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ISOMETRIES OF $P(a) 

R. J. FLEMING AND J. E. JAMISON 

Introduction. Let l<p<co1p^21 and a > 0. In what follows 
sp(a) will denote the space of all real or complex sequences for which 

(1.1) 2\xk\
p + a|x*+i — xk\

p is finite. 

In this paper we show that the spaces sp(a) are Banach spaces under the 
natural norm and in fact share many properties that the usual lp spaces 
have. Our main results give characterizations of the surjective isometries 
of sp(a). These turn out to be quite different than the results for lp. For 
example, we show that for a 7e 1, an operator T is a surjective isometry 
if and only if T is a modulus one multiple of the identity. The methods 
used are valid for both real and complex scalars. They involve the use 
of a disjoint support condition together with a property of semi inner 
products. In the complex case the information on isometries allows us to 
give complete descriptions of the Hermitian operators as well as the 
adjoint abelian operators. Surprisingly, we show that for a ^ 1, these 
classes of operators coincide. This last result sheds some light on a 
question asked by the authors in a previous paper [2]. 

2. Basic properties of sp(a). It is obvious from the definition that the 
space sp(a) consists of exactly the same sequences as lp. An application of 
Minkowski's inequality for sums shows that the function given by 

(2.1) | | x | | = [^ \xk\
p + a\xk+i - xk 

satisfies the usual triangle inequality and hence is a norm. Furthermore, 
since 

(2.2) ||x||p S \\x\\ ^ (1 + 2pa)1/p\\x\\p, 

where \\x\\p denotes the usual lp norm, we see that the spaces sp(a) are 
isomorphic to lp. We also note that every subspace M of sp(a) with the 
property that (xk) £ M implies (xk) has at least one zero between every 
pair of nonzero entries is isometric to lp. 

It is a straightforward computation to verify that Clarkson's in
equalities [3] hold for the norm on sp(a). Furthermore, using the fact 
that the usual norm on lp is differentiate [4] we can show that the norm on 
sp(a) is differentiate. Hence we record the following result without proof. 
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2.3. PROPOSITION. The Banach spaces sp(a) for 1 < p < co and a > 0 
are uniformly convex and smooth. 

Remark. The fact that the unit ball of sp(a) is smooth is important 
for our methods in Section 3. 

2.4. Definition. Let X be a normed linear space with real or complex 
scalars and let || || denote the norm. A semi inner product on X compatible 
with the norm is a function [ , ] on X X X to the field such that [x, x] = 
\\x\\2y [ > y] i s a linear functional, and |[x, y]\ ^ ||x|| \\y\\ for each x, y 6 X. 

Remark. This notion is due to G. Lumer [7] and is very useful in the 
study of isometries. 

It is known that if X is a Banach space with a differentiate norm then 
there is exactly one semi inner product on X compatible with the norm 
[7]. 

2.5. PROPOSITION. If a > 0, 1 < p < oo, the unique semi inner product 
on sp(a) compatible with the norm is given by 

(2.6) [x, y] = Z ^ ( ^ ) " 2 + « Ç (Dx^(^i^\fLT2 

where (Dx)k = xk+i — xk. 

Proof. In what follows, \\x\\p denotes the usual lv norm and \/p + l/q 
= 1. From (2.6) it follows from Holder's inequality for sums that 

(2.7) |MM[*,:y]| ^ IWUHI/-1 + HPxIUIi^lJ/-1. 
Apply Holder's inequality again to the right side of (2.7) to get: 

(2.8) IMMt*. y]\ S (11*11,' 4- \)Dx\\p>y*(\\y\\pW + UZ^II^-^)17'. 
Hence, 

(2.9) iMr2i[x,y]| ^ ii*ii ibir», 

and from this we see that 

(2.10) \[x,y)\^\\X\\\\y\\. 

The other properties required of a semi inner product are obvious from 
the definition. The uniqueness follows from Proposition 2.3 and the 
remark prior to Proposition 2.5. With that the proof is finished. 

