On Geometric Flats in the CAT(0) Realization of Coxeter Groups and Tits Buildings

Pierre-Emmanuel Caprace and Frédéric Haglund

Abstract

Given a complete $\operatorname{CAT}(0)$ space X endowed with a geometric action of a group Γ, it is known that if Γ contains a free abelian group of rank n, then X contains a geometric flat of dimension n. We prove the converse of this statement in the special case where X is a convex subcomplex of the CAT(0) realization of a Coxeter group W, and Γ is a subgroup of W. In particular a convex cocompact subgroup of a Coxeter group is Gromov-hyperbolic if and only if it does not contain a free abelian group of rank 2. Our result also provides an explicit control on geometric flats in the CAT(0) realization of arbitrary Tits buildings.

Introduction

Let X be a complete CAT(0) space and Γ be a group acting properly, discontinuously, and cocompactly on X. It is a well-known consequence of the so-called flat torus theorem [BH99, Corollary II.7.2] that:
$\left(\mathbb{Z}^{n} \Rightarrow \mathbb{E}^{n}\right)$: if Γ contains a free abelian group of rank n, then X contains a geometric flat of dimension n.

Recall that a (geometric) flat of dimension n, also called (geometric) n-flat, is a closed convex subset of X which is isometric to the Euclidean n-space. One may wonder whether a converse of this statement does hold, that is to say, whether the presence of a geometric n-flat in X is reflected in Γ by the existence of a free abelian group of rank n. This question goes back at least to Gromov [Gro93, §6.B3].

In the case $n=2$, in view of the flat plane theorem [BH99, Corollary III.H.1.5], this question can be stated as follows.

If X is not hyperbolic, does Γ contain a copy of $\mathbb{Z} \times \mathbb{Z}$?
The answer is known to be positive in the following cases:

- Γ is the fundamental group of a closed aspherical 3-manifold [KK04].
- X is a square complex satisfying certain technical conditions [Wis05].

A combinatorially convex subcomplex of the Davis complex $|W|_{0}$ of a Coxeter group W is an intersection of closed half-spaces of $|W|_{0}$. The following result shows that if X is such a combinatorially convex subcomplex of $|W|_{0}$, and if $\Gamma \subset W$ acts cellularly, then the converse of the property $\left(\mathbb{Z}^{n} \Rightarrow \mathbb{E}^{n}\right)$ above holds for all n.

[^0]Theorem 1 Let X be a combinatorially convex subcomplex of the Davis complex $|W|_{0}$ of a Coxeter group W. Let Γ be a subgroup of W which preserves X and whose induced action on X is cocompact. If X contains a geometric n-flat, then Γ contains a free abelian group of rank n.

Since half-spaces are CAT(0)-convex, combinatorially convex subcomplexes are CAT(0)-convex as well. We do not know if the theorem above is still true when X is only assumed to be a CAT(0)-convex subset of $|W|_{0}$. We note that in general the intersection \bar{X} of the closed half-spaces of $|W|_{0}$ containing X is not cocompact under Γ. Yet Γ is still cofinite on the set of walls separating X (or \bar{X}), and perhaps this is enough.

Corollary 2 Let X be a CAT(0) convex subcomplex of the Davis complex $|W|_{0}$ of a Coxeter group W. Let Γ be a subgroup of W which preserves X and whose induced action on X is cocompact. If X contains a geometric n-flat, then Γ contains a free abelian group of rank n.

Proof The corollary follows by Theorem 1 because, since X is a subcomplex, the intersection of the closed half-spaces of $|W|_{0}$ containing X is a combinatorially convex Γ-cocompact subcomplex \bar{X}.

We sketch the argument. The key-point is that X^{0} is convex for the combinatorial distance. First, any two vertices x, y of X may be joined by a combinatorial geodesic $\left(x_{0}=x, \ldots, x_{n}=y\right)$ all of whose vertices belong to the smallest subcomplex of $|W|_{0}$ containing the CAT(0) geodesic between x and y [HP98, Lemme 4.9]. Since X is a $\operatorname{CAT}(0)$ convex subcomplex, it follows that x_{0}, \ldots, x_{n} belong to X^{0}. Now any combinatorial geodesic between x, y may be joined to $\left(x_{0}, \ldots, x_{n}\right)$ by a sequence of geodesics, any two consecutive of which differ by replacing half the boundary of some polygon of $|W|_{0}$ by the other half. Since X is a CAT(0) convex subcomplex, it contains a polygonal face of $|W|_{0}$ as soon as it contains two consecutive edges of the boundary. It follows that X^{0} contains the vertices of any combinatorial geodesic joining two of its points.

For any edge e with endpoints $x \in X, y \notin X$ we claim that the geometric wall m separating x from y does not separate x from any other vertex z of X. Indeed any vertex separated from x by m can be joined to x by a combinatorial geodesic through y. So by combinatorial convexity X would contain y, which is a contradiction. This shows that X is contained in the intersection \tilde{X} of closed half-spaces whose boundary wall separates an edge with one endpoint in X and the other one outside.

We claim that \tilde{X} contains no vertex outside X. Indeed let $v \notin X^{0}$ denote some vertex. Choose a vertex $w \in X^{0}$ such that the combinatorial distance $d(v, w)$ is minimal. Consider any geodesic from w to v. Then the first edge e of this geodesic ends at a vertex $y \notin X$, and the wall separating w from y does not separate y from v. Thus $v \notin \tilde{X}$. Since $X^{0} \subset \bar{X} \subset \tilde{X}$ and \tilde{X} is the union of chambers with center in X^{0}, it follows that $\bar{X}=\tilde{X}$. Since Γ is cofinite on X^{0} by assumption, it follows that Γ is cocompact on \bar{X}, and we may apply Theorem 1.

The algebraic flat rank of a group Γ, denoted alg-rk (Γ), is the maximal Z-rank of abelian subgroups of Γ. The geometric flat rank of a CAT(0) space X, denoted $\operatorname{rk}(X)$,
is the maximal dimension of isometrically embedded flats in X. As an immediate consequence of Theorem 1 combined with the flat torus theorem, one obtains the following.

Corollary 3 Let X and Γ be as in Theorem 1. Then $\operatorname{rk}(X)=\operatorname{alg}-\mathrm{rk}(\Gamma)$. In particular, one has $\operatorname{rk}\left(|W|_{0}\right)=\operatorname{alg}-\mathrm{rk}(W)$.

It is an important result of Daan Krammer [Kra94, Theorem 6.8.3] that the algebraic flat rank of W can be easily computed in the Coxeter diagram of (W, S).

The equality between the algebraic flat rank of W and the geometric flat rank of $|W|_{0}$ was conjectured in [BRW05]. Actually, it is shown there that this equality allows us to compute very efficiently the so-called (topological) flat rank of certain automorphism groups of locally finite buildings whose Weyl group is W. The groups in question carry a canonical structure of locally compact, totally discontinuous topological groups; furthermore, they are topologically simple [Rém04]. The topological flat rank mentioned above is a natural invariant of the structure of a topological group (see [BRW05] for more details).

The class of pairs (X, Γ) satisfying the assumptions of Theorem 1 is larger than one might expect. Assume for example that Γ acts geometrically by cellular isometries on a CAT(0) cubical complex X, and that Γ acts in a special way on hyperplanes:

- for any hyperplane H of X and any element $g \in \Gamma$, either $g H=H$, or H and $g H$ have disjoint neighbourhoods
- for any two distinct, intersecting hyperplanes H, H^{\prime} of X and any element $g \in \Gamma$, either $g H^{\prime}$ intersects H, or H and $g H^{\prime}$ have disjoint neighbourhoods.
Such special actions are studied in [HW06], where it is proved that in the above situation there exists a right-angled Coxeter group W, an embedding $\Gamma \rightarrow W$ and an equivariant cellular isometric embedding $X \rightarrow|W|_{0}$. Thus Corollary 2 applies to groups acting geometrically and specially on CAT(0) cubical complexes. When the action is free we obtain the following.
Corollary 4 The fundamental group of a compact nonpositively curved special cube complex is hyperbolic if and only if it does not contain $\mathbb{Z} \times \mathbb{Z}$.

The fundamental groups of the "clean" ($V H$ -) square complexes that were studied in [Wis05] are examples of virtually special groups [HW06, Theorem 5.7]. Thus, in this case Theorem 1 provides a new proof of the equivalence between hyperbolicity and absence of $\mathbb{Z} \times \mathbb{Z}$. Note that Wise's result applies to malnormal or cyclonormal $V H$-complexes, which are a priori more general than the virtually clean ones. But Wise [Wis05] asked explicitly whether malnormal or cyclonormal implies virtually clean; already he had proved this converse implication for many classes of VH complexes.

Not surprisingly, Theorem 1 also provides a control on geometric flats isometrically embedded in the CAT(0) realization of arbitrary Tits buildings. More precisely, we have the following.
Theorem 5 Let (W, S) be a Coxeter system and \mathscr{B} a building of type (W, S). Every geometric flat of the $\mathrm{CAT}(0)$ realization $|\mathscr{B}|_{0}$ of \mathscr{B} is contained in an apartment. In particular, one has $\operatorname{rk}\left(|\mathscr{B}|_{0}\right)=\operatorname{alg}-\operatorname{rk}(W)$.

Note that in [BRW05] the authors established the equality $\operatorname{rk}\left(|\mathscr{B}|_{0}\right)=\operatorname{rk}\left(|W|_{0}\right)$.
Finally, we recall [Kle99, Theorem B] that if X is a locally compact complete CAT(0) space on which Isom (X) acts cocompactly, then the geometric flat rank of X coincides with five other quantities, among which are the following ones.

- The maximal dimension of a quasi-flat of X.
- $\sup \left\{k \mid H_{k-1}\left(\partial_{T} X\right) \neq\{0\}\right\}$, where $\partial_{T} X$ denotes the Tits boundary of X.
- The geometric dimension of any asymptotic cone of X.

This applies of course to the Davis complex $|W|_{0}$, but also to many locally finite buildings of arbitrary type, including all locally finite Kac-Moody buildings. In particular, Corollary 3 and Theorem 5, combined with Daan Krammer's computation of alg-rk (W), provide a very efficient way to compute all these quantities for these examples.

In Section 1, we first recall basic facts on the Davis-Moussong geometric realization of Coxeter groups. In particular we introduce the walls, the half-spaces and the chambers.

In Section 2 we define combinatorial convex subsets of the Davis-Moussong geometric realization, and we establish an important lemma.

In Section 3 we present the main technical tools of this article. If a family of walls behaves as if it were contained in a Euclidean triangle subgroup, then in fact it generates a Euclidean triangle subgroup (see Lemmas 3.1 and 3.4 for precise statements).

In Section 4 we describe completely the combinatorial structure of the set of walls separating a given flat. The reflections along these walls generate a subgroup that we also describe.

In Section 5 we explain how to get a rank n free abelian group out of a rank n flat.
And in Section 6 we explain how to deduce the statement on buildings from the statement on Coxeter complexes.

1 Preliminaries

Let (W, S) be a Coxeter system with S finite. The Davis complex associated with (W, S), denoted $|W|_{0}$, is a $\operatorname{CAT}(0)$ cellular complex equipped with a faithful, properly discontinuous, cocompact action of W [Dav98].

Recall that a reflection of W is, by definition, any conjugate of an element of S. The fixed point set of a reflection in $|W|_{0}$ is called a wall. Note that a wall is a closed convex subset of $|W|_{0}$. A fundamental property is that every wall separates $|W|_{0}$ into two open convex subsets, whose respective closures are called half-spaces. If a is a half-space, its boundary is a wall which is denoted by ∂a. If $x \in|W|_{0}$ is a point which is not contained in any wall, then the intersection of all half-spaces containing x is compact; this compact set is called a chamber of $|W|_{0}$. The W-action on the chambers of $|W|_{0}$ is free and transitive.

Let x, y denote two non-empty convex subsets of $|W|_{0}$. We say that a wall m separates x from y whenever x is contained in one of the half-spaces delimited by m, y is contained in the other half-space, and neither x nor y are contained in m.

We will use the following notation. Given a wall m of $|W|_{0}$, the unique reflection fixing m pointwise is denoted by r_{m}. For any set M of walls, we set $W(M):=$
$\left\langle r_{m} \mid m \in M\right\rangle$. Recall that $W(M)$ is itself a Coxeter system on a certain set of reflections $\left(r_{\nu}\right)_{\nu \in N}$, where each wall $\nu \in N$ is of the form $\nu=w \mu$ for some $w \in W(M)$ and some $\mu \in M$ [Deo89]. Such a subgroup will be called a reflection subgroup.

Finally, given two points (resp. two convex subsets) x, y of $|W|_{0}$, we denote by $\mathscr{M}(x, y)$ the set of all walls which separate x from y. Two chambers c, c^{\prime} are said to be adjacent whenever $\mathscr{M}\left(c, c^{\prime}\right)$ is empty, or consists in a single wall m (in which case $r_{m}(c)=c^{\prime}$). A gallery (of length n) is a sequence $\left(c_{0}, c_{1}, \ldots, c_{n}\right)$ of chambers such that c_{i} and c_{i+1} are adjacent chambers for $i=0, \ldots, n-1$. The gallery defines a unique sequence of walls it crosses (this sequence might be empty if the gallery is a constant sequence).

We get a (discrete) distance on the set of chambers by considering the infimum of the length of all galleries from the first chamber to the second. Using the simple transitive action of W on the chambers, this gallery distance is identified with the word metric on (W, S).

It is well known that for two chambers c, c^{\prime} the gallery distance $d_{\mathrm{gal}}\left(c, c^{\prime}\right)$ is the cardinality of $\mathscr{M}\left(c, c^{\prime}\right)$, and that a gallery from c to c^{\prime} has length $d_{\text {gal }}\left(c, c^{\prime}\right)$ if and only if the sequence of walls it crosses has no repetition. Furthermore for any gallery from c to c^{\prime} the set of walls separating c from c^{\prime} is the set of walls appearing an odd number of times in the sequence of walls that the gallery crosses.

The following basic lemmas are well known; their proofs are easy exercises.
Lemma 1.1 Let x, y be two points of $|W|_{0}$. There are two chambers c_{x}, c_{y} such that $x \in c_{x}, y \in c_{y}$ and $\mathscr{M}(x, y)=\mathscr{M}\left(c_{x}, c_{y}\right)$.

Lemma 1.2 Let $x, y \in|W|_{0}$. There exists $\gamma \in W(\mathscr{M}(x, y))$ such that x and $\gamma . y$ are contained in a common chamber.

2 Combinatorial Convexity

A subset $F \subset|W|_{0}$ is called combinatorially convex if either $F=|W|_{0}$ or F coincides with the intersection of all half-spaces containing it. The combinatorial convex closure of a subset $F \subset|W|_{0}$ will be denoted by $\operatorname{Conv}(F)$. Hence $\operatorname{Conv}(F)$ is either the whole $|W|_{0}$ (if F is not contained in any half-space) or the intersection of all half-spaces of $|W|_{0}$ containing F. Since half-spaces are subcomplexes of the first barycentric subdivision of $|W|_{0}$, we note that combinatorially convex subsets are subcomplexes as well.

Since half-spaces are CAT(0) convex, combinatorially convex subcomplexes are CAT(0) convex, but we will rather use the following elementary combinatorial convexity property: all chambers of a geodesic gallery from a chamber c to a chamber c^{\prime} belong to $\operatorname{Conv}\left(c \cup c^{\prime}\right)$.

Lemma 2.1 Let $x, y \in|W|_{0}$ and assume that the set $\mathscr{M}(x, y)$ possesses a subset M such that for all $m \in M$ and $\mu \in \bar{M}=\mathscr{M}(x, y) \backslash M$, the reflections r_{m} and r_{μ} commute. Then the combinatorial convex closure of $\{x, y\}$ contains a point z such that $\mathscr{M}(y, z)=M$ and $\mathscr{M}(x, z)=\bar{M}$.

Proof Let c_{x}, c_{y} be chambers such that $x \in c_{x}, y \in c_{y}$ and $\mathscr{M}(x, y)=\mathscr{M}\left(c_{x}, c_{y}\right)$ (Lemma 1.1). We prove that there exists a chamber c_{z} such that $\mathscr{M}\left(c_{y}, c_{z}\right)=M$
and $\mathscr{M}\left(c_{x}, c_{z}\right)=\bar{M}$ (note that such a chamber necessarily lies in the combinatorial convex closure of $c_{x} \cup c_{y}$).

This implies the desired result. Indeed, since $\mathscr{M}(x, y)=\mathscr{M}\left(c_{x}, c_{y}\right)$, we have $\operatorname{Conv}(\{x, y\})=\operatorname{Conv}\left(c_{x} \cup c_{y}\right)$. Furthermore since $\mathscr{M}\left(y, c_{y}\right)=\varnothing$, we have $\mathscr{M}\left(c_{z}, y\right) \subset \mathscr{M}\left(c_{z}, c_{y}\right)$. Conversely if $m \in \mathscr{M}\left(c_{z}, c_{y}\right)$, then m does not separate c_{z} from c_{x}; otherwise c_{z} would not be inside $\operatorname{Conv}\left(c_{x} \cup c_{y}\right)$. Thus m separates c_{y} from c_{x}, and so $m \in \mathscr{M}(x, y)$. In particular $y \notin m$. Thus in fact $m \in \mathscr{M}\left(c_{z}, y\right)$. Consequently $\mathscr{M}\left(c_{z}, y\right)=\mathscr{M}\left(c_{z}, c_{y}\right)(=M)$, and similarly $\mathscr{M}\left(c_{z}, x\right)=\mathscr{M}\left(c_{z}, c_{x}\right)(=\bar{M})$. We then define z to be any point in the interior of the chamber c_{z}.

It remains to prove the statement for chambers. To this end, we argue by induction on the cardinality n of $\mathscr{M}\left(c_{x}, c_{y}\right)$. We may assume $n>0$.

Consider some geodesic gallery ($c_{0}=c_{x}, \ldots, c_{n-1}, c_{n}=c_{y}$). Let μ denote the unique wall separating c_{n-1} from c_{n}. By induction there is a chamber d such that $\mathscr{M}\left(c_{x}, d\right)=\bar{M} \backslash\{\mu\}, \mathscr{M}\left(d, c_{n-1}\right)=M \backslash\{\mu\}$. We then have

$$
\mathscr{M}\left(d, c_{y}\right)=\mathscr{M}\left(d, c_{n-1}\right) \cup\{\mu\} .
$$

If $\mu \in M$, then the chamber d satisfies $\mathscr{M}\left(c_{x}, d\right)=\bar{M}$ and $\mathscr{M}\left(d, c_{y}\right)=M$, so we are done.

Assume now that $\mu \in \bar{M}$, so $M=\mathscr{M}\left(d, c_{n-1}\right)$. Consider a gallery from d to c_{n-1} of minimal length. If this gallery has length 0 , then $M=\varnothing$ and we take $c_{z}=c_{y}$. Otherwise let $m \in M$ denote the last wall that the gallery crosses. Let d^{\prime} denote the chamber $r_{m} r_{\mu}\left(c_{n-1}\right)$. Then d^{\prime} is adjacent to c_{n-2}, and d^{\prime} is also adjacent to c_{n} because $r_{m} r_{\mu}=r_{\mu} r_{m}$. It follows that there exists a gallery of minimal length from c_{x} to c_{y} whose last crossed wall is m. So in fact we are back to the first case, and thus we are done.

Note that the corresponding statement (for vertices) is true in an arbitrary CAT(0) cubical complex X. Indeed for any two vertices x, y of X such that the set $\mathscr{M}(x, y)$ of hyperplanes of X separating x from y may be written $\mathscr{M}(x, y)=M \sqcup \bar{M}$ so that every hyperplane of M is perpendicular to every hyperplane of \bar{M}, there exists a vertex z such that $\mathscr{M}(z, y)=M$ and $\mathscr{M}(z, x)=\bar{M}$. Clearly z is on some combinatorial geodesic from x to y, thus z is in the convex hull of $\{x, y\}$.

3 The Euclidean Triangle Lemmas

In what follows, a Euclidean triangle subgroup of the Coxeter group W is a reflection subgroup which is isomorphic to one of the three possible irreducible Coxeter groups containing $\mathbb{Z} \times \mathbb{Z}$ as a finite index subgroup. We say that a set P of walls is Euclidean whenever there exists a wall m such that $P \cup\{m\}$ generates a Euclidean triangle subgroup of W. We will be mainly interested in the case when P is a set of pairwise disjoint walls.

The following lemma relates the combinatorial configuration of a certain set of walls M of $|W|_{0}$ with the algebraic structure of $W(M)$. This provides the key ingredient which allows us to understand the walls of a geometric flat of $|W|_{0}$, see Proposition 4.9 below.

Lemma 3.1 There exists a constant L, depending only on the Coxeter system (W, S), such that the following property holds. Let $a, b, h_{0}, h_{1}, \ldots, h_{n}$ be a collection of halfspaces of $|W|_{0}$ such that:
(i) $\varnothing \neq a \cap b \subsetneq h_{0} \subsetneq h_{1} \subsetneq \cdots \subsetneq h_{n}$,
(ii) $\varnothing \neq \partial a \cap \partial b \subset \partial h_{0}$,
(iii) ∂a and ∂b both meet ∂h_{i} for each $i=1, \ldots, n$.

If $n \geq L$, then the group generated by the reflections through the walls $\partial a, \partial b, \partial h_{0}$, $\partial h_{1}, \ldots, \partial h_{n}$ is a Euclidean triangle subgroup.

Proof See [Cap06, Theorem A].
A set P of walls of $|W|_{0}$ is called a chain of walls if there exists a set A of half-spaces of $|W|_{0}$ such that A is totally ordered by inclusion and $P=\{\partial a, a \in A\}$ (for short we write $P=\partial A$). There are three kinds of chains of walls. We say that P is a segment of walls if it is a finite chain of walls. We say that P is a line of walls if $P=\partial A$ with A a set of half-spaces such that the ordered set (A, \subset) is isomorphic to (\mathbb{Z}, \leq). And we say that P is a ray of walls if $P=\partial A$ with A a set of half-spaces such that the ordered set (A, \subset) is isomorphic to (\mathbb{N}, \leq).

Lemma 3.2 Let P denote a nonempty set of walls which are all disjoint from a given wall μ. Assume that $P \cup\{\mu\}$ is Euclidean. Then $P \cup\{\mu\}$ is a chain and $W(P \cup\{\mu\})$ is infinite dihedral.
Proof Let μ^{\prime} denote some wall such that $W\left(P \cup\left\{\mu, \mu^{\prime}\right\}\right)$ is a Euclidean triangle subgroup. Represent $W\left(P \cup\left\{\mu, \mu^{\prime}\right\}\right)$ as a group of isometries of the Euclidean plane (in such a way that the abstract reflections act as geometric reflections).

Let m, m^{\prime} denote two walls of $P \cup\{\mu\}$. Note that $m \cap m^{\prime}=\varnothing$ if and only if the order of $r_{m} r_{m^{\prime}}$ is infinite. In the geometric representation we have $m \cap m^{\prime}=\varnothing$ if and only if the Euclidean lines $L(m), L\left(m^{\prime}\right)$ fixed pointwise by m and m^{\prime} are parallel. Since we assume $m \cap \mu=\varnothing$ or $m=\mu$, we deduce that $L(m)$ is parallel to $L(\mu)$. Similarly $L\left(m^{\prime}\right)$ is parallel to $L(\mu)$. Thus $L(m)$ and $L\left(m^{\prime}\right)$ are parallel, which implies that $m=m^{\prime}$ or $m \cap m^{\prime}=\varnothing$.

Thus $P \cup\{\mu\}$ is a set of pairwise disjoint walls (of cardinality ≥ 2). By looking at the geometric representation we deduce that $W(P \cup\{\mu\})$ is infinite dihedral. Note that the set of walls associated with all the reflections of any infinite dihedral reflection subgroup is a line of walls (this can be seen by considering a generating set consisting of two reflections; the associated walls cut $|W|_{0}$ into three pieces, one of which is a fundamental domain for the reflection subgroup that we consider). It follows that $P \cup\{\mu\}$ is a chain.

Let T denote any subset of the generating set S. Then any conjugate of the subgroup $W(T)$ is called a parabolic subgroup. The parabolic closure of any subgroup $\Gamma \subset W$ is the intersection of all parabolic subgroups of W containing Γ; we denote it by $\widetilde{\Gamma}$. With this terminology we have the following.

Lemma 3.3 Let P be a set of pairwise disjoint walls of $|W|_{0}$. Assume that there exists a wall m such that $W(P \cup\{m\})$ is a Euclidean triangle subgroup. Then the parabolic closure $\widetilde{W(P)}$ satisfies the following conditions:
(i) $\widetilde{W(P)}$ is isomorphic to an irreducible affine Coxeter group.
(ii) For all walls $\mu, \mu^{\prime}, \mu^{\prime \prime}$, if μ separates μ^{\prime} from $\mu^{\prime \prime}$ and if $r_{\mu^{\prime}}$ and $r_{\mu^{\prime \prime}}$ both belong to $\widetilde{W(P)}$, then r_{μ} also belongs to $\widetilde{W(P)}$.
(iii) For any line of walls P^{\prime} and any wall μ, if $W\left(P^{\prime}\right) \leq \widetilde{W(P)}$ and if $W\left(P^{\prime} \cup\{\mu\}\right)$ is a Euclidean triangle subgroup, then r_{μ} belongs to $\widetilde{W(P)}$.

Proof (i) follows from a theorem of D. Krammer [CM05, Theorem 1.2] (see also [CM05, Theorem 3.3]); (ii) and (iii) follow from (i) using convexity arguments, see [Cap06, Lemma 8] for details.

We may now deduce another useful result of the same kind as Lemma 3.1.
Corollary 3.4 Let P be a set of pairwise disjoint walls of $|W|_{0}$ and let m be a wall such that $W(P \cup\{m\})$ is a Euclidean triangle subgroup. Then W possesses a Euclidean triangle subgroup, denoted by $\overline{W(P \cup\{m\})}$, containing $W(P \cup\{m\})$ and such that $r_{\mu} \in \overline{W(P \cup\{m\})}$ for each wall μ satisfying either of the following conditions.
(i) There exist $\mu^{\prime}, \mu^{\prime \prime} \in P$ such that μ separates μ^{\prime} from $\mu^{\prime \prime}$.
(ii) μ is disjoint from m and moreover $W(P \cup\{\mu\})$ is a Euclidean triangle subgroup.

Proof Let $\widetilde{W(P)} \leq W$ be the irreducible affine Coxeter group provided by Lemma 3.3. By Lemma 3.3(iii) we have $r_{m} \in \widetilde{W(P)}$. Let P^{\prime} be the set consisting of all those walls p^{\prime} such that $r_{p^{\prime}} \in \widetilde{W(P)}$ and that there exists $p \in P \cup\{m\}$ which does not meet p^{\prime}. Define $\overline{W(P \cup\{m\})}:=W\left(P^{\prime} \cup P \cup\{m\}\right)$. The group $\overline{W(P \cup\{m\})}$ is a Euclidean triangle subgroup, because it is a subgroup of an affine Coxeter group generated by reflections corresponding to two directions of hyperplanes. Given a wall μ satisfying (i) or (ii), we obtain successively $r_{\mu} \in \widetilde{W(P)}$ by Lemma 3.3 and then $\mu \in P^{\prime}$ by the definition of P^{\prime}.

4 The Walls of a Geometric Flat

Let F be a geometric flat which is isometrically embedded in the Davis complex $|W|_{0}$ of W. Let $\mathscr{M}(F)$ denote the set of all walls which separate points of F :

$$
\mathscr{M}(F):=\bigcup_{x, y \in F} \mathscr{M}(x, y)
$$

Lemma 4.1 For every $\mu \in \mathscr{M}(F)$, the set $\mu \cap F$ is a Euclidean hyperplane of F.
Proof Let x, y be points of F which are separated by μ. We know that $\mu \cap F$ is a closed convex subset of F which separates F into two open convex subsets. Thus the result will follow if we prove that the geodesic segment $[x, y]$ joining x to y meets μ in a single point. This is a local property, which can easily be checked in a single (Euclidean) cell of $|W|_{0}$ (see [NV02, Lemma 3.4] for details).

Lemma 4.2 Let μ be a wall which meets F. Assume that F contains a Euclidean halfspace F^{+}such that $F^{+} \cap \mu \neq \varnothing$ and F^{+}is contained in a ε-neighborhood of μ for some $\varepsilon>0$. Then $F \subset \mu$.

Proof Let d be the distance function of the Davis complex $|W|_{0}$. Since μ is a closed convex subset, the function $d_{\mu}:|W|_{0} \rightarrow \mathbf{R}^{+}: x \mapsto \inf \{d(x, y) \mid y \in \mu\}$ is convex [BH99, §II.2]. By assumption, the restriction $\left.d_{\mu}\right|_{F^{+}}$of d_{μ} to F^{+}is bounded. Therefore $\left.d_{\mu}\right|_{F^{+}}$must be constant, as is the case for any bounded convex function on an unbounded convex domain. Since μ meets F^{+}by hypothesis, we have $\left.d_{\mu}\right|_{F^{+}}=0$, that is to say, $F^{+} \subset \mu$. By Lemma 4.1, this implies $F \subset \mu$.

Two elements μ, μ^{\prime} of $\mathscr{M}(F)$ will be called F-parallel if their respective traces on F are parallel in the Euclidean sense. In symbols, this is written:

$$
\mu \|_{F} \mu^{\prime} \Longleftrightarrow \mu \cap F=\mu^{\prime} \cap F \text { or } \mu \cap F \cap \mu^{\prime}=\varnothing
$$

The relation of F-parallelism is an equivalence relation on $\mathscr{M}(F)$.
Besides the relation of F-parallelism, there is another relation of global parallelism on the walls of F defined by

$$
\mu \| \mu^{\prime} \Longleftrightarrow \mu=\mu^{\prime} \text { or } \mu \cap \mu^{\prime}=\varnothing
$$

Clearly $\mu\left\|\mu^{\prime} \Rightarrow \mu\right\|_{F} \mu^{\prime}$. Given $\mu \in \mathscr{M}(F)$, we set $P_{F}(\mu):=\{m \in \mathscr{M}(F) \mid m \| \mu\}$. Thus $P_{F}(\mu)$ is contained in the F-parallel class of μ. Note that, in contrast to the F-parallelism, the relation of global parallelism is not transitive in general: two distinct walls of $P_{F}(\mu)$ may have nontrivial intersection.

Any large set of walls contains two non-intersecting ones [NR03, Lemma 3]. Consequently, the set of F-parallel classes is finite. Since chambers are compact and F is unbounded, it follows that some F-parallel class must be infinite. Actually, all of them are as is seen from the following.

Lemma 4.3 Given any $\mu \in \mathscr{M}(F)$, there exist two rays of walls $M^{+}(\mu), M^{-}(\mu) \subset$ $\mathscr{M}(F)$ such that μ separates any element of $M^{+}(\mu)$ from any element of $M^{-}(\mu)$. In particular, μ does not meet any element of $M^{+}(\mu) \cup M^{-}(\mu)$, and $P_{F}(\mu)$ contains a line of walls (passing through μ).

Proof Consider a line of F which meets orthogonally the F-hyperplane $\mu \cap F$. Using Lemma 4.2 we see that when a point p goes to infinity on the line, its distance to μ must tend to infinity. Now by the so-called parallel wall theorem [BH93, Theorem 2.8] any point far from a given wall in $|W|_{0}$ is separated from that wall by some other wall of $|W|_{0}$. The lemma follows.

Remark 4.4 For $\mu \in \mathscr{M}(F)$, any subset $P \subset P_{F}(\mu)$ of pairwise disjoint walls is a chain of walls. Indeed for three distinct walls $p_{1}, p_{2}, p_{3} \in P$ we have $p_{i} \|_{F} \mu$, thus p_{1}, p_{2}, p_{3} are mutually F-parallel. The Euclidean hyperplanes $p_{i} \cap F$ are pairwise disjoint, so we may assume that $p_{2} \cap F$ separates $p_{1} \cap F$ from $p_{3} \cap F$. It follows that p_{2} separates p_{1} from p_{3}. Hence $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a segment of walls. Since any 3 -subset of P is a chain, it follows that P itself is a chain.

We will see in Proposition 4.7 below that the restriction of the relation of global parallelism to a certain subset $\mathscr{M}_{\text {Eucl }}(F)$ of $\mathscr{M}(F)$ is an equivalence.

By definition, the subset $\mathscr{M}_{\text {Eucl }}(F) \subset \mathscr{M}(F)$ consists of all those walls $\mu \in \mathscr{M}(F)$ which satisfy the following property.
There exists a wall $\mu^{\prime} \in \mathscr{M}(F)$ such that $W\left(P_{F}(\mu) \cup\left\{\mu^{\prime}\right\}\right)$ is a Euclidean triangle subgroup.

Applying Lemmas 3.2 and 4.3, we get the following.
Lemma 4.5 Assume $\mu \in \mathscr{M}_{\text {Eucl }}(F)$, and more precisely that $W\left(P_{F}(\mu) \cup\left\{\mu^{\prime}\right\}\right)$ is a Euclidean triangle subgroup for some $\mu^{\prime} \in \mathscr{M}(F)$. Then
(i) $P_{F}(\mu)$ is a line of walls.
(ii) For every $m \in P_{F}(\mu)$, one has $P_{F}(\mu) \subset P_{F}(m)$. In particular $P_{F}(\mu)=P_{F}(m)$ provided $m \in \mathscr{M}_{\text {Eucl }}(F)$.
(iii) $W\left(P_{F}(\mu)\right)$ is an infinite dihedral subgroup of W and is a maximal one.
(iv) $r_{\mu^{\prime}}$ does not centralize $W\left(P_{F}(\mu)\right)$.

The following lemma outlines the main combinatorial properties of the set $\mathscr{M}_{\text {Eucl }}(F)$.

Lemma 4.6 We have the following.
(i) Let $P \subset \mathscr{M}(F)$ be a line of walls. If there exists $m \in \mathscr{M}(F)$ such that the group $W(P \cup\{m\})$ is a Euclidean triangle subgroup, then $P \subset \mathscr{M}_{\text {Eucl }}(F)$.
(ii) Let $m \in \mathscr{M}(F)$. If $m \notin \mathscr{M}_{\text {Eucl }}(F)$, then m meets every element of $\mathscr{M}_{\text {Eucl }}(F)$.
(iii) Let $m, m^{\prime} \in \mathscr{M}(F)$. If the reflections r_{m} and $r_{m^{\prime}}$ do not commute and if m and m^{\prime} are not F-parallel, then $m \in \mathscr{M}_{\text {Eucl }}(F)$.
(iv) Let $m, m^{\prime} \in \mathscr{M}(F)$. If the reflections r_{m} and $r_{m^{\prime}}$ do not commute and if $m^{\prime} \in$ $\mathscr{M}_{\text {Eucl }}(F)$, then $m \in \mathscr{M}_{\text {Eucl }}(F)$.

Before proving the lemma, it is convenient to introduce the following additional terminology. A set P of walls of $|W|_{0}$ is said to be convex whenever the following holds: for each wall m of $|W|_{0}$ separating two walls of P, we have $m \in P$. For example, for all $x, y \in|W|_{0}$ the set $\mathscr{M}(x, y)$ is convex; moreover, the set $\mathscr{M}(F)$ is convex as well.

Proof of Lemma 4.6 (i) Let $\mu \in P$. Since $P \subset \mathscr{M}(F)$ is a line of walls we have $P \subset P_{F}(\mu)$. There are finitely many walls separating two disjoint walls of $|W|_{0}$. The line of walls P may be written as a union of segments of walls $\left\{\mu_{n}, \mu_{n+1}\right\}(n \in \mathbb{Z})$ so that no $m \in P$ separates μ_{n} from μ_{n+1}. Choose then a segment of walls $P_{n} \subset P_{F}(\mu)$ such that $P_{n} \cap P=\left\{\mu_{n}, \mu_{n+1}\right\}$ and any wall $m \in P_{n} \backslash\left\{\mu_{n}, \mu_{n+1}\right\}$ separates μ_{n} from μ_{n+1} and moreover P_{n} is maximal with respect to these properties. Set $\bar{P}=\bigcup_{k} P_{k}$. Then $P \subset \bar{P} \subset P_{F}(\mu), \bar{P}$ is a line and for every wall m^{\prime} of $P_{F}(\mu) \backslash \bar{P}$ the set $\bar{P} \cup\left\{m^{\prime}\right\}$ is not a line anymore.

By construction for every $p \in \bar{P}$ there exist $p^{\prime}, p^{\prime \prime} \in P$ such that p separates p^{\prime} from $p^{\prime \prime}$. Therefore, since $W(P \cup\{m\})$ is a Euclidean triangle subgroup, we have $W(\bar{P} \cup\{m\}) \subset \overline{W(P \cup\{m\})}$ by Corollary 3.4. In particular, $W(\bar{P} \cup\{m\})$ is a Euclidean triangle subgroup. Hence we are done if we show that $\bar{P}=P_{F}(\mu)$. This is what we do now.

Let m^{\prime} denote a wall separating two walls $p^{\prime}, p^{\prime \prime}$ of \bar{P}. Then $m^{\prime} \in \mathscr{M}(F)$ and by Corollary 3.4 the subset $\bar{P} \cup\left\{m^{\prime}\right\}$ is still Euclidean. By Lemma 3.2 $\bar{P} \cup\left\{m^{\prime}\right\}$ is a line, and by the maximality of \bar{P} we have $m^{\prime} \in \bar{P}$. Thus \bar{P} is a convex set of walls.

Assume by contradiction that there exists $m^{\prime} \in P_{F}(\mu) \backslash \bar{P}$. By the maximality of \bar{P}, the set $\bar{P} \cup\left\{m^{\prime}\right\}$ is not a line anymore. By Remark 4.4 this implies that m^{\prime} meets at least one element of \bar{P}. Let \bar{P}^{\prime} denote the (nonempty) subset of \bar{P} consisting of all those walls which meet m^{\prime}. Note that by the definition of \bar{P}^{\prime}, for all $p \in \bar{P}$, if there exist $p^{\prime}, p^{\prime \prime} \in \bar{P}^{\prime}$ such that p separates p^{\prime} from $p^{\prime \prime}$, then $p \in \bar{P}^{\prime}$. Since \bar{P} is convex, this shows in particular that \bar{P}^{\prime} is convex.

If \bar{P}^{\prime} is finite, it is a segment of the line \bar{P} and there exist $p^{\prime}, p^{\prime \prime} \in \bar{P}$ such that m^{\prime} separates p^{\prime} from $p^{\prime \prime}$. Since \bar{P} is convex, this implies that $m^{\prime} \in \bar{P}$, a contradiction.

Hence \bar{P}^{\prime} is infinite. Since $\mu \notin \bar{P}^{\prime}$ and \bar{P}^{\prime} is convex, we see that \bar{P}^{\prime} is a ray of walls (contained in \bar{P}, and not containing μ).

By Lemma 3.2 the group $W(\bar{P})$ is infinite dihedral. Since \bar{P} is a line of walls, the wall π of any reflection r_{π} of $W(\bar{P})$ separates two walls $p^{\prime}, p^{\prime \prime}$ of \bar{P}. By convexity we then have $\pi \in \bar{P}$: the reflections of $W(\bar{P})$ are precisely the reflections along walls of \bar{P}. We note two consequences of that. First, \bar{P} is invariant under $W(\bar{P})$. Secondly, we have $W(\bar{P})=W\left(\bar{P}_{0}\right)$ for any convex subset $\bar{P}_{0} \subset \bar{P}$ of cardinality at least 2 . In particular we have $W(\bar{P})=W\left(\bar{P}^{\prime}\right)$.

The reflection $r_{m^{\prime}}$ does not centralize $W\left(\bar{P}^{\prime}\right)$, otherwise it would centralize $W(\bar{P})$ and, hence, m^{\prime} would meet μ. Consequently $r_{m^{\prime}}$ does not centralize $W\left(\bar{P}_{0}^{\prime}\right)$ for all convex subsets $\bar{P}_{0}^{\prime} \subset \bar{P}^{\prime}$ of cardinality at least 2 . Hence there are infinitely many walls \bar{p}^{\prime} in the ray \bar{P}^{\prime} such that the reflections $r_{m^{\prime}}$ and r_{p} do not commute. Let $\bar{p}^{\prime} \in \bar{P}^{\prime}$ denote some wall such that the reflections $r_{m^{\prime}}$ and $r_{\bar{p}^{\prime}}$ do not commute, and that the collection of all walls of \bar{P}^{\prime} which separate \bar{p}^{\prime} from μ is of cardinality greater than the constant $L(\geq 1)$ of Lemma 3.1.

Let $m^{\prime \prime}:=r_{\bar{p}^{\prime}}\left(m^{\prime}\right)$. Let $\left\{\bar{p}_{1}, \ldots, \bar{p}_{k}\right\}$ denote the segment of walls of \bar{P}^{\prime} which separate μ from \bar{p}^{\prime} (we have $\left.k \geq L\right)$. Then the walls $\bar{m}_{i}=r_{\bar{p}^{\prime}}\left(\bar{p}_{i}\right)$ belong to the ray \bar{P}^{\prime} by convexity (remember that $r_{\bar{p}^{\prime}}(\mu) \in \bar{P}$). Hence each of them meets m^{\prime}. By construction each of them also meets $m^{\prime \prime}$. By Lemma 3.1 we deduce that $W\left(m^{\prime}, m^{\prime \prime}, \bar{m}_{1}, \ldots, \bar{m}_{k}, \bar{p}^{\prime}\right)=W\left(m^{\prime}, \bar{m}_{1}, \ldots, \bar{m}_{k}, \bar{p}^{\prime}\right)$ is a Euclidean triangle subgroup. Since $\left\{\bar{m}_{1}, \ldots, \bar{m}_{k}, \bar{p}^{\prime}\right\}$ is a convex subsegment of \bar{P} containing at least two walls we see that $W\left(\bar{P} \cup\left\{m^{\prime}\right\}\right)$ is a Euclidean triangle subgroup. Since $\mu \in \bar{P}$ and $m^{\prime} \cap \mu=\varnothing$, this contradicts Lemma 3.2, thereby completing the proof of the desired assertion.
(ii) Let $m \in \mathscr{M}(F)$. Assume that there exists $\mu \in \mathscr{M}_{\text {Eucl }}(F)$ which does not meet m. In other words $m \in P_{F}(\mu)$. By Lemma 4.6(i), $\mu \in \mathscr{M}_{\text {Eucl }}(F)$ implies $P_{F}(\mu) \subset$ $\mathscr{M}_{\text {Eucl }}(F)$. Thus $m \in \mathscr{M}_{\text {Eucl }}(F)$.
(iii) Let M be the F-parallel class of m and let $m^{\prime \prime}:=r_{m}\left(m^{\prime}\right)$. Since m and m^{\prime} are not F-parallel, there are points x, y on $m \cap F$ which are separated by m^{\prime}. Thus $m^{\prime \prime}$ separates x from y as well. It follows that $m^{\prime \prime} \in \mathscr{M}(F)$.

We now show that $m^{\prime \prime}$ is not F-parallel to m. To this end, first note that $m^{\prime \prime}$ contains $m \cap m^{\prime} \cap F$ which is nonempty. Hence, if $m^{\prime \prime}$ were F-parallel to m, then we would have $m \cap F=m^{\prime \prime} \cap F$. This yields successively $m \cap F=r_{m}\left(m^{\prime}\right) \cap F$ and then $m \cap r_{m}(F)=m^{\prime} \cap r_{m}(F)$. Since $m \cap F$ is pointwise fixed by r_{m}, we have $m \cap F \subset m \cap r_{m}(F)$, whence finally $m \cap F \subset m^{\prime}$, which contradicts the fact that m
and m^{\prime} are not F-parallel. This shows that $m^{\prime \prime}$ is not F-parallel to m and it follows that m^{\prime} and $m^{\prime \prime}$ both meet every element of the F-parallel class M.

By Lemma 4.3, M contains a line P containing m. In particular P is infinite. By Lemma 3.1, the group $W\left(P \cup\left\{m^{\prime}\right\}\right)$ is a Euclidean triangle subgroup. Therefore, we deduce from Lemma 4.6(i) that $m \in \mathscr{M}_{\text {Eucl }}(F)$.
(iv) Let $m \in \mathscr{M}(F)$ and $m^{\prime} \in \mathscr{M}_{\text {Eucl }}(F)$ be such that the reflections r_{m} and $r_{m^{\prime}}$ do not commute. By Lemma 4.6(i), we have $P_{F}\left(m^{\prime}\right) \subset \mathscr{M}_{\text {Eucl }}(F)$. Let $P^{\prime}:=P_{F}\left(m^{\prime}\right)$. Hence P^{\prime} is a line of walls and for all $\mu^{\prime} \in P^{\prime}$, we have $P_{F}\left(\mu^{\prime}\right)=P^{\prime}$.

By Lemma 4.6(ii) we may assume that m meets every element of P^{\prime}, and in fact that every element of $P_{F}(m)$ meets every element of P^{\prime}, otherwise $m \in \mathscr{M}_{\text {Eucl }}(F)$ and we are done. By Lemma 4.3, $P_{F}(m)$ contains a line of walls P which contains m.

Let C (resp. C^{\prime}) denote the set of walls of P (resp. P^{\prime}) which meet $m^{\prime \prime}:=r_{m}\left(m^{\prime}\right)$.
Assume that C^{\prime} is finite. Then there exists a (convex) segment of walls $\left(p_{+}, p_{1}, \ldots, p_{n}, p_{-}\right)$contained in P^{\prime} such that $C^{\prime}=\left\{p_{1}, \ldots, p_{n}\right\}$ and $m^{\prime \prime}$ is disjoint from p_{+}and p_{-}. We let x_{+}, x_{-}denote points lying on $m \cap p_{+}, m \cap p_{-}$, respectively. Since m^{\prime} separates p_{+}from p_{-}and $m \backslash m^{\prime \prime}=m \backslash m^{\prime}$, we deduce that $m^{\prime \prime}$ separates x_{+}from x_{-}. Thus $m^{\prime \prime}$ separates p_{+}from p_{-}. It follows that $m^{\prime \prime} \in \mathscr{M}(F)$, and in fact $m^{\prime \prime} \in P_{F}\left(p^{+}\right)$. By hypothesis $m^{\prime} \in \mathscr{M}_{\text {Eucl }}(F)$, whence $P_{F}\left(p^{+}\right)=P_{F}\left(m^{\prime}\right)$. Since $m^{\prime \prime}$ meets m^{\prime}, this implies $m^{\prime}=m^{\prime \prime}$ from which it follows that the reflections r_{m} and $r_{m^{\prime}}$ commute, which is a contradiction. Thus C^{\prime} is infinite.

By Lemma 3.1, it follows that $W\left(C^{\prime} \cup\{m\}\right)$ is a Euclidean triangle subgroup. Since P^{\prime} is Euclidean, we have $W\left(P^{\prime}\right)=W\left(P_{0}^{\prime}\right)$ for any convex chain $P_{0}^{\prime} \subset P^{\prime}$ of cardinality at least 2 (see Lemma 3.2). Since C^{\prime} is infinite and convex, we deduce $W\left(P^{\prime}\right) \subset$ $W\left(C^{\prime} \cup\{m\}\right)$. Since $r_{m^{\prime}}$ belongs to the Euclidean triangle subgroup $W\left(C^{\prime} \cup\{m\}\right)$ and $r_{m^{\prime \prime}} r_{\mu^{\prime}}$ has finite order for every $\mu^{\prime} \in C^{\prime}$, we see that $r_{m^{\prime \prime}} r_{\mu^{\prime}}$ has finite order for every $\mu^{\prime} \in P^{\prime}$. Thus $C^{\prime}=P^{\prime}$. Moreover for all $\mu^{\prime} \in P^{\prime}$, the reflection $r_{\mu^{\prime}}$ does not commute with r_{m}.

Let μ be any element of P different from m. Let a denote the half-space bounded by m such that $\mu \cap a=\varnothing$. Let h_{0} denote the half-space bounded by m^{\prime} such that $a \cap h_{0} \subset r_{m}\left(h_{0}\right)$. Extend h_{0} to a chain of half-spaces $\left(h_{i}\right)_{i \in \mathbb{Z}}$ such that $h_{i} \subset h_{i+1}$ for all $i \in \mathbb{Z}$ and that $\left\{\partial h_{i} \mid i \in \mathbb{Z}\right\}=P^{\prime}$. Since $W\left(P^{\prime} \cup\{m\}\right)$ is a Euclidean triangle subgroup it follows that the relation $a \cap h_{i} \subset r_{m}\left(h_{i}\right)$ holds for every $i \in \mathbb{Z}$. For each $i \in \mathbb{Z}$, choose a point $y_{i} \in \mu \cap \partial h_{i}$ and a point $y_{i}^{\prime} \in \partial h_{i}$ in the interior of a. Then $y_{i} \in \partial h_{i}$ and $y_{i}^{\prime} \in \partial h_{i}$ are separated by m. Since r_{m} and $r_{\partial h_{i}}$ do not commute, it follows that y_{i} and y_{i}^{\prime} are separated by $r_{m}\left(\partial h_{i}\right)$. Since $y_{i}^{\prime} \in a \cap h_{i}$, we deduce that $y_{i} \notin r_{m}\left(h_{i}\right)$ for all $i \in \mathbb{Z}$. Now choose a point $x_{i} \in m \cap \partial h_{i}$ for each $i \in \mathbb{Z}$. We have

$$
x_{0} \in m \cap \partial h_{0} \subset r_{m}\left(\partial h_{0}\right) \subset r_{m}\left(h_{0}\right) \subset r_{m}\left(h_{1}\right) \subset r_{m}\left(h_{2}\right) \subset \cdots .
$$

Since $\mathscr{M}\left(x_{0}, y_{0}\right)$ is finite and since $y_{0} \notin r_{m}\left(h_{0}\right)$, there exists $j>0$ such that $y_{0} \in$ $r_{m}\left(h_{j}\right)$. Thus the wall $r_{m}\left(\partial h_{i}\right)$ separates y_{0} from y_{i} for all $i \geq j$. Since y_{0} and y_{i} both lie on the wall μ, it follows that ∂h_{i} meets μ for all $i \geq j$.

This argument holds for any $\mu \in P \backslash\{m\}$. In particular, if we choose μ such that m and μ are separated by at least L elements of P, where L is the constant of Lemma 3.1, we deduce from this lemma that $W\left(\left\{m, \mu, \partial h_{j}\right\}\right)$ is a Euclidean triangle subgroup. By Corollary 3.4, we obtain $r_{\partial h_{i}} \in \overline{W\left(\left\{m, \mu, \partial h_{j}\right\}\right)}$ for all $i \geq j$. As before, this implies
that $W\left(P^{\prime}\right)<\overline{W\left(\left\{m, \mu, \partial h_{j}\right\}\right)}$ and, in particular, that $m^{\prime \prime}=r_{m}\left(m^{\prime}\right)=r_{m}\left(\partial h_{0}\right)$ meets μ. Thus we have $\mu \in C$.

Since this holds for all walls $\mu \in P$ which are sufficiently far apart from m and since C is convex, we finally deduce that $C=P$. By Lemma 3.1 this implies that $W\left(P \cup\left\{m^{\prime}\right\}\right)$ is a Euclidean triangle subgroup. By Lemma 4.6(i), we have $P \subset \mathscr{M}_{\text {Eucl }}(F)$ whence $m \in \mathscr{M}_{\text {Eucl }}(F)$.

The main results of this section are the following two propositions.
Proposition 4.7 The group $W\left(\mathscr{M}_{\text {Eucl }}(F)\right)$ is isomorphic to a direct product of finitely many irreducible affine Coxeter groups, each of rank ≥ 3.

Proof We claim that for all $m, m^{\prime} \in \mathscr{M}_{\text {Eucl }}(F)$, either $P_{F}(m)=P_{F}\left(m^{\prime}\right)$ or the groups $W\left(P_{F}(m)\right)$ and $W\left(P_{F}\left(m^{\prime}\right)\right)$ centralize each other or $W\left(P_{F}(m) \cup P_{F}\left(m^{\prime}\right)\right)$ is a Euclidean triangle subgroup.

We first deduce the desired result from the claim. We know that $W\left(\mathscr{M}_{\text {Eucl }}(F)\right)$ is isomorphic to a Coxeter group. Let $W\left(\mathscr{M}_{\text {Eucl }}(F)\right)=W_{1} \times \cdots \times W_{k}$ be the decomposition of $W\left(\mathscr{M}_{\text {Eucl }}(F)\right)$ in its direct components. Hence W_{i} is an irreducible Coxeter group for each $i=1, \ldots, k$. Let M_{i} denote the set of walls $m \in \mathscr{M}_{\text {Eucl }}(F)$ such that $r_{m} \in W_{i}$. We note that $\mathscr{M}_{\text {Eucl }}(F)=M_{1} \sqcup \cdots \sqcup M_{k}$ and $W_{i}=W\left(M_{i}\right)$.

We must prove that W_{i} is affine. We record the following easy observations, which follow from the fact that the W_{i} 's are the irreducible components of $W\left(\mathscr{M}_{\text {Eucl }}(F)\right)$.

- If $m \in \mathscr{M}_{\text {Eucl }}(F)$ is a wall such that $r_{m} \in W_{i}$, then $W\left(P_{F}(m)\right) \leq W_{i}$.
- If $m, m^{\prime} \in \mathscr{M}_{\text {Eucl }}(F)$ are two walls such that $P_{F}(m) \neq P_{F}\left(m^{\prime}\right)$ and that r_{m} and $r_{m^{\prime}}$ both belong to W_{i}, then there exists a sequence of walls $m=m_{0}, m_{1}, \ldots, m_{\ell}=m^{\prime}$ such that for each j, one has $m_{j} \in M_{i}, r_{m_{j}} \in W_{i}$ and $r_{m_{j}}$ does not commute with $r_{m_{j-1}}$ (a priori the order of $r_{m_{j}} r_{m_{j-1}}$ might be infinite).
In view of the above claim, we show that these two observations imply that for any wall $m \in \mathscr{M}_{\text {Eucl }}(F)$ such that $r_{m} \in W_{i}$, one has

$$
\left.W\left(P_{F}(m)\right) \leq W_{i} \leq \widetilde{W\left(P_{F}(m)\right.}\right),
$$

where $W \widetilde{W\left(P_{F}(m)\right)}$ is the irreducible affine Coxeter group provided by Lemma 3.3.
By the first observation we just have to check that $W_{i} \leq \widehat{\left(P_{F}(m)\right)}$. Since $W_{i}=$ $W\left(M_{i}\right)$, it is enough to show that $\left.r_{m^{\prime}} \in \widetilde{W\left(P_{F}(m)\right.}\right)$ for any $m^{\prime} \in M_{i}$. For such an m^{\prime} we have a sequence of walls $m=m_{0}, m_{1}, \ldots, m_{\ell}=m^{\prime}$ such that for each j, one has $m_{j} \in M_{i}$ and $r_{m_{j}}$ does not commute with $r_{m_{j-1}}$. We are going to show by induction that for each $\mu \in P_{F}\left(m_{i}\right)$ we have $\left.r_{\mu} \in W \overline{\left(P_{F}(m)\right.}\right)$, which implies in particular $r_{m^{\prime}} \in \widetilde{W\left(P_{F}(m)\right)}$.

This is clearly true for $i=0$. Assume this is true for $P_{F}\left(m_{i-1}\right)$, with $i>0$. Either $m_{i} \in P_{F}\left(m_{i-1}\right)$, thus $P_{F}\left(m_{i}\right)=P_{F}\left(m_{i-1}\right)$ and we have nothing to prove. Or, by the initial claim, $r_{m_{i}} r_{m_{i-1}}$ has finite order >2 and $W\left(P_{F}\left(m_{i-1}\right) \cup P_{F}\left(m_{i}\right)\right)$ is a Euclidean triangle subgroup. Since $r_{m_{i}}$ and $r_{m_{i-1}}$ do not commute, it follows that $W\left(P_{F}\left(m_{i-1}\right) \cup\left\{m_{i}\right\}\right)$ is a Euclidean triangle subgroup. Thus by Lemma 3.3 we have
$r_{m_{i}} \in \widetilde{W\left(P_{F}(m)\right)}$. In fact the same argument applies to any wall $\mu \in P_{F}\left(m_{i}\right)$, which ends the proof.

The inclusion $W_{i} \leq W \widetilde{\left(P_{F}(m)\right)}$, is now established. In particular W_{i} is an infinite reflection subgroup of an irreducible affine Coxeter group; hence it must be itself an affine Coxeter group, as desired.

It remains to prove the claim. Let $m, m^{\prime} \in \mathscr{M}_{\text {Eucl }}(F)$.
Suppose that $P_{F}(m) \neq P_{F}\left(m^{\prime}\right)$. Then by Lemma $4.5 m$ meets m^{\prime}.
If there exists $m^{\prime \prime} \in P_{F}(m) \cap P_{F}\left(m^{\prime}\right)$ then, by Lemma 4.6(i), we have $m^{\prime \prime} \in$ $\mathscr{M}_{\text {Euc }}(F)$ which implies that the elements of $P_{F}\left(m^{\prime \prime}\right)$ are pairwise disjoint (see Lemma 4.5). Since $m^{\prime \prime} \in P_{F}(m) \cap P_{F}\left(m^{\prime}\right)$, we have $\left\{m, m^{\prime}\right\} \subset P_{F}\left(m^{\prime \prime}\right)$ and, hence, $m=m^{\prime}$ because m meets m^{\prime}. This contradicts the fact that $P_{F}(m) \neq P_{F}\left(m^{\prime}\right)$, thereby showing that $P_{F}(m) \cap P_{F}\left(m^{\prime}\right)$ is empty. In other words, m meets every element of $P_{F}\left(m^{\prime}\right)$ and m^{\prime} meets every element of $P_{F}(m)$.

For every $\mu \in P_{F}(m)$ we have $\mu \in \mathscr{M}_{\text {Eucl }}(F)$ by Lemma 4.6(i) and, hence, $P_{F}(m)=$ $P_{F}(\mu)$ by Lemma 4.5. Similarly, for all $\mu^{\prime} \in P_{F}\left(m^{\prime}\right)$, we have $P_{F}\left(m^{\prime}\right)=P_{F}\left(\mu^{\prime}\right)$. Therefore, we deduce from the previous paragraph that every element of $P_{F}(m)$ meets every element of $P_{F}\left(m^{\prime}\right)$.

Suppose moreover that $W\left(P_{F}(m)\right)$ does not centralize $W\left(P_{F}\left(m^{\prime}\right)\right)$. Then there exist $p \in P_{F}(m)$ and $p^{\prime} \in P_{F}\left(m^{\prime}\right)$ such that r_{p} and $r_{p^{\prime}}$ do not commute. Let $p^{\prime \prime}:=$ $r_{p}\left(p^{\prime}\right)$.

Suppose $p^{\prime \prime}$ meets only finitely many elements of the line of walls $P_{F}(m)$. Then there exists a segment of walls ($p_{-}, p_{1}, p_{2}, \ldots, p_{n}, p^{+}$) inside $P_{F}(m)$ such that $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is the set of walls of $P_{F}(m)$ which meet $p^{\prime \prime}$, and $p^{\prime \prime}$ is disjoint from p_{-}and p_{+}. We let x_{-}, x_{+}denote points in $p^{\prime} \cap p_{-}, p^{\prime} \cap p_{+}$respectively. Since p separates p_{-}from p_{+}and $p^{\prime} \backslash p=p^{\prime} \backslash p^{\prime \prime}$ we deduce that $p^{\prime \prime}$ separates x_{-} from x_{+}. Thus $p^{\prime \prime}$ separates p_{-}from p_{+}. In particular since p_{-}and p_{+}meet F, we have $p^{\prime \prime} \in \mathscr{M}(F)$ and clearly $p^{\prime \prime} \in P_{F}\left(p_{-}\right)$. As we have already observed, we have $P_{F}\left(p_{-}\right)=P_{F}(m)=P_{F}(p)$. Thus $p^{\prime \prime} \in P_{F}(p)$, which is a contradiction.

Thus in fact $p^{\prime \prime}$ meets infinitely many elements of $P_{F}(m)$. By Lemma 3.1, this shows that $W\left(P_{F}(m) \cup\left\{p^{\prime}\right\}\right)$ is a Euclidean triangle subgroup. Similarly $W\left(P_{F}\left(m^{\prime}\right) \cup\right.$ $\{p\}$) is a Euclidean triangle subgroup. The order of the product $r_{p} r_{n^{\prime}}$ is thus independent of the wall n^{\prime} chosen in the line of walls $P_{F}\left(m^{\prime}\right)$. It follows that for each $n^{\prime} \in P_{F}\left(m^{\prime}\right)$ the reflections r_{p} and $r_{n^{\prime}}$ do not commute. Then by Lemma 3.1 the subgroup $W\left(P_{F}(m) \cup\left\{n^{\prime}\right\}\right)$ is also a Euclidean triangle subgroup. By Corollary 3.4 we now deduce that $r_{n^{\prime}} \in \overline{W\left(P_{F}(m) \cup\left\{p^{\prime}\right\}\right)}$. Thus $W\left(P_{F}\left(m^{\prime}\right)\right) \subset \overline{W\left(P_{F}(m) \cup\left\{p^{\prime}\right\}\right)}$, and in particular the group $W\left(P_{F}(m) \cup P_{F}\left(m^{\prime}\right)\right)$ is a Euclidean triangle subgroup, which proves the claim.

Corollary 4.8 For every $m \in \mathscr{M}_{\text {Eucl }}(F)$ and $\gamma \in W\left(\mathscr{M}_{\mathrm{Euc}}(F)\right)$, if $\gamma . m \cap m=\varnothing$ then $\gamma . m \in \mathscr{M}_{\text {Eucl }}(F)$.

Proof By assumption, the group $\left\langle r_{m}, r_{\gamma, m}\right\rangle$ is an infinite dihedral group which is contained in $W\left(\mathscr{M}_{\text {Euc }}(F)\right)$. Therefore, since $W\left(\mathscr{M}_{\text {Euc }}(F)\right)$ is an affine Coxeter group by Proposition 4.7, the group $W\left(P_{F}(m) \cup\{\gamma . m\}\right)$ is an infinite dihedral group and, by Lemma 4.5(iii), we have $r_{\gamma, m} \in W\left(P_{F}(m)\right)$. Since $P_{F}(m)$ is a convex line of walls, we deduce finally that $\gamma \cdot m \in P_{F}(m) \subset \mathscr{M}_{\text {Eucl }}(F)$.

Proposition 4.9 One of the following assertions holds.
(i) There exists an infinite subset $M \subset \mathscr{M}(F)$ which satisfies the following conditions:
(a) For every $m, m^{\prime} \in M$, either $m \cap F=m^{\prime} \cap F$ or $m \cap F \cap m^{\prime}=\varnothing$;
(b) The groups $W(M)$ and $W(\mathscr{M}(F) \backslash M)$ centralize each other.
(ii) The group $W(\mathscr{M}(F))$ is isomorphic to an affine Coxeter group.

Proof Assume first that $\mathscr{M}_{\text {Eucl }}(F)=\mathscr{M}(F)$. Then by Proposition 4.7, property (ii) holds.

Assume now that there exists $m \in \mathscr{M}(F) \backslash \mathscr{M}_{\text {Eucl }}(F)$. Let M be the set of all those elements of $\mathscr{M}(F)$ which do not belong to $\mathscr{M}_{\text {Eucl }}(F)$ and which are F-parallel to m. By Lemma 4.6(ii), we have $P_{F}(m) \subset M$; in particular M is infinite. Let $m^{\prime} \in \mathscr{M}(F) \backslash M$. If m^{\prime} is not F-parallel to m, then $r_{m^{\prime}}$ centralizes $W(M)$ by Lemma 4.6(iii). If m^{\prime} is F-parallel to m, then $m^{\prime} \in \mathscr{M}_{\text {Eucl }}(F)$ since $m^{\prime} \notin M$. In view of Lemma 4.6(iv), this implies that $r_{m^{\prime}}$ centralizes $W(M)$. This shows that the groups $W(M)$ and $W(\mathscr{M}(F) \backslash M)$ centralize each other. Thus property (i) holds.

5 From Geometric Flats to Free Abelian Groups

Let X be a combinatorially convex subcomplex of the Davis complex $|W|_{0}$, and Γ be a subgroup of W which stabilizes X and whose induced action on X is cocompact. The distance function on $|W|_{0}$ is denoted by d.

Lemma 5.1 Let $\rho \subset X$ be any unbounded subset through a given point x, and let $\mathscr{M}(\rho):=\bigcup_{y, z \in \rho} \mathscr{M}(y, z)$ be the set of walls which separate points of ρ. There exists a constant K (depending on ρ and Γ) with the following property: given any positive real number r, there exists a chamber c at distance at most K from x and an element $\gamma \in \Gamma \cap W(\mathscr{M}(\rho))$ such that c and $\gamma . c$ both meet ρ, and that $d(c, \gamma . c)>r$.

Proof Recall that a combinatorially convex subcomplex is a (CAT(0) convex) union of chambers.

Let $\mathcal{C}(\rho)$ denote the set of chambers of X meeting ρ : thus ρ is covered by the chambers of $\mathcal{C}(\rho)$. Recall that Γ has finitely many orbits on the set of all chambers of X. Since ρ is unbounded, the set $\mathcal{C}(\rho)$ is infinite and it follows that there exists a chamber $c \in C(\rho)$ such that $\Gamma . c \cap \mathcal{E}(\rho)$ is infinite.

We write $\Gamma . c \cap \mathcal{C}(\rho)=\left\{\gamma_{0} . c, \gamma_{1} . c, \ldots, \gamma_{i} . c, \ldots\right\}$ (with $\gamma_{0}=1$). We pick a point x_{i} in each intersection $\rho \cap \gamma_{i} . c$. By Lemma 1.2 there exists $g_{i} \in W\left(\mathscr{M}\left(x_{0}, x_{i}\right)\right)$ such that $g_{i} x_{0}$ and x_{i} lie in a common chamber. Thus $g_{i}^{-1} \gamma_{i}$ is an element of W sending c to a chamber meeting c. There are finitely many such elements.

Thus, up to extracting a subsequence, we may suppose that the sequence $\left(g_{i}^{-1} \gamma_{i}\right)_{i \geq 1}$ is constant. Then for each i the element $\gamma_{i}^{\prime}=\gamma_{i} \gamma_{1}^{-1}$ belongs to $\Gamma \cap W(\mathscr{M}(\rho))$. And also γ_{i}^{\prime} sends the chamber $\gamma_{1} c$ to the chamber $\gamma_{i} c$. The lemma follows because the set of chambers $\left(\gamma_{i} c\right)_{i \geq 1}$ is infinite.

As before, let $\mathscr{M}(F)$ denote the set of all walls which separate points of F. Theorem 1 of the introduction is a straightforward consequence of the following.

Theorem 5.2 Let F be a geometric flat which is isometrically embedded in X; let n denote its dimension. Then the intersection $\Gamma \cap W(\mathscr{M}(F))$ contains a free abelian group of rank n.

Proof By Selberg's lemma, the group Γ has a finite index subgroup which is torsion free. Since Γ is cocompact on X, any finite index subgroup of Γ is cocompact as well, hence we may assume without loss of generality that Γ is torsion free.

The proof works by induction on the dimension n of the flat F. We may assume that $n>0$.

Suppose first that $\mathscr{M}(F)$ possesses a subset M which satisfies Proposition 4.9(i). Let then m be any element of M and set $F^{\prime}:=F \cap m$. By Lemma 4.1, F^{\prime} is a geometric flat of dimension $n-1$.

Let ρ denote any geodesic ray of F meeting transversally infinitely many walls of M. Let x denote the origin of ρ, and let x_{n} denote the unique point of ρ with $d\left(x, x_{n}\right)=n$. By Lemma 2.1 there exists a point $z_{n} \in X$ such that $\mathscr{M}\left(x, x_{n}\right)=$ $\mathscr{M}\left(x, z_{n}\right) \sqcup \mathscr{M}\left(z_{n}, x_{n}\right)$, with $\mathscr{M}\left(x, z_{n}\right)=\mathscr{M}\left(x, x_{n}\right) \cap M$. Observe that the cardinality of $\mathscr{M}\left(x, z_{n}\right)$ tends to infinity with n, and thus $d\left(x, z_{n}\right) \rightarrow+\infty$. There is a subsequence $\left(z_{n_{k}}\right)_{k \geq 0}$ such that the geodesic segment $\left[x, z_{n_{k}}\right] \subset X$ converges to a geodesic ray $\rho^{\prime} \subset X$ (with origin x). Note that for every $y \in \rho^{\prime}$ we have $\mathscr{M}(x, y) \subset \mathscr{M}\left(x, z_{n_{k}}\right)$ for k large enough. In particular $\mathscr{M}(x, y) \subset M$. Thus $\mathscr{M}\left(\rho^{\prime}\right) \subset M$.

We now apply Lemma 5.1 to the ray ρ^{\prime} for some (large) positive real number $r>0$. We then get a nontrivial element $\gamma \in \Gamma \cap W(M)$. Observe that γ must be of infinite order since Γ is torsion free.

It follows from the definition of M that γ centralizes $W\left(\mathscr{M}\left(F^{\prime}\right)\right)$. Furthermore, since $W\left(\mathscr{M}\left(F^{\prime}\right)\right)$ is isomorphic to a Coxeter group and since the center of any Coxeter group is a torsion group (this is well known and is a straightforward consequence of [Hum90, Exercise 1, p. 132]), the intersection $W\left(\mathscr{M}\left(F^{\prime}\right)\right) \cap\langle\gamma\rangle$ is trivial. We deduce that the group generated by $W\left(\mathscr{M}\left(F^{\prime}\right)\right)$ together with γ is isomorphic to the direct product $W\left(\mathscr{M}\left(F^{\prime}\right)\right) \times\langle\gamma\rangle$. The desired result follows by induction.

Suppose now that Proposition $4.9\left(\right.$ ii) holds. Let μ_{1} be any element of $\mathscr{M}(F)$. Again by Lemma 4.1 the intersection $\mu_{1} \cap F$ is a geometric flat of dimension $n-1$. Note that any flat Φ of dimension ≥ 1 is unbounded and thus has $\mathscr{M}(\Phi) \neq \varnothing$. Thus for each $i=2, \ldots, n$ we may choose successively

$$
\mu_{i} \in \mathscr{M}\left(\left(\bigcap_{j=1}^{i-1} \mu_{j}\right) \cap F\right) .
$$

In view of Lemma 4.1, the set $\left(\bigcap_{i=1}^{n} \mu_{i}\right) \cap F$ consists of a single point x of F and for each $i \in\{1, \ldots, n\}$, the set

$$
\lambda_{i}:=\left(\bigcap_{j \in\{1, \ldots, n\} \backslash\{i\}} \mu_{j}\right) \cap F
$$

is a geodesic line of F.
We need the following auxiliary result.

Lemma 5.3 Γ has a finite index subgroup Γ^{\prime} such that for any wall m and any chamber c meeting m, if $\gamma \in \Gamma^{\prime}$ sends c to a chamber meeting m, then $\gamma m=m$.

Proof It is enough to prove the lemma when $\Gamma=W$. Recall that the stabilizer of a wall m is the centralizer of the involution r_{m}. Since W is residually finite, the centralizer $Z\left(r_{m}\right)$ is a separable subgroup, that is to say, $Z\left(r_{m}\right)$ is an intersection of finite index subgroups. (In any residually finite group W the centralizer of any element g is separable. Indeed, for $x \notin C=Z_{W}(g)$, we have $[x, g] \neq 1$, thus there is a finite quotient $\phi: W \rightarrow \bar{G}$ such that $[\phi(x), \phi(g)] \neq 1$. Then $\phi(x) \notin Z_{\bar{G}}(\phi(g))$ and the finite index subgroup $\phi^{-1} Z_{\bar{G}}(\phi(g))$ separates x from C.)

We fix some wall m and claim that there is a finite index subgroup $W_{m} \subset W$ such that for any chamber c meeting m, if $\gamma \in W_{m}$ sends c to a chamber meeting m, then $\gamma m=m$. The lemma will follow since we may assume that W_{m} is normal, and there are only finitely many orbits of walls under W.

Let B_{m} be the subset of W consisting of all those elements $\gamma \in W$ such that there exists a chamber c such that m and $\gamma . c$ both meet m. Note that B_{m} is invariant by leftand right-multiplication under $Z\left(r_{m}\right)$. In fact it is a finite union of double classes: $B_{m}=Z\left(r_{m}\right) \sqcup Z\left(r_{m}\right) \gamma_{1} Z\left(r_{m}\right) \sqcup \cdots \sqcup Z\left(r_{m}\right) \gamma_{k} Z\left(r_{m}\right)$, where $\gamma_{1}, \ldots, \gamma_{k}$ do not belong to $Z\left(r_{m}\right)$ (the finiteness follows from the fact that $Z\left(r_{m}\right)$ acts co-finitely on the set of chambers meeting m, and from the local compactness of the Davis complex). The claim follows if we take for W_{m} any finite index subgroup of W containing the separable subgroup $Z\left(r_{m}\right)$ but none of the elements $\gamma_{1}, \ldots, \gamma_{k}$.

By Lemma 5.3 we may assume that for any wall m and any chamber c meeting m, if $\gamma \in \Gamma$ sends c to a chamber meeting m, then $\gamma m=m$. Note that this implies in particular that if γm intersects m, then $\gamma m=m$.

Let r be any positive real number. For each i we choose one of the two rays contained in λ_{i} with origin x, and denote it by ρ_{i}. For each $i \in\{1, \ldots, n\}$, Lemma 5.1 provides a chamber c_{i} at distance at most K_{i} of x, and an element

$$
\gamma_{i}(r) \in W\left(\mathscr{M}\left(\lambda_{i}\right)\right) \cap \Gamma
$$

$(\subset W(\mathscr{M}(F)) \cap \Gamma)$, such that $c_{i} \cap \rho_{i}$ and $\gamma_{i}(r) . c_{i} \cap \rho_{i}$ are both nonempty, and that $d\left(c_{i}, \gamma_{i}(r) . c_{i}\right)>r$. Here c_{i} and $\gamma_{i}(r)$ depend on r, but K_{i} depends only on ρ_{i}. Note that $\gamma_{i}(r)$ is of infinite order because Γ is torsion free.

It immediately follows from the fact that $\rho_{i} \subset \mu_{j}$ that each $\gamma_{i}(r)$ preserves μ_{j} $(j \neq i)$.

Since $x \in \rho_{i} \cap \mu_{i}$, but $\rho_{i} \not \subset \mu_{i}$, it follows from Lemma 4.2 that there is a constant r_{i} such that, given any point y of ρ_{i}, if y is at distance at least r_{i} from x, then y is at distance larger than $K_{i}+D$ from μ_{i}, where D is the diameter of a chamber. Therefore, for each $r \geq r_{i}$, we have $d\left(x, \gamma_{i}(r) . c_{i}\right) \geq d\left(c_{i}, \gamma_{i}(r) . c_{i}\right)>r$ and hence any point on $\gamma_{i}(r) . c_{i} \cap \rho_{i}$ is at distance larger than $K_{i}+D$ from μ_{i}. Thus $\gamma_{i}(r) . c_{i}$ is at distance larger than K_{i} from μ_{i}. On the other hand $\gamma_{i}(r) . c_{i}$ is at distance at most K_{i} from $\gamma_{i}(r) \mu_{i}$, from which it follows that $\gamma_{i}(r) \mu_{i} \neq \mu_{i}$ for all $r \geq r_{i}$. By the above, this yields $\gamma_{i}(r) \mu_{i} \cap \mu_{i}=\varnothing$ for all $r \geq r_{i}$.

Let a_{i} be the half-space bounded by μ_{i} and containing ρ_{i}. We define an element γ_{i} as follows.

If $\gamma_{i}\left(r_{i}\right) a_{i} \subset a_{i}$, we set $\gamma_{i}=\gamma_{i}\left(r_{i}\right)$.
If not, then we choose $r>r_{i}$ as follows. Note that $\gamma_{i}(r) \mu_{i} \in \mathscr{M}_{\text {Eucl }}(F)$ for all r by Corollary 4.8. In particular, $\gamma_{i}\left(r_{i}\right) \mu_{i}$ meets ρ_{i}, but $\rho_{i} \not \subset \gamma_{i}\left(r_{i}\right) \mu_{i}$ because $x \in \rho_{i} \cap \mu_{i}$ and $\mu_{i} \cap \gamma_{i}\left(r_{i}\right) \mu_{i}=\varnothing$. Thus, by Lemma 4.2, every point of ρ_{i} sufficiently far away from x is also far away from $\gamma_{i}\left(r_{i}\right) \mu_{i}$. Repeating the arguments used to define the constant r_{i}, we obtain a constant $r>r_{i}$ such that $\gamma_{i}(r) \mu_{i} \neq \gamma_{i}\left(r_{i}\right) \mu_{i}$.

Now, if $\gamma_{i}(r) a_{i} \subset a_{i}$ we set $\gamma_{i}=\gamma_{i}(r)$. Otherwise we set $\gamma_{i}=\gamma_{i}(r)^{-1} \gamma_{i}\left(r_{i}\right)$. Let us check that in the latter case we also have $\gamma_{i} a_{i} \subset a_{i}$. The walls $\mu_{i}, \gamma_{i}\left(r_{i}\right) \mu_{i}$ and $\gamma_{i}(r) \mu_{i}$ belong to $\mathscr{M}_{\text {Eucl }}(F)$ by Corollary 4.8 and are pairwise disjoint by construction. Thus they form a chain and it follows that $\gamma_{i}\left(r_{i}\right) a_{i} \subset \gamma_{i}(r) a_{i}$, whence $\gamma_{i} a_{i} \subset a_{i}$. Therefore, for all $m>0$, we have $\gamma_{i}^{m} a_{i} \subset a_{i}$ and hence $\gamma_{i}^{m} \mu_{i} \cap \mu_{i}=\varnothing$ while $\gamma_{i}^{m} \mu_{j}=\mu_{j}$ for $j \neq i$.

Choose integers m_{1}, \ldots, m_{n} divisible enough so that each $\gamma_{i}^{\prime}:=\gamma_{i}^{m_{i}}$ belongs to the translation subgroup of the affine Coxeter group $W(\mathscr{M}(F))$. Thus the $\gamma_{i}^{\prime \prime}$ s generate an abelian group. In view of the action of each γ_{i}^{\prime} on the walls μ_{1}, \ldots, μ_{n}, the intersection $\left\langle\gamma_{i}^{\prime}\right\rangle \cap\left\langle\gamma_{j}^{\prime} \mid j \neq i\right\rangle$ is trivial for all i. This implies that the $\gamma_{i}^{\prime \prime}$ s generate a free abelian group of rank n.

We note that the complete proof of Theorem 5.2 is much shorter when (W, S) is assumed to be right-angled (in this case $\mathscr{M}_{\text {Eucl }}(F)$ is empty).

6 Geometric Flats in Tits Buildings

The purpose of this section is to prove Theorem 5.
As before, let (W, S) be a Coxeter system of finite rank. Let $\mathscr{B}=(\mathcal{C}(\mathscr{B}), \delta)$ be a building of type (W, S). Recall that $\mathcal{C}(\mathscr{B})$ is a set whose elements are called chambers, and that $\delta: \mathcal{C}(\mathscr{B}) \times \mathcal{C}(\mathscr{B}) \rightarrow W$ is a mapping, called W-distance, which satisfies the following conditions where $x, y \in \mathcal{C}(\mathscr{B})$ and $w=\delta(x, y)$:
Bu1 $w=1$ if and only if $x=y$;
Bu2 if $z \in \mathcal{C}(\mathscr{B})$ is such that $\delta(y, z)=s \in S$, then $\delta(x, z)=w$ or $w s$, and if, furthermore, $l(w s)=l(w)+1$, then $\delta(x, z)=w s ;$
Bu3 if $s \in S$, there exists $z \in \mathcal{C}(\mathscr{B})$ such that $\delta(y, z)=s$ and $\delta(x, z)=w s$.
For example the map $W \times W \rightarrow W$ sending (x, y) to $x^{-1} y$ satisfies the above. An apartment of the building B is a subset $\mathcal{C}(\mathscr{A}) \subset \mathcal{C}(\mathscr{B})$ such that there exists a bijection $f: \mathcal{C}(\mathscr{A}) \rightarrow W$ satisfying $\delta(x, y)=f(x)^{-1} f(y)$.

The composed map $\ell \circ \delta: \mathcal{C}(\mathscr{B}) \times \mathcal{C}(\mathscr{B}) \rightarrow \mathbb{N}$, where ℓ is the word metric on W with respect to S, is called the numerical distance of \mathscr{B}. It is a discrete metric on $\mathcal{C}(\mathscr{B})$.

The following lemma is well known.
Lemma 6.1 Let $\mathcal{C}(\mathscr{A})$ be an apartment and C be a subset of $\mathcal{C}(\mathscr{B})$. Suppose that there