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The motion of several plates in an inviscid and incompressible fluid is studied numerically
using a vortex sheet model. Two to four plates are initially placed in line, separated by
a specified distance, and actuated in the vertical direction with a prescribed oscillatory
heaving motion. The vertical motion induces the plates’ horizontal acceleration due to
their self-induced thrust and fluid drag forces. In certain parameter regimes, the plates
adopt equilibrium ‘schooling modes’, wherein they translate at a steady horizontal velocity
while maintaining a constant separation distance between them. The separation distances
are found to be quantised on the flapping wavelength. As either the number of plates
increases or the flapping amplitude decreases, the schooling modes destabilise via oscilla-
tions that propagate downstream from the leader and cause collisions between the plates,
an instability that is similar to that observed in recent experiments on flapping wings
in a water tank (Newbolt et al., 2024, Nat. Commun., vol. 15, 3462). A simple control
mechanism is implemented, wherein each plate accelerates or decelerates according to
its velocity relative to the plate directly ahead by modulating its own flapping amplitude.
This mechanism is shown to successfully stabilise the schooling modes, with remarkable
impact on the regularity of the vortex pattern in the wake. Several phenomena observed in
the simulations are obtained by a reduced model based on linear thin-aerofoil theory.

Key words: swimming/flying, vortex shedding, vortex dynamics

1. Introduction
There has been considerable interest recently in understanding the hydrodynamic
interactions between flapping wings in moderate to high Reynolds number flows,
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for which inertial effects are relevant. Apart from scientific curiosity, this interest
is motivated by numerous biological and engineering applications. Specifically,
understanding why fish swim in schools (Pavlov & Kasumyan 2000) and birds fly in flocks
(Bajec & Heppner 2009) has been of long-standing interest to biologists and physicists
studying collective behaviour in animal groups. While many studies have investigated how
social interactions between fish may mediate schooling behaviour (Tunstrøm et al. 2013;
Swain, Couzin & Leonard 2015; Jolles et al. 2017), the so-called Lighthill conjecture posits
that orderly formations in schools may arise passively due to hydrodynamic interactions,
instead of requiring active control or decision making (Lighthill 1975). The underlying
mechanisms behind flow-induced collective behaviour could have applications to the
next generation of biomimetic underwater vehicles, which self-propel using mechanisms
inspired by fish locomotion (Triantafyllou, Triantafyllou & Yue 2000; Geder et al.
2017).

Field observations of the formations adopted by fish schools are diverse and typically
vary between species (Pavlov & Kasumyan 2000). For instance, some fish species
(e.g. minnow, bream, saithe, herring) tend to adopt lattice-like schooling formations, while
others (e.g. cod) adopt more disordered configurations (Pitcher 1973; Partridge et al. 1980).
Recent laboratory experiments have revealed that red nose tetra fish may adopt different
lattice-like formations when they school (Ashraf et al. 2016, 2017). Our paper is concerned
with the simplest of these formations, the so-called in-line formation, in which the line
connecting the fish is in the swimming direction. Indeed, fish have been observed to swim
in linear chains (Gudger 1944), and pairs of goldfish have recently been observed to school
in an in-line formation in which the follower beats its tail to synchronise with the oncoming
vortices shed by the leader (Li et al. 2020). Flying ibises have also been observed to
flock in an in-line formation, a statistical analysis of which reveals certain preferred
spatial phase relationships between the wingtip paths of successive birds (Portugal et al.
2014).

A number of recent papers have investigated the Lighthill conjecture numerically,
by simulating the coupled dynamics of bodies with a prescribed time-periodic flapping
kinematics (e.g. heaving, pitching or undulating) and the fluid that surrounds them. The
motion of the fluid is determined by solving the Navier–Stokes equations with no-slip
boundary conditions on the body, and the dynamics of the bodies are evolved through
the influence of drag and thrust forces on them. Simulations of pairs of elastic filaments
(Zhu, He & Zhang 2014; Dai et al. 2018; Park & Sung 2018) and hydrofoils (Lin et al.
2020) in two dimensions have shown that when the bodies are free to evolve in the
streamwise (x) direction but constrained in the lateral (y) direction, they tend to adopt
certain schooling modes, in which their cycle-averaged velocities and separation distance
are constant in time. Simulations have also shown that up to eight flexible plates in
two dimensions (Peng, Huang & Lu 2018) and two flexible plates in three dimensions
(Arranz, Flores & García-Villalba 2022) may execute a variety of stable in-line schooling
modes.

The drawback of numerical methods that solve the Navier–Stokes equations directly
is that they are typically limited to moderate Reynolds numbers Re = O(102)−O(103)
due to the presence of boundary layers near the bodies that require increasingly refined
grids and thus computational time as the Reynolds number is increased progressively.
However, schooling fish often operate in relatively high Reynolds number regimes,
Re = O(104) or higher (Triantafyllou et al. 2000), simulations of which have remained
elusive. A tractable alternative is a vortex sheet method, in which fluid viscosity is
neglected and the Euler equations are solved directly: the bodies are represented as
bound vortex sheets, and free vortex sheets are shed from the bodies’ sharp trailing
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edges (Alben 2009, 2010; Huang, Nitsche & Kanso 2016; Fang et al. 2017). Vortex
sheet simulations showed that pairs of rigid plates undergoing either heaving or pitching
kinematics can adopt stable in-line schooling modes (Fang 2016; Heydari & Kanso 2021).
A recent study of larger in-line formations found that the number of wings that could
stably school together was limited by hydrodynamic interactions (Heydari, Hang & Kanso
2024). That is, the number of wings in an in-line school could be increased up to a point,
after which the last wing would fall behind and be unable to keep up with the school.

Experimental platforms in which collectives of hydrofoils are actuated in a water tank
offer a valuable testbed for investigating the hydrodynamic mechanisms that underpin
schooling, as they are more controllable and reproducible than biological systems (Becker
et al. 2015). A study showed that a pair of hydrofoils that executes heaving kinematics
adopts stable steady schooling modes that are quantised on the so-called schooling
number S = d/λ, where d is the tail-to-tip distance between the wings, and λ= U/ f
is the wavelength of the flapping motion, U being the translational velocity, and f
the flapping frequency. The schooling number measures the spatial phase coherence of
the two swimmers: integer values of the schooling number, which were observed in
the experiment, correspond to in-phase states in which the pair traces out the same
path through space, while half-integer values indicate out-of-phase states. A recent
experimental study on larger collectives of hydrofoils showed that increasingly large chains
are unstable to flow-induced instabilities termed flonons, wherein the horizontal positions
of downstream wings begin to oscillate with increasingly large amplitude down the group,
and thus cause collisions between the trailing members (Newbolt et al. 2024). That study
suggests that while hydrodynamic interactions can bind wings into a schooling mode, they
can also lead to an instability that breaks the bound mode.

In this paper, we conduct vortex sheet simulations of collectives of in-line heaving
plates, with a view to investigating the bound states and flow-induced instabilities that
may arise. Care is taken to evaluate the near-singular integrals that arise when a vortex
sheet is near a body, which is essential to prevent the vortex sheets from unphysically
crossing the bodies (Nitsche 2021). In summary, we observe that the collectives adopt
a number of schooling modes, which become more stable as the flapping amplitude is
increased progressively. The separation distances between the plates are quantised on
the schooling number, in agreement with experiments on heaving hydrofoils in a water
tank (Ramananarivo et al. 2016; Newbolt et al. 2022, 2024). Moreover, as the number
of wings is increased, the collective tends to destabilise via an oscillatory instability that
propagates downstream from the leader and causes collisions between the followers, a
phenomenon that is reminiscent of the flonons observed in recent experiments (Newbolt
et al. 2024). We rationalise these results qualitatively by proposing a reduced model for
the dynamics of interacting plates based on the seminal thin-aerofoil theory of Wu (1961).
We also demonstrate that a simple control mechanism, wherein each plate adjusts its
flapping amplitude according to its velocity relative to the plate directly ahead, mitigates
the flow-induced oscillatory instability.

The paper is organised as follows. In § 2, we present the vortex sheet model (§ 2.1),
formulae for the thrust and drag forces (§ 2.2), and the numerical method used to solve
the model equations (§ 2.3). The numerical results are presented in § 3: specifically, the
steady-state motion for one plate (§ 3.1), sample results for more than one plate (§ 3.2),
the evolution towards steady schooling states in multi-plate configurations (§ 3.3), the set
of all equilibria and their loss of stability (§ 3.4), our proposed stabilisation mechanism
(§ 3.5), and the reduced model based on thin-aerofoil theory (§ 3.6). Concluding remarks
are given in § 4.
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d3 d2 d1

A U

L

Figure 1. Schematic of the vortex sheet model. The plates (green), each of length L , are in an in-line formation
and heave periodically in the vertical direction with amplitude A and frequency f while translating to the right
with horizontal velocity U . The vortex sheet shed by the first, second, third or fourth plate is coloured blue,
red, pink or cyan, respectively, a colour scheme that will be repeated throughout the text. The figure shows
a sample simulation at t = 3.25 (which equals 1.625 flapping periods) of n = 4 plates with A = 0.1 that were
initially equispaced by a distance d0 = 2.25. The tail-to-tip distances di are also shown.