The importance of the semi inner product in the study of isometries 
is due to the following theorem of D. Koehler and P. Rosenthal [5]. 

2.11. THEOREM. (Koehler-Rosenthal) Let X be a normed linear space 
(real or complex) and let U be an operator mapping X into itself. Then U 
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is an isometry if and only if there is a semi inner product compatible with 
the norm such that 

(2.12) [Ux, Uy] = [x, y] for every x} y 6 X. 

2.13. COROLLARY. If T is an isometry of sp(a) then [Tx, Ty] = [x, y] 
for every x and y in sp(a), where [ , ] is the semi inner product given in (2.6). 

3. The structure of isometries on sp(a). In this section we give a 
complete matricial description of the surjective isometries on sp(a). The 
following lemma which is due to Lamperti [6] is needed in the sequel 
and we state it for completeness. 

3.1. LEMMA (Lamperti). Let <ï>(/) be a continuous, strictly increasing 
function defined for t ^ 0, with $(0) = 0, and let z and w be complex 
numbers. If $(\/ï) is a convex function of t, then 

(3.2) $( | 2 + w\) + $(|z - w\) è 2$(|z|) + 2 $ ( H ) , 

while if $(y/t) is concave the reverse inequality is true. Providing the con
vexity or concavity is strict, equality holds if and only if zw = 0. 

3.3. LEMMA. Let U be an isometry of sp(a) and let (xk) and (yk) be 
sequences in sp(a) such that 

!

xkyk = 0 
xkyk+i = 0 
Xk+tfk = 0. 

If Xf/ = (Ux)k and yk = (Uy)k then 

xkyk = 0 
(3.5) xk'yk+l' = 0 

Xk+i'yk = o. 

Proof. Let (xk) and (yk) be sequences in sp(a) which satisfy (3.4). Then 

(3.6) ||x + y\\P + \\x - y\\p = 2\\x\\p + 2||y||*. 

If U is the isometry then 

(3.7) \\U(x) + U(y)\\p + \\U(x) - U(y)\\*> = 2||tf(*)||* + 2\\U(y)\\p-

Let xk = (Ux)k and yk = (Uy)k and rewrite (3.7) in terms of the sums. 
This leads to 

(3.8) £ (\xk' + yk'\
v + \xk' ~ y*7 - 2|*»T - 2b»T) 

k 

+ aZ' (\Dx')k + (Dy')k\" + \(Dx')k - (Dy')k\
p 

k 

- 2\(Dx'U - 2\(Dy')kn = 0, 
where (Dx')k = xk+i' — xk'. 
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If we now apply Lamperti's Lemma to (3.8) we obtain: 

3 9) lXk'yk' = ° 
6*> \(Dx')k(Dy')k = 0, 

and the desired result follows immediately. 

Since the usual unit vector basis for lv is a basis for sv{a), every isometry 
of sp(a) has a matrix representation. We now apply the preceding lemma 
to obtain the general form of a matrix which represents an isometry of 
sp(a). The matrix description below is given relative to the basis 
ei = (1, 0, 0 ...), and en = (0, 0 ... 1, 0, 0 ...) for n > 1, which we will 
refer to as the "standard basis." 

3.19. LEMMA. Let U be a surjective isometry of sp(a). Then U has the 
following matrix description: 

(3.11) U = 

«11 Wi2 0 0 0 

0 «22 0 0 0 

0 0 «33 0 0 

Proof. Let the entries in the matrix of U be denoted by ukj. Since the 
basis vectors en and en+j satisfy the hypothesis of Lemma (3.3) when 
j ^ 2, we conclude that 

Uknuk,n+j = 0 

(3.12) uknuk+1,n+J = 0 for * è 1, 2, 3 ..., n = 1,2 ..., 

uk+itnuktn+j = 0 and j = 2, 3 ... 

