number, area, and duration) at 9 months of age
predict the extent to which number remains associated with area
in the same children at 3.5 years of age (see Fig. 1). The continuity
over this period argues against language as a mechanism of differen-
tiation because the children were mostly preverbal at the earliest
time point and therefore had not learned any number words. The
continuity was also not explained by inter-individual variability in
inhibitory control (measured using the Day-Night Stroop task at
3.5 years), arguing against executive control as a mechanism of dif-
ferentiation. Although we agree with Leibovich et al. (and others)
that number words and inhibition may facilitate differentiation of
number from other magnitudes (perhaps by drawing attention to
individual stimulus items), our longitudinal data suggest that
neither factor is necessary, because at least some differentiation is
apparent in preverbal infants and cannot be accounted for by inhi-
bition more generally.

Another reason to doubt Leibovich et al.’s claim that number
does not dissociate from continuous magnitudes until relatively
late in development is that it makes a dubious prediction: Early rep-
resentations of number should be less precise than those of contin-
uous magnitudes because of children’s earlier, and presumably
greater, experience with the latter. Multiple studies examining dis-
crimination sensitivity contradict this prediction. For example,
Cordes and Brannon (2009; 2011) found that 6-month-olds
require a larger difference between sets when discriminating cumu-
lative area than when discriminating number. Similarly, Bonny and
Lourenco (in preparation) found that 4- and 6-year-olds’ judgments
based on cumulative area were no more accurate than those based
on numerosity, regardless of the type of display used to assess accu-
racy (see Fig. 2) and even when stimuli in the number task included
continuous magnitudes incongruent with number.

The crux of Leibovich et al.’s sense of magnitude theory rests
on the observation that continuous magnitudes available within
non-symbolic arrays influence numerosity judgments, even in
adults with mature language and executive control. According to
this argument, the association between number and continuous
magnitudes is merely a by-product of visual cues confounded

with number in non-symbolic stimuli. However, accumulating
behavioral and neural data suggest far deeper connections
between number and other magnitudes. For example, even sym-
bolic numbers, for which there are no visual confounds, affect rep-
resentations of continuous magnitudes: Subliminally primed
Arabic numerals bias adults’ cumulative area judgments (Lou-
renco et al. 2016). Crucially, Lourenco et al. ruled out the possi-
bility of priming effects at a decision stage, arguing instead for
representations of number and area that partially overlap.
Indeed, recent functional magnetic resonance imaging (fMRI)
evidence is consistent with overlapping representations in parietal
cortex. Harvey et al. (2015) showed not only that number and area
share topographic organization, but also that there was a correla-
tion across these maps, with voxels displaying greater activation
for larger numerosity also displaying greater activation for items
larger in area – a finding that cannot reflect inhibitory processing,
as in other neuroimaging studies discussed by Leibovich et al.,
because the correlation corresponded to a monotonic increase
between magnitudes from different displays.
In summary, although we appreciate the prominence given to

continuous magnitudes within Leibovich et al.’s sense of magni-
tude theory, we have argued that disregarding number represen-
tations early in development is a weakness (see also Lourenco &
Bonny 2016) and that the emphasis on stimulus confounds
misses the deeper underlying connections between numerical
and non-numerical representations (see also Holmes & Lourenco
2011; Lourenco 2015; 2016). The theory, though a well-inten-
tioned alternative to extant number sense models, suffers from
its own limitations.

Figure 2. (Lourenco et al.). Examples of stimuli used by Bonny
and Lourenco (in preparation) to compare the precision of
children’s number and area representations. In number and
area tasks, children were asked to designate which array
contained the greater magnitude. The left column shows
displays that were spatially separated, with children selecting
either a left or right array. The right column shows intermixed
arrays, with children selecting either blue or green as having
greater “paint” (area task) or “boxes” (number task). Cumulative
area in this study was tested with both discrete (left column)
and amorphous (right column) stimuli. Regardless of stimulus
type, children never showed an advantage in making area
judgments over number, as would be predicted by Leibovich
et al.’s theory. Some studies report greater accuracy for area
than for number judgments, but “area” in these studies involved
single elements (DeWind & Brannon 2012; Piazza et al. 2013)
or uniform displays akin to single elements (Odic et al. 2013).
When comparing precision, cumulative area is the more
appropriate counterpart to number because, like number, it
applies to the set of items. Moreover, although infants and
children might show greater sensitivity to other continuous
magnitudes such as contour length (Cantrell & Smith 2013), the
relevant contrast to number, based on Leibovich et al.’s logic, is
cumulative area (or perhaps convex hull) because contour
length requires object individuation akin to number.
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Abstract: Where do human numerical abilities come from? Leibovich
et al. argue against nativist views of numerical development noting
limitations in newborns’ vision and limitations regarding newborns’
ability to individuate objects. I argue that these considerations do not
undermine competing nativist views and that Leibovich et al.’s model
itself presupposes that infant learners have numerical representations.

Leibovich et al. give two reasons for supposing that humans are not
“born with the ability to discriminate numerosities”: newborns (1)
have poor visual acuity and (2) lack the ability to individuate
objects. Their point is that to represent the number of items in a col-
lection, you have to at least be able to see the items and represent
each one as being distinct from the others. If newborns lack these
minimal capacities, then they would not be in a position to apply
numerical representations and would have no need for innate
numerical representations. How do infants acquire basic numerical
abilities then? According to Leibovich et al.’s model, “number sense
develops from understanding the correlation between numerosity
and continuous magnitudes” (sect. 8, para. 6). This understanding
is grounded in experiences in which infants initially do not distin-
guish numerosity from continuous magnitudes or distinguish
certain continuous magnitudes from others. Aided by exposure to
number words, infants come to learn the correlation between
number and continuous magnitudes and, eventually, to tease
them apart. According to Leibovich et al., children also have to
figure out that numerosity and continuous magnitudes do not
always correlate (as in Piaget’s number conservation task). This
knowledge comes later as they learn to inhibit the tendency to
form number-relevant judgments on the basis of continuous magni-
tude. It is only then that children are said to “really understand the
concept of numbers” (sect. 8, para. 7).

What counts as really understanding the concept of numbers may
be more of a terminological question than a point of substantive dis-
agreement. The interesting question raised by Leibovich et al.’s
model is how children come to be able to represent numerical quan-
tities if they do not start out with some numerical abilities to begin
with. Dehaene (1997) puts the problem vividly and puts his finger
on much of the theoretical motivation for nativist accounts of one
kind or another: “[I]t seems impossible for an organism that
ignores all about numbers to learn to recognize them. It is as if
one asked a black-and-white TV to learn about colors!” (pp. 61–62).

Now it is important to keep in mind that nativist and empiricist
approaches to explaining the development of numerical abilities
occupy opposing regions along a continuum of positions, just
like nativist and empiricist approaches to any other representa-
tional ability (Margolis & Laurence 2013). On the empiricist
side are views that shun innate numerical representations and
emphasize domain-general acquisition systems. On the nativist
side are views that may include innate numerical representations
and that rely on domain-specific systems working in conjunction
with domain-general acquisition systems (where domain specific-
ity should be understood as a graded notion). Leibovich et al. asso-
ciate the nativist view with “the number sense theory,” which they
take to include a commitment to an innate system for representing
number that is automatic, not influenced by continuous magni-
tude, and realized by distinct neural circuitry. But nativism
about numerical abilities need not include these further commit-
ments. For example, a nativist view might postulate an innate
numerical system that is realized by neural circuitry that is in
close proximity to a system that represents continuous magni-
tudes, or even an innate numerical system that physically overlaps

with this other system. Such an arrangement would be plausible if
the two use similar computations, provide input to common
downstream processes, or are a product of an evolutionary
history in which one developed out of the other.

What about Leibovich et al.’s claim that newborns should not
be expected to possess innate numerical abilities? There are
four problems with this claim. First, although newborns cannot
see well, that only tells us about their ability to easily apply numer-
ical representations to visual stimuli – a limitation regarding the
expression of a potential innate representational ability, not a
reason to suppose the ability is not there. (Given that newborns
have excellent hearing, at best this observation shows that exper-
imentalists should put more effort into tapping newborns’ numer-
ical abilities using auditory stimuli.) Second, it is not clear what to
make of the claim that newborns cannot individuate items. Leibo-
vich et al. do not explain what the problem is supposed to be –
they merely cite Carey (2001) – but if it is that infants do not
possess sortal concepts (as claimed in Xu & Carey [1996]), this
is not a hindrance to numerical representation. One can still rep-
resent numerical quantities (e.g., how many times a lever is
pressed or a light flashes) even if one cannot determine whether
a cup that appears from behind a screen is distinct from a ball
that appears later. Third, whether there is an innate system for
representing number (or anything) is not settled by the discovery
it is not present at birth (i.e., assuming we take this discovery at
face value; but see Izard et al. [2009] and Turati et al. [2013]).
Such a system may still require maturation or may be masked
by performance factors. Fourth, for this reason, it is helpful to
look at the evidence pertaining to nonhuman animals, particularly
precocial animals (so that maturation is not an issue) where there
can be tight controls in place regarding the experiences that they
have prior to testing for numerical representation and where lan-
guage surely is not driving conceptual development. And there is
strong evidence that animals do represent number as such, pace
Leibovich et al.’s claim that numerical stimuli in this literature
are inherently confounded with continuous magnitudes.

Finally, we need to ask about the representational abilities that
underpin Leibovich et al.’s model. They claim that children learn
about number through experiences that allow them to recognize
that numerical properties correlate with continuous magnitudes.
But to establish these correlations, one would have to represent
the variables being correlated – continuous magnitudes (of differ-
ent kinds) and number. Rather than explaining where the initial
representation of numerical quantity comes from, the model pre-
supposes a certain amount of numerical representation. This may
not make the theory identical to the “number sense theory” it
opposes, but it does look like Leibovich et al.’s model helps
itself to a certain amount of numerical representation, just as
nativists claim is necessary for a viable model of numerical concep-
tual development.

What is the precise role of cognitive control in
the development of a sense of number?

doi:10.1017/S0140525X1600217X, e179
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Abstract: The theory put forward by Leibovich et al. of how children
acquire a sense of number does not specify the mechanisms through
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which cognitive control plays a role in this process. We argue that visual
attention and number word knowledge influence each other over
development and contribute to the development of the concept of number.

We concur with Leibovich et al.’s central claim that a “sense of
number” is acquired, rather than innate. An important question
for future research is therefore how this sense of number is
acquired over development. In their theoretical model of the
development of the number concept, the authors proposed that
domain-general cognitive abilities, such as language (specifically
the acquisition of number words) and cognitive control (particularly
inhibitory processes), are important for learning about number.
However, they did not specify the mechanisms through which
this learning occurs. We argue that considering cognitive control
to be domain general is problematic, as control does not operate
in isolation, but instead acts in conjunction with relevant domain-
specific knowledge that is in and of itself accruing over time (e.g.,
Amso & Scerif 2015; Johnson 2011). We agree with Leibovich at
al. that determining the role of cognitive control in the develop-
ment of the number concept is complicated by the fact that cogni-
tive control is multi-componential. Here, we focus on two aspects of
cognitive control: (1) top-down executive control of attention and
(2) bottom-up saliency-driven attention orienting. The two interact
with each other, as well as with perception andmemory, over devel-
opment (Amso & Scerif 2015). In this commentary, we propose
that the interaction between the development of selective attention
to non-symbolic numerosity and the acquisition of the meaning of
number words in early childhood contributes to the development of
the concept of number.

The theory that non-symbolic representations of numerosity
precede, and thus may scaffold the acquisition of, symbolic rep-
resentations of number has been biased by the assumption that
number sense is innate (Feigenson et al. 2004). Leibovich
et al.’s rejection of this assumption allows us to consider that
the causal mechanism underlying this relationship could go in
the opposite direction. Acquiring number knowledge may
exert a top-down influence on perception of non-symbolic
numerosity. Leibovich et al. mentioned the possibility that
learning number words may help children separate discrete
numerosity from continuous quantity (Mix et al. 2016). Specif-
ically, “because count words name the property of number, they
could be potent attention-directing cues” (Mix et al. 2016,
p. 20). Children are typically thought to understand the
meaning of number words once they have learned the cardinal-
ity principle, which is that the last number word used when
counting a set indicates the number of objects in the set.
There is evidence that perception of non-symbolic numerosity
differs between young children who have acquired the cardinal-
ity principle and children who have not (Negen & Sarnecka
2015; Slusser & Sarnecka 2011). Specifically, 2- to 6-year-old
children who had not yet acquired the cardinality principle
failed to choose the more numerous of two non-symbolic
arrays when discrete number conflicted with continuous quan-
tity, whereas children who had acquired the cardinality princi-
ple succeeded (Negen & Sarnecka 2015). Furthermore, in
another study, 2- to 4-year-olds were asked to sort cards depict-
ing arrays of objects that varied along the dimensions of color,
shape, and numerosity, and all children successfully sorted by
color and shape. However, only children who knew the cardi-
nality principle accurately sorted cards based on the number
of objects in the arrays (Slusser & Sarnecka 2011). This suggests
that once children learn the meaning of number words, as evi-
denced by their grasp of cardinality, they develop a better
attentional template for discrete numerosity. However, as the
existing evidence is correlational, the direction of the relation-
ship between learning the cardinality of numerical symbols and
processing the numerosity of non-symbolic arrays remains
unclear.

An alternative to the suggestion that a non-symbolic number
sense per se fosters symbolic understanding is that certain

properties of non-symbolic arrays increase the bottom-up sali-
ency of discrete numerosity, and that this could in turn influence
the development of understanding the cardinality of number
symbols. For example, young children are more likely to use dis-
crete number to make magnitude judgments for sets smaller
than four than for larger sets (Cantrell et al. 2015b). Constraints
of visual attention could explain this discrepancy in magnitude
judgments across set sizes: four is the maximum number of
objects that can be attended to in parallel (Trick & Pylylshyn
1994). Thus, arrays of up to four objects can be enumerated
quickly and accurately, known as subitizing (Kaufman et al.
1949). Leibovich et al. argued that subitizing was not relevant
to their theoretical proposal as most studies discussed focused
on non-symbolic magnitudes outside of the subitizing range.
However, they ignored the possibility that the ability to attend
to individual items in parallel may play a role in learning to
select discrete numerosity separately from non-numerical mag-
nitude. Indeed, Carey (2001) proposed that children map
number words up to four onto representations of non-symbolic
quantity of small sets. Therefore, bottom-up attention to
numerosity could enable learning the initial meaning of
number words.
A third, and we believe more likely, possibility is that that an

interaction between bottom-up and top-down attention (guided
by relevant number knowledge) scaffolds children’s acquisition
of the number concept. Such a perspective could resolve the
debate over whether efficient processing of approximate non-sym-
bolic number is a cause or a consequence of the understanding of
cardinality. Slusser and Sarnecka suggested, “children’s under-
standing of the cardinality principle […] is the same thing as
their understanding that number words pick out numerosities”
(2011, p. 9). Therefore, once children understand that the word
five refers specifically to five objects, rather than the overall area
they subtend, they have learned to select numerosity as a relevant
stimulus dimension and come to understand that two sets of five
objects are related based on their numerosity. This suggests that
the salience of numerosity does not precede the ability to volun-
tarily select it, but rather that they influence each other bi-
directionally.
In conclusion, future research should investigate learning

mechanisms underlying the acquisition of a sense of number.
Rather than studying cognitive processes in isolation, interactions
between perception, attention, and number knowledge should be
investigated. Furthermore, gaining a better understanding of
developmental learning mechanisms necessitates testing bi-direc-
tional hypotheses and moving beyond correlational, cross-sec-
tional approaches.

Commentary on Leibovich et al.: What next?

doi:10.1017/S0140525X16002181, e180
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Abstract: The conclusions reached by Leibovich et al. urge the field to
regroup and consider new ways of conceptualizing quantitative
development. We suggest three potential directions for new research
that follow from the authors’ extensive review, as well as building on the
common ground we can take from decades of research in this area.

The question of whether human quantitative abilities are rooted in
an early emerging (if not innate) sense of discrete number has
defined the research agenda in this area for 30 years. This
superb piece of scholarship by Leibovich et al. brings the
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ongoing debate into sharp focus. Their conclusion, based on a
thorough review of behavioral and neural evidence, is that there
is no clear indication of strictly numerical processing, and
indeed, it may be impossible to isolate number from its quantita-
tive correlates. This is a stark conclusion given the intense efforts
directed toward developing an account of innate number process-
ing; however, we agree that the evidence seems to compel this
conclusion. Mix et al. (2002a; 2002b) raised similar concerns
nearly 15 years ago, and research generated in the intervening
period has done little to alter this view. We agree with the
authors that the time has come to move on to different questions,
but what questions might these be?