2. Numerical approach
The model used to simulate n flapping plates is illustrated in figure 1, for n = 4. The fluid is
assumed to be inviscid and incompressible, and also irrotational except for the wake behind
each plate. The wake is modelled by a vortex sheet formed by shedding vorticity from the
plates’ trailing edges at each time step. The plates are modelled by bound vortex sheets,
with vortex sheet strength determined to satisfy the no-penetration boundary condition,
or the requirement that no fluid flows through the plates. The fluid velocity in turn is
determined by the vorticity in the plates and the wakes.

The plates are all of length L and mass per unit span M , and are constrained to
maintain an in-line formation, in that their cycle-averaged positions lie on a single
horizontal line. They are initially separated by a distance d0 from their nearest neighbours,
and are given the same initial horizontal velocity U0. The prescribed vertical heaving
motion is oscillatory with vertical position A sin(2π f t), corresponding to frequency f
and amplitude A. This vertical motion induces a horizontal thrust that accelerates the
plates, and is countered by a skin friction drag. Thrust and drag forces vary from plate to
plate, causing distinct horizontal plate motion and thus distinct evolution of the separation
distances d j (t) between the plates.

While the flow is assumed to be inviscid, viscous effects are accounted for in two ways.
First, they are necessary for vorticity to separate from the bodies. Second, they lead to
a skin friction drag Fd on each plate, which we model using the Blasius boundary layer
drag law Fd = −Cdρ

√
Lν U 3/2, where Cd is the drag coefficient, ν is the fluid kinematic

viscosity, ρ is the fluid density, and U is the instantaneous horizontal velocity of the plate.
An alternative drag model used by Fang (2016) and Heydari & Kanso (2021) more closely
accounts for the velocity above and below the plate. However, in Appendix C we present a
comparison between these two models, which shows that the differences between them are
minor. We thus opt to proceed with the simpler drag model herein. The resulting governing
equations of the fluid flow and plates’ dynamics is non-dimensionalised by using the
plate length L as the length scale, the flapping half-period 1/(2 f ) as the time scale, and
4ρ(L f )2 as the pressure scale. In this paper, we fix the values of the dimensionless plate
mass M̃ = M/ρL2 and drag coefficient C̃d = Cd

√
ν/(2 f L2), as will be discussed in § 3.1,

and study the dependence of the plate motion on the initial velocity Ũ0 = U0/(2L f ),
the initial separation distance d̃0 = d0/L , the flapping amplitude Ã = A/L , and the
number of plates n. From here on, all variables are non-dimensional and the tildes are
dropped.
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2.1. The vortex sheet model
The n bound vortex sheets representing the flat plates have positions

x j
b(α, t) = (x j

b , y j
b )(α, t), α ∈ [0, π], j = 1, . . . , n, (2.1)

and sheet strengths γ j (α, t). The sheets are initially on the horizontal x-axis, with position

x j
b (α, 0) = s(α) − ( j − 1)(d0 + 1), s(α) = cos(α)/2, (2.2)

y j
b (α, 0) = 0 . (2.3)

That is, each plate has unit length, with α = 0 at the leading edge (right), α = π at the
trailing edge (left), and d0 the tail-to-tip distance between plates. The horizontal evolution
of x j

b is determined by the displacement X j (t) of plate j from its initial position, while
the oscillatory vertical component y j

b (t) is prescribed:

x j
b (α, t) = X j (t) + x j

b (α, 0), X j (0) = 0 (2.4a)

y j
b (α, t) = A sin(πt). (2.4b)

The plate position X j (t) evolves according to the induced thrust and drag forces acting on
the plate (see § 2.2). The plate vortex sheet strength is determined numerically by enforcing
the no-penetration boundary condition on the plate walls.

The free vortex sheets representing the wakes are parametrised by the circulation
parameter Γ , where Γ

j
T is the total circulation around the j th sheet:

x j
f (Γ, t), Γ ∈ [0, Γ

j
T ], j = 1, . . . , n. (2.5)

Together, the free and bound vortex sheets induce the fluid velocity at any point xo:

u(xo, t) = 1
2π

n∑
j=1

[∫ π

0

(xo − x j
b(α, t))⊥

|xo − x j
b(α, t)|2

γ j (α, t) s′(α) dα

+
∫ Γ

j
T

0

(xo − x j
f (Γ, t))⊥

|xo − x j
f (Γ, t)|2 + δ2

dΓ

⎤⎦ , (2.6)

where (x, y)⊥ = (−y, x). Here, the parameter δ regularises the flow for points xo near or
on the free sheet, using the vortex blob method (Krasny 1986). If xo is a point on the plate,
then the integrals in (2.6) are evaluated in the principal value sense, and yield the average
of the velocity above and below the plate.

The free sheet evolves with the fluid velocity (2.6) as

dx j
f

dt
(Γ, t) = u

(
x j

f (Γ, t), t
)

. (2.7)

Its circulation Γ is determined using the circulation shedding algorithm of Nitsche &
Krasny (1994). Vorticity is shed at time t by releasing a particle from the plate’s trailing
edge, with vertical velocity equal to the plate’s vertical velocity, and horizontal velocity
equal to the average horizontal fluid velocity u(x j (π, t), t) = U

j
e at the trailing edge, as

obtained from (2.6). The particle’s circulation is such that the Kutta condition is satisfied,
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with

dΓ
j

T

dt
= −1

2
[(u j

+)2 − (u j
−)2], (2.8a)

U
j
e = 1

2
(u j

+ + u j
−), (2.8b)

γ j (π, t) = u j
− − u j

+, (2.8c)

Here, u j
+ and u j

− are the horizontal velocity components above and below the j th plate at

the trailing edge, obtained from γ j (π, t) and U
j
e .

2.2. Thrust and drag
The plates experience a thrust force due to the suction at their leading edges, which arises
because the fluid velocity is singular there. Specifically, the thrust is obtained from the
leading edge bound vortex sheet strength. The sheet strength is unbounded at the leading
edge, with γ j (α, t) ∼ �s−1/2 as �s → 0, where �s = 1/2 − s(α) is the distance from
the leading edge. However, the desingularised vortex sheet strength γ j (α) s′(α) remains
bounded. The horizontal thrust force acting on the plate is given by (Fang et al. 2017;
Eldredge 2019)

F j
x = π

4
γ̃ 2

j , where γ̃ j = lim
s→1/2

γ j (s)

√
1
4

− s2, (2.9)

and, with our choice of s(α) = cos α/2,

γ̃ j = − lim
α→0

γ j (α) s′(α). (2.10)

The relation (2.9) holds for steady or unsteady plate motion. For steady motions, the
result reduces to γ̃ = −2V , where V is the vertical velocity of the leading edge, which is
used by Alben (2010). For completeness, both the unsteady and steady results are derived
here, in Appendices A and B, respectively. Appendix B also shows a comparison between
the flow field around a plate in a steady vertical flow, and the unsteady flow field around an
impulsively started plate moving vertically upwards with constant velocity, the latter being
computed using the method described in § 2.3. We detail how the flow field (figure 14) and
circulation (figure 15) in the unsteady case approach that of the steady case in the long-time
limit.

As discussed at the beginning of § 2, the drag force acting on the plate is modelled to
be proportional to (U j (t))3/2, where U j (t) is the plate velocity. The horizontal motion of
the n plates is thus governed by the system of ordinary differential equations

dX j

dt
= U j , X j (0) = 0 (2.11a)

M
dU j

dt
= π

4
γ̃ 2

j − Cd(U j )3/2, U j (0) = U0. (2.11b)

The flow evolution is determined by the system of ordinary differential equations (ODEs)
(2.7), (2.8) and (2.11), in addition to a Fredholm integral equation for γ̃ . Its numerical
solution is described next.
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2.3. Numerical method
The plates (2.1) are each discretised by Nb + 1 point vortices corresponding to
αk = kπ/Nb, k = 0, . . . , Nb. The free vortex sheets are discretised by N f + 1 vortex blobs
with total circulation Γ

j
T , created by shedding one blob at each time step; thus N f increases

with time. Time is discretised by tm = m �t (t), where typically �t is smaller at early times
near the beginning of the motion, and increases linearly from �t1 to a final time step �t2 at
a time t1, after which it remains constant. The small initial time steps are needed to resolve
the large initial velocities about the trailing edge. The system of ODEs (2.7), (2.8) and
(2.11) is solved using the fourth-order Runge–Kutta method. At each stage, the following
steps are taken (Sheng et al. 2012).