We make some observations concerning (3.12). From the first of the 
relations it follows that there are at most two non-zero elements per row. 
Also, once there is a non-zero element in the kn position, in the k + 1 
row all the elements are zero from the n + 2 column on. 

The general form (3.11) is obtained as follows. Since U is infective 
every column has at least one non-zero entry. Hence we know there is a 
least positive integer n for which un\ 9^ 0. We claim « ; i = 0 for all j 9e n. 
For suppose that there exists a positive integer m such that um\ 7̂  0. Then 
ukj = 0 for j ^ 3 and k = n, m and m + 1. Hence the n, m and m + 1 
rows are linearly dependent and this is impossible since U is surjective. 

https://doi.org/10.4153/CJM-1981-007-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-007-4


ISOMETRIES OF Sp(a) 63 

We now argue that n = 1. Otherwise we can conclude from (3.12) that 
un-it2 and un+it2 are the only possible non-zero entries in the n — 1 and 
n + 1 rows respectively which again contradicts the fact that U is 
surjective. 

We have established that the matrix for U has the following form in 
case n = 1: 

(3.13) U = 

«11 Mi2 0 • 0 • 0 0 
0 «22 0 0 • 0 0 
0 0 «33 0 • 0 0 
0 0 0 0 

0 0 0 

0 
0 

un+l,n+l 

Un+2,n+l 

0 0 • 
Un+2,n+2 

Assume the form is correct for a given n = k, and suppose there exists 
m > k + 1 with um>k+i y£ 0. Then the k + 1, m and m + 1 rows would 
be linearly dependent, since their only non zero elements occur neces
sarily in the k + 1, k + 2 columns. This contradiction shows that 
Mk+itk+i is the only non-zero entry in the k + 1 column and by an argu
ment exactly as was given for column one, we can show that uk+2tk+2 is 
the first non-zero entry in the k + 2 column. It follows from (3.12) that 
uk+2tk+2 is also the only nonzero entry in the k + 2 row, hence the form 
(3.13) must hold for n = k + 1. The fact that U has the general form, 
(3.11) follows by induction. 

Now we let / denote the identity operator in sp(a) and V be given by: 

( - 1 i= l , j = 1 

U 
J = 2 

i = j = k îork^2 
0 otherwise. 

3.14. THEOREM. Let U be an isometry from sv(a) onto sp(a). Then there 
exists a modulus one scalar X such that 

(3.15) U = XI for a * 1, 

and 

(3.16) U = \I or U = XVfor a = 1. 

The converse is also true. 
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Proof. From Lemma (3.10), the matrix representation relative to the 
standard basis is given by 

(3.17) U = 

« 1 1 Wl2 0 0 0 
0 W22 0 0 0 
0 0 M33 0 0 

0 

From (3.17) it follows that for n 7^ 2, unn is an eigenvalue of U and so 

(3.18) \unn\ = 1 for n = 1, 3, 4, o, .... 

If we let X be an arbitrary scalar and set 

(3.19) x = (0, ..., 0, X, X, 0, •) = \en + \en+1 

then using that fact that \\Ux\\ = ||x|| we obtain 

(3.20) w„+i,w+i = unn for » è 3. 

Let X, ix be scalars and set 

(3.21) x = (X, 0, 0, 0, •) and 

(3.22) y = (0, M, 0, O--). 

By Corollary (2.13) U must preserve the semi inner product and so 

(3.23) \y,x] = [Uy, Ux\. 

After some computation, (3.23) yields 

(3.24) Uu = :—: . 
1 + a 

This leads immediately to the observation that the vector 

(3.25) = {TT-*>1>°>0--) 
is an eigenvector of U with eigenvalue w22- Hence 

(3.26) \u22\ = 1. 

If we let 

(3.27) y = (0 ,1 ,1 ,0 ,0 , . . . ) , 

(3.28) x = (0, 1,0,...), 
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and utilize the fact that U must preserve the norm of x and y we are led 
to the following two equations. 