To begin, let us take stock of what we know. It would be
wrong to dismiss the innovative literature that attempted to dis-
entangle number from its correlates. Though its explicit aims
may be unattainable, this body of work nonetheless contributed
a large corpus of findings on which to build. It reveals, for
example, that human beings are sensitive to quantitative infor-
mation from a very early age – perhaps as early as the first
hours of life (Antell & Keating 1983). This fact is so commonly
accepted that it may seem unimpressive. However, immediate
apprehension of quantity at birth was not the only plausible
developmental scenario. One might have predicted infants
need months of exposure to different quantities before they
notice subtle distinctions, just as they seem to need months of
exposure to detect categories (e.g., Rakison & Poulin-Dubois
2001). It is actually rather astonishing that human beings
come into the world prepared to process quantitative informa-
tion much as they seem prepared to process physical properties
like solidity and support (Baillargeon 1994) or basic percepts
like color and shape (Ricciuti 1965). Without the pioneering
research on preferential looking and habituation, we might
not know this. Second, there is general agreement that infants
and young children – in fact, people of all ages as well as some
animals – process large sets differently than they process small
sets (i.e., ≤3). Though this was first demonstrated in adults in
the late nineteenth century (cf. Mandler & Shebo 1982),
there was virtually no evidence in children prior to the late
1970s. The notion that large sets are processed in a ratio-depen-
dent manner was well known in the psychophysical literature,
but the application of these ideas to quantitative perception,
particularly among non-verbal infants, is a powerful advance.
Finally, to our knowledge, no one has ever claimed that
infants perceive discrete number to the exclusion of other quan-
titative cues. There is a long tradition of research examining
infants’ sensitivity to continuous dimensions of quantity, such
as complexity, density, surface area, and brightness (e.g., Gao
et al. 2000; see Mix et al. 2016 for a review) and despite attempt-
ing to isolate number from these percepts, there has been no
argument about whether infants can use these alternate cues.
It is widely accepted that they can, and this is an important
point of agreement.

The main point of contention has been whether infants and
young children isolate discrete number from a perceptual
stream that obviously includes other cues. As Leibovich et al.’s
review elegantly demonstrates, this question has not only gone
unanswered, but also may be unanswerable. However, rather
than sounding the death knell of research on early number,
this conclusion raises many equally important questions that
have been largely overlooked. One question is how infants
might profit from the natural correlations among quantitative
variables to discover how these relations work. Cantrell and
Smith (2013) proposed that numerical representations are
strongest and most likely to be noticed when quantitative cues
are correlated (e.g., more items also have more contour, more
area, more complexity, etc.). When these dimensions vary ran-
domly, the number representations themselves are more
fragile and less likely to sustain attention. On this view, infants
might discover number by noticing more intense perceptual

stimulation and eventually realizing this intensity is correlated
with other percepts. Indeed, when the consistency of these cor-
relations was varied, infants demonstrated greater acuity for
both number and area when the correlations were maximally
correlated (Cantrell et al. 2015a). This line of inquiry demon-
strates the insight gained by viewing quantitative perception
as a complex system of interrelated signals, rather than a collec-
tion of isolated streams. Another important direction for future
research is to coordinate the literatures on object individuation,
object tracking, short-term memory, and number perception.
These processes are inherently interrelated. One cannot per-
ceive number without separating items to be enumerated and
either tracking or remembering them (Mix et al. 2002a;
2002b; 2016). Likewise, keeping track of several separate
objects is tantamount to representing number (Xu & Carey
1996). Though experiments on one of these topics usually incor-
porate stimulus variations from the others (e.g., Ross-Sheehy
et al. 2003), the developmental relations among these processes
have not been fully explored. Yet, understanding these relations
may be critical as unitization could be a major mechanism for
isolating number (Mix et al. 2016). Related to this, the role of
verbal counting in early quantification is ripe for re-examination
as count words may provide the attentional scaffolding that
allows children to inhibit responses to irrelevant quantitative
cues. Studies on the developmental relations involving
number sense and verbal number acquisition have begun to
amass (see Merkley & Ansari 2016 for a review) and indicate
that knowledge of the count words leads to improved acuity
for perceptual quantification. More studies are needed. For
example, researchers might ask whether unitization emerges
before or after acquiring verbal count words.

In summary, Leibovich et al.’s conclusions urge the field to
regroup and consider novel ways of conceptualizing quantitative
development. We are excited to see where these new directions
take us.

Number faculty is alive and kicking: On
number discriminations and number neurons
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Abstract: Leibovich et al. advocate for a single “sense of magnitude” to
which a dedicated faculty for number could allegedly be reduced. This
conclusion is unjustified as the authors adopt an unnecessarily narrow
definition of “number sense,” neglect studies that demonstrate non-
symbolic numerosity representation, and furthermore ignore abstract
number representations in the brain.

The idea that discrete-numerical quantity and basic continuous
magnitudes share some characteristics is uncontested. However,
in their recent article, Leibovich et al. propose that a separate
faculty for number does not exist in the first place. The article
is, however, rather selective, as the authors reach this conclusion
based on a survey that is idiosyncratic not only in what it attacks,
but also in what it omits.

First, they adopt an unjustifiably narrow definition of “number
sense.” The term “number sense” was first coined by Tobias
Dantzig (1930). However, he is nowhere mentioned in the
target article. Dantzig (1930, p. 1) writes, “Man, even in the
lower stages of development, possesses a faculty which, for want
of a better name, I shall call Number Sense.” Although Dantzig
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only talks about a faculty to assess numerical quantity, the target
article conveys a rather simplistic view of an “innate” and fully
hardwired system that extracts numerical information just like a
reflex. However, such a narrow definition does not hold for any
cognitive capability and is not maintained by protagonists of the
“number sense” (Anobile et al. 2016c; Burr & Ross 2008; Viswa-
nathan & Nieder 2013). Physiological faculties are plastic
(subject to maturation and/or learning processes); they are
embedded in – and interact with – other faculties. The finding
that the number faculty interacts with general magnitude repre-
sentations can therefore not refute its existence.

Second, a key argument of the article is that varying the number
of items in a set inevitably changes physical stimulus parameters.
Although this is undisputed, it is far too premature to conclude
that investigations of numerical representations are therefore a
priori useless. The two main reasons are as follows:

1. Potential sensitivity to simple sensory parameters is not spe-
cific to number investigations but pervasive to all investigations
targeting abstract representations. Semantic groups can only be
tested with specific stimulus representatives. Continuous magni-
tudes are, of course, no different in that respect. Resorting to con-
tinuous magnitude therefore does not solve the problem.

2. In contrast to the impression caused by omissions in the
target article, many researchers painstakingly selected their
stimuli and went to great lengths to demonstrate number repre-
sentations. Because it is not physically possible to equate all pos-
sible stimulus parameters at the same time, the best way is to
control – unbeknown to the subject – one parameter after the
other in separate stimulus configurations. If the subject
responds equally to systematically varied numerosity stimuli, it
is safe to conclude that the subject responds to number
(Nieder 2016). One of the main research agendas over the last
two decades therefore was to test numerosity representations
over a broad range of stimuli and formats. For example,
humans have recently been shown to be far more sensitive to
numerosity than to continuous magnitudes in dot displays (Cic-
chini et al. 2016). Greater sensitivity to changes in numerosity
was present both spontaneously and in tasks where participants
were explicitly instructed to judge continuous parameters of the
dot displays. Therefore, humans extract number information
based on dedicated mechanisms. In addition, studies using con-
trolled stimuli with conditioned animals demonstrated clear
numerosity judgments. For example, the seminal monkey
study by Brannon and Terrace (1998) controlled for item loca-
tion, overall surface area, item size, and item type. Later,
Nieder et al. (2002) controlled for item position, overall item
area, overall item circumference, high and low density, item
type, shape-like item configurations, and linear item arrange-
ments, the latter one also abolishing convex hull. Monkeys
also extracted the number of elements that appeared sequen-
tially one-by-one and matched it to the number in spatial dot
arrays (Nieder et al. 2006). In this sequential presentation
format, temporal parameters such as duration, rhythm, and
accumulated intensity have been controlled for and were
neglected by the monkeys. Moreover, monkeys assessed
number also independently of the sensory modality and discrim-
inated both the number of sequential visual dots and auditory
sounds within the same session (Jordan et al. 2008a; Nieder
2012). The animals did not care about non-numerical magni-
tude changes and responded to number information. Similar
results have been obtained in preschool children (Barth et al.
2005). In sum, evidence for the capability of nonverbal subjects
to represent numerical quantity is stronger than ever.

Third, another unfortunate omission of Leibovich et al. con-
cerns abstract number representations in the brain. The
single-neuron code underlying number representations has
been addressed over the past years with a broad range of con-
trolled stimuli. These studies in animals showed surprisingly
abstract number representations (“number neurons”). As
reviewed in Nieder (2016), number neurons recorded in

monkeys performing the aforementioned numerical tasks
were tuned to preferred numerosities while being largely insen-
sitive to changing sensory features. Number neuron responses
in prefrontal cortex (PFC), and to some extent in the intrapar-
ietal sulcus (IPS), generalized across spatial features in visual
item arrays (Nieder et al. 2002), spatio-temporal visual presen-
tation formats (Nieder et al. 2006), and also visuo-auditory pre-
sentation formats to signal numerosity supramodally (Nieder
2012). Moreover, in monkeys trained to associate shapes with
numerosities, neurons signaled the numerical meaning of
signs (Diester & Nieder 2007). Number neurons were present
even if monkeys were not trained on number (Viswanathan &
Nieder 2013). After training, PFC showed improved responses
to numerosity during active discrimination, whereas ventral
intraparietal area (VIP) neurons remained stable (Viswanathan
& Nieder 2015). Of course, such highly generalized responses
of number neurons cannot (and should not) be expected to be
the only code for numerical quantity. Abstract number informa-
tion can also be extracted from population activity (Ramirez-
Cardenas et al. 2016; Tudusciuc & Nieder 2007). Collectively,
these single-neuron recordings strongly support the idea of a
dedicated number faculty residing in a parieto-frontal
network, with striking similarities between numerical represen-
tations in nonhuman and human primates (Nieder 2016).
Leibovich et al. also err when claiming that only one study (Cas-

telli et al. 2006) had directly compared brain areas during number
and continuous magnitude comparison tasks. For example, Pinel
et al. (2004) found that number and size, but not luminance, acti-
vated overlapping parietal regions during functional imaging.
More directly, single-cell recordings in monkeys that discrimi-
nated numerical, spatial, and sensory magnitudes in one session
showed that coding was largely dissociated at the single-neuron
level (Eiselt & Nieder 2016; Tudusciuc & Nieder 2009). There-
fore, numerical representations are based on distributed coding
by single neurons that are anatomically intermingled within the
same cortical area.
Contrary to the claim of the target article, overwhelming evi-

dence supports a dedicated number faculty that operates indepen-
dent from continuous magnitude. The target article’s attempt to
reduce number judgments to simple magnitude representations
is a lost case. Far from being put to rest, the number faculty is
alive and kicking.

The contributions of non-numeric dimensions
to number encoding, representations, and
decision-making factors
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Abstract: Leibovich et al. suggest that congruency effects in number
perception (biases towards smaller, denser, etc., dots) are evidence for
the number’s dependence on these dimensions. I argue that they fail to
differentiate between effects at three distinct levels of number
perception – encoding, representations, and decision making – and that
differentiating between these allows the number to be independent
from, but correlated with, non-numeric dimensions.

Visual and auditory number stimuli inherently correlate with
dimensions such as size, density, rate, and so forth, and observers
are sometimes biased towards these dimensions: Changing the
density of a collection of dots also changes which set observers
believe to be more numerous. Leibovich et al., following the foot-
steps of recent findings reporting such “congruency effects,”
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argue that number may be entirely or partly dependent on these
dimensions – that there is no innate number sense independent
from our perception of density, convex hull, size, and so forth.

However, their critique leaves a key question open: At what
level of processing do non-numeric dimensions exert their hold
on number? There are at least three independent possibilities,
and only one of them is consistent with the central claim against
an independent number sense.

The first possibility is that number is encoded using low-level
visual features, such as orientation, contrast, spatial frequency,
and so forth, which are shared with other dimensions, rather
than out of its own dedicated feature detectors (e.g., Dakin
et al. 2011 vs. Burr & Ross 2008). For example, consider that
face perception strongly depends on a unique mix of low- and
high-spatial frequency, and, therefore, changing frequency infor-
mation also changes which emotion is most strongly perceived
(Vuilleumier et al. 2003). In this same manner, there are now
many reasons to suspect that number encoding depends on fea-
tures such as low-spatial frequency (Dakin et al. 2011), and that
it may even depend on distinct features at different levels of
crowding (Anobile et al. 2014). Thus, manipulating density (i.e.,
low-spatial frequency information) can result in changes in
number perception, not because of number being represented
as density, but rather because of their shared dependence on
identical low-level features. Congruency effects, therefore,
could be interpreted as positive results describing the nature of
low-level features used to encode number, not as evidence
against its dependence on non-numeric dimensions. At the very
least, claims to number’s non-independence must first account
for the shared low-level features.

The second possibility is that number and non-numeric dimen-
sions compete for the same decision-making component, such as
putting a common load on working memory or yielding similar
response conflicts (Hurewitz et al. 2006; Odic et al. 2016; Van
Opstal & Verguts 2013). Once again, consider an analogy: congru-
ency effects found in the Stroop effect do not imply that color per-
ception is dependent on and statistically learned from reading
ability, but rather that multiple dimensions can compete for the
same response. Because we know that density and area perception
tend to be more accurate in adults compared with number, there
is plenty of reason to think that these dimensions will win a “horse
race” for the same response as number, creating congruency
effects without any shared representations (Hurewitz et al.
2006). Consistent with this, my colleagues and I have demon-
strated that number and time perception only correlate when indi-
vidual differences in working memory are not controlled for (Odic
et al. 2016). More recently, we have found that the effect of non-
numeric dimensions such as contour length is entirely eliminated
when Stroop-like response conflicts are alleviated (Picon & Odic,
in preparation). Together, these results suggest that many demon-
strated congruency effects could be response conflicts, and that
any claim for dependence between number perception and
non-numeric dimensions should first control for these factors.

Finally, the third possibility for the link between number and
non-numeric dimensions – and one that is most consistent with
the claims of Leibovich et al. – is that number may be (anteced-
ently) represented on the same representational scale as other
dimensions, either by being directly represented as, for
example, area, or alternatively by being represented on a
domain-general, unitless magnitude scale that simply codes for
more versus less (Cantrell & Smith 2013; Lourenco & Longo
2010; Walsh 2003). Although Leibovich et al. suggest that statisti-
cal learning eventually separates number from these dimensions,
their theory requires that – from birth until some later age –
numerical information is represented in one of these two ways.
But, as reviewed previously, evidence for shared representations
must first control for the possibility of shared encoding or deci-
sion-making factors; given that the majority of existing work fails
to do so, what is the evidence for shared/unified representations?
Perhaps the most convincing case cited by Lebovich et al. is that of

Tudusciuc and Nieder (2007), who found neurons in the parietal
cortex that respond to both number and length. But a closer
inspection of their data reveals that these neurons often code in
opposing ways: The same neuron may code for small numbers,
but very long lengths, or vice versa, running contrary to the idea
of a shared scale and instead consistent with a set of overlapping
population coding neurons that play different roles for each
dimension.

Another approach at demonstrating shared representations is to
simultaneously measure number and the candidate shared dimen-
sions, such as area, length, density, and time; if number shares the
scale for these representations, any individual and developmental
variability within number should be accounted for by differences
in these other dimensions. Recently, my lab followed this logic
through and tested 2- to 12-year-old children and adults on
these five discrimination tasks. We found that number develops
independently from area, length, density, and time, which in
turn develop independently from it stretching back to age 2
(Odic 2017; see also Odic et al. 2013). Hence, unless the kind
of proposed statistical learning proposed leads to complete differ-
entiation by age 2, it is difficult to imagine how these results could
be obtained without a significant independence between number
and area, length, density, and time perception.

To conclude, Leibovich et al. make a bold claim – that congru-
ency effects are illustrative of number’s dependence on non-
numeric dimensions – but their critique fails to account for the
possibility that these effects stem from shared encoding or deci-
sion-making components, not shared representations. Future
work exploring number’s dependence should carefully disentan-
gle the contributions of other dimensions to encoding and deci-
sion making, as these levels are not constitutive of the
independent representations of number.

Numerical magnitude evaluation as a
foundation for decision making
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Abstract: The evaluation of magnitudes serves as a foundation not only for
numerical and mathematical cognition, but also for decision making.
Recent theoretical developments and empirical studies have linked
numerical magnitude evaluation to a wide variety of core phenomena in
decision making and challenge the idea that preferences are driven by
an innate, universal, and stable sense of number or value.

Leibovich et al.’s critique of the “number sense” theory is timely
and has implications beyond the literature on numerical and
mathematical cognition. Numerical magnitude perception also
plays a critical role in decision making, as it shapes how people
trade off outcomes that vary in size, probability, and timing. More-
over, recent theoretical developments and empirical findings from
the study of decision making have shown that evaluations of
numerical magnitudes are neither innate, nor universal, nor
stable, but vary substantially across countries, individuals, and
contexts.
The evaluation of numericalmagnitudes in decisionmaking.The

evaluation of numerical magnitudes is critical to decision making
and implicitly forms the core of many important theories of choice
(e.g., Kahneman & Tversky 1979). For example, an individual
faced with multiple job offers needs to compare (among other
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things) their salaries and assign a subjective value or “utility” to each
of these monetary amounts before she can make a proper decision.
Similarly, in deciding whether to purchase a good, how much of the
good to purchase, or how much we are willing to pay for that good,
we must be able to assign subjective “disutilities” to the monetary
costs of paying for our purchases, to see whether they outweigh
the benefits we expect to receive from those purchases. It turns
out that subjective evaluations ofmonetary gains and losses resemble
those for numbers and most perceptual magnitudes: People are
much more sensitive to differences between small financial gains
(or losses) than they are to the same differences between larger
gains (or losses) (Kahneman & Tversky 1979; Tversky & Kahneman
1992).

