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Abstract

In the last few years, the oscillatory behavior of functional differential equations has been
investigated by many authors. But much less is known about the first-order functional
differential equations. Recently, Tomaras (1975b) considered the functional differential equation

/ ( ' ) = 2 Ptif) yigiU))+q(t) At) + tit),

and gave very interesting results on this problem, namely the sufficient conditions for its
solutions to oscillate. The purpose of this paper is to extend and improve them, by examining
the more general functional differential equation

Subject classification (Amer. Math. Soc. (MOS) 1970): 34 C 10.

1. Introduction

The first-order functional differential equation

(1) y'(t) = ay(Xt)+by(t)

arises from an industrial problem. This equation has been discussed in detail by
Kato (1972) and Kato and McLeod (1971), and its oscillatory behavior (for b = 0)
has been mentioned by Ladas, Lakshmikantham and Papadakis (1972). The
oscillatory behavior of the more general functional differential equation

(2) y'(»
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was examined by Tomaras ((1975a) for n = 1), (1975b, and results obtained were
extended, by Tomaras ((1975a) for n — 1), (1975b) also, to the more general
functional differential equation with forcing term

(3) /(/) = £ Pi(t)y(Si(0)+q(t)y(t)+r(t).

Here, we will extend Tomaras's results for (2) and (3), by studying the oscillatory
behavior of the more general equations

(4) ?(?) = £ Pi{t)f{y{.gi{t)))+q{t) y(t)
t=i

and

(5) y\t) = ZPi(t)f(y(gi(t)))+q(Oy(t)+r(t).
»=i

In what follows, a solution of (4) or (5) is said to be "oscillatory", if it has
arbitrarily large zeros, and "nonoscillatory" otherwise.

The author wishes to express his thanks to the referee for some very useful
comments.

2. Unforced oscillation

We state at first the following lemma, which is an extension of Tomaras's (1975b)
Lemma 2.1.

LEMMA 1. Consider the functional differential equation

(6)

subject to the following conditions:
(Cl) F&),g4t)eC[[0,ao),R], F«(0>0, i= 1,2,...,«;
(C2) gi(t)<t, Vanl_>aogi(t) = oo andg^t) are nondecreasing, i= 1,2, . . . ,«;
(C3) h(y) e C[R, R], yh(y) > 0 (y^ 0), h(y) is nondecreasing and h(xy) = h(x)h(y)

for x,yeR.
If, in addition,

(7) limsupS f Fi(s)ds>M
«->oo i = l J G(t)

https://doi.org/10.1017/S1446788700011848 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011848


[3] Oscillation of differential equation 325

and

(8) WmM
n(\y

where M is a positive constant and G(t) = ma.xgi(t) (i = 1,2,...,«), then every
solution of (6) is oscillatory.

PROOF. Suppose that there exists a nonoscillatory solution y(t) of (6). Without
loss of generality, we may suppose that y(t) >0 for t^ t0, where t0 is a sufficiently
large constant. From (6) because of (Cl), (C2), (C3), we have y'(t)^O. Integrating
(6) from G(t) to t, we have

y(t)-y(G(t))+ P XF^hWgiis)))* = 0.
J aw t=i

From this and y'(i) < 0, we have

(9)
1=1 j am

X we have

(10) limXO = c,
l-»00

where c^O is a constant. Suppose c > 0 ; then, because of (7), (9) leads to a contra-
diction. Now, suppose c = 0. From (9), we have

n n
(11) 0<2 F,

r=lJG«)
If we take the lim sup of (11), as t -> oo, because of (8), we get a contradiction to (7).

In the case where the assumption (8) does not hold, it is easy to verify the
following

LEMMA 2. Suppose that the conditions (Cl), (C2), (C3) and (7) hold. Then, every

solution y(t) of (6) is oscillatory or lim(.*ooj>(0 = 0-

Now make the transformation z(t) = y(t)exp(—jt
c.q(s)ds), where c* is a

constant, to get (4) in the form

t= i l

where

hit) = -A(0/(exp (jB*"q(s)ds)j} exp [-j'j(s)ds}, i = 1,2,...,«.
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This transformation transforms (4) to (12), provided that (C3) (f(xy) =f(x)f(y))
holds. This is of the same form as (6) and so, applying Lemma 1 to it, we have the
following

THEOREM 1. Consider the functional differential equation (4), subject to the following
conditions:

(0 Pi(t),gi(t)eC[[O,ca),R], -Pi(t)>0, i=\,2,...,n;
(») gi(t)<t, limhooft(0 = oo andg^t) are nondecreasing, i = 1,2, ...,«;
(iii) q(t) is continuous for any t^O;
(iv)f(y)eC[R,R], yf(y)>0(y*0), f(y) is nondecreasing and f(xy) =f{x)f{y)

for x,yeR.
If, in addition,

(13) limsup £ f' -Pi(s)fUxp ( \°i<8)q{u)du)\ e x p ( - [°q(u)du\ ds>M,

where G(t) = maxgt(t), i = 1,2, ...,n, and M is a positive constant, and

then, every solution of (4) is oscillatory.