(3-30) « = (ïf^)'l 

U22 un\
p + a 

au\\ + #22 

U22 — U\\f + a 

1 + a 

#22 + oai\\ 

+ a|^33 — ^22^ , 

1 +a 

We obtain immediately from (3.29) and (3.30) that 

(3.31) #33 = ^22. 

We can now show that for a ^ 1, #22 = tin and if a = 1, #22 = =b#n. 
To do this, let <r = a/(I + a) and 

(3.32) x = (0,1 , - 1 , 0 , 0 , . . . ) , 

(3.33) y= (1 ,1 ,0 ,0 . . . ) . 

Again using the fact that U preserves the norm of these vectors we 
obtain the following two equations: 

(3.34) ap\u22 — Un\v + «|(1 — <r)#22 + <ruu\p = a, 

(3.35) a ( l — a)p\u22 — Un\P + |(1 — <r)uu + <TU22\P = 1. 

If a 5^ \f multiply (3.35) by a and subtract the result from (3.34) to get 

2 

(3.36) 
(1 + a)* 

\U22 — Ui\\V = 0. 

Since p 9e 2 and a 9e 1 we get #22 = Uu. 
If a = 1, then (3.34) and (3.35) yield the same equation: 

(3.37) ^22 — #11 
+ 

un + u2 = 1. 

We apply Lamperti's Lemma (3.1) to (3.37) with $(t) = tv, 
z = (#n — #22)/2 and w — (un + #22)/2. The result is, 

(3.38) Un — U22 Un + #22 
= 0. 

Hence un = ±#22 and the proof is finished. 

4, Applications. In this section we restrict our attention to the 
complex sp(a) spaces. Theorem (3.14) allows us to give a description of 
the one parameter groups of isometries on sp(a). 

4.1. PROPOSITION. If {Ut} is a strongly continuous group of surjective 
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isometries acting on sp(a) then there exists a real number 8 such that 

(4.2) Ut = emI. 

(I is the identity operator.) 

Proof. If { Ut) is one parameter group of isometries then for each to £ R, 

(4.3) U,t = t / ( V 2 ) t / ( V 2 ) = £/2uo/2). 

Thus every element of the group is a square. From the description of the 
isometries given in Theorem 3.14 it is clear that 

(4.4) Ut = Xi/, 

where \ t is a complex valued function of t. The strong continuity of the 
group implies that the map t —> \tis continuous on R. Since \t+s = X*\s, 
it follows that 

(4.5) \ t = eut for some real number <5. 

The proof is complete. 

Remark. An operator T acting on a complex Banach space is Hermitian 
(self conjugate) if T is the generator of a uniformly (strongly) con
tinuous group of isometries ([1] and [8]). 

4.6. COROLLARY. An operator T on sv(a) is Hermitian (self conjugate) if 
and only if there is a real number 8 such that 

(4.7) T = hi. 

Remark. An operator T on a complex Banach space is said to be 
adjoint abelian [9], if there is a semi inner product [ , ] compatible with 
the norm for which [Tx, y] = [x} Ty] for every x and y in the space. 

In [2] the authors proved that if T is an adjoint abelian operator such 
that T2 = fxl for some /x > 0 then T = 8 V for some real ô and some 
isometry V. 

Since the square of an adjoint abelian operator is Hermitian, we can 
combine Corollary 4.6, Theorem 3.14, and the result in [2] to obtain 
the following. 

4.8. COROLLARY. If a 9^ 1 then T is adjoint abelian on sp(a) if and only if 
there exists a real number b such that 

(4.9) T = 61. 

Remark. Corollaries (4.6) and (4.8) imply that an operator T is adjoint 
abelian on sp(a) (a ^ 1) if and only if T is Hermitian. This is the only 
case (except for Hilbert Space) known to the authors for which this 
phenomenon occurs. 
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Finally, we suspect that all isometries of sp(a) must be surjective. 
However, this remains an open question. Stephen Cambell has recently 
answered this question in the negative. 
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