This problem of assigning subjective values (or utilities) to
numerical decision outcomes applies to many different types of
choice attributes, and not just monetary ones like salaries and
prices. For example, a restaurant patron may wish to evaluate
the number of calories associated with each item on the menu,
whereas a policy maker considering measures to increase road
safety needs to evaluate their potential reductions in human fatal-
ities. As with financial gains and losses, subjective evaluations of
non-monetary outcomes tend to exhibit diminishing sensitivity
(e.g., Olivola 2015; Slovic 2007). Moreover, the role of numerical
magnitude evaluation in decision making extends beyond assign-
ing (dis)utilities to the outcomes themselves, as one also needs
to consider their likelihoods of occurrence and when (in time)
they are expected to occur. Specifically, uncertain or delayed out-
comes need to be discounted relative to certain and immediate
ones. Research suggests that numerical probabilities are typically
transformed non-linearly into an intuitive sense of likelihood
(Prelec 1998; Tversky & Kahneman 1992; Wu & Gonzalez
1996). Similarly, research suggests that people tend to evaluate
time delays in a non-linear fashion (Frederick et al. 2002;
Olivola & Wang 2016; Read 2004).
Recent theoretical and empirical developments. Although

there have been continuous efforts by decision-making research-
ers to map the relationships between choice-relevant numerical
magnitudes and their subjective values or weights, most of this
research has operated separately from the field of numerical cog-
nition, and very little of it has examined why or how the observed
mappings occur (Olivola & Chater 2017). Fortunately, the last
decade has witnessed a growing interest in understanding how
the evaluation of numerical magnitudes relates to decision
making, and this has led to several important insights and theoret-
ical advances. We have learned, for example, that individual dif-
ferences in symbolic-number mapping predict how people value
monetary outcomes (Schley & Peters 2014), and that individual
differences in subjective perceptions of temporal distance (i.e.,
how “far away” a given time delay seems) predict how patient
people will be when making intertemporal trade-offs (Kim & Zau-
berman 2009; Zauberman et al. 2009). Some researchers have also
proposed a novel theory of decision making that explicitly
attempts to explain the magnitude evaluation process that under-
lies outcome valuation, probability weighting, and time discount-
ing (Stewart 2009; Stewart et al. 2006; see also Kornienko 2013).
According to this “decision by sampling” theory, people evaluate
monetary and non-monetary outcomes, probabilities, and time
delays by comparing them with other relevant values stored in
memory. For example, an individual would determine the value
of a particular financial gain (e.g., receiving $100) by comparing
it with a sample of other financial gains that she has previously
experienced or observed. Depending on the composition of her
memory sample, the target numerical magnitude being evaluated
will either seem large (if it ranks higher than most comparison
values), small (if it ranks lower than most), or of medium size (if
it ranks close to the median value). It turns out that this theory
successfully explains a wide variety of core phenomena in decision
making, such as reflective risk preferences (Stewart & Simpson
2008; Stewart et al. 2006), loss aversion (Olivola & Sagara 2009;
Stewart et al. 2006; Walasek & Stewart 2015), non-linear

probability weighting (Stewart et al. 2006), hyperbolic discounting
(Stewart et al. 2006), and the diminishing sensitivity to human
fatalities (Olivola & Sagara 2009; Olivola et al. 2017). In doing
so, it explicitly connects the process of magnitude evaluation to
many important preference patterns.
Evaluations of choice-relevant magnitudes are neither innate

nor stable. The research we have discussed also highlights the
malleability of choice-relevant magnitude evaluations and
thereby casts doubt on the idea that decisions are driven by an
innate, universal, and stable sense of number or value. Individuals
differ in their perceptions of numbers and time delays, and these
differences reliably predict their risk and time preferences (Kim &
Zauberman 2009; Schley & Peters 2014; Zauberman et al. 2009).
Some of these individual differences are likely the result of varia-
tions in people’s experiences (Ungemach et al. 2011), which in
turn reflect differing environments (Olivola & Sagara 2009). Con-
sequently, individuals from different countries may perceive and
respond very differently to similar outcome magnitudes (Olivola
& Sagara 2009). In fact, choice-relevant magnitude evaluations
can even vary within individuals if the distribution of comparison
values changes (Olivola & Sagara 2009; Ungemach et al. 2011;
Walasek & Stewart 2015). In sum, these decision-making findings
suggest a highly individual- and context-dependent evaluation of
numerical magnitudes, rather than a universal and stable
“number sense.”
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How not to develop a sense of number
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Abstract: The authors rightly point to the theoretical importance of
interactions of space and number through the life span, yet propose a
theory with several weaknesses. In addition to proclaiming itself
unfalsifiable, its stage-like format and emphasis on the role of selective
attention are at odds with what is known about the development of
spatial-numerical associations in infancy.

The mechanism of numerosity perception is often depicted as a
solitary creature, living alone in the intraparietal sulcus (IPS) (its
presumed birthplace), with nothing to feed it but number, and
serving just the function for which it was born – giving the rest
of the brain an approximation of “how many.” Although copies
of this mechanism are thought to exist in the brains of an astonish-
ing range of organisms – even those with no homologue to IPS – it
is consistently predicted to have the same basic properties (noise
and ratio dependence) everywhere one finds it, regardless of its
age, the genes in its cells, or its history of activity.
This portrait of the numerosity mechanism – only slightly exag-

gerated – is in dire need of revision, and we thank Leibovich et al.
for pointing toward a major issue for any future theory. As the
authors note, our perception of numerosity is influenced by the
spatial characteristics of the set (Frith & Frith 1972; Gebuis
et al. 2014). Similarly, our perception of space is influenced by
numerical aspects of the set (de Hevia et al. 2008). Two

Commentary/Leibovich et al.: From “sense of number” to “sense of magnitude”

36 BEHAVIORAL AND BRAIN SCIENCES, 40 (2017)

https://doi.org/10.1017/S0140525X16000960 Published online by Cambridge University Press

mailto:opfer.7@osu.edu
mailto:kmccrink@barnard.edu
http://developmentalcognitivescience.org
https://psychology.barnard.edu/profiles/koleen-mccrink
https://doi.org/10.1017/S0140525X16000960


major – but still unsettled – issues arise from these findings. The
simpler issue is describing the relation between two groups of pro-
cessors: those that register the number of a set (numerosity detec-
tors) and those that register the non-numerical spatial
characteristics of the set (e.g., spatial frequency). The harder
issue is to explain how this relation does or does not change
over time (for a review of evidence, see McCrink & Opfer
2014); this is the purpose of a developmental theory.

Although the authors have succeeded in describing the rich
interactions that exist between space and number, the corner-
stone of their article – their developmental theory – suffers from
three major weaknesses.

First and foremost, the argument is structurally flawed. Accord-
ing to the authors, the number of items in a set and the non-
numerical spatial properties of a set are so correlated that it is
“impossible” (sect. 5.1, para. 3), “nearly impossible” (abstract),
or at least really hard to tell (the authors seem to be of more
than one mind on this issue) whether judgments of numerical
magnitude are judgments about number or non-numerical corre-
lates of number. Logically, then, the very existence of a stage in
which organisms cannot distinguish number from magnitude is
unfalsifiable. Also unfalsifiable is the very existence of a stage in
which subjects can distinguish number from magnitude. This is
a serious weakness. A theory that begins by pronouncing itself
unfalsifiable is a non-starter.

The second challenge to their developmental theory involves
the role of inhibitory control and correlational learning.
“Number sense,” we are told, “develops from understanding the
correlation between numerosity and continuous magnitudes”
(sect. 8, para. 6). Inhibitory control then allows children to
ignore irrelevant continuous magnitudes, with number words
aiding this inhibitory process by emphasizing the cardinality of a
set over continuous magnitudes. But this argument has a built-
in contradiction: If children do not already have a sense of
number, what exactly are they inhibiting when number and
non-numerical magnitude conflict? The same issue arises for cor-
relational learning. If children do not already have a sense of
number, how can they track the correlation between number
and continuous magnitude? Logically, number must be perceived
before learning to select numerical over non-numerical cues and
before learning to track what correlates with number. Empirically,
this is also what the evidence indicates. Of the nine cross-modal
mapping studies reviewed by Cantrell and Smith (2013), six of
them found evidence of cross-modal mapping in infants (who
notoriously lack inhibitory control). Therefore, we agree that inhi-
bition and correlational learning improves the quality of numerical
comparison, but their causal argument for the developmental
sequence is logically untenable.

The final challenge for the developmental theory comes from
the collapse of stage theories in general. Like all stage theories,
the authors’ theory depicts the development of numerical
competence as proceeding in an invariant sequence of broadly
applicable, age-related achievements. Empirically, develop-
ment is seldom this orderly. Against Piaget’s theory, for
example, children who appeared “pre-operational” using one
conservation task were found to conserve just fine on another,
and the types of errors that a child would make on one conser-
vation task seldom appeared later on the same task or on differ-
ent tasks (Siegler 1981).

Do the stages proposed by the authors fare any better than
Piaget’s stages? We think not. According to their theory, chil-
dren with normal visual acuity learn to correlate number with
continuous magnitude only after they represent number,
which occurs when they learn number words. If so, one would
not expect pre-linguistic infants with normal vision to associate
numerosity with magnitude, because that would violate
the order of the stages. This idea has been tested directly in
pre-linguistic infants with visual acuity near adult levels
(de Hevia & Spelke 2010; Lourenco & Longo 2010). In one
such experiment, Lourenco and Longo (2010) found that

9-month-old infants easily learned an arbitrary numeric rule
(less numerous sets of 2 objects are white, more numerous
sets of 4 objects are black) and generalized this rule to new
sets (e.g., sets of 5 and 10). Critically, infants generalized the
rule to sets of a new size as well. Moreover, infants who were
given a size-based rule at habituation generalize the learned
rule to sets of a discrete number. Thus, pre-linguistic infants,
who are not supposed to be in the stage where they can learn
this sort of thing, applied a learned rule involving “more than”
and “less than” across spatial and numerical dimensions, even
when trained in only one dimension. These results contradict
the authors’ stage theory. However, they accord with a develop-
mentally continuous theory that infants have spatial-numeric
associations that arise for reasons (such as partially overlapping
neural architecture) that have nothing to do with visual acuity.

In summary, although we applaud the authors for bringing
attention to the findings of spatial-numeric associations in early
development, we do not think the field needs another unfalsifiable
and logically contradictory stage theory.

Direct and rapid encoding of numerosity in the
visual stream
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Abstract: The target article dismisses all prior work purporting to
demonstrate that number is a conceptual primitive. Here, we take issue
with their misrepresentation of our recent line of work on numerosity
perception, which demonstrates rapid and direct encoding of numerosity
and undermines the thesis of the target article that “continuous
magnitudes are more automatic and basic than numerosities” (sect. 1,
para. 2).

Using a novel stimulus set and regression approach, we recently
demonstrated that participants primarily use number rather
than other visual features in a numerical discrimination task
(DeWind et al. 2015). Combining this approach with high-tempo-
ral-resolution electroencephalography (EEG) recording, we
further demonstrated that numerosity has a larger effect on very
early neural activity than other non-numerical magnitudes (Park
et al. 2016b). The target article mischaracterizes these methodo-
logical advances and overlooks the main findings of this work,
which support early and direct access to visual number.
A novel regression approach and behavioral primacy of

number. Non-numerical features of an item array are necessarily
partially correlated with number. Nevertheless, as demonstrated
in DeWind et al. (2015), an appropriately designed stimulus set
can vary each feature such that they are partially independent
from number and from each other and can be reduced to a
common basis set (number, size, and spacing). As with any regres-
sion analysis, our approach leverages the unique variance of each
feature to determine which feature affects the variance in a
dependent measure, whether it is behavior (DeWind et al.
2015) or neural activity (Park et al. 2016b). In particular, that
regression approach provides a way to test the degree to which
participants use non-numerical response strategies in a numerical
comparison task. Critically, participants made comparisons on the
basis of number, and much more so on number than other visual
features (DeWind et al. 2015).
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Passive viewing paradigm. Numerosity judgments are influ-
enced by non-numerical cues and vice versa, and such influences
are non-linear and asymmetric (Allik & Tuulmets 1993; Gebuis &
Reynvoet 2012b; Ginsburg & Nicholls 1988; Miller & Baker 1968;
Mix et al. 2002a; Nys & Content 2012; Soltesz et al. 2010; Sophian
& Chu 2008; Tokita & Ishiguchi 2013). Thus, the representation
of one dimension (say, numerosity) will differ depending on
whether the task requires focusing on numerosity or some other
dimension. One can circumvent this issue by using a neural
approach with a passive viewing paradigm. Indeed, using EEG
to measure neural activity while participants were passively
viewing dot arrays, we tested which magnitude dimension most
contributes to the modulation of neural activity in a task-free
design (Park et al. 2016b). However, the target article incorrectly
states “a strong correlation between number and continuous mag-
nitudes can change strategy [in our study]” (sect. 6, para. 2), when
in fact there was no strategy involved.

Even under a passive viewing paradigm, attention might be
directed toward one feature dimension over another because a
larger range in one stimulus dimension may increase salience
and consequently override the effects of another dimension
with a smaller range. For an extreme example, imagine the appar-
ent contrast of a set of 10 dots each with a radius of 1 cm and a set
of 11 dots each with a radius of 0.1 cm. Clearly, the salience of the
area difference would overwhelm the number difference, and
neural activity modulated by such large salient differences in
area could easily mask neural activity modulated by relatively
less salient number differences. Therefore, it is important to use
the same range of values in each magnitude dimension for a fair
comparison between them. The target article incorrectly states
that Park et al. (2016b) used a greater range of continuous magni-
tudes, when across two experiments we indeed used dot arrays
that were constructed to cover equal ranges of number, size,
spacing, total area, item area, total perimeter, item perimeter,
convex hull, density, coverage, and overall scale. In fact, in Park
et al. (2016b), we made this exact critique of the experimental
design used by Gebuis and Reynvoet (2013), which employed a
larger range of continuous magnitudes than numerosity. The Lei-
bovich et al. (2016b) article that the authors rely on to develop
their thesis suffers from this criticism because there was a
greater difference in non-numerical magnitudes (ratio of about
2:5) than in numerical magnitudes (ratio of about 3:5). Therefore,
the observed smaller interference of numerosity in non-numerical
magnitude compared with the reverse in that study could have
been driven by differences in the ratios between the two dimen-
sions. Collectively, the target article mischaracterizes the stimulus
design in Park et al. (2016b) and fails to recognize the implications
of having unequal magnitude ranges in the very studies that it
relies on to build the main thesis (e.g., Gebuis & Reynvoet
2013; Leibovich et al. 2016b).
High-temporal-resolution recording of neural activity. The

target article asks which magnitude dimension is more “basic,
innate, and automatic” (sect. 5.1, para. 3). In fact, the main contri-
bution of our event-related potential approach (in combination
with the aforementioned stimulus design and regression
approach) was the demonstration of selective neural sensitivity
to numerosity very early in the visual stream, prior to any neural
sensitivity to other non-numerical magnitudes (Park et al.
2016b). Such a robust and selective effect of numerosity with neg-
ligible effects of non-numerical magnitudes was demonstrated in
two independent experiments in Park et al. (2016b) and is now
replicated in similar experiments investigating different neural
index and different ranges of numerosities (Fornaciai & Park
2017; Park 2017). These results directly contradict the authors’
conclusion that the representation of numerical magnitude
stems from continuous magnitudes. Instead, our findings
support the idea that numerosity is perceived directly and
rapidly in the visual stream.
Conclusion.The target article argues that all prior studies suffer

from flaws such that any claim of pure numerical judgments or

numerical selectivity in the brain could be attributed to a general-
ized magnitude system. However, for the reasons mentioned pre-
viously, we find the authors’ coverage of the prior work addressing
these issues problematic and find their case for dismissing evidence
that number is a salient primitive far from convincing.Moreover, at
least 10 different continuous magnitude dimensions can be
uniquely defined (see DeWind et al. 2015), but the target article
lacks an explanation about which of those continuous magnitudes
are biologically important and how they support the “sense of mag-
nitude.”Thus, the target article fails to provide a sufficient explana-
tion of what a generalized magnitude system entails.

Innateness of magnitude perception? Skill can
be acquired and mastered at all ages
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Abstract:We agree with Leibovich et al.’s argument that the number sense
theory should be re-evaluated. However, we argue that highly efficient skills
(i.e., fluent and highly accurate, “automatic,” performance) can be acquired
and mastered at all ages. Hence, evidence for primacy or fluency in
perceiving continuous magnitudes is insufficient for supporting strong
conclusions about the innateness of this aptitude.

Leibovich et al. provide a critique of theories that posit an innate
number sense. They propose that a “number sense” develops, via,
for example, statistical learning, from the correlation between
continuous magnitudes and numerosity. The authors argue that
although numerosities are learned (through educational and cul-
tural interactions), the perception of continuous magnitudes is
innate. Thus, innate skills for the perception of continuous magni-
tudes set the stage for learning procedures for addressing discrete
quantities.
Instead, we suggest that the evidence presented for (and

against) the innateness of magnitude perceptions should be con-
sidered as addressing contrasts such as “primacy/no primacy” or
even “automatic/not automatic” processing, in characterizing
human numerical cognition at different phases of its develop-
ment, rather than directly pertaining to innateness.
If innate means “not acquired” (e.g., Logan 1997), arguments

for innateness and learning are mutually dependent. This is espe-
cially true when learning reaches a level wherein performance is
“automatic” in the sense that it is fluent, is highly accurate, and
exhibits a primacy in processing. Indeed, skilled automatized per-
formance, especially when acquired implicitly, resembles innate
processing. That is, both innate processing and automatized pro-
cessing – perceptual, conceptual, or motor – are fast and may
involve the involuntary direction of attention to stimuli and
even, in some cases, a lack of conscious awareness (Karni 1996;
Logan 1997). Specifically, both implicit learning and explicit learn-
ing may result in automatic processing of information that behav-
iorally is manifested in high levels of fluency. Fluency is reflected
in the speed and accuracy of processin, as well as in a subjective
experience of ease (Karni & Bertini 1997; Poldrack & Logan
1998). Thus, learning experiences can determine the saliency of
a specific cue. Moreover, when a stimulus becomes salient, its
salient (as opposed to the non-salient) features will automatically
capture attention (Smith et al. 1996; Treisman & Gelade 1980),
which in turn will further facilitate the learning process and
enhance saliency. Therefore, saliency per se, even in early life
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or in animal studies, is not sufficient for proving “innateness”; it
may simply indicate the end point of a learning process.