(i) Set the vertical plate velocity V (t) = Aπ cos(πt).
(ii) For each plate j = 1, . . . , n, find the sheet strength γ

j
k = γ j (αk, t) such that the

vertical fluid velocity in (2.6) evaluated at the midpoints αm
k = (αk−1 + αk)/2 equals

the prescribed vertical plate velocity,

u
(

x j
b(α

m
k , t), t

)
· n = V (t), k = 1, . . . , Nb, (2.12)

where n = (0, 1) is normal to the plate. Here, the singular integrals in the velocity
(2.6) are computed with what is in essence the alternating point vortex method of
Shelley (1992). In addition, enforce zero total circulation around the plate and its
wake. The resulting (Nb + 1) × (Nb + 1) linear system for γ

j
k , k = 0, . . . , Nb, is

inverted using a precomputed LU decomposition.
(iii) Set γ j (π, t) = γ

j
Nb

and U
j
e = u(x j

b(α
m
Nb

, t), t), and obtain u+
j and u−

j using (2.8b)

and (2.8c). Then shed a particle x j
new from each trailing edge with velocity

dx j
new

dt
= (U

j
e , V ) (2.13)

and circulation such that (2.8a) is satisfied. As explained by Nitsche & Krasny (1994,
§ 2.4(iii)), only separated flow is considered when determining u+

j and u−
j .

(iv) Move all previously shed particles with velocity

dx j
f,k

dt
= u

(
x j

f,k, t
)

, k = 0, . . . , N j
f , (2.14)

and add x j

f,N j
f +1

= x j
new, then increase N j

f by 1. Here, the integral over the bound

vortex sheets in (2.6) is near-singular when the target point is near a plate. The near-
singular integrals are computed using the corrected trapezoid rule of Nitsche (2021).

(v) Determine the desingularised leading edge sheet strength γ̃ j using (2.10), and move
the plates by (2.11).

Typically, one new particle is shed per time step. In some cases, a particle is shed every
other time step or more for the sake of computational efficiency.

3. Numerical results
This section presents numerical results for n = 1, 2, 3 and 4 plates, with
flapping amplitudes A = 0.1−0.4, mass M = 1, and drag coefficient Cd = 0.1. The
numerical parameters are δ = 0.2, Nb = 100, t1 = 1, �t2 = 0.008/A and �t1 ≈ �t2/10.
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Figure 2. Time evolution of the translation velocity U of a single plate (n = 1), for various initial velocities
U0 and the four amplitudes A indicated in the legend. The oscillatory curves show the instantaneous velocity
U (t), upon which we have superimposed a cycle-averaged velocity obtained by averaging U (t) over a moving
window of size equal to the oscillation period.

Results were confirmed to remain basically unchanged under mesh refinement (decreasing
�t , increasing Nb) or smaller values of δ.

3.1. Single plate, n = 1
Here, we consider one plate moving with a prescribed oscillatory heaving motion of
amplitude A, given an initial horizontal velocity U0. The plate moves forward by the
thrust force (2.9), as vorticity is shed from its trailing edge. Figure 2 shows the resulting
horizontal plate velocity for a range of amplitudes A and initial velocities U0. The plate
horizontal velocity oscillates with the same frequency as the heaving motion. For each
case, the figure shows both the actual oscillatory velocity U (t), and the cycle-averaged
velocity obtained by averaging U (t) over a moving window of size equal to the oscillation
period. The figure shows that in all cases, the cycle-averaged plate velocity approaches
a steady-state velocity U∞ that depends solely on the amplitude A and is independent
of the initial velocity U0. The steady-state velocity U∞ increases as A increases, with
values U∞ = 0.665, 1.85, 3.58 and 5.83 for A = 0.1, 0.2, 0.3 and 0.4, respectively. These
values of U∞ are approximately consistent with those obtained in experiments on heaving
wings in a water tank (Ramananarivo et al. 2016), which motivates our choice of the drag
coefficient Cd .

Figure 3(a) shows the shed vortex sheet behind one plate oscillating with amplitude
A = 0.2, at time t = 25. The given initial velocity is that of the corresponding steady state,
U0 = 1.85. With each upward (downward) motion of the plate, positive (negative) vorticity
is shed from the trailing edge, which leads to a sequence of counter-rotating vortex pairs
shed during each oscillation period. By taking the curl of (2.6), we obtain the regularised
vorticity corresponding to the shed vortex sheet, which is shown in figure 4(a). Soon
after being shed, the vorticity settles into a sequence of almost equally spaced vortices
of alternating sign, with the positive (negative) vortex positioned slightly below (above)
the centreline y = 0.
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Figure 3. Plate and vortex sheet positions at t = 25, for the flapping amplitude A = 0.2 and n = 1, 2, 3 and 4
plates (from top to bottom). All plates are initially equispaced with a distance near d0 = 4.2.

3.2. Several plates, n = 2, 3, 4
Figure 3(b) shows the two vortex sheets shed behind two plates, both heaving with
amplitude A = 0.2. The colour scheme is the same as that in figure 1, with the vortex
sheet shed by the leader (follower) plate indicated in blue (red). There is a large amount of
stretching far downstream of the plates as the two sheets interact. We plot the sheets using
a linear interpolant of the shed point vortices if neighbouring points are sufficiently close
to each other. Otherwise, after a sufficiently large amount of stretching, we simply plot
the individual point vortex positions. The initial distance between the plates is d0 = 4.2,
which is, as will be seen later, near an equilibrium position. The two sheets are seen to
roll up into four vortices per period, a phenomenon that is also evident in the top panel of
supplementary movie 1. This is seen more clearly in figure 4(b), which shows a sequence
of two positive vortices followed by two negative vortices per period. This pattern repeats,
although in an irregular fashion. Groups of four vortices are discernible, but their relative
positions do not settle into a clear steady pattern.

Figure 3(c) shows the three vortex sheets shed behind three plates heaving with
amplitude A = 0.2. The initial separation between all plates is as before, d0 = 4.2. A
pattern seems to appear farther downstream of the plates. Most notably, near x = 20, the
vortices have spread further from the midline y = 0. Figure 4(c) reveals more clearly a
repeating pattern of groups of six vortices, i.e. three positive followed by three negative.
Sufficiently far downstream, for x < 25, the vorticity is clearly concentrated away from the
midline, as it has spread significantly farther than in the n = 2 case shown in figure 4(b).
A simulation with n = 3 plates is shown in supplementary movie 2.
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Figure 4. Same as figure 3, but the regularised vorticity is plotted instead of the vortex sheet. The plates are
indicated in black. Absolute vorticity values larger than 4 are represented by the darkest blue and red colours.

Figures 3(d) and 4(d) show the vortex sheets and corresponding vorticity shed behind
n = 4 moving plates. It is difficult to detect a pattern in the downstream vortex sheet
positions. The vorticity is expected to consist of groups of eight vortices, i.e. four positive
followed by four negative, but the pattern is less clear and more random. Furthermore, the
spread away from the midline is not as big as for n = 3. A simulation with n = 4 plates is
shown in supplementary movie 3.

The effect of the trailing plates on the leader is seen most clearly in figure 3. In all four
cases, the given initial velocity is U0 = 1.85, and the initial distances between the plates
are d j (0) = 4.2. The shape of the sheet between the first and second plates is basically
unchanged in all cases from the single-plate case. That is, the second plate has little
influence on the wake in front of it. Similarly, the wake behind the second and third plates
is unchanged from the n = 2 case, so the third plate also has little influence on the wake
in front of it. It is evident that as the number of plates behind the front plate increases, the
front plate has travelled slightly further by t = 25. However, after an initial transient, we
observe that U∞ remains essentially unchanged, with only a small increase of less than
3 % as n increases. We attribute this increase in the leader’s velocity, albeit small, to the
fact that the leader’s bound vorticity is modified by the downstream plates’ bound and
shed vorticity, as is evident from step (ii) of the numerical method presented in § 2.3. The
leader’s bound vorticity in turn affects its thrust, as given by (2.9).

3.3. Steady-state positions for A = 0.2, n = 2
The distances d j (t) between the plates evolve in time. We are interested in the long-term
behaviour of d j and the associated possible steady-state configurations. This subsection
presents results for a pair of wings (n = 2) with flapping amplitude A = 0.2, with a range of
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Figure 5. Snapshot at t = 25 of three of the schooling modes obtained for a pair of plates (n = 2) with flapping
amplitude A = 0.2. The plates are initially located near the first, second and third equilibria, which, from top
to bottom, correspond to the distances d∞,1

1 = 4.18, d∞,2
1 = 8.01 and d∞,3

1 = 11.82, respectively.

initial separation distances d0. Since the steady-state cycle-averaged plate velocity U∞ is
found to always be independent of U0, from here on, the initial horizontal velocity of each
plate is taken to be the steady-state cycle-averaged velocity of a single plate flapping with
the same amplitude. We observe that the two plates evolve towards a steady configuration
in which the distance between them, after undergoing several oscillations, approaches a
constant, but that this equilibrium distance d∞

1 depends on the initial distance d0. Figure 5
shows snapshots of simulations performed for three different values of d0, at a time when
the separation distance d1 between the plates has reached the equilibrium values d∞,1

1 ,
d∞,2

1 and d∞,3
1 . Supplementary movie 1 also shows examples of simulations performed

for different values of d0, which illustrates how changing d0 causes the pair of plates to
attain different equilibria.