REMARK. Theorem 1 contains Tomaras's (1975b) Theorem 2.1.

In the case where the assumption (14) does not hold, we get the following

THEOREM 2. Suppose that conditions (i), (ii), (iii), (iv) and (13) are satisfied for (4).
Then, every solution y(i) of (4) is oscillatory or

lim y{t) exp I - q(s) ds I = 0.
<->oo \ Jc* !

The proof follows from Lemma 2.

(is)

EXAMPLE. Consider the equation

1 It— 15\3/2

| 1 ^
|

It is easily verified that the conditions of Lemma 2 are satisfied. Especially, for (7),
we have

f< l/.s-15\3/2 rt l / l_l5M«/» 10
limsup -I —I <w>hmsup - I - — ^ - i a s > - r .

Clearly, the condition (8) of Lemma 1 does not hold and (15) has a nonoscillatory
solution y{i) — {t—5)-i, which satisfies limt_>0Oj'(0 = 0.
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3. Forced oscillation

THEOREM 3. Consider the functional differential equation (5), subject to the following
hypotheses:

(HI) Pi{t), r(0eC[[0,oo),*], -/>«(*)>0, / = 1,2, ...,n;
(H2) gi(t)eCl[[0,oo),R],gi(t)<t,Umt^oogi(t)=cx,,g^t)>0, i=l,2,...,n;
(H3) q(t) is continuous for any t^O;
(H4) f(y)eC[R,R], yf(y)>0 (y^0),f(y) is nondecreasing andfipcy) =f(x)f(y)

for x,yeR;

(H5) limsup £ f' - / ^ / ( e x p ( f'%(«)du\) exp ( - f V«)<Ai) ds>M,
t-»x> 1=1 Jam \ \Jc* // \ Jc* I
where G(i) = maxg^i), i = 1,2, ...,n, am/ M is a positive constant;

(H6) <A ê exists a function QtyeC^&oo^R] such that

Q'(t) = r(t)e\p[-\ q(u)du), t>0,
\ J C* I

(I) Umg(O = O,
I-MO

or
(II) there exist constants ft, q2 and sequences (4) , (4 ) such that

4 = l inv^ 4 = oo and Q(t'J = ft, g ( Q = ft, ft < fi(O < ft.

JAen, (/"(I) Ao/tfc, euerj' solution y(t) of (5) is oscillatory or

Umy(t)exp(- (' q(s)ds) = 0,

while if (II) holds, every solution y(t) of (5) is oscillatory or such that

lim [2(0-2(01 = -<lx or -q2.
ll->00

PROOF. Set z{f) = y(t)exp(-j'c.q(s)ds); then, by using the assumptions (HI),
(H2), (H3) and (H4), (5) is obtained in the form

(16) z(0 h

where

>(0 (0/( ( £ % ( ) &)) exp ( -

https://doi.org/10.1017/S1446788700011848 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011848


328 Hiroshi Onose [6]

and

m{t) = r(f) exp ( - fq{s) dsj.

We may suppose that y(i) is a nonoscillatory solution of (5) and y(i) is positive for
sufficiently large t. In this case, z(t) is also a nonoscillatory solution of (16) and
z{t) is positive for sufficiently large t. Put Y(t) = z(i) — Q(f); then y(f) satisfies

(17) Y'(t)+ hi(t)f{Y{gi(t)) + Q(,glt))) = 0.

From (17), because of (HI), (H2), (H4) and the fact that z(t) = Y(t) + Q(t)>0,
we see Y'(f) < 0, so that we have lim^^ Y(i) = c, where c is a constant.

Suppose that the case (I) holds. If c < 0, then we have the contradiction that
z(t)<0 for sufficiently large t. If c>0, then we have

i i cl2, i = 1,2,...,«,

for sufficiently large t. From (17), we have

(18) Y'(f)+hi(t)
i=l

Integrating (18) from G{i) to t, we have

(19) n0-nG(0) + (s f
\i=l J G

By taking the hmsup of (19), as t ->oo, we get a contradiction to (H5). Hence, we
conclude that c — 0. From this, we see that

lim z{t) = lim y(t) exp I - q(s) ds) = 0.

Suppose that the case (II) holds. Put S(t) = Y(t)+qv Then we have

(20)

If d<0 in (20), then we have y(0+ft<0, for sufficiently large t, say f ̂ r^ this
leads to a contradiction to the fact that

If d is positive, then we have

(21) z(t) = Y(t) + Q(t) > F(0+ft = 5(0 > rf/2
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for sufficiently large t, say t^t2. By using (21) and (17), we get a contradiction to
(H5). If d = 0, then we have l i m ^ K O - Q(t)] = -qv

REMARK. Theorem 3 is connected to the results of Kusano and Onose (1974)
and Tomaras's (1975b) Theorem 3.1.
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