In both innate and acquired skills, automatized processing
occurs independently of top-down expectancies and thus leads
to processing primacy. Consider, for example, the Stroop effect
lending primacy to a complex and clearly acquired ability,
reading (MacLeod 1991; Stroop 1935). The Stroop effect reflects
the robust primacy of script processing (reading) even over simple
color report in skilled readers. In the classic Stroop task, partici-
pants are instructed to name the color of the ink in which words
denoting colors are printed. The Stroop effect refers to the fact
that skilled readers cannot refrain from reading the words and,
in fact, from accessing the meaning of the color words. Reading
attains such primacy (automatic processing) that it interferes
with the naming of (ink) colors. The primacy effect of reading
can be found in other sensory domains. A recent study shows
that tactile texture discrimination is interfered with by uninten-
tional Braille reading of incongruent texture-denoting words in
the blind (Jarjoura & Karni 2016).

There is evidence that automatic Stroop-like interferences
develop with practice. For example, in a numerical Stroop-like
effect that occurs when participants are presented with two
digits that differ in physical size and numerical value and have
to compare the digits using one of the dimensions, the interfer-
ence between these two dimensions changes with practice
(Tzelgov et al. 2000) and schooling (Girelli et al. 2000; Rubinsten
et al. 2002). Thus, a numerical Stroop effect does not occur in
physical comparisons at the beginning of first grade, but an
adult-like pattern of the numerical Stroop effect was found in
third grade and on (Girelli et al. 2000; Rubinsten et al. 2002).
These data suggest that automatic activation of the numerical
values of Arabic numerals develops, and attains primacy in pro-
cessing, over the first years of schooling.

There is, moreover, ample evidence supporting the notion that
very early implicit learning experiences – from visual and motor
constrained environments (e.g., Held & Hein 1963) to cultural-
social exposure (e.g., see review by Kuhl 2010) – can effectively
generate and shape processing primacies. Consider in this light
the processing primacy (bias) attained within even a few hours
of exposure to a given visual environment, as attested by classical
studies on dark-reared kittens (Held & Hein 1963). Very early life
experience-dependent bias can even eliminate “innate” abilities as
manifest in, for example, the finding that babies lose their ability
to perceive multiple phonemic cues (sounds used in languages)
that are irrelevant to their language experience before they
attain 1 year of age (Eimas 1975; Eimas et al. 1971; Lasky et al.
1975; Werker & Lalonde 1988). On the other hand, by 10
months of age, language-specific differences can be discerned in
the babbling of infants raised in different countries (de
Boysson-Bardies 1993). The main question is not of innateness
of perception or action, but rather how infants learn and form
selective phonemic categories that make a difference in their lan-
guage so early in life (Kuhl 2010).

To summarize, most of the evidence reviewed in Leibovich
et al.’s article, including the interpretation of brain imaging
studies, relates to the automaticity-primacy of processing continu-
ous magnitudes (inferred from measures of fluency). This, we
would argue, does not constitute sufficient evidence for determin-
ing the status of task performance as “a basic sense” or “innate”
because implicit (and explicit) learning experiences in infancy
(and later in life) can generate fluency, accuracy, and, importantly,
primacy for processing specific cues. There is no a priori reason to
suppose that the processing of continuous magnitudes or discrete
quantities cannot reflect implicit learning experiences even from
very early on in life. Indeed, it has been argued that in some sit-
uations constructs such as discrete and countable magnitudes
may precede constructs of continuous magnitudes and may
affect their development (Starr & Brannon 2015). We suggest
that studies of biology–environment interactions, shaping our rep-
ertoire of automaticity, are warranted.
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Abstract: Leibovich et al. argue that it is impossible to control for all
continuous magnitudes in a numerical task. We contend that continuous
magnitudes (i.e., perimeter, area, density) can be simultaneously
controlled. Furthermore, we argue that shedding light on the interplay
between number and continuous magnitudes – rather than considering
them independently –will provide a much more fruitful approach to
understanding mathematical abilities.

Leibovich et al. criticize the results of different studies employing
non-symbolic numerical tasks, because the effect of continuous
magnitudes would have not been adequately controlled. By defi-
nition, a non-symbolic number is the numerosity extrapolated
from an array of elements (Feigenson et al. 2004). We agree
that it is impossible to equate simultaneously both the overall
area and the perimeter of two different arrays of elements, and
that considering only the overall area is only a partial control. Nev-
ertheless, Leibovich et al. did not consider that when the overall
perimeter of two arrays of two-dimensional squares is equated,
a negative correlation with the area occurs.

From a theoretical viewpoint, given a first array depicting a
number ni ≥ 1 of squares of side lni , and a second array depicting
a number nj . ni of squares of side lnj , it is impossible to simulta-

neously keep constant both areas Ani = nil2ni

( )
= Anj = njl2nj

( )[ ]

and perimeters Pni = ni4lni
( ) = Pnj = nj4lnj

( )[ ]
of the arrays. In

fact, to do so, the following system has to be solved for lnj :

lnj =
nilni
nj

whenPni = Pnj

lnj =
���
ni

√
lni���nj√ whenAni = Anj

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

This system can be solved if and only if ni = nj, thus violating the
hypothesis nj . ni.

We can now evaluate the relation between Pni and Pnj when the
overall area is kept constant (i.e., Ani = Anj ).

Pnj = nj���nj√ 4
���
ni

√
lni
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For any natural number nj . 0, it holds true that nj .
���nj√ .

Moreover, if ni , nj, then
ni���
ni

√ ,
nj���nj√ . Therefore, the size of Pnj

increases as a direct function of the increase of nj whenever
Ani = Anj .

We can finally evaluate the relation between Ani and Anj , when-
ever the overall perimeter is kept constant.

Anj =
nj
n2j

nilni
( )2

For any natural number nj . 0, it holds true that nj , n2j .

Moreover, if ni , nj, then
ni
n2i

.
nj
n2j

. Therefore, it is evident that

Anj will decrease as a function of the increase of nj whenever
Pni = Pnj .

To sum up, number and perimeter are positively correlated
when the area is kept constant, whereas number and area are
inversely correlated when the perimeter is kept constant.

For example, we can draw two different scenarios:
1. A square of side 3 cm has an equivalent area (9 cm2) with

respect to three squares of side 1,732 cm (3×3 cm2=9 cm2).
However, the perimeter increases proportionally, shifting from
12 cm in the first case to 20,785 cm in the second case.

2. A square of side 3 cm has an equivalent perimeter (12 cm)
with respect to three squares of side 1 cm (3×4 cm=12 cm).
However, the area decreases proportionally, shifting from 9 cm2

in the first case to 3 cm2 in the second case.
This evidence prompts us to consider a hypothetical case. If you

are in the first scenario and you choose the set of three squares
rather than the single square, the choice can be ambiguously
based on numerosity (3 vs. 1, respectively) or on perimeter
(20,785 vs. 12 cm, respectively). However, if you are in the
second scenario and you make the same choice, this is likely
based on numerosity (3 vs. 1, respectively) rather than on area
(3 vs. 9 cm2, respectively). This is indeed a crucial test, enabling
us to exclude the role played by continuous magnitudes (i.e.,
area and perimeter) in numerical tasks. However, we cannot
exclude the influence of other crucial variables such as occupancy
and density.

We contend that the simultaneous control for an entire set of
continuous variables is not only possible, but also should be guar-
anteed, as recently demonstrated (Rugani et al. 2015). In this
study, implying numerical discriminations in 3-day-old chicks, a
simultaneous control for multiple variables was obtained: (1)
perimeter (summation of the perimeters of all elements in each
array was identical), (2) area (summation of the area of all ele-
ments was negatively correlated with numbers), (3) occupancy
(the overall space occupied by each set of elements was, on
average, the same for small and large numbers), and (4) density
(the mean distance among the elements was not statistically differ-
ent). Subjects’ behavior revealed that only number was driving
their actions, not perimeter, density, occupancy, or area.

Nonverbal subjects, thus, can master numerical tasks, purely on
the basis of numerical information. But this is not the only evi-
dence in the scientific literature. In some cases, human infants
and young chicks were shown to be more sensitive to continuous
magnitudes, rather than numbers (Clearfield & Mix 1999; 2001;
Feigenson et al. 2002; Rugani et al. 2010).

Moreover, when both continuous magnitudes and numerical
cues are available and consistent, human infants (Suanda et al.
2008) and nonhuman animals (Rugani et al. 2011; Stancher
et al. 2015) can solve increasingly complex numerical tasks. This
suggests that subjects can keep on hold and integrate multiple
sources of information, so that redundancy can be exploited to
increase mathematical abilities.

Why is scientific evidence on non-symbolic numerical cognition
so puzzling? A possibility is that it reflects what a non-symbolic
number is. By definition, a non-symbolic number is the

numerosity extrapolated from an array of perceived stimuli. Lei-
bovich et al. conceive non-symbolic numbers as abstract represen-
tations of discrete quantity (number). We believe, instead, that
non-symbolic numbers are part of a more general system for rep-
resenting quantity, discrete or continuous (see also Gallistel 2011).
To sum up, here we propose a new and more fruitful approach

that can be helpful for controlling all of the continuous variables,
to create tasks that can be solved solely on the basis of numerical
(discrete) information. Controlling occupancy and density, and
applying our algorithm to equate overall perimeter (obtaining,
thus, a negative correlation between number of elements and
overall area) would allow us to assess non-symbolic numerical
competences, in human and nonhuman animals.
A future challenge in numerical cognition would be, then, to

disentangle the relative role and weight of different cues
(number and continuous magnitudes) and how they interact to
influence estimation.
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Abstract: Leibovich et al. proposed that the processing of numerosities is
based primarily on a “sense of magnitude.” The consequences of this
proposal for how numerical symbols acquire their meaning are,
however, neglected. We argue that symbols cannot be learned by
associating them with a system that is not yet able to derive discrete
numbers accurately because of immature cognitive control.

Leibovich et al. argue that the processing of continuous magnitudes
is more automatic than the processing of (discrete) number. Such a
claim is in line with some of our recent studies in which we repeat-
edly observed that decisions on discrete number are inevitably influ-
enced by continuous magnitudes (e.g., Gebuis & Reynvoet 2012b;
Smets et al. 2015). Despite describing slightly different mechanisms
of how number can be inferred from continuous magnitudes – that
is, either through “the mediation of inhibition” as proposed in the
current review (Leibovich et al.) or through “sensory integration
of continuous magnitudes” (Gebuis et al. 2016) – both reviews basi-
cally put forward the same conclusion. The take-home message of
both is that the ability to extract discrete number originates from
the ability to process continuous magnitudes, a finding that conse-
quently seriously questions the existence of an approximate
number system (ANS) as an evolutionary ancient system.
Besides the consequences of this conclusion for numerosity

processing being addressed in the review of Leibovich et al.,
such a proposition also has serious implications for symbolic
number (e.g., verbal number words, digits, etc.) processing. In
particular, the symbol grounding problem (i.e., how symbols
acquire their numerical meaning) needs to be revisited in light
of these new arguments (Reynvoet & Sasanguie 2016). The pre-
sumed idea of the existence of the ANS has resulted in the pro-
posal that when children are confronted with symbolic numbers
for the first time, they acquire the numerical meaning of these
symbols by mapping them onto this ANS (e.g., Dehaene 2001;
Halberda et al. 2008). In turn, because these symbols are
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crucial for learning formal mathematics (e.g., calculation), the
assumption of symbol–ANS mapping has inspired researchers to
hypothesize and observe that the performance on a numerosity
discrimination task (which is assumed to index the ANS) is
related to individual differences on a (symbolic) mathematics
achievement test. In other words, following this assumption, the
ANS would thus serve as the basis of symbolic numbers and
also later symbolic arithmetic. Leibovich et al. (abstract),
however, suggest that “continuous magnitudes are more auto-
matic and basic than numerosities,” and that we need to derive
discrete number from these continuous magnitudes (see also
Gebuis et al. 2016). If this is the case –which we believe it is –
then the assumption that we learn symbolic numbers by
mapping them on such a magnitude system seems very unlikely.

The present review suggests in particular that to derive discrete
number from visual sets, we must apply cognitive control. It is well
known that cognitive control develops through childhood (Ander-
son 2002). The continuing development of cognitive control func-
tions like inhibition is also manifested in the performance of young
children on a numerosity discrimination task. For example, when
examining the performance on incongruent trials (i.e., continuous
magnitudes correlate negatively with number) in 7-year-old chil-
dren, Szücs et al. (2013) observed a performance at chance.
Defever et al. (2013) demonstrated that the congruency effect
(i.e., the performance difference between congruent and incon-
gruent trials) in children ranging from 6 to 11 years old decreased
with increasing age. These studies demonstrate that the ability to
infer number from continuous magnitudes, just like cognitive
control functions, develops during elementary school. In contrast,
children’s knowledge and understanding of numerical symbols
(i.e., digits) is completed earlier. For example, Sasanguie et al.
(2012) demonstrated that 5-year-old kindergartners are able to
compare digits with an accuracy far above chance. By the time
children finish second grade, not only are they almost perfect in
symbolic number discrimination (Sasanguie et al. 2012), but also
they master several symbolic calculation skills (e.g., multiplica-
tions), whereas they still encounter problems deriving number
from visual sets (e.g., Szücs et al. 2013). In sum, when symbolic
numbers are learned, the ability to infer number from the magni-
tude system has not reached its full potential yet – because of its
dependence on the development of cognitive control functions.
More specifically, children still struggle with inhibiting continuous
magnitudes (Leibovich et al.) or integrating this sensory informa-
tion (Gebuis et al. 2016), resulting in inaccurate judgements of
number on stimuli where continuous information negatively cor-
relates with number. As a consequence, it unlikely that such a
magnitude system is the ground for learning symbolic numbers.

In our recent paper (Reynvoet & Sasanguie 2016), we evaluated
a promising alternative for symbol grounding. In a first step, numer-
ical symbols are mapped on the object tracking system, a system
that allows us to keep track of up to four items (see also Carey
2009). In a second phase, knowledge about the counting list may
be used to infer critical principles of the symbolic number
system, such as the principle that numbers later in the counting
list are larger (Davidson et al. 2012). As a result, gradually, symbolic
numbers are primarily represented through (order) associations
with other symbolic numbers in a separate semantic network of
symbolic numbers (Sasanguie et al. 2017). Very recently, it was
demonstrated through computational modeling that classic effects
in numerical cognition, like the distance and the size effect, can
be accounted for by such a network (Krajcsi et al. 2016).

In sum, the current review rightly identifies some serious chal-
lenges for the idea that we have an innate sense of numbers. An
issue that has been overlooked, however, concerns the fact that
this re-evaluation of the ANS into an “approximate magnitude
system” (AMS) has important implications for symbolic number
processing: It is impossible that symbols are learned by associating
them with a magnitude system that, at the time of symbol acqui-
sition, is not able to compute discrete number.

Numerical intuitions in infancy: Give credit
where credit is due
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Abstract: Leibovich et al. overlook numerous human infant studies
pointing to an early emerging number sense. These studies have
carefully manipulated continuous magnitudes in the context of a
numerical task revealing that infants can discriminate number when
extent is controlled, that infants fail to track extent cues with precision,
and that infants find changes in extent less salient than numerical changes.

In presenting their case for an acquired number sense dependent
upon continuous magnitudes, Leibovich et al. overlook a substan-
tial literature revealing that continuous magnitudes – across sets of
multiple objects – are relatively difficult to track (e.g., Barth 2008).
Importantly, the authors rely primarily upon data from adults to
support their developmental model, a population shown to
invoke advanced estimation strategies while concurrently shying
away from more intuitive strategies (Siegler & Booth 2005). As
such, data from adults are more likely to reflect learned notions
and strategies with regard to number, not intuitions. Evidence
from early human development is required to appropriately
address questions of inherent abilities. Notably, however, the
authors disregard numerous findings with preverbal infants con-
tradicting their claims of the primacy of continuous magnitudes.
In particular, these studies reveal that infants (1) can discriminate
number when continuous extent is controlled, (2) are relatively
poor discriminators of continuous extent, and (3) are more likely
to attend to changes in number compared with changes in contin-
uous extent. Similarly to Leibovich et al., we review evidence only
pertaining to large, non-symbolic numerosities (>4).

First, although it is true that infant abilities to detect numerical
changes can be influenced by continuous extent cues (e.g., Can-
trell et al. 2015a), habituation studies reveal infants are capable
of tracking number independent of these cues. The presence of
purely numerical abilities early in development is consistent
with a number sense account. Leibovich et al. discount infant
habituation methods, arguing that inherent confounds between
number and extent prevent studies from isolating numerical abil-
ities. However, the authors fail to acknowledge a number of
sophisticated designs that have taken advantage of the initial
habituation phase to dissociate number and continuous extent
(Xu & Spelke 2000). In these designs, infants are habituated to
a series of exemplars of a single numerosity while extent cues
are systematically varied; in subsequent test trials, the degree of
change in extent across novel and familiar number test trials is
equated. As such, these designs allow for one and only one dimen-
sion of discrimination: number. Under these circumstances –
when extent is not a reliable cue for discrimination – infants
have repeatedly succeeded in detecting changes in number
(e.g., Lipton & Spelke 2003; 2004; Xu & Arriaga 2007; Xu &
Spelke 2000). If early numerical abilities were entirely dependent
upon continuous magnitudes, these robust findings would not be
possible.