Note that in figure 5(a), the distance d∞,1
1 between the plates is approximately the

distance travelled by the plate in one period of the heaving oscillation, as evident by
the single upward and downward wave of the shed sheet. In figure 5(b), the equilibrium
distance is approximately twice that of figure 5(a), and in figure 5(c) it is approximately
three times. The distance travelled by a plate with velocity U∞ in one oscillation period is
the wavelength λ= U∞/ f , where f = 1/2. Using the value U∞ = 1.85 corresponding to
A = 0.2, we find that the equilibrium positions satisfy
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d∞,1
1 ≈ 4.18 ≈ 1.13λ, d∞,2

1 ≈ 8.01 ≈ 2.16λ and d∞,3
1 ≈ 11.82 ≈ 3.19λ. (3.1)

Clearly, the plates have settled at equilibrium configurations near integer values of the
non-dimensional schooling number (Becker et al. 2015)

Sk = d∞,k
1
λ

. (3.2)

Note that while the first equilibrium has schooling number S1 = 1.13, i.e. slightly larger
than 1, the following schooling numbers S2 = 2.16 and S3 = 3.19 increase approximately
by integer values, Sk ≈ Sk−1 + 1.

3.4. Equilibrium schooling states and their loss of stability
Figure 6 shows the dependence of the distances d j (t) between plates on the initial
separation distance d0, for in-line formations of n = 2, 3 and 4 wings (columns from left to
right) and the three flapping amplitudes A = 0.4, 0.3 and 0.1 (top to bottom rows). These
flapping amplitudes complement the value A = 0.2 considered in § 3.3. We proceed by
discussing each column in turn.

The first column shows results for n = 2 plates. It shows the distance d1(t) between the
plates as a function of time, for 35 or 36 different initial separation distances d0. During
an initial time interval of length approximately d0/U∞, the vorticity of the leader has
not yet reached the follower, and both plates travel with the same velocity, each without
the influence of the other. During that time interval, the distance between them stays
constant. The larger the initial distance d0, the longer this initial time interval. Once
the vortex wake of the leader reaches the follower, that vorticity changes the evolution
of the follower, and the distance between the plates changes. In all cases, the distance
d1(t) initially oscillates, then the amplitude of these oscillations decreases in time as
d1 approaches a constant steady-state value. Notice that the steady-state distances d∞,k

1
decrease in proportion to U∞ as A decreases from 0.4 (top row) to 0.1 (bottom row). That
is, as the heaving amplitude is decreased progressively, the plates are closer together in
their steady configurations. Note also that the oscillations in d1 are larger, relative to the
value of d1, for smaller values of A.

As already observed in figure 5, there are several steady states, depending on the value
of d0. The steady states are measured by their schooling number (3.2), using the value for
U∞ corresponding to the given value of A. The distinct values of d0 yield six distinct
corresponding steady states, S1, . . . , S6. The schooling numbers associated with each
steady state are listed in black in the first column of figure 6, and the differences between
them are in red. For all three values of A, S1 is slightly larger than 1, with larger schooling
numbers increasing by integer values as observed in § 3.3.

The curves are colour-coded according to the steady state reached. The curve with
smallest d0 is black and reaches zero in finite time, which corresponds to collision of
the two plates. While generally the leader travels without being influenced much by the
follower, the follower may accelerate and collide with the leader if the initial separation
distance is sufficiently small.

The second column in figure 6 illustrates the case of n = 3 plates, and shows the distance
d2(t) between the second and third plates. As for n = 2, the addition of an nth plate behind
a group of n − 1 plates leaves the motion of the first n − 1 plates mostly unchanged. That
is, for n = 3, the dynamics of d1(t) is roughly the same as that shown in the first column
of figure 6, except in those cases of collision between the second and third plates, after
which the computation stops. The curves are coloured by the equilibrium reached in the
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Figure 6. Time evolution of the distances d1(t) (left-hand column), d2(t) (middle column) and d3(t) (right-
hand column) for in-line formations of n = 2, 3 and 4 plates, respectively. The plots in the top, middle
and bottom rows correspond to the heaving amplitudes A = 0.4, 0.3 and 0.1, respectively. The different
curves in each plot are obtained by varying the initial distances d j (0), and are colour-coded according to
the equilibrium schooling mode reached for two plates (n = 2, left-hand column). The schooling numbers
Sk = d∞,k

1 /λ corresponding to each equilibrium distance d∞,k
1 are written in black in the first column, with the

differences between them written in red. Here, λ= 2U∞ is computed using the steady-state U∞ for the pair of
plates.

absence of the third plate, i.e. using the same colour for a given d0 as in the first column
of figure 6.

In the case of n = 3 plates, the second and third plates move with the same velocity
until the vortex wake from the first plate reaches the last plate, since, before then, they
both are affected only by the (equal) wake from the plate directly ahead. The time interval
of constant d2 is therefore approximately 2d0/U∞, twice as long as the time interval of
constant d1. However, after this interval, the motion is more irregular than in the case of
two plates, as is evident by comparing the first and second columns of figure 6. For A = 0.4
(top row), one trajectory close to S2 (red) jumps to S1. For A = 0.3 (middle row), there are
more trajectories that move to a different, typically lower, equilibrium schooling number.
There are also more collisions between the plates. The situation is noticeably worse for
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A = 0.1 (bottom row). Only a few curves reach their corresponding equilibrium, with the
rest either exhibiting collisions or being on the path to collision. We thus conclude that
the equilibria Sk appear to lose stability when n is increased from 2 to 3, and when A
is decreased from 0.4 to 0.1. We note that some of the curves showing d2, e.g. the black
curves at the bottom of the panels in the second column, terminate abruptly despite staying
strictly positive. This behaviour indicates that the first two plates have collided, while the
third has not.

The case of n = 4 plates, with d3 plotted in the third column of figure 6, confirms this
pattern. There are more irregular paths for A = 0.4 (top row) than there were with n = 3,
with one, in green, possibly approaching collision. The results for A = 0.3 (middle row)
show many curves that end at a finite time, corresponding to collisions in d2 that are shown
in the middle column. In addition, there are more collisions and many more curves that
leave their original equilibrium. The basins of attraction of these equilibrium schooling
modes appear to have shrunk. The results for A = 0.1 are the most striking, as most of the
curves either exhibit collisions or are on the path to collision, and only a few reach the
final time t = 60 (30 flapping periods).

Taken together, the simulation results shown in figure 6 demonstrate that both as the
number n of plates in an in-line formation increases, and as the heaving amplitude A
decreases, the basins of attraction of the equilibria shrink, with most of the stability being
lost for A = 0.1 and n = 4. The loss of stability can be attributed to the increasing relative
size of the oscillations in dk observed as n increases and A decreases.

3.5. Stabilisation of schooling modes
To prevent the loss of stability and collisions observed in figure 6, we propose a simple
stabilisation algorithm: if the distance decreases (increases) between a given plate and the
one directly ahead of it, then slow it down (speed it up) by decreasing (increasing) its
flapping amplitude. We implement this mechanism by allowing the heaving amplitude A
in (2.4b) to depend on each plate, and evolving the amplitude A j of plate j according to
the rule

A j (t) = A0[1 + β d ′
j (t)], (3.3)

where A0 is the initial amplitude, and d ′
j = U j−1 − U j is the rate of change of the distance

between the plates. The updated values of A j are entered in step (i) of the numerical
method (§ 2.3), where V is replaced by Vj (t) = A j (t) π cos(πt), and thereby affect all
remaining steps (ii)–(v) at each time step.

The stabilisation parameter β determines how fast the amplitude changes occur as the
distance between plates changes. Small values of β may not be sufficient to prevent
collisions in finite time. Large values of β lead to fast adjustment, but can also lead to
stiffness of the numerical scheme. For all runs shown below, we used 0.15 � β � 5.

Figure 7 shows the distances d1, d2 and d3 between each pair of plates for a formation
of n = 4 wings, computed with the stabilisation mechanism. The figure shows that the
stabilisation either eliminates or significantly reduces the oscillations in d j , which quickly
approach a steady state. Apart from the smallest value of d0 (black curves), all of the
collisions observed in figure 6 are avoided, with steady-state solutions approached even in
the most unstable case, n = 4 and A = 0.1. We note that d1 is not shown with n = 2, nor
d2 with n = 3, since in the absence of collisions, the results are the same as with n = 4.
For the sake of clarity, the curves in figure 7 are colour-coded by the equilibrium state
that they reach, as opposed to the equilibrium state reached by the corresponding wing
pair (n = 2) in figure 6. Supplementary movie 4 contains examples of simulations with
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Figure 7. Same as figure 6, but with the stabilisation rule (3.3) and n = 4 throughout. The stabilisation factors
are β = 0.15, 0.4 and 5.0 for the flapping amplitudes A = 0.4, 0.3 and 0.1, respectively. Here, the curves are
colour-coded simply by the equilibrium state that they reach.

n = 3 plates, and shows how the stabilisation algorithm prevents a collision between the
two trailing plates.