Second, infants track continuous extent with relatively poor
precision. If it is the case that infants rely upon continuous mag-
nitudes when comparing sets, then infants should be at least as
good at detecting changes in continuous extent as they are at
detecting changes in number. This is not the case. Studies that
have examined infant abilities to track continuous extent across
multiple items have consistently found that infants are remarkably
limited in their ability to discriminate extent. In particular, 6- to 7-
month-olds require as much as a 4-fold change in cumulative area
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(Brannon et al. 2004; Cordes & Brannon 2008) or individual
element size (Cordes & Brannon 2011) and a 3-fold change in
contour length (Starr & Brannon 2015) in order to successfully
detect a change in these continuous variables. In contrast, parallel
studies isolating numerical abilities reveal that infants of this
age reliably discriminate strikingly smaller changes in number
(2-fold; Xu & Spelke 2000). That is, infants notice 2-fold
changes in number (when extent is deconfounded) but require
the size of individual items in an array to quadruple in size in
order to detect a change in extent. Although infants are capable of
tracking continuous extent, they are remarkably poor at doing so.

Third, infants find numerical changes to be more salient than
extent changes. If infants relied upon continuous extent represen-
tations for tracking quantity in the world, this would entail not
only a precise ability to track changes in extent, but also a greater
proclivity to notice these changes over changes in number.
Looking-time studies directly pitting changes in number against
changes in continuous extent, however, demonstrate that infants
more readily attend to numerical changes. Cordes and Brannon
(2009) pitted number against contour length and cumulative
surface area for large sets and found that in both cases 7-month-
old infants dishabituated to changes in number but not to
changes in continuous extent. Additionally, Libertus et al. (2014)
found that even when a 1:3 ratio change in number was pitted
against a 1:10 ratio change in cumulative area in a change detection
paradigm, infants still did not show a preference for continuous
extent, despite this dramatically larger change in the cumulative
area. If numerical intuitions rested upon continuous magnitudes,
infants would more readily notice changes in extent. They do not.

In sum, we argue that a careful reading of the infant literature
provides strong support for an intuitive number sense. The finding
that infants can track continuous extent in numerical tasks does
not undermine evidence from other studies revealing that
infants attend to number independent of extent. Yet preverbal
infants’ robust successes on numerical tasks do destabilize
claims of an acquired number sense. Moreover, data revealing
that infants are relatively poor discriminators of continuous
extent and that infants find numerical changes more salient than
extent changes weaken assertions that magnitude tracking under-
lies numerical processing, posing a significant challenge to the
neo-Piagetian model posed by Leibovich et al. Whether, over
the course of development into adulthood, representations of
number and magnitude become more closely intertwined
remains to be determined; however, we believe that the infant
data firmly point to an early and intuitive number sense.

From continuous magnitudes to symbolic
numbers: The centrality of ratio

doi:10.1017/S0140525X16002284, e190

Pooja G. Sidney,a Clarissa A. Thompson,a Percival
G. Matthews,b and Edward M. Hubbardb
aDepartment of Psychological Sciences, Kent State University, Kent, OH
44242; bDepartment of Educational Psychology, University of Wisconsin–
Madison, Madison, WI 53706-1796.

psidney1@kent.edu cthomp77@kent.edu
pmatthews@wisc.edu emhubbard@wisc.edu poojasidney.com
http://www.clarissathompson.com
https://website.education.wisc.edu/pmatthews/
http://website.education.wisc.edu/edneurolab/

Abstract: Leibovich et al.’s theory neither accounts for the deep
connections between whole numbers and other classes of number nor
provides a potential mechanism for mapping continuous magnitudes to
symbolic numbers. We argue that focusing on non-symbolic ratio
processing abilities can furnish a more expansive account of numerical
cognition that remedies these shortcomings.

This commentary was motivated by two shortcomings of the target
article by Leibovich et al.: First, its sole focus on whole numbers
leaves out entire classes of numbers, such as fractions, that are
integral to cultivating robust numerical understanding among chil-
dren and adults (Siegler et al. 2011). Second, it does not offer a
mechanism whereby continuous magnitudes can be linked to spe-
cific whole numbers. Subsequently, we argue that focusing on
non-symbolic ratio processing abilities might furnish a more
expansive account of numerical cognition, providing perceptual
access to both twhole number and fraction magnitudes. More-
over, a ratio-focused account can provide a potential mechanism
for mapping analog representations of continuous magnitudes to
symbolic numbers.
Recent research has begun to systematically detail the ability of

humans and other animals to perceive non-symbolic ratios (e.g.,
Jacob et al. 2012; Matthews et al. 2016; McCrink & Wynn
2007). Instead of focusing on individual non-symbolic stimuli in
isolation, this work focuses on perceiving ratio magnitudes that
emerge from pairs of these stimuli considered in tandem
(Fig. 1a). As the extent of non-symbolic ratio processing abilities
becomes clearer, some have called for research that foregrounds
ratio perception as a possible basis for numerical cognition more
generally (e.g., Matthews et al. 2016). Indeed, in a recent book
chapter, Leibovich et al. (2016a) posited that the development
of non-symbolic ratio perception “might be at the background
of all other numerical developmental processes” (p. 370). In rec-
ognition of this fact, we view this commentary as an extension of
the authors’ own logic to address key gaps in the theory as pre-
sented in the target article.
First, we argue that whole numbers are not the whole story. In

presenting their integrated theory of numerical development,
Siegler et al. (2011) lamented that the field’s focus on whole
numbers has deflected attention from commonalities shared by
both whole numbers and fractions. This is a particularly interest-
ing point given that recent research has highlighted multiple com-
monalities in the ways we process different classes of number. To
name a few:
1. Whole numbers and fractions have both been associated

with size congruity effects (Henik & Tzelgov 1982; Matthews &
Lewis 2016).
2. Processing of both whole numbers and fractions recruits the

intraparietal sulcus (IPS) (Jacob et al. 2012; Piazza 2010).
3. Whole numbers and fractions can both be represented as

magnitudes on number lines (e.g., Siegler et al. 2011).
4. Processing fractions and whole numbers exhibits distance

effects in both symbolic (DeWolf et al. 2014; Moyer & Landauer
1967) and non-symbolic (Halberda & Feigenson 2008; Jacob &
Nieder 2009) forms.
This last fact results because numerical processing obeys

Weber’s law, and this has two very important implications. The
first was perhaps stated best when Moyer and Landauer (1967)
wrote that observed distance effects for symbolic numbers
implied that it “is conceivable that [numerical] judgments are
made in the same way as judgments of stimuli varying along phys-
ical continua” (p. 1520). The second is a corollary to the first and
seems widely unappreciated: Weber’s law is fundamentally
parameterized in terms of ratios between stimulus magnitudes.
Ironically, even the way we represent whole numbers is governed
by the ratios among them. Together, these points raise consider-
able potential for integrating the psychophysics of perception with
numerical processing via the conduit of ratio.
Furthermore, we argue that non-symbolic ratio lays the founda-

tion for a pathway to understanding all real numbers. Leibovich
et al.’s theory in the target article bears interesting parallels with
Gallistel and Gelman’s (2000) theory that the primitive machinery
for representing number works with real number magnitudes.
The missing link for both is a compelling mechanism for estab-
lishing a correspondence between continuous non-symbolic
magnitudes and specific number values. Herein lies the power
of non-symbolic ratios. By juxtaposing two quantities instead of
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one, ratios of non-symbolic stimuli can be used to indicate specific
values. Although neither the gray nor the black line segments pre-
sented in Figure 1a correspond to a specific number, the ratio
between the two corresponds only to 3/10 (or 10/3). Thus, non-
symbolic ratio provides perceptual access to both fractions and
whole numbers. In fact, because the components are continuous,
these non-symbolic ratios can be used to represent all real
numbers. In this way, non-symbolic ratios provide a flexible
route for mapping non-numerical stimuli to specific real
number values.

The potential of this conceptualization becomes clearest when
we consider that competent number line estimation (i.e., linear esti-
mates) can be seen as a task bridging symbolic and non-symbolic
proportional reasoning (e.g., Barth & Paladino 2011; Matthews &
Hubbard, in press). Indeed, Thompson and Opfer’s (2010) use of
progressive alignment with number lines to improve children’s
symbolic number knowledge can be interpreted as a case in
which non-symbolic ratio perception is used to facilitate analogical
mapping that endows unfamiliar symbolic numbers with semantic
meaning. This technique leverages the fact that 15:100 is the
same as 150:1000 in that both are the same proportion of the
way across the number line, a fact that can help children under-
stand the way the base-10 system scales up. Given that non-sym-
bolic ratio perception is abstract enough even to support
comparisons between ratios composed of different types of
stimuli (e.g., Matthews & Chesney 2015) (Fig. 2), the possibilities
for such analogical mapping abound. It may be that much of the
psychophysical apparatus that operates in accord with Weber’s
law can be used to ground numerical intuitions. A focus on ratio
processing stands to firmly situate numerical development within
the generalized magnitude system proposed by the target article.

A comprehensive theory of numerical development should
account for the deep connections between whole numbers and

other classes of number, while accounting for relationships
between symbolic and non-symbolic instantiations of numerical
magnitudes. Leibovich et al.’s theory as presented in the target
article neither accounts for numbers like fractions nor accounts
for how continuous magnitudes can be mapped to specific
numbers. However, adding a correction carving out a pivotal
role for non-symbolic ratio perception might help provide the
basis for a unified theory of numerical cognition.
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Abstract: We provide an emergentist perspective on the computational
mechanism underlying numerosity perception, its development, and the
role of inhibition, based on our deep neural network model. We argue
that the influence of continuous visual properties does not challenge the
notion of number sense, but reveals limit conditions for the computation
that yields invariance in numerosity perception. Alternative accounts
should be formalized in a computational model.

Numerosity perception is a key aspect of the number sense, and it
is thought to be supported by a specialized mechanism, the
approximate number system (ANS), which in primates has a spe-
cific neural substrate in the intraparietal sulcus (Nieder &
Dehaene 2009). The finding that continuous visual properties
influence numerosity judgments is used by Leibovich et al. as a
main argument to claim that numerosity is processed holistically
with continuous magnitudes. Their hypothesis that people do
not extract numerosity independently from continuous magni-
tudes, as well as the related claim that perceived numerosity is
simply the result of weighting a variety of continuous visual prop-
erties (Gebuis & Reynvoet 2012b), challenges a central tenet of
the ANS theory and the notion of number sense more generally.
However, this hypothesis is not grounded in any formal (mathe-
matical or computational) model: In particular, it lacks any
details about which continuous properties are necessary and suf-
ficient to estimate numerosity, as well as how these continuous
properties are extracted from the visual display in the first place.

(a) (b) (c)

Figure 1. (Sidney et al.). Demonstration of the similarities between non-symbolic ratios made of line segments and number lines. From
left to right, the panels represent (a) an example of a non-symbolic representation of the ratio 3:10 (or 10:3) based on stimuli from
Vallentin and Nieder (2008), (b) the superimposition of the component stimuli of the ratio onto one line, and (c) how the addition of
symbolic anchors yields the traditional number line estimation task. At a minimum, accurate number line estimation requires cross-
format proportional reasoning, matching the symbolic 3/10 to a corresponding non-symbolic ratio.

Figure 2. (Sidney et al.). Matthews and Chesney (2015) found
that participants could accurately compare non-symbolic ratios
across different formats in about 1,100 ms – even faster than
they could compare pairs of symbolic fractions. This ability to
compare ratios across formats implies that participants could
perceptually extract abstract ratio magnitudes in an analog form.
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Together with the apparent circularity in the statement that
“number sense develops from understanding the correlation
between numerosity and continuous magnitudes” (Leibovich
et al., sect. 8, para. 6), this leads to a “non-numerical” account
of numerosity perception that does not seem to have the explan-
atory value that one should expect from a cognitive theory.

The nature of the mechanisms underlying numerosity percep-
tion has been debated for decades (e.g., Allik & Tuulmets 1991,
Burr & Ross 2008; Dehaene & Changeux 1993; Durgin 1995),
and the fact that numerosity perception can be non-veridical
has been known even longer (e.g., Frith & Frith 1972).
However, recent computational modeling work based on unsu-
pervised learning in “deep” neural networks (see Zorzi et al.
[2013] and Testolin & Zorzi [2016] for a review of the approach)
has provided a state-of-the-art and neurobiologically plausible
account of how visual numerosity is extracted from real images
of object sets. Stoianov and Zorzi (2012) showed that numerosity
emerges as a high-order statistical property of images in deep net-
works that learn a hierarchical generative model of the sensory
input. Learning in the network only involved “observing”
images, and it aimed at efficient coding of those images, without
providing any information about numerosity (i.e., there was no
teaching signal). As a result of this unsupervised learning,
number-sensitive neurons emerged in the deepest layer of the
network, with tuning functions that mirrored those of biological
neurons in the monkey parietal cortex (Roitman et al. 2007). In
agreement with the ANS hypothesis, the numerosity signal
encoded by the population of number-sensitive neurons in the
model was found to be largely invariant to continuous visual prop-
erties, and it supported numerosity estimation with the same
behavioral signature (i.e., Weber’s law for numbers) and accuracy
level (i.e., number acuity) of human adults. Preliminary analyses of
learning trajectory in the model also revealed good match to
developmental changes in number acuity in infancy and childhood
(Stoianov & Zorzi 2013).

Detailed analysis of the emergent computations in the Stoianov
and Zorzi (2012) model showed that numerosity is abstracted
from lower-level visual primitives through a simple two-level hier-
archical process that exploits cumulative surface area as a normal-
ization signal (Fig. 1). Contrary to Leibovich et al.’s “holistic”
hypothesis that the number sense develops on the basis of a
“sense of magnitude,” the essential primitive in the emergent
computations is not a continuous property but high-frequency
spatial filters (implemented by center-surround neurons) that dis-
cretize the visual input. Note that the key role of high-frequency
spatial filtering has been independently highlighted by Dakin et al.
(2011) in their psychophysical model. In summary, visual numer-
osity is a high-order summary statistic in the Stoianov and Zorzi
(2012) model, but this is the result of hierarchical non-linear com-
putations rather than a simple weighted combination of continu-
ous visual properties. Accordingly, numerosity comparison turns
out to be impossible when the raw image is the only input to
the decision (even when trained using machine learning algo-
rithms; see Stoianov & Zorzi [2012]). Nevertheless, the
emerged hierarchical mechanism is relatively simple and this fits
well with the long phylogenetic history of the visual number
sense (from fish [Agrillo et al. 2012], to primates [Brannon &
Terrace 1998]).

The Stoianov and Zorzi (2012) model also suggests that the nor-
malization process embedded into the mechanism extracting
abstract numerosity may be inefficient in particular circum-
stances, such as when a strong manipulation of continuous
visual cues generates high uncertainty (low signal-to-noise ratio)
for the numerosity judgment (e.g., Fig. 3B in Leibovich et al.),
and this effect is exacerbated by pathological conditions that
affect inhibitory processing. This crucial insight can be illustrated
with the combined behavioral-computational investigation of
Cappelletti et al. (2014), which showed that the decline of
number acuity in elderhood (Halberda et al. 2012) was limited
to stimuli in which numerosity is incongruent with cumulative

surface area. In turn, this effect was linked to the (in)efficiency
of inhibitory processing, as indexed by performance in classic cog-
nitive control tasks (e.g., Stroop paradigm). Simulations with the
Stoianov and Zorzi (2012) model revealed that degraded synaptic
inhibition, which specifically affected inhibitory normalization in
the network (Fig. 1), induced impaired comparison performance
for incongruent stimuli while preserving performance on congru-
ent stimuli, thereby accounting for the data in elderly humans.
Note that the notion of inhibitory normalization in the Stoianov
and Zorzi (2012) model is by no means equivalent to the hypoth-
esis that inhibition is required to suppress irrelevant continuous
properties at the decision level (as in Leibovich et al.), although
we do not a priori exclude this additional effect. Inefficient nor-
malization might also be involved in the atypical performance of
children with developmental dyscalculia (Bugden & Ansari
2016; Piazza et al. 2010).
In conclusion, state-of-the-art computational modeling reveals

that numerosity perception is supported by an emergent neuro-
computational mechanism (implementing the ANS) that cannot
be reduced to a simple combination of continuous visual proper-
ties. In contrast to the proposal of Leibovich et al., our modeling
work shows that (1) the emergence of number sense is the result

Figure 1. (Stoianov and Zorzi). Computational model of
numerosity perception based on a hierarchical (i.e., deep)
neural network architecture (Stoianov & Zorzi 2012). A layer of
center-surround detectors with small receptive fields discretize
the visual input and provide their signal to another layer of
neurons with larger receptive fields. These number-sensitive
neurons compute a local numerosity signal invariant of
perceptual properties by means of inhibitory normalization. The
population activity of number-sensitive neurons provides the
final numerosity signal.
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of a learning process, but it does not hinge upon a pre-existing
“sense of magnitude” or the availability of numerical labels; (2)
numerosity can be abstracted from continuous magnitudes; and
(3) the influence of continuous visual properties on numerosity
judgments simply taps the limits of the normalization process
that is embedded into the ANS. Any alternative theoretical
account, including that of Leibovich et al., should be implemented
as a formal (computational) model and compared to that of Stoia-
nov and Zorzi (2012) in terms of descriptive adequacy, as it is
current (and best) practice in other cognitive domains.
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Abstract: Leibovich et al. argue that that none of the experiments they
review really establishes that human adults, infants, or nonhuman
animals are sensitive to numerosity independent of a range of
continuous quantities. We do not dispute their claim that the empirical
record is inconclusive but argue that model-based data analysis does
offer a way to make progress.