The stabilisation has a significant impact on the vortex wake behind the plates, as an
equilibrium state is reached more quickly. In figure 8, we compare snapshots of the vortex
sheet behind two plates without (figure 8a) and with (figure 8b) stabilisation. Figure 8(a)
is the same as shown earlier in figure 3(b), but at a different scale. The formation of a wake
of quadrupoles is seen early on (near the plates) in figure 8(a), but no clear pattern emerges
far from the plates. On the other hand, the results obtained with stabilisation (figure 8b)
clearly show the emergence of a stable pattern of quadrupoles behind the plates. A positive
(negative) vortex is created behind each plate by the plate’s upward (downward) motion.
With stabilisation, these four vortices per oscillation period are positioned in a regular
stable configuration, which grows slightly in time and space as the plates move forward.
Figure 9 shows the vorticity in the wake, corresponding to the regularised vortex sheet
shown in figure 8. Figure 9(b) clearly shows the stable pattern in the wake, growing in
time and space. The contrast with figure 9(a), which shows much less organised wake
vorticity without any growth, is striking.

Figure 10 shows the vorticity in the wake of n = 3 plates, with and without stabilisation.
Here, each heaving cycle of the three plates generates six vortices per period. Without
stabilisation (figure 10a), the vortices exhibit a coherent pattern only at short times
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Figure 8. Wake at t = 25 behind a pair of plates (n = 2) with heaving amplitude A0 = 0.2 and initial
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Figure 9. Vorticity at t = 50, with the same parameters as in figure 8.

after separation, but they become less organised further downstream. By contrast, with
stabilisation (figure 10b), a regular configuration of six vortices per period clearly emerges.
The width of the wake grows in time and space, as was the case for a pair of plates (n = 2,
figure 9b).

We were unable to compute such stable patterns of eight vortices per period in the
wake of n = 4 plates due to the computational cost of doing so. While the stabilisation
mechanism allows stable schooling modes to be achieved relatively quickly, the vortex
configurations take longer to reach equilibrium. Long time simulations using fast tree-
algorithms (Greengard & Rokhlin 1987; Wang, Krasny & Tlupova 2020) can be performed
in the future to study this phenomenon further.

3.6. Reduced model based on thin-aerofoil theory
We now propose and analyse a reduced model to provide rationale for two of the
phenomena observed in our simulations (§ 3.4), namely, that collectives of heaving plates
in an in-line formation are increasingly stabilised as the flapping amplitude is increased
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Figure 10. Vorticity at t = 50 behind three plates (n = 3) with heaving amplitude A0 = 0.2 and initial
separation distance d0 = 4.2. The plots are (a) without stabilisation, and (b) stabilised according to (3.3) with
β = 2.

progressively, and such collectives become less stable as the number of plates increases.
To that end, we deploy the seminal thin-aerofoil theory of Wu (1961), who considered the
motion of a single flat plate executing a small amplitude heaving motion (A 
 1) while
translating horizontally at velocity U in an inviscid and incompressible two-dimensional
fluid. To simplify the problem, the plate is assumed to shed a flat vortex sheet from its
trailing edge, and the sheet strength is determined by the Kutta condition. By solving the
linearised Euler equations using conformal mapping, the (dimensionless) thrust T0 on the
plate is found to be

T0 = π

2
(πA)2 |C(σ )|2, (3.4)

where

C(σ ) = K1(iσ)

K0(iσ) + K1(iσ)
(3.5)

is the so-called Theodorsen function, K0,1 are the modified Bessel functions of the
second kind of orders zero and one, and σ = π/(2U ) is the reduced frequency. An
analogous theory has been developed to describe how a follower plate located downstream
of the leader and executing the same heaving kinematics would be affected by the
leader’s wake (Wu & Chwang 1975; Ramananarivo et al. 2016). In this theory, the no-
penetration boundary condition is not satisfied simultaneously on both wings; instead, an
approximation for the hydrodynamic thrust on the follower is found by assuming that the
leader’s wake is unaffected by the follower’s presence. This assumption is consistent with
our numerical simulations before the leader’s wake has reached the follower, as discussed
in § 3.2. This thrust is found to be T = T0[1 + F(d)], where d is the distance between the
leader’s trailing edge and the follower’s leading edge (as in figure 1), and

F(d) = G(σ )2 + 2G(σ ) cos
[

2π

(
d

2U
− g(σ ) + σ

π

)]
. (3.6)

Here, the real-valued functions G(σ ) and g(σ ) are defined through the relation

G(σ ) e2πi g(σ ) = K1(−iσ) K0(iσ) + K0(−iσ) K1(iσ)

K1(iσ) [K0(iσ) + K1(iσ)]
. (3.7)
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A Simulations Thin-aerofoil theory

0.1 0.665 0.544
0.2 1.85 1.506
0.3 3.584 3.006
0.4 5.826 5.147

Table 1. The values of the velocity U of a single wing, as obtained in our vortex sheet simulations (§ 3.1) and
predicted by thin-aerofoil theory from (3.9), are shown for different values of the flapping amplitude A.

We thus propose the following model for a collective of n plates that execute small-
amplitude heaving kinematics in an in-line formation:

Mẍ1 + Cd ẋ3/2
1 = T0,

Mẍm + Cd ẋ3/2
m = T0

[
1 + F(xm−1 − xm − 1)

]
, 2 � m � n, (3.8)

where xm is the horizontal position of the centre of the mth plate. We have assumed that
each plate is influenced only by its nearest upstream neighbour; that is, the leader wing
(x1) is unaffected by all of the followers, and moves at a steady speed U determined by the
balance between drag and thrust forces on it:

CdU 3/2 = π

2
(πA)2 |C(σ )|2. (3.9)

Every other wing is influenced by its upstream neighbour through the function F , which
depends on the steady speed U . That is, our theory is valid in the quasi-steady regime
in which the wings’ velocities are all close to U . The nearest-neighbour assumption may
be justified using our simulations that employ stabilisation (figure 7); specifically, d∞,k

1 ≈
d∞,k

2 ≈ d∞,k
3 , which suggests that the equilibrium distances are mostly insensitive to the

number of upstream wings. The assumption is also supported by recent experiments on
up to five flapping hydrofoils in an in-line formation (Newbolt et al. 2024). Table 1 shows
a comparison between the steady speeds U obtained in our vortex sheet simulations and
those predicted from (3.9), with surprisingly good agreement given the simplified nature
of our reduced model.

We proceed by seeking steadily translating solutions of (3.8), in which the wings move
at a constant speed U with a constant separation distance d between them, xm(t) −
xm+1(t) = d + 1. By substituting the form xm(t) = Ut − (m − 1)(d + 1) into (3.8), we
find that d satisfies the algebraic equation

F(d) = 0. (3.10)

This equation has infinitely many positive solutions d∞,k for k ∈Z>0. For the parameter
values adopted in this paper, M = 1, Cd = 0.1 and A = 0.1−0.4, we find that the
corresponding schooling numbers Sk = d∞,k/(2U ) are equal to S1 + k − 1, where S1
is between 0.95 and 1.1, in good agreement with values obtained in our vortex sheet
simulations (figure 6). We note that a similar result was obtained for two plates by
Ramananarivo et al. (2016) using a similar thin-aerofoil theory, and by Baddoo et al.
(2023) using a more sophisticated thin-aerofoil theory based on conformal maps of
multiply connected domains. Reduced models of flapping wings that approximate the
hydrodynamic interactions using time-delay differential equations also recover near-
integer values of the equilibrium schooling numbers (Heydari, Hang & Kanso 2024;
Newbolt et al. 2024). We also note that (3.10) is satisfied by a second family of solutions
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with schooling numbers S̃k = S̃1 + k − 1, where S̃1 is between 0.6 and 0.7 for the
parameter values adopted in this paper. We neglect these solutions in the forthcoming
discussion because they are linearly unstable to perturbations and thus not observed in our
simulations or in laboratory experiments (Ramananarivo et al. 2016).

We now examine the linear stability of the state in which the distance between each pair
of wings corresponds to the schooling number S1, the analysis of the other schooling
numbers Sk being identical due to the periodicity of the function F . To that end, we
substitute the form xm(t) = Ut − (m − 1)(d∞,1 + 1) + ε x̃m(t) into (3.8), and retain terms
at leading order in ε. The linearised equations are thus (dropping the tildes)

Mẍ1 + 3Cd

2
U 1/2 ẋ1 = 0,

Mẍm + 3Cd

2
U 1/2 ẋm = T0ξ (xm−1 − xm) , 2 � m � n, (3.11)

where ξ = F ′(d∞,1). We assume that an impulsive perturbation is applied to the leader:

x1(0) = 1, ẋ1(0) = s1 ≡ −3CdU 1/2

2M
and xm(0) = ẋm(0) = 0 for m � 2. (3.12)

It is straightforward to obtain the solutions

x1(t) = es1t and x2(t) = es1t + Re
[
B(2)

0 es2t], where B(2)
0 = −1 + is1

2ω
,

ω = |s1|
2

√
16MU 1/2ξ

9Cd
− 1 and s2 = s1

2
+ iω (3.13)

is a root of the quadratic polynomial p(s) ≡ Ms2 + (3Cd/2)U 1/2s + T0ξ . We find that
ω ∈R for the parameter values adopted in this paper. Each wing after the second oscillates
in resonance with its upstream neighbour, so the general solution to (3.11) has the form

xm(t) = es1t + Re

[
m−2∑
k=0

B(m)
k tk es2t

]
. (3.14)

The coefficients B(m)
0 may be obtained using the initial conditions:

B(m)
0 = −1 + i

ω

(s1

2
+ Re

[
B(m)

1

])
, m � 3. (3.15)

To obtain the remaining coefficients, we write (3.11) in the compact form Lxm = T0ξ xm−1
for m � 2, where L= p(d/dt). Using the facts that

L es1t = T0ξ es1t , L es2t = 0, Lt es2t = 2iωM es2t

and Ltk es2t =
[
2iωMktk−1 + Mk(k − 1)tk−2

]
es2t for k � 2, (3.16)

it can be shown that the coefficients B(m)
k satisfy the recursion relation

B(m)
m−2 = − iT0ξ B(m−1)

m−3

2ωM(m − 2)
for m � 4, (3.17a)
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2iωM B(m)
k+1(k + 1) + M B(m)

k+2(k + 1)(k + 2) = T0ξ B(m−1)
k for k = 0, . . . , m − 4.