Leibovich et al. review a series of experiments supposedly demon-
strating the existence of a “number sense” in human adults,
infants, or nonhuman animals, and argue that none of them is
really conclusive. Although we tend to agree with this general con-
clusion, we find that the authors’s alternative theory is on equally
uncertain ground. In the following, we first critically discuss some
of the arguments the authors put forward, before concluding that
data analysis based on precise, computational models does offer a
more promising way to make progress.

The authors go into considerable detail in explaining why pre-
vious methods for detecting the number sense are flawed. Their
critique on the stimuli centers around the inability to uncouple
numerosity from various continuous variables, like surface area,
density, object size, and convex hull size. Their critique on the
measured variables, moreover, is that what is measured could
often be something else than pure “number perception” itself,
like, for example, the “summation of object area.”

However, the authors’ casual use of the term “continuous vari-
ables” deserves some scrutiny. In their description, they make no
distinction between for example object size, convex hull size,
cumulative surface area, outline, and density. Distinctions
between these quantities are, although often subtle, very relevant.
For example, surface density (How many pixels are black vs. white
per surface area?) differs from object density (How many objects
are there per surface area?), as their formulas show: To get surface
density, one simply divides the total surface area of all objects
(black) by the total area of white space. To arrive at the object
density, one divides the number of objects by the total surface.
Note that to do this, one needs to know both the total surface,
or convex hull, and the number of objects. That means that to
perform the calculation that gives you object density, numerosity

is required! Therefore, in studies in which object density is the
“continuous variable” that participants could have used to esti-
mate numerosity, they may very well have been using a derivative
of numerosity.

An even bigger issue is the authors’ implicit assumption that the
processing of continuous variables contradicts a number sense.
But even if the authors are right in claiming that continuous var-
iables play a role in many of the cited experiments, that is not
grounds to conclude a “number sense” does not exist. The exis-
tence of one mechanism does not exclude the existence of
another.

Does that mean that no conclusions about the discrete or con-
tinuous, or innate or learned nature of number cognition are pos-
sible? No, by developing precise models of both, we can say much
more about these issues than we currently can, as demonstrated in
other domains of cognitive science that once seemed stuck in
unproductive debates about nurture versus nature (e.g., Borensztajn
et al. 2009) or continuous versus discrete variable accounts (e.g.,
Westermann 2000; Zuidema & de Boer 2014).

Model-based data analysis would allow us to evaluate whether
the continuous factors can play a consistent explanatory role, or
that only ad hoc combinations of these factors, different for
each experiment, fit the data as well as the numerosity theory
popular in the literature. This is particularly important in the
case of animal experiments, which the target article claims are
all inconclusive, but which play no role in the final part of the
article where an alternative theory is laid out, despite the fact
that the influence of language in that theory would lead to
strong predictions about animal behavior. We might not be able
to exclude all alternative hypotheses, but we can make statements
about which model (when specified in sufficient detail) provides
the better fit to the data.

Fortunately, some prior work exists (e.g., Stoianov & Zorzi
2012; van Woerkom 2016) providing ideas on how to build
precise computational models for the different theoretical posi-
tions outlined in the target article. Stoianov and Zorzi’s (2012)
model is a type of neural network (a restricted Boltzman
machine), trained on reproducing a binary input image. The
model shows signs of encoding numerosity as well as cumulative
surface area, and has been interpreted as evidence that a
number sense might not be innate per se, but that it is an emer-
gent property of (visual) perception. By looking at the mecha-
nisms behind how such a model performs a numerosity
detection task, we can form and test hypotheses about the
nature of human and other animals’ numerosity detection.

For example, Stoianov and Zorzi (2012) analyzed the connec-
tion weights in models that had been trained on numerosity esti-
mation. In doing so, they found both “cumulative surface
detectors” (responding to the continuous variable of surface
area) and a different set of numerosity detectors (whose activity
was correlated only with numerosity, not with surface area),
showing that detectors for both quantities can emerge, work in
tandem, and complement, rather than compete, with each
other. These types of analyses are critical in forming our under-
standing of estimating numerosities and the use of the “number
sense” concept.

But more modeling work in this area is required to explore
the broader area of models similar to Stoianov and Zorzi’s
and embodying alternative positions. For example, in our repli-
cation of the model (Van van Woerkom 2016), we end up with
networks that are equally good at the training task (reproducing
images), but do so without any apparent numerosity detectors.
That raises questions about the robustness of the “number
sense as side effect” result and its explanatory power for empir-
ical results in cognitive science (e.g., those relating to the influ-
ence of language). That said, this domain is a perfect example
of a domain where we should report how well each model fits
the data, rather than making binary choices between rejecting
and accepting alternative theories. Modelers should get to
work!
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Controlling for continuous variables is not
futile: What we can learn about number
representation despite imperfect control
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Abstract: Leibovich et al. argue that because it is impossible to isolate
numerosity in a stimulus set, attempts to show that number is processed
independently of continuous magnitudes are necessarily in vain. I
propose that through clever design and manipulation of confounding
variables, we can gain deep insight into number representation and its
relationship to the representation of other magnitudes.

Leibovich et al. breathe new life into an age-old question, which is
whether discrete quantity representation (i.e., number) is on a par
with, or a derivative of, the representation of continuous physical
magnitudes (e.g., length, area, volume, loudness, pitch, color).
The authors rightly point out that recent theorizing has favored
a view (the “number sense” theory) in which number representa-
tion is innate and distinct from the representation of other magni-
tudes. However, their argument in favor of an alternative view
(the “sense of magnitude” theory) falls short, having neither suffi-
cient empirical support, nor logical soundness. These shortcom-
ings stem from the authors’ legitimate and veracious claim that
because number out in the world naturally correlates with a
host of non-numerical quantitative dimensions (e.g., a set of
“four apples” has roughly twice the volume, twice the surface
area, twice the weight, and twice the “redness,” as a set of “two
apples,” not to mention other variables such as convex hull [perim-
eter of the set], density of the array, and amount of time it takes to
visually scan the display), that it is “impossible to create two sets of
items that differ in numerosity only” (sect. 3, para. 1). The impli-
cation here is that unless a researcher rules out every possible
alternative in their study, they cannot be certain that responses
were based on number per se, making it impossible to find pure
evidence in support of the independence of number processing.
The conclusion the authors draw from this – that lack of evidence
for one theory (“number sense”) means the alternative theory is
true – however, is fallacious (ad ignorantiam).

Although Leibovich et al. are right that it is mathematically
impossible to rule out all continuous variables simultaneously, I
argue that this fact does not undermine efforts to control some
dimensions while examining numerical judgments. Logically speak-
ing, finding that anti-correlated features influence performance (as
inHurewitz et al. 2006, for example) does not necessarily mean that
subjects’ judgments are not also influenced by number. The inter-
ference may stem from the dimensions being represented together
(as proposed in “sense of magnitude” theory), or they may stem
from other sources (e.g., attention, response competition, etc.).
Likewise, just because one cannot control all possible continuous
dimensions, it does not follow that subjects therefore must be
using the uncontrolled dimension(s). There are many examples in
the literature and cited in this article (and at least two important
studies left uncited –McCrink & Wynn [2004] and Izard et al.
[2009]) in which the dimensions left to vary are clearly not
driving performance because they predict different (and unob-
served) patterns of performance than do judgments made on
number. For example, through careful stimulus design Izard
et al. (2009) were able to rule out infants’ use of “intensive param-
eters” (e.g., item size, density) and “extensive parameters”
(summed luminance, total surface area of the array). Specifically,
infants’ use of intensive parameters (which were equated across
numerosities) predicted equal looking to all of the test images,
while their use of extensive parameters predicted the same

direction of preference across familiarization conditions.
However, neither of these patterns was obtained – infants looked
longer at the numerically matching display in both familiarization
conditions. Thus, despite not having perfect control, the study
design had strong discriminant validity, allowing the authors to con-
clude which of the three cues (numerosity, intensive quantities, and
extensive quantities) were driving the observed looking time
pattern. Indeed, the deliberate control and manipulation of com-
peting variables allowed Izard et al. to provide what may be the
strongest evidence to date for the “number sense” theory.
A related point is that contrary to the authors’ claims, the

“number sense” theory may actually be more parsimonious than
the “magnitude sense” proposal. The authors seem to treat all con-
tinuous dimensions the same, as if they are equivalent (equally
salient, equally informative, equally accessible, equally accurate,
etc.). Given the specific study they are critiquing, the authors
can claim subjects are using surface area or volume or density
or perimeter, rather than number. Importantly though, because
the specific dimensions being controlled (or not) vary from exper-
iment to experiment, the explanation for what subjects are doing
instead of number across this constellation of studies is necessarily
complex. Therefore, it may be argued that appealing to number is
really the more economical approach.
My final point is more general. I applaud the authors for tack-

ling this critical issue. They are absolutely right that determining
the nature of these systems is necessary for understanding the
basis of human quantitative reasoning. The development of
these systems must be more fully determined if we want to under-
stand how early emerging abilities affect the early learning of sym-
bolic mathematics. However, I do not agree that simply appealing
to “continuous magnitudes” as if the various continuous dimen-
sions are interchangeable is any better than ruling out only a
subset of them and claiming that subjects were definitely using
number! We know very little about whether various dimensions
are treated similarly or differently and how the performance
profile for each dimension changes over development. Perhaps
a good course of action would be to step back and determine
whether the “continuous magnitudes” actually hang together
within the same system before deciding whether number does.
Of course, this may not even be possible; continuous magnitudes
tend to correlate not only with number, but also with each other,
making it just as challenging to isolate surface area, for example,
from all other dimensions, as it is to isolate number. Nonetheless,
I would argue that the endeavor is still very much worth the effort.
With clever manipulation of the variables available in a given stim-
ulus set, researchers may be able to discover not only whether dis-
crete and continuous quantities stem from the same or different
cognitive sources, but also how they interact and influence each
other, as they surely must do. Such insights will no doubt help
us on our way to understanding how intuitive number and magni-
tude sense contributes to the crucial acquisition and development
of symbolic mathematical skills and knowledge.
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Abstract: In response to the commentaries, we have refined our
suggested model and discussed ways in which the model could be
further expanded. In this context, we have elaborated on the role
of specific continuous magnitudes. We have also found it important
to devote a section to evidence considered the “smoking gun” of the
approximate number system theory, including cross-modal studies,
animal studies, and so forth. Lastly, we suggested some ways in
which the scientific community can promote more transparent
and collaborative research by using an open science approach,
sharing both raw data and stimuli. We thank the contributors
for their enlightening comments and look forward to future
developments in the field.

R1. Introduction

The main goal in writing the target article was to initiate a
broad discussion regarding the role of continuous magni-
tudes in numerical cognition. After reading the enlighten-
ing commentaries written by leading scientists in the field
of numerical cognition, as well as other fields, we feel that
this goal has been achieved. We thank all of the contributors
who took part in this discussion. Your input expanded our
knowledge, helped us to further sharpen and clarify our
theory, and provided further venues to explore.

In what follows, we summarize our suggested theoretical
model and, in the process, address concerns raised by some
contributors by clarifying some aspects of the model. Next,
we address some of the strongest evidence supporting the
existence of an innate sense of number. Then, we elaborate
on the role of continuous magnitudes and discuss their role
in processing non-numerical magnitudes in more detail.
Finally, we discuss ways in which our theoretical model
can be further developed and explored, in the context of
numerical cognition and beyond. We conclude with some
suggestions as to what we can all do as a scientific commu-
nity to reduce some of the inconsistencies in the literature
of non-symbolic number processing.

R2. The suggested theoretical model

Our suggested model is based on an extensive review of the
literature. As many contributors rightfully mentioned,
more evidence is indeed needed to test the model
(Content, Vande Velde, & Adriano [Content et al.]);
Hyde & Mou; Opfer & McCrink; and vanMarle). We
put forward a model that, on the one hand, supplies test-
able predictions and, on the other hand, could be altered
according to the empirical data.

Our theoretical model describes the development of
understanding what a number is. What does it mean to
fully understand the concept of number? We suggest it
means to understand that number is the quantity of items
in a set that usually correlates with, but is independent

of, continuous magnitudes. Number is independent of con-
tinuous magnitudes because each quantity can appear in
infinite sizes; for example, the number 2 can refer to two
skin cells, two pens, or two continents. However, when
comparing 2 pens and 10 pens, 10 pens will usually take
more surface area than 2 pens. We suggest that under-
standing these correlations is an important building block
of numerical cognition.
According to the model, because of physical and mental

constrains (i.e., poor visual acuity and the inability to indi-
viduate), newborns cannot use number (at least not visually,
and it is problematic to use audition to test it, as we will
discuss subsequently). This is true until about the age of
5 months, when the ability to individuate develops. The
model is parsimonious in the sense that it does not
assume an innate mechanism for numerosity; nevertheless,
it does not reject the notion of such a mechanism. It is pos-
sible that there is an innate mechanism for detecting
number, but it cannot be used until other systems
mature, just as we are born with legs but cannot walk
until the skeleton and the motor system are developed
enough to support walking. Testing for the existence of
an innate number sense in newborns, however, is challeng-
ing because of the constraints mentioned in the target
article. Some researchers have suggested that cross-modal
studies or studies in different modalities, such as auditory
studies, can provide more insight into the innateness of
number (Burr; Hyde & Mou; Libertus, Braham, &
Liu [Libertus et al.; Margolis; Olivola & Chater; and
Savelkouls & Cordes). Importantly, presentation of audi-
tory stimuli is usually serial. This means that the participant
is required to keep the representations of the stimuli active
in working memory. Because the working memory capacity
of newborns and infants is limited, conclusions of such
studies are limited. What can be learned from studies
with newborns and young infants (de Hevia, Castaldi,
Streri, Eger, & Izard [de Hevia et al.]; Jordan,
Rinne, & Resnick (Jordan et al.); Libertus et al., Lou-
renco, Aulet, Ayzenberg, Cheung, & Holmes [Lou-
renco et al.; and Rugani, Castiello, Priftis, Spoto, &
Sartori [Rugani et al.], and Savelkouls & Cordes) is that
they are able to discriminate magnitudes, but not necessarily
numerosities (Mix, Newcombe, & Levine [Mix et al.]).
With the development of individuation ability, an infant

can notice discrete objects. However, “discreteness” does
not equal numerosity – the individuated items are not nec-
essarily represented mentally as a quantity. We concur with
vanMarle that discreteness plays a role from the moment
it is noticed. It is probably taken into account together with
all other magnitudes because of the correlation between
numerosity and continuous magnitudes in the environ-
ment. However, is discreteness the most salient cue of
quantity? We think not. This is simply one of many other
cues. The saliency of discrete or continuous magnitude
depends on task demands. For example, although in
Piaget’s classic number conservation task (Piaget 1952)
children fail to understand that continuous magnitudes
can change without changing the number of items, when
the question to the child is phrased differently, or if
M&Ms (round candies) are used instead of coins, children
do notice number (Calhoun 1971). The saliency of number
when incongruent with continuous magnitudes also
depends on the development of other cognitive abilities.
There are many components of inhibition, and different

Response/Leibovich et al.: From “sense of number” to “sense of magnitude”

BEHAVIORAL AND BRAIN SCIENCES, 40 (2017) 47
https://doi.org/10.1017/S0140525X16000960 Published online by Cambridge University Press

mailto:labovich@gmail.com
mailto:naamaka@post.bgu.ac.il
mailto:motisalti@gmail.com
mailto:Henik@bgu.ac.il
http://www.numericalcognition.org/people.html
http://in.bgu.ac.il/en/Labs/CNL/Pages/staff/naamaka.aspx
http://in.bgu.ac.il/en/bcs/Pages/staff/motisalti.aspx
http://in.bgu.ac.il/en/Labs/CNL/Pages/staff/AvishaiHenik.aspx
https://doi.org/10.1017/S0140525X16000960


methods of testing cognitive control and inhibition measure
different components (Diamond 2013). Some cognitive
abilities were found to be present from an early age and
even before symbolic knowledge (Opfer & McCrink
and Sasanguie & Reynvoet). We argue that these
results do not exclude the possibility that the type of inhibi-
tion required to inhibit continuous magnitudes has not
developed. We agree with the contributors’ stating that
more studies are required to clarify the exact role of cogni-
tive control in the model, and we discuss some options
raised by the commentators in section R5.3. Another
factor that can affect the saliency of different magnitudes
is the way that the stimuli are composed (i.e., a bottom-
up component). There are many different ways to create
dot stimuli, and the ratio between the magnitudes in two
groups can affect the saliency of the different magnitudes.
For example, if in one group the total surface area is 4 cm
and the number of dots is 4, and in the other group the total
surface area is 40 cm and the number of dots is 8, the total
surface ratio (4/40=0.1) is physically more salient than the
numerical ratio (4/8=0.5) and can affect performance
more. We elaborate on this issue in section R4.2.
An important component contributing to the develop-

ment of the number concept is language, specifically, the
exposure of infants to number words. Giving different
sets of items the same number word (three teddy bears,
three candies, three dolls) focuses attention on number
(Mix et al. 2016). As mentioned by Opfer & McCrink,
some studies demonstrate that preverbal infants are able
to learn rules based on number. Although this is true,
being preverbal does not mean that one cannot recognize
the meaning of words. Preverbal babies are able to under-
stand the meaning of many words (Baldwin 1993), and
animals such as dogs are able to understand the meaning
of hundreds of words (Kaminski et al. 2004) even though
they cannot utter them. Therefore, being preverbal does
not contradict understanding the meaning of number
words.

R3. Convincing evidence for the innateness of the
number sense: Is the number faculty alive and
kicking?

In this section, we address evidence supporting the notion
that number sense is innate. The target article focused on
comparison tasks in the visual modality, pointing out that
it is impossible to eliminate the option that continuous
magnitudes play a role in these tasks. Some of the contrib-
utors are still skeptical about this (Nieder, Opfer &
McCrink, and Rugani et al.), putting forward cross-
modal studies, animal studies, and studies on infants to
support their claims. We extend this discussion to evidence
suggested by these contributors.

R3.1. Cross-modal studies

Some contributors suggested that cross-modal studies with
infants bypass the inherent confound between numerosity
and continuous magnitudes (Burr, Hyde & Mou, Liber-
tus et al., and Opfer & McCrink). In such studies,
infants are exposed to X and Y number of items in one
modality (e.g., visual, tactile) and X number of items in a
different modality (e.g., number of sounds). Some of

these studies have demonstrated that infants look at mis-
matched trials (i.e., X items and Y sounds) and matched
trials (i.e., X items and X sounds) for different durations,
supporting the notion that numerosity is innate. Looking
closer into the literature of cross-modal studies, however,
reveals a complicated yet fascinating body of evidence
that should be further examined before cross-modal
studies can be the “smoking gun” (Hyde & Mou) for the
innateness of number.
There are several issues with cross-modal studies that

restrict the assertion that numerosity is innate. These
caveats were put forward more than a decade ago by Mix
et al. (2002a). We focus on two main caveats: confound
of number and continuous magnitudes and mixed results
in cross-modal studies.
First, the use of cross-modal designs does not disentan-

gle numerosity and continuous magnitudes. To illustrate,
it takes more time to play three drumbeats than two. To
keep the duration constant, one must change the rhythm –
three drumbeats in a faster tempo than two. Hence, the
match and mismatch that infants detect can be explained
by detecting other attributes, such as rhythm, and not nec-
essarily numbers. Indeed, in these studies a lot of effort was
put into “controlling” continuous magnitudes (Nieder),
but is it at all possible? The influence of continuous magni-
tudes could be reduced but not excluded, as we discussed
in the target article (see also Mix et al. 2002a). Because
in most of these studies the infants were 5 months old or
older, it is possible that discreteness was noticed. To evalu-
ate the role of continuous magnitudes in such studies, it is
important to separate the data according to congruity
between discrete and continuous magnitudes and investi-
gate whether the same conclusions (significant difference
between matched and mismatched looking time) hold in
the different congruity conditions. The bottom line here
is that controlling for continuous magnitudes by itself is
not enough. It is important to properly demonstrate the
effect of such control.
Second, the results of cross-modal studies are often con-

tradictory. In some studies, infants are expected to look
longer at matched trials (Izard et al. 2009; Jordan &
Brannon 2006; Starkey et al. 1990). In other studies,
infants are expected to look longer at the mismatched
trials (Feigenson 2011; Féron et al. 2006; Kobayashi et al.
2004; 2005). Feigenson (2011) suggests that the interpreta-
tion could go either way, depending on the design of the
study; in spontaneous preference (without any habitua-
tion), infants were found to look longer at matched trials,
whereas in studies that included habituation and tested
for violation of expectations, infants looked more toward
mismatched trials. However, this does not explain how
using the same design and the same analysis produce
mixed, often contradictory, results. Moore et al. (1987)
used a violation of expectation design previously used by
Starkey et al. (1983). Although Starkey et al. found prefer-
ence for matched trials, Moore et al. found the opposite: 7-
month-old infants looked significantly longer at the mis-
matched trials. Using the same design as Moore et al.
and the same analysis of Starkey et al. (1990), Mix et al.
(1997) found again that infants preferred mismatched
trials. The difficulties of replication cast some doubt on
the interpretation of the results of cross-modal studies. As
is the case with any study that involves newborns and
pre-verbal infants, interpreting the results is highly

Response/Leibovich et al.: From “sense of number” to “sense of magnitude”

48 BEHAVIORAL AND BRAIN SCIENCES, 40 (2017)

https://doi.org/10.1017/S0140525X16000960 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X16000960


challenging. Pre-verbal babies and newborns are not small
adults. Their vision, memory, attention span, and other cog-
nitive skills are limited, which limits the design options of
the study. The conclusions drawn from such studies
should reflect the possible contribution of such cognitive
differences between infants and adults to the results and
take into account the difficulty of interpreting them.

In sum, there are many challenges in cross-modal
studies: In addition to confounds of continuous magni-
tudes, it is difficult to interpret the results of studies that
are nonreplicable under some conditions (Coubart et al.
2015; Mix et al. 1997) or whose replication predicts an
opposite significant effect. What we can learn from the
cross-modal literature is that the ability to discriminate
between different magnitudes exists from birth (Izard
et al. 2009). This ability might include relying on both
number and non-numerical magnitudes and representing
abstractly the difference between “more” and “less.”

R3.2. Infant studies and the innateness of the number
sense

Lourenco et al., Savelkouls & Cordes, and de Hevia
et al. reviewed some studies conducted with infants as
young as 4 months old that demonstrate early emergence
of a number sense, suggesting that the number sense is
innate. Putting aside confounds of continuous magnitudes
that were already discussed in the target article, one
cannot yet conclude that numerosity is innate. Rubinsten
& Karni claim that it is impossible to separate between an
ability being innate or an ability being learned to the point
of automatic and fluent performance. Therefore, it is impos-
sible to say that either number discrimination or continuous
magnitude discrimination is innate; by the age of 4 months
there are many interactions of an infant with the environ-
ment, and a substantial learning process could have taken
place. Accordingly, what we measure at the age of 4 or 7
months could be the end result of such a learning process.
Accordingly, Rubinsten & Karni rightfully suggest shifting
the focus of the studies from talking about “innateness” to
studying how the biology-environment interaction shapes
number/magnitude representation.

R3.3. Animal studies

Beran & Parrish and Agrillo & Bisazza suggested that the
question of innateness could be answered by studying nonhu-
man animals, and especially animals that have no experience
with magnitudes at all. Imagine having an animal model that
has never been exposed to any magnitude – not in audition,
vision, touch, or any other modality. How would such an
animal perform in a comparative judgment task? The initial
preference of such an animal could tell us which magnitude
is truly innate. However, is that at all possible? Can one elim-
inate an animal’s access to all possible magnitude cues in all
possible modalities? It is difficult to think of such a scenario
because, for example, even eating for a longer time means
that you will probably eat more and feel fuller, and the
same goes for drinking. As long as it is impossible to divest
an animal of all possible magnitudes, then the best we can
do is to get as much information as we can from the
process in which animals learn to use magnitudes.

Agrillo & Bisazza discussed a study in which 1-day-old
fish were able to choose the larger group of fellow fish and

considered it as evidence of an innate number sense. The
claim is that because the fish were viewed serially, there
was no confound with continuous magnitudes. However,
it could be argued that the fish responded to the amount
of time it took them to see all of the fish, or the rhythm
in which the fish were viewed, not necessarily their quan-
tity. Therefore, what can be concluded is that some magni-
tude discrimination is innate. However, we cannot
determine which magnitude is innate.

R3.4. What does it mean to “control” for continuous
magnitudes?

Rugani et al. suggested that continuous magnitudes could
be controlled. They considered two continuous magni-
tudes – perimeter and area – and demonstrated how these
two magnitudes could be controlled through an experi-
ment. Rugani et al. described the relations between numer-
osity, area, and perimeter in an elegant and simple way.
Accordingly, number and perimeter were positively corre-
lated when the area was kept constant, whereas number
and area were inversely correlated when the perimeter
was kept constant.
However, dissociating perimeter and area from numer-

osity ignores the possibility that participants rely on other
magnitudes or even switch between them. Salti et al.
(2017) detailed an elaborate taxonomy showing a more
complex relationship between continuous magnitudes and
numerosity. According to this taxonomy, the inter-correla-
tions between the different continuous magnitudes make
the dissociation between numerosity and all continuous
magnitudes far from trivial.
Importantly, Rugani et al. acknowledge the importance

of continuous magnitudes in numerical perception, stating
that human infants and nonhuman animals can solve
complex numerical tasks “when both continuous magni-
tudes and numerical cues are available and consistent”
(para. 7), or in other words, when they are highly corre-
lated. We, of course, embrace this notion as it underlies
the target article. Moreover, we put forward the notion
that to develop an understanding of numerical perception
one has to relate to continuous magnitudes as an attribute
and a feature and not as a confounding element.
Importantly, the use of the word “control” is misleading

and meaningless. What does it mean to control continuous
magnitudes? Does it mean to abolish the influence of contin-
uous magnitudes? This option is impossible. Hence, “con-
trolling” continuous magnitudes means different things in
different studies. For Rugani et al., for example, it means
dissociating different continuous magnitudes in different
trials. For others, it means equating different continuous
magnitudes in different trials. The ambiguity of the word
“control” makes it difficult to interpret the results of
studies involving number and continuous magnitudes and
to understand the limitations of such studies. Therefore, it
is important to provide details of the measures taken in
order to deal with the confound of number and continuous
magnitudes (e.g., equating, dissociating, etc.).

R4. Are all magnitudes created equal?

Most of the literature in the field of numerical cognition
pits numerosity against all continuous magnitudes, as if
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they were one. Because continuous magnitudes are inter-
correlated with one another, many studies chose to
control a subset of them. However, are all continuous mag-
nitudes equally important for number perception? Do we
rely on one continuous magnitude more than we do
others? These questions have two important implications.
First, if continuous magnitudes do not all contribute
equally to number perception, then choosing which contin-
uous magnitude to manipulate can have a major impact on
the results. Moreover, as suggested by several contributors
(Durgin; Gebuis, Cohen Kadosh, & Gevers [Gebuis
et al.; Park, DeWind, & Brannon [Park et al.]; and van-
Marle), understanding the unique contributions of the dif-
ferent continuous magnitudes can help us go beyond
quantifying their impact to characterizing their influence
on number perception.

R4.1. Prominent continuous magnitudes in numerosity
comparison tasks

Continuous magnitudes differ in the type of information
they convey; for example, intrinsic magnitudes (i.e., diam-
eter, circumference, and area) are indicators of item size.
Intrinsic magnitudes can be calculated for a single item
or a set of items. For example, one can calculate the area
of a dot or the total area of three dots. In contrast, extrinsic
magnitudes (i.e., density and convex hull – the smallest
polygon containing all items) provide information on the
size and spatial location of the items (Salti et al. 2017).
Accordingly, extrinsic magnitudes that contain information
about both individual items’ size and the spatial relationship
between the items have been suggested to have greater
influence on numerical judgments.
One example for an extrinsic magnitude that has been

demonstrated to directly affect number perception is
density. More specifically, Durgin (1995) adapted partici-
pants to a large number of dots on one side of the visual
field and to a small number of dots on the other side of
the visual field. In the test stage, a patch of dots was pre-
sented to either the visual field adapted to high numerosi-
ties or that adapted to low numerosities. Participants were
then asked to estimate the number of dots. The results
revealed that estimates were affected by the type of adap-
tation: Adaptation to high numerosities yielded higher esti-
mates of numerosities. This was evident particularly for
high numerosities (more than 40). These findings led the
authors to conclude that density affected the perception
of numerosity.
Convex hull was also recently suggested as one of the

most influential continuous magnitudes in numerosity com-
parison tasks. Gilmore et al. (2016) showed that the ratio of
convex hull areas in a dot comparison task consistently
influenced responses for all ages (5–20 years old) and at
all stimuli display times (16, 300, and 2,400 ms), whereas
the influence of total surface area was stronger in childhood
but diminished with age. Accordingly, the authors high-
lighted the importance of controlling convex hull in numer-
osity comparison tasks. The mechanism by which convex
hull might influence number perception is still unclear.
Interestingly, convex hull has played a major role in the
subitizing literature. One of the prominent theories about
subitizing involves pattern recognition. Involvement of
pattern recognition suggests that non-symbolic numerosi-
ties that are arranged canonically form a pattern that is

automatically translated to a numerosity (Mandler &
Shebo 1982). For example, three dots in the form of a tri-
angle are automatically perceived as three. Katzin et al.
(2016) recently suggested that the shape of the convex
hull could account for the different ranges of enumeration
(subitizing, counting, and estimation).

R4.2. Is the relationship between continuous magnitudes
and number static?

Even studies that acknowledged the tight relationship
between numerosity and continuous magnitudes, and
tried to account for it, assumed that this relationship is
constant and not dynamic. However, we have already
shown that this relationship could change because of
context (Leibovich et al. 2015) or because of saliency
(Salti et al. 2017)
AlthoughGilmore et al. (2016) found that convex hull was

the most influential continuous magnitude, some studies
have shown other magnitudes to be more influential. For
example, in a numerosity comparison task, Leibovich and
Henik (2014) used the ratio between five continuous mag-
nitudes and numerosity magnitudes as predictors of
response time in two different settings. In the first setting,
the groups of dots appeared to the left and right of the
center of the screen, at the same latitude. Under this condi-
tion, stepwise regression revealed that after numerosity
ratio, total circumference was the most influential magni-
tude. In the second setting, however, the same dot stimuli
and procedure were used, but the groups of dots appeared
at different latitudes, so one appeared “higher” on the
screen than the other did. Under this condition, density
was the most influential among the continuous magnitudes.
Importantly, unlike Gilmore et al.’s design, the design of
Leibovich andHenik contained different levels of congruity
that were not taken into account. This demonstrates that the
influence of different continuous magnitudes may change
because of difference in stimuli, setting, or context.
Task context can also influence the dynamics between

number and continuous magnitudes. Leibovich et al.
(2015) asked participants to compare either the number
of dots (in the subitizing range, i.e., the numerical task)
or their area (i.e., the continuous task). Half of the partici-
pants started with the numerical task and half with the con-
tinuous task. The order of the tasks affected performance:
Participants who started with the continuous task did not
show any congruity effect; namely, their comparative judg-
ments of area were not affected by the number of dots. In
contrast, comparative judgments of area, by participants
who started with the number task, were affected by the
irrelevant number of dots, as demonstrated by the signifi-
cant congruity effect in the area task.
Another factor that can influence the relationship

between continuous magnitudes and numerosity is the
way in which the stimuli are constructed. This has recently
been demonstrated by Salti et al. (2017). In this work, the
authors used three different sets of stimuli. In one set, the
average diameter ratio was equal to the numerical ratio. In
the second set, the total surface area ratio was equal to the
numerical ratio. In the third set, the convex hull area ratio
was equal to the numerical ratio. In all sets, all five contin-
uous magnitudes (average diameter, total circumference,
total surface area, density, and convex hull) were either
congruent with numerosity (in half of the trials) or
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incongruent with numerosity (in the other half). Partici-
pants were divided into three groups. Each group saw
only one set of stimuli and performed either a numerical
task or a continuous task (as described in Leibovich et al.
2015). The results revealed that the way in which stimuli
were constructed (e.g., equating average diameter ratio
and numerical ratio) affected performance in both tasks.
For example, in the set where average diameter ratio was
equal to the numerical ratio, the congruity effect in the con-
tinuous task was larger than the congruity effect in the
numerical task. In the set where convex hull ratio was
equal to the numerical ratio, there was a very small congru-
ity effect in both tasks. Importantly, the tasks included
numerosities between 2 and 4 (i.e., in the subitizing
range); hence, more studies using different ranges of
number are needed to generalize this result to larger
numerosities.

The study of Salti et al. (2017) demonstrates how differ-
ent ratios between magnitudes may affect performance.
More specifically, if, for example, the ratio between two
numerosities is close to 0 (i.e., a very large difference)
and the ratio between total surface areas is closer to 1
(i.e., a very small difference), then it is more likely that
numerosity would be a more salient cue than total
surface area and would be used by the participant to
compare magnitudes. This could be the case that Burr
describes: Burr cites the work of Cicchini et al. (2016),
who presented participants with three dot patches and
asked them to pick the odd patch. The authors reported
that regardless of task instructions (to choose by a specific
magnitude or freely), participants tended to rely on numer-
osity when choosing the odd patch. However, a closer
examination of Cicchini et al.’s stimuli reveals that the
numerical ratio was smaller (closer to 0) than the ratios of
the continuous magnitudes, suggesting that numerosity
was more salient. Because the most salient cue was numer-
osity, it cannot be generalized to conclude that number is
always more salient than continuous magnitudes.

Another example of the dynamic relationship between
number and continuous magnitudes is the task itself.
Although in a comparison task we can see that more area,
larger size, and so forth are indicators of larger numerosity,
the opposite occurs in number estimation tasks (Gebuis
et al.). When participants are asked to estimate the
number of presented items, continuous magnitudes have
the opposite influence: The quantity of smaller items is
overestimated, whereas the quantity of larger items is
underestimated. Although this finding has been reported
many times (Cleland & Bull 2015; Gebuis & van der
Smagt 2011; Ginsburg & Nicholls 1988), there is still no
explanation for this phenomenon. One possible explanation
is that we compare the relative area (Sidney, Thompson,
Matthews, & Hubbard [Sidney et al.]) of the items to
the total area (of the screen, for example). From our expe-
rience, we know that we can fit more small objects into the
same area compared with larger objects, explaining why the
quantity of large items is underestimated and that of small
items is overestimated. This, however, is just a suggestion
that should be empirically confirmed.

To conclude, the influence of continuous magnitudes is
dynamic and depends on task, saliency, the stimuli them-
selves, and so forth. This complexity highlights the impor-
tance of studying these factors and understanding their
role in non-symbolic number and size perception.

Progressing in this direction of research can deepen our
knowledge of numerical cognition.

R5. Expanding the model

The suggested model puts forward new predictions that
could be tested empirically. In this part, we discuss these
predictions and ways to test them. In addition, we discuss
new lines of research aimed at expanding the scope of
the model.

R5.1. What can we learn from nonhuman animal studies?

As mentioned by Beran & Parrish, nonhuman animals
have demonstrated a wide variety of magnitude-related
behaviors. For example, parrots and chimpanzees were
able to learn to associate a quantity with a specific label.
This often required lengthy training (years), but neverthe-
less, it was possible. Chimpanzees that were trained to
choose the larger number of items were able to do so
using a variety of different continuous magnitudes. We
concur with Beran & Parrish that there is a lot to be
learned from such training studies in animals. The actual
training process can be insightful: Would the learning
curve be steeper if at first the stimuli were composed so
that the correlation between number and continuous mag-
nitudes would be high? Which incongruent continuous
magnitude would affect the rate of learning the most?
These are only some of the questions we could test. In
the case of the chimpanzee study (Cantlon et al. 2009b),
it would be interesting to analyze the congruity effect
throughout the training because it is possible that during
training the chimpanzees learned to inhibit the irrelevant
continuous magnitudes. It has been demonstrated that
nonhuman animals have some cognitive control abilities
(Deaner et al. 2007), and it would be interesting to study
the interaction of cognitive control abilities and magnitude
processing abilities in animals.

R5.2. What can we learn from computational models?

Another line of studying the possible role of continuous
magnitudes in non-symbolic number processing is by
using computational models. These are mathematical
models that do not require human or nonhuman partici-
pants. Instead, a computational model aims to “imitate”
brain processes of a computation (like when comparing
two non-symbolic numerosities). The model is validated if
the computational results are similar to behavioral results.
The advantage of computational models is that they are

independent of strategy and prior knowledge. However,
in the context of non-symbolic number processing, the
problem of the correlation between number and continu-
ous magnitudes still exists. Accordingly, computational
models have produced mixed results regarding the inde-
pendence of number and continuous magnitudes. Stoia-
nov & Zorzi found, in their computational model, both
number and area detectors operating in cooperation but
independently of one another. In contrast, van
Woerkom & Zuidema attempted to replicate Stoianov
& Zorzi’s model but failed to find number detectors,
casting doubt on the robustness of the number sense.
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Because of the great potential of computational models,
it is important to keep using this tool to study the approxi-
mate magnitude system (AMS) and our suggested model
under different scenarios. For example, Stoianov &
Zorzi suggested in their model that non-symbolic images
undergo a normalization process before being enumerated
by a numerosity detector. This normalization process allows
the system to ignore the different continuous magnitudes
of the to-be-counted items. This normalization process
could be equivalent to the suggested role of cognitive
control in our model. Namely, it could be that instead of
being completely inhibited, continuous magnitudes are
normalized. This possibility should be further examined.

R5.3. The role of cognitive control in numerical cognition

The role of cognitive control in our suggested model should
be further tested. As suggested by Merkley, Scerif, &
Ansari (Merkley et al.), cognitive control does not work
in isolation. Instead, it works in conjunction with
domain-specific knowledge. Merkley et al. raise the
intriguing possibility that both top-down and bottom-up
attention processes can divert attention toward the discrete
aspects of non-symbolic stimuli (i.e., numerosity). For
example, knowledge of number words may direct attention
in a top-down manner toward the numerosity of a set; phys-
ical features of the stimuli (e.g., the range of numerosity)
can divert attention in a bottom-up manner toward numer-
osity (like in small quantities in the subitizing range) or to
continuous magnitudes (like in large quantities). In other
words, top-down and bottom-up control processes may
play a role in diverting attention toward different features
of the stimuli.

R5.4. Levels of representation

An important question raised by Odic concerns the differ-
ent levels of representation of number and continuous
magnitudes: Do they share a common abstract representa-
tion? Or, do they have separate representations that share
similar encoding or decision-making components? A
recent study by Sokolowski et al. (in press) shed some
light on this question. In a quantitative meta-analysis of
more than 90 functional magnetic resonance imaging
studies, Sokolowski et al. demonstrated that the represen-
tation of symbolic and non-symbolic numbers in the brain
was distinct. However, the representation of continuous
magnitudes (brightness, line length, area, etc.) was not dis-
tinguishable from that of non-symbolic numbers. These
results suggest that non-symbolic numbers and continuous
magnitudes share a common representation. Of course,
one should always keep in mind that even if both non-sym-
bolic numbers and continuous magnitudes activate the
same brain regions, the pattern of activation might differ.
Therefore, it is important to directly study activation pat-
terns of continuous magnitudes and non-symbolic
numbers in the regions found by Sokolowski et al.

R5.5. Acquisition of the symbolic number system

The current model is limited to processing of non-symbolic
numerosities. The literature discusses two ways in which
symbolic numbers are acquired, that is, the symbol ground-
ing problem. The first is that symbolic numbers are

acquired by mapping them into an existing approximate
number system (ANS). The second possibility is that sym-
bolic and non-symbolic numbers are learned indepen-
dently of each other and influence each other reciprocally
(Leibovich & Ansari 2016). Sasanguie & Reynvoet
suggest that if number is not processed automatically, the
former theory seems unlikely. They suggest that the initial
stage of acquiring symbolic numbers is the mapping of
small symbolic numbers (up to four) to the object tracking
system, and that large numbers are not mapped onto the
ANS. We agree and highlight that a prerequisite for
this initial stage is an understanding that numerosity is
independent from continuous magnitudes, for example,
an understanding that the quantities of two ants and
two firetrucks are equal, despite their vast differences
in size. Combining our model with Merkley et al.’s sug-
gestion, we argue that acquiring the first number words
enhances attention toward numerosity, thereby allowing
a child to map the first symbolic numbers. Importantly,
learning the independency of numerosity does not
mean that continuous magnitudes will not bias perfor-
mance as we know they bias even adults (Leibovich
et al. 2015).

R5.6. Acquisition of fractions and other types of numbers

Sidney et al. mentioned that our model can also account
for acquisition of fractions and proportions, not only
whole numbers. They suggest that infants learn about
ratios and proportions from a single stimulus also. For
example, in a pizza box with eight slices, when two are
missing, you can assess howmuch pizza is left by comparing
the area covered by pizza and the area that is not covered.
The assessment may not be exact. Importantly, unlike
Sidney et al., we argue that this assessment does not
involve knowing the exact number of pizza slices (i.e.,
numerosity). We do agree with Sidney et al. that under-
standing ratios and continuous magnitudes are intercon-
nected, and that because continuous magnitudes are
processed relatively, they can be used to represent all real
numbers, not only whole numbers (see also Leibovich
et al. 2016).

R6. Math abilities and education

One of the most important questions regarding the practi-
cal implications of our model is educational: Can perfor-
mance in non-symbolic number/area comparison tasks
predict math abilities? The literature has mixed evidence
regarding this issue. Inglis, Batchelor, Gilmore, &
Watson (Inglis et al.) performed a p-curve analysis to
evaluate the distribution of p values in studies examining
the correlation between ANS and math abilities. Their
results demonstrated a right-skewed distribution of p
values; namely, four of nine statistically significant results
had a p value greater than .025. The authors suggested
that these results cast doubt on the relationship between
ANS and math abilities.
We agree with the contributors that investigating

whether there is a causal relationship between ANS and
formal math abilities is important. We believe that the dis-
crepancies regarding the existence of the correlation
between ANS and math abilities in the literature stem
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from several reasons. The first reason is the variance of
stimuli that are being used. It has already been demon-
strated that performing the same task with different
stimuli produces different results (Clayton et al. 2015;
Salti et al. 2017). For example, some studies (e.g.,
Bugden & Ansari 2016) demonstrated that only perfor-
mance in incongruent conditions was correlated with
math abilities. Accordingly, an asymmetry in the number
of congruent and incongruent stimuli might affect the cor-
relation between ANS and math ability. Second, different
types of stimuli might encourage a strategy of relying on
number or on continuous magnitudes, depending on
their saliency (e.g., Cantrell et al. 2015). It is possible that
ANS predicts math abilities differently at different ages;
ANS is a good predictor early on and is not so good later.
Namely, the correlation between ANS and math abilities
is attenuated by age. What might be responsible for such
a pattern of correlation? It is conceivable that during the
first steps of formal education, children still rely on more
informal strategies, like the correlation between number
and continuous magnitudes, and therefore the correlation
is stronger. With more formal math training, children rely
less on a “number sense” or a “magnitude sense” and use
more advanced strategies. Importantly, we suggest that
informal strategies continue to be useful outside of the
classroom in everyday situations (like choosing the fastest
line in the grocery store).

To gain more knowledge regarding the relationship
between the AMS and math abilities, a few steps should
be taken. First, it is important to use the same set of
stimuli and the same experimental setting (like similar pre-
sentation times, etc.). However, even if this is not possible,
the minimum requirement should be to report in detail
how the stimuli were created and what their physical prop-
erties were (congruity conditions, ratio between number
and non-numerical magnitudes, etc.). Second, it is impor-
tant to include age as a factor, to understand possible
age-related changes. A good example for age-related
changes is the study of Gilmore et al. (2016) that revealed
the specific influence of convex hull and total surface area
in children and adults.

R7. Beyond numerical cognition

Some contributors have suggested ways in which other
fields can benefit from the AMS theory. Gronau tries to
place numerical cognition on the continuum of domain-
specific versus domain-general organization of size in the
brain. The number sense theory suggests the number
has a designated module and hence is domain specific.
Combining number with continuous magnitudes is a
domain-general view. Indeed, the notion that size can
be an overarching principle of brain organization receives
support from the finding that objects are organized in the
ventral temporal cortex according to their size (Konkle &
Oliva 2012). As Gronau suggests, the commonalities
between numerical perception, language, and so forth
still require research.

Olivola & Chater emphasized the implications for the
field of decision making. They highlighted the connection
between magnitude evaluation and assigning values in the
decision-making process. For example, when traveling,
one must decide whether to purchase luggage insurance.

To make this decision, one evaluates the probability of
the luggage being stolen or lost against the cost of the insur-
ance. This process involves estimation and comparison of
probabilities and costs (i.e., magnitudes). Olivola &
Chater further argue that the variance in the decision-
making process indicates that a stable number sense
module does not exist.

R8. Moving forward: A problem shared is a
problem halved

So far, we have clarified some ambiguous issues in our sug-
gested model. We have reviewed some evidence that is
considered the “smoking gun” for the ANS theory and
argued against the interpretations. We hope that these sec-
tions help the readers better understand our model and
position. We then expanded further on the model, based
on the valuable suggestions raised by the contributors. In
addition, we discussed the implications of our model on
education and other fields of psychology. It seems that
there is a lot more work to be done to expand the model
and confirm or refute it. Moving forward, we would like
to suggest some ways in which numerical cognition
research could be promoted.
1. Sharing all of the available information about non-

symbolic stimuli could be of great value to all parties
involved. For example, even if the researchers chose to
define congruity only by total surface area, the information
about congruity and the ratio between the other continuous
magnitudes should be accessible, in an appendix or online
supplementary material if not mentioned in the paper.
2. Agreeing on a standard way of reporting the proper-

ties of a set of stimuli being used will help with comparing
across different studies.
3. Creating a database with stimuli from different exper-

iments for all to access.
4. Sharing raw data in depositories like the Open

Science Framework (https://osf.io) can enhance collabora-
tion and transparency.
5. Publishing nonsignificant results can help negate pub-

lication bias.
6. Preregistration of methods and expected results can

ensure that a design and analysis are theory driven.
Namely, preregistration requires a researcher to declare,
before starting the experiment, the method, the number
of participants, which analyses will be used, and what the
expected results and theoretical implications are. In this
way, the interpretation is less likely to be result driven,
and the likelihood of p-hacking and “fishing” will be
reduced.
To conclude, we discussed our theory suggesting that

continuous magnitudes are more basic and automatic rep-
resentations than numbers, and that understanding the cor-
relation between number and continuous magnitudes will
allow us to eventually understand the concept of number –
as a quality of the set that is independent of, but highly cor-
related with, continuous magnitudes. The contributors
helped us refine this notion and suggested ways in which
the model could be further improved and expanded. We
agree that there is a lot more work to be done to confirm
or refute the model. We have suggested some ways in
which research on numerical cognition can be promoted.
We are excited to continue working on improving this
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model and look forward to seeing what future studies will
bring.

NOTES
1. Tali Leibovich and Naama Katzin contributed equally to this

work.
2. Maayan Harel was not available to contribute to the

Response article and did not participate in writing it. Moti Salti
was not involved in writing the target article, but contributed to
the Response article and participated in writing it.
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Leibovich et al. propose that number sense is not innate but gradually emergent during ontogeny following experience. We argue that this hypothesis cannot be reasonably tested in humans, in which the contribution of neural maturation and experience cannot be experimentally manipulated. Studies on animals, especially fish, can more effectively provide critical insights into the innate nature of numerical abilities.
Various authors have proposed that humans and animals integrate multiple magnitudes (number, area, density, etc.) when comparing numerosities; proposed mechanisms range from the idea that numerical information is more cognitively demanding than continuous magnitudes, and it is processed as a last-resort strategy when no other information is available, to the idea that the number system increases its precision by integrating available non-numerical information in the process of estimation and comparison (Agrillo et al. 2011; Davis &amp; Perusse 1988; Meck &amp; Church 1983).
What is new in the model proposed in the target article is the idea that humans and nonhuman species are born with a quantitative system that holistically processes numerosity and continuous magnitudes, and that a &ldquo;sense of number&rdquo; would gradually develop during ontogeny from understanding the correlation between numerosity and continuous magnitudes.
In the Introduction, the authors acknowledge the importance of animal studies for understanding the mechanisms of numerical discrimination. However, the evidence of such studies, whether in favor of or against their hypotheses, is not discussed. Here we argue that (1) experiments on animals, specifically fish research, can be more appropriate than research on humans to test some of the model&apos;s assumptions, especially to examine the hypothesis that number sense is not innate, but rather stems from individual experiences; and (2) evidence from animal studies that would be useful for evaluating the proposed model is already available.
Humans, other mammals, and most birds are extremely immature at birth, and the procedures commonly used to study number sense with adults (e.g., training procedures or free choice tests) cannot be employed; conversely, procedures used with young individuals (e.g., habituation or violation of expectancy) are usually complex to adapt to testing adults. This prevents researchers from comparing the different developmental stages with the same paradigm. Poor sensory acuity can further prevent testing for numerical abilities at very young ages (see Leibovich et al.). On the contrary, most fish species produce offspring that are completely independent at birth. Newly born fish generally face the same ecological challenges as adults (i.e., evading predators, selecting an appropriate diet and catching prey, orienting themselves in space, and interacting with conspecifics). This allows researchers exploiting a number of spontaneous behaviors, such as preferring the largest amount of food or the largest group of conspecifics, the same preferences studied in adults. Recently, we found that guppies can be trained to have numerical discrimination within their first week of life, which makes it a tool available for cross-age comparisons (Piffer et al. 2013).
Innate cognitive abilities often appear later in life, not because they need experience to develop, but because the maturation of the nervous system is required or because a given cognitive ability is not necessary for survival in early life (a fact that was not considered by Leibovich et al.). In these cases, answering the question of number sense innateness requires the manipulation of experience to disentangle the relative contribution of cerebral maturation and individual experiences on the development of numerical abilities. For both practical and ethical reasons, in higher vertebrates it is difficult, if not impossible, to devise experiments that dissociate the role of these two factors (e.g., LeVay et al. 1980; Ridley &amp; Baker 1982). Such research is more feasible in fish. For example, one experiment found that in guppies that are prevented from experiencing different numbers of objects, the discrimination of large numerosities appears spontaneously at around 40 days of age; this capacity can, however, be anticipated at 20 days of age if guppies are reared in an environment that offers such experiences from birth (Bisazza et al. 2010).
Though none has been specifically designed to test the hypotheses of Leibovich et al., several fish studies provide information relevant to the present debate. Concerning the existence of a holistic system for processing numerical and continuous magnitudes, data on fish research generally support this view. For example, Agrillo et al. (2011) found that mosquitofish routinely integrate numerical information and continuous magnitudes. Their performance was more accurate when both pieces of information were simultaneously available, compared with when only numerical information or only continuous information was provided. However, not all continuous magnitudes are equally important. Mosquitofish appear to rely on the total surface area and convex hull, whereas total luminance and contour length appear to be irrelevant. Interestingly, interindividual differences in the use of continuous magnitudes were observed in this species (Agrillo et al. 2009). Likewise, fish can rapidly discriminate four from five companions (Lucon-Xiccato et al. 2017), but their performance drops dramatically when prevented from using the total surface area or total activity of the stimulus fish (Agrillo et al. 2008).
Regarding the question of whether number sense is innate, available data on fish seem to contradict the authors&apos; core hypothesis. In one experiment, 1-day-old fish were able to select the larger group of companions even when they were tested in an apparatus that allowed them to see only one fish at time, thus precluding the possibility of summing up areas or contours and gauging the density or convex hull of the groups (Bisazza et al. 2010). In another study in which guppies were trained in their first week of life to discriminate either between two numerical quantities controlled for the total surface area and other continuous magnitudes or between two figures differing in area by the same ratio (a condition in which numerical information was made irrelevant), only fish trained with numbers learned how to discriminate (Piffer et al. 2013). Therefore, if a temporal mismatch between the number sense and the discrimination of continuous magnitudes does exist, in fish this appears to be opposite to that predicted by the model.
We acknowledge that the aforementioned data were not collected with these working hypotheses in mind and that alternative explanations are available in some cases. Nonetheless, we believe the cited examples convincingly demonstrate the possibility of investigating in fish the interesting issues raised by Leibovich et al. in a way that cannot as easily be done in higher vertebrates.
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