(3.17b)

Taken together, (3.15) and (3.17) determine all of the coefficients in the solution (3.14).
We proceed by making two observations about this solution. First, the equilibrium

schooling states are linearly stable because the perturbations decay in time, xm(t) → 0
as t → ∞. Moreover, the decay rate s1/2 increases with U , as is evident from (3.12), and
thus with the flapping amplitude A, providing a rationale for the observation from our
vortex sheet simulations (§ 3.4) that a larger flapping amplitude stabilises the schooling
state. Second, by plotting the solution (3.14) for the parameter values adopted in this paper,
we observe that the perturbations are amplified downstream, in that at intermediate times
they exhibit oscillations that grow in time and have progressively larger amplitude as m
increases. To see why this is the case, we observe that the exponential decay factors es2t

in (3.14) are multiplied by increasingly large powers of t as m increases. More precisely,
note that (3.17a) can be solved explicitly for B(m)

m−2, from which the long-time asymptotic
behaviour of xm(t) can be deduced:

xm(t) ∼ Re[Xm(t)] as t → ∞, where Xm(t) = B(2)
0

(m − 2)!
(−iT0ξ

2ωM

)m−2

tm−2 es2t .

(3.18)

We find that for the parameter values adopted in this paper, |Xm(t)| provides an adequate
approximation for the envelope of the oscillating solution xm(t) in (3.14). Moreover, it is
easy to see that |Xm(t)| ∝ tm−2 es1t/2 attains its maximum value

X∗
m ≡ |Xm(tm)| =

∣∣∣B(2)
0

∣∣∣
(m − 2)!

(
T0ξ(m − 2)

ωM |s1|e
)m−2

at the time t = tm ≡ 2(m − 2)

|s1| .

(3.19)

By using Stirling’s formula, m! ∼ √
2πm (m/e)m as m → ∞, we conclude that the peak of

the envelope X∗
m increases with m for sufficiently large m provided that T0ξ/(ωM |s1|) >

1, as is the case for the parameter values adopted in this paper. Moreover, the time tm at
which the peak is attained increases with m, which further illustrates that the oscillations
propagate downstream. The linear theory thus provides a qualitative rationale for the
observation from our vortex sheet simulations (§ 3.4) that the schooling states become
less stable as the number of wings increases.

While the foregoing linear theory predicts that small-amplitude perturbations to the
equilibrium schooling state eventually decay in time, we find that transient linear growth
combined with nonlinear effects can cause finite-amplitude perturbations to dislodge the
trailing plates from their equilibrium positions. Specifically, we performed numerical
simulations of the nonlinear reduced model (3.8), initialising the plates with the positions
xm(0) = −(m − 1)(d∞,1 + 1) and velocities ẋm(0) = U for m > 1 and ẋ1(0) = 1.3U ;
that is, we assume that the trailing wings initially move with the steady speed of a
single wing, as determined by (3.9), and subject the leader to a finite-amplitude velocity
perturbation. The results are shown in figure 11. The middle panel shows the inter-
plate distances di for n = 3 wings and flapping amplitude A = 0.3: after a transient,
the trailing wings eventually settle back into their equilibrium positions. By contrast,
increasing the number of wings to n = 4 (right-hand panel) or decreasing the flapping
amplitude to A = 0.2 (left-hand panel) causes the trailing wings to become dislodged
from their equilibrium positions and collide. A qualitatively similar behaviour is observed
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Figure 11. Results of numerical simulations of the (nonlinear) reduced model (3.8). The initial velocity of the
leader is 1.3U , and the remaining plates are initialised in an equilibrium schooling mode with velocity U (given
by (3.9)) and inter-plate distance d∞,1 (given by (3.10)). The middle panel shows the inter-plate distances for
n = 3 wings flapping with amplitude A = 0.3; after a transient, the system returns to the equilibrium schooling
state. The right-hand panel shows the effect of adding a plate (A = 0.3, n = 4), and the left-hand panel shows
the effect of decreasing the flapping amplitude (A = 0.2, n = 3). It is evident that both lead to a collision
between the trailing plates.

for the other flapping amplitudes considered in this paper. We thus conclude that
despite its simplifications, the reduced model presented in this section captures the two
salient features of our vortex sheet simulations, namely, that schooling modes become
progressively less stable as the number of wings is increased or the flapping amplitude is
decreased.

We note that a number of physical effects are neglected in our reduced model (3.8)
for the sake of analytical simplicity. Specifically, the assumptions are that the wake
shed by each plate is flat and unaffected by modulations in the plate’s horizontal speed,
both of which are at odds with our vortex sheet simulations. The model also assumes
nearest-upstream-neighbour interactions; while our simulation results seem to confirm this
assumption (§ 3.2), strictly speaking each plate feels the vortex sheets shed by all of the
other plates.

4. Conclusion
In this paper, we have used a vortex sheet method to simulate the dynamics of n flat
plates in a two-dimensional inviscid and incompressible fluid. The plates are in an in-
line formation and execute a heaving kinematics with amplitude A and frequency f
(figure 1), but their horizontal velocities are determined by the balance of hydrodynamic
thrust and drag forces. The thrust forces are induced by the vortex sheet strength at the
leading edge, which in turn is induced by the prescribed vertical motion and the fluid
vorticity. The drag forces depend on the plate velocity and are modelled using a simple
3/2 power law. Particular care is taken to evaluate the near-singular integrals that arise
when a vortex sheet is near a plate, which is required both to ensure that the vortex
sheet does not cross the plate and to accurately compute the hydrodynamic thrust on the
plate.

We find that the long-time motion of a single plate is independent of the imposed
initial velocity U0 (figure 2). The plate moves forward in an oscillatory manner due to
the oscillatory leading edge sheet strength, and leaves a wake of positive and negative
vortices, one of each being formed during one oscillation period (figure 4a). The wake of
n plates consists of 2n vortices generated in each oscillation period, which interact and
form a quasi-periodic pattern with wavelength U∞/ f (figures 4b–d).
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Our simulations show that plates in the wake of prior ones move towards certain
equilibrium positions (figure 5). These equilibria are quantised on the schooling number
(Becker et al. 2015): that is, the distance between a given plate and the one in front
of it is approximately an integer multiple of the wavelength U∞/ f . This observation
is consistent with prior experiments and vortex sheet simulations of both pairs (Fang
2016; Ramananarivo et al. 2016; Heydari & Kanso 2021) and larger collectives (Newbolt
et al. 2022, 2024; Heydari, Hang & Kanso 2024) of flapping wings. By varying the
initial distance d0 between each plate and its upstream neighbour, we find the first six
equilibrium positions for n = 2, 3 and 4 plates, for the three dimensionless flapping
amplitudes A = 0.1, 0.3 and 0.4 (figure 6). Which equilibrium is approached by a trailing
plate depends on its initial distance from the preceding one.

As more plates are added to the formation, they experience increasingly large
oscillations in their horizontal motion. This is apparent, for instance, by comparing the
three panels in the top row of figure 6, for which the flapping amplitude is A = 0.4. The
basins of attraction of the equilibrium positions evidently shrink, as evidenced by the
trajectories that depart from the equilibria altogether. For smaller values of the flapping
amplitude, the in-line formation becomes increasingly unstable, with a number of cases
in which the plates not only leave their nearest equilibria but collide with their upstream
neighbours. The loss of stability and associated collisions are far more prevalent both
as the number of plates n increases and as the amplitude A decreases. For example, for
A = 0.1, n = 4, less than a third of the initial conditions tested have not collided after thirty
flapping periods.

We find that a simple algorithm is sufficient to mitigate the flow-induced instability that
we observe: specifically, if a plate approaches (separates from) its upstream neighbour,
then it slows down (speeds up) by adjusting its flapping amplitude A. This leads to out-of-
sync oscillations until an equilibrium position is reached (figure 7). The stabilised vortex
wakes form beautiful organised vortex patterns that are not observed without stabilisation
(figures 9 and 10). The stabilised wakes are expected to represent the long-time limit of
unstabilised wakes that have not lost stability and reached an equilibrium. The cost of such
long-time computations is prohibitive, and the stabilisation scheme enables us compute
these patterns in reasonable time, at least for n = 2 and 3.

We have also developed a reduced model for the dynamics of hydrodynamically
interacting plates based on linear thin-aerofoil theory (Wu 1961; Wu & Chwang 1975;
Ramananarivo et al. 2016). In this model, we assume that each plate interacts only with its
nearest upstream neighbour, and that each plate sheds a flat vortex sheet that is unperturbed
by the other plates. The model is able to recover a number of phenomena observed in
our simulations, namely, the quantisation of stable equilibria on the schooling number,
the dependence of the translation velocity on the flapping amplitude, and the decreasing
stability of the formation as A decreases and n increases.

The flow-induced oscillatory instability and subsequent collisions within increasingly
large in-line formations are reminiscent of the ‘flonons’ observed in recent experiments
on flapping wings in a water tank by Newbolt et al. (2024). These authors posited that
the formation destabilised via a resonance cascade, a physical picture that is consistent
with our reduced model in § 3.6. Such an instability was not observed in the vortex
sheet simulations of in-line formations of pitching plates conducted by Heydari, Hang
& Kanso (2024), who instead observed that formations typically destabilised via a loss
of cohesion in which trailing plates could not keep up with the rest of the school, and
fell behind. We note that one difference between our vortex sheet algorithm and that of
Heydari, Hang & Kanso (2024) is that in the latter, the point vortices shed by the plates
are manually removed from the fluid after a prescribed dissipation time (Heydari & Kanso
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2021). Another difference, which is potentially significant, is that Heydari, Hang & Kanso
(2024) consider plates that undergo pitching oscillations about their leading edges, while
our plates undergo heaving oscillations. As a consequence, the horizontal force on the
plate is generated entirely by the leading-edge suction in our work, while in their work
it is dominated by the pressure force normal to the plate (Heydari & Kanso 2021). We
also note that we do not observe a ‘compact’ formation in which the plates are separated
by less than a chord length, which has been observed in two-dimensional Navier–Stokes
simulations of elastic filaments (Zhu et al. 2014) and wings (Lin et al. 2020) in flows with
Re = O(100), and also in three-dimensional Navier–Stokes simulations of flexible plates
(Arranz et al. 2022).

The in-line formation considered herein may be viewed as a minimal model for a
fish school, in which only hydrodynamic interactions are considered at the expense of
behavioural rules and sensing. Our results suggest that fish may need to employ active
control mechanisms to mitigate the flow-induced instability experienced by increasingly
large formations, but that relatively simple control mechanisms (like the one proposed
in § 3.5) could be sufficient. A worthwhile future direction would be to consider more
sophisticated control mechanisms, such as those based on reinforcement learning (Novati
et al. 2017; Verma, Novati & Koumoutsakos 2018). One could also explore biologically
relevant control mechanisms, such as those inspired by the fish lateral line system, which
detects the nearby flow velocity and pressure gradients, and is thought to play an important
role in mediating schooling behaviour (Faucher et al. 2010; Mekdara et al. 2021). While
our study was focused on the formation’s streamwise stability, another future direction
would be to allow the plates to translate in both the streamwise and lateral directions, and
thus examine the two-dimensional stability of various formations, as has been done using
models (Gazzola et al. 2016), Navier–Stokes simulations (Gazzola et al. 2011; Lin et al.
2021, 2022) and experiments (Ormonde et al. 2023). Moreover, the simulation framework
presented herein could be extended straightforwardly to model more complex formations,
such as the diamond lattice and so-called ‘phalanx’ formations exhibited by some fish
species (Newlands & Porcelli 2008; Ashraf et al. 2016, 2017).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10215.
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Appendix A. Derivation of the leading-edge thrust
We provide a simple derivation of the thrust or ‘suction’ force on the leading edge of a
wing in a general time-dependent flow. The expression can also be found by combining
equations (4.62) and (6.89) from Eldredge (2019).

We assume that at a fixed time t , an isolated wing (i.e. a flat plate) is located on the
x-axis. For the sake of analytical convenience, we adopt the convention that the plate’s
leading edge is at x = 0, and its trailing edge is at x = 1, so that the plate moves to
the left, which is opposite to the convention used in the main text. Let the plate be
parametrised in terms of an arc length variable 0 � s � 1 by x(s) = (s, 0), and assume
that it has bound vortex sheet strength γ (s) (we omit representing the dependence on time,
with the understanding that all quantities are time-dependent). Let γ̃ (s) = γ (s)

√
s(1 − s)

be a desingularised vortex sheet strength, which is assumed to be a regular function of
s (Eldredge 2019, p. 120). The fluid velocity induced by the vorticity is given by the
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Birkhoff–Rott integral

u(x, y) = 1
2π

∫ 1

0

(−y, x − s)

(x − s)2 + y2
γ̃ (s)√
(1 − s)s

ds + w, (A1)

where w is a smooth velocity due to free and other bound vorticity in the fluid.
Following Saffman (1995, p. 98), the suction force is calculated by integrating the

Euler momentum equation in a small disk Bε of radius ε 
 1 about the leading edge
(x, y) = (0, 0):

∂

∂t

∫
Bε

u dV +
∫

Sε

[p n + u(u · n)] dS =
∫

Bε

F dV (A2)

= −T î, (A3)

where p is the pressure, n is the outward unit normal to the surface Sε of Bε , and F =
−T δ(x) î is the external force, i.e. the force that the leading edge of the wing exerts on
the fluid. The suction force of the fluid on the wing is then T î . Here, we have taken the
fluid density to be 1. The pressure can be eliminated using Bernoulli’s law (Saffman 1995,
p. 19)

∂φ

∂t
+ p + 1

2
|u|2 = H(t), (A4)

where φ is the velocity potential, and H(t) is an arbitrary function of time. Multiply (A4)
by n and take the surface integral over Sε to obtain at leading order∫

Sε

p n dS = −1
2

∫
Sε

|u|2n dS, (A5)

where we have neglected terms that are less singular at the plate’s leading edge and thus
give higher-order contributions in ε. Substitute (A5) into (A3), and note that the volume
integral (∂/∂t)

∫
Bε

u dV gives a higher-order contribution in ε, to obtain

T î = lim
ε→0

∫
Sε

[
1
2
|u|2n − u(u · n)

]
dS. (A6)

We now calculate the velocity at leading order in ε for (x, y) ∈ Bε . In (A1), make the
change of variable −v = x − s and expand γ̃ (x + v) = γ̃ (x) + γ̃ ′(x) v + · · · to obtain,
for u = (u1, u2),

u1(x, y) = − y

2π

[
γ̃ (x) W0(x, y) + γ̃ ′(x) W1(x, y)

]+ O(1),

u2(x, y) = − γ̃ (x)

2π
W1(x, y) + O(1),

(A7)

where

W0(x, y) =
∫ 1−x

−x

1
(v2 + y2)

√
(1 − (v + x))(v + x)

dv,

W1(x, y) =
∫ 1−x

−x

v

(v2 + y2)
√

(1 − (v + x))(v + x)
dv,

(A8)

and the O(1) remainder in (A7) refers to terms for which the Birkhoff–Rott kernel is
integrable in v as y → 0. The integrals in (A8) can be evaluated in closed form. Let
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F(x, y) =√
(1 − x)2 + y2 and G(x, y) =√

x2 + y2. Then (Geer & Keller 1968)

W0(x, y) = π (F + G)
{
(FG)2

[
(F + G)2 − 1

]}−1/2
,

W1(x, y) = π (−x F + (1 − x)G)
{
(FG)2

[
(F + G)2 − 1

]}−1/2
.

(A9)

Evaluation of (A9) for x = ε cos θ, y = ε sin θ on Sε gives, to leading order in ε,

W0 = π√
2(1 − cos θ)

ε−3/2 + O(ε−1/2),

W1 = π

√
1 − cos θ

2
ε−1/2 + O(ε1/2).

(A10)

From (A7) and (A10), the leading-order velocity components on Sε are

u1 = − γ̃ (0)

2
√

2

sin θ

(1 − cos θ)1/2 ε−1/2 + O(1),

u2 = − γ̃ (0)

2
√

2
(1 − cos θ)1/2ε−1/2 + O(1).

(A11)

The surface integral in the expression for the suction force can now be computed by
substituting (A11) and n = (cos θ, sin θ) into (A6). We find that the y-component of the
suction force is zero as expected, while the x-component satisfies

T î = −π

4
γ̃ 2(0) î . (A12)

More generally, the magnitude of the suction force for a horizontal plate with leading edge
located at x is

|T | = π

4
γ̃ 2(x), (A13)

with the force oriented in the negative x direction when the leading edge of the wing is
located on the left, and in the positive x direction when the leading edge is on the right.

Appendix B. Comparison between unsteady and steady flow around a vertically
translating flat plate
A simple argument for steady flow past a plate, as considered by Acheson (1990, p. 153),
gives results consistent with those of Appendix A. Consider a plate of length 4a placed
at x ∈ [−2a, 2a], aligned horizontally with the x-axis, moving with velocity (U, V ) in an
inviscid fluid at rest at infinity. Since the horizontal component does not impact thrust, we
set U = 0. Here, we derive the leading-edge normalised sheet strength and leading-edge
suction for steady plate motion with singular flow at the leading edge (at z = 2a), and
smooth flow satisfying the Kutta condition at the trailing edge (at z = −2a). The steady
flow in a reference frame moving with the plate is obtained by the conformal map from
the unit circle |ζ | = a onto the plate on the x-axis with x ∈ [−2a, 2a]:

z = J (ζ ) = ζ + a2

ζ
, with ζ = J−1(z) = 1

2

(
z +

√
z2 − 4a2

)
. (B1)

Potential flow around the circle with circulation Γ is given by the complex potential

w(ζ ) = iV
(

ζ − a2

ζ

)
− i

Γ

2π
log ζ . (B2)
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The complex potential in the z-plane is W (z) = w(J−1(z)), with complex velocity

dW

dz
= dw/dζ

dz/dζ
= iV

(
1 + a2

ζ 2 − Γ

2πV ζ

)
1

1 − a2/ζ 2 = iV
ζ 2 − a2

(
ζ 2 − Γ

2πV
ζ + a2

)
.

(B3)
The singularity at the trailing edge z = −2a (ζ = −a) is removed by setting

Γ = −4πV a , (B4)

so that
dW

dz
= iV

ζ + a

ζ − a
. (B5)

The resulting velocity on the plate is obtained by setting ζ = a eiθ (x = 2a cos θ), where
θ ∈ [0, π] corresponds to the top of the plate, and θ ∈ [π, 2π] to the bottom:

dW

dz
= V

sin θ

1 − cos θ
= V

±√
1 − cos2 θ

1 − cos θ
= V

±√
1 + cos θ√

1 − cos θ

= ±V

√
2a + x√
2a − x

= ±V
2a + x√
4a2 − x2

.

(B6)

For positive V , the top velocity is positive and the bottom is negative. This yields the
vortex sheet strength

γ (x) = u− − u+ = −2V
2a + x√
4a2 − x2

= −2V
2a + x√
4a2 − x2

= γ̃ (x)√
4a2 − x2

, (B7)

where γ̃ (x) = γ (x)
√

4a2 − x2. This definition of γ̃ is consistent with (A1) with s = x +
1/2, a = 1/4, and (2.6) with s = x, a = 1/4. For a = 1/4, the leading-edge normalised
sheet strength is γ̃ (1/2) = −2V .

Using Blasius’ theorem, we find that the total force on the plate is

Fx − iFy = iρ

2

∮
Cz

(
dW

dz

)2

dz = iρ
2

∮
Cζ

(
dW

dz

)2 dz

dζ
dζ

= −V 2 iρ
2

∮
Cζ

(ζ + a)3

(ζ − a)ζ 2 dζ = 4πρV 2a = −ρV Γ = πρa[γ̃ (1/2)]2,

(B8)

picking up the residues at ζ = 0, a. Expression (B8) is consistent with (A13) by setting
ρ = 1, a = 1/4.

Figure 12 shows the streamlines of the resulting steady flow past the plate with V = 1
and a = 1/4, in a reference frame moving with the plate, where the circulation given by
(B4) cancels the singularity at the trailing (left-hand) edge. Note the resulting stagnation
point at the trailing edge and the symmetry across y = 0.

We now consider an impulsively started plate with a = 1/4, initially on the x-axis and
centred at the origin, moving vertically upwards with constant velocity V = 1 for t > 0.
The singularity at the left-hand edge is resolved by satisfying the Kutta condition through
vortex sheet generation and separation via the method described in § 2. Figure 13 shows
the position of the plate and the separated vortex sheet at a sequence of times.

Figure 14 shows the corresponding streamlines, in a reference frame moving with the
plate. It shows that as t → ∞, the flow approaches the steady symmetric potential flow
discussed above and shown in figure 12. Furthermore, note the position of the stagnation
point on the upper plate side. Initially, the impulsively started flow is symmetric, with a
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Figure 12. Potential flow past a plate of unit length translating vertically with velocity V , as obtained from
(B2) and (B4). The circulation around the plate is Γ = −πV , which cancels the singularity at the left-hand
edge.
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Figure 13. Impulsively started plate that translates vertically with constant velocity V = 1, and the vortex
sheet that separates from its left-hand endpoint, shown at the indicated times.

stagnation point at the middle of the plate at x = 0. As time evolves, the unsteady flow
approaches the steady flow configuration, and the stagnation point moves progressively
closer to the trailing edge.

Figure 15 shows the desingularised leading-edge sheet strength and the circulation about
the plate for the impulsively started plate. Note that the total circulation about the plate and
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Figure 14. Streamlines of the flow in figure 13, shown in a reference frame moving with the plate.

the shed vortex sheet is enforced to stay constant at zero. The plate circulation is thus the
negative of the circulation in the shed vortex sheet. The figure shows that both the shed
sheet strength and the plate circulation approach the steady-state values as t → ∞, with
γ̃ → −2V and Γ → −πV .

These numerical results illustrate the difference between steady and unsteady flow, and
provide further consistency between the steady-state results derived here and the unsteady
results derived in Appendix A.

Appendix C. Alternative model for the drag force acting on the plates
To compute the drag on plate j , we simply use the plate velocity U j , which induces drag
relative to the stagnant background flow. An alternative model that better accounts for the
horizontal velocity above and below the plate, used by Fang (2016) and Heydari & Kanso
(2021), is obtained by replacing

Cd(U j )3/2 (C1)

1013 A14-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
21

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10215


Journal of Fluid Mechanics

0 102 4 6 8

t
0 102 4 6 8

t

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

(a) (b)

Γ
 (

t)∼γe

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0

Figure 15. (a) Desingularised leading-edge sheet strength γ̃ (1/2), and (b) total circulation around the plate
Γ (t), corresponding to the flow in figure 13.

in (2.11b) by

Cd

2
[(U j − u j

+)3/2 + (U j − u j
−)3/2], (C2)

where

u j
± =

∫ 1

0
u j

±(s, t) ds (C3)

are the average horizontal velocities just above and below the plate, and u j
±(s, t) are the

limiting horizontal velocities from above and below the plate, respectively. Equation (C2)
assumes that U j − u j

± > 0, which is the case in the present paper.
The velocities u j

±(s) have two components, one stemming from the j th plate, and one
stemming from the far-field vorticity in all the other n − 1 plates and all the n wakes:

u j
± = u j

±plate + u j
far . (C4)

The average of this sum is the sum of the average of each component.
The first component is discontinuous across the plate. Note that the jump in the

horizontal velocity across the plate equals the negative sheet strength, and the average
of the horizontal velocities above and below the plate, induced by itself, is zero:

u j
+plate − u j

−plate = −γ (s, t) , (C5a)
1
2

(
u j

+plate + u j
−plate

)
= 0 , (C5b)

thus

u j
+plate = −γ (s)/2 , u j

−plate = +γ (s)/2 . (C6)

As a result,

u j
±plate = ∓1

2

∫ 1

0
γ (s) ds = ±1

2
Γ

j
T . (C7)
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The last equality follows since the total circulation about each plate is the negative of the
shed vorticity Γ

j
T .

Furthermore, note that if Γ
j

T /2 < U j , then the contribution of this self-induced term to
the difference between (C2) and (C1) is of order

Cd
3
4

(
Γ

j
T

2U j

)2

, (C8)

so is excepted to be small. Indeed, we observe in our simulations that Γ T /2U � 0.4 for
the amplitudes A = 0.1−0.4 that we considered, so the contribution (C8) is expected to be
� 2% for Cd = 0.1.

The second component, the far-field contribution u j
far to u j

±(s, t), is continuous across
the j th plate. It consists of only the contribution of the free vorticity in all n wakes, and
not any bound plate vorticity. The reason the other n − 1 plates do not contribute to the
horizontal velocity on the j th plate is that they are positioned in line with the j th plate.
We compute u j

far by evaluating the horizontal component of

u(xo, t) = 1
2π

n∑
l=1

∫ Γ l
T

0

(xo − xl
f (Γ, t))⊥

|xo − xl
f (Γ, t)|2 + δ2

dΓ (C9)

at all midpoints xo = x j (αm
k ), then using the midpoint rule to obtain

u j
far =

n∑
k=0

u(x j (αm
k )) s′(αm

k ) (αk − αk−1) . (C10)

This second component is expected to be small for a single plate (n = 1), since the wake
is behind the plate. It is expected to be less negligible for n > 1 plates, when the j th plate
is in the wake of the upstream plates.

As a result, we expect the change introduced by the alternative model (C2) over the
simple model (C1) to be small if n = 1, thus it will not significantly affect the steady-
state velocity if n = 1. For n > 1, the rear plates have been shown to have small impact
on the first plate. Since at steady state all plates travel at the same speed, the steady-state
velocity for n > 1 computed with the alternative model is expected to be similar to that in
the original model.

These conjectures were confirmed by numerical results for sample cases using
A = 0.2 and Cd = 0.1. We computed the translation velocity U j for n = 1 and n = 2, and
the equilibrium separation distance d∞,1

1 for n = 2, and found that the translation velocity
computed with the alternative drag model decreased by 4 % over the simple model, and
the separation distance decreased by 3 %. This shows that there is little difference between
the two drag models for the parameter regime considered herein, and changing from one
to the other is not expected to change the main conclusions of this paper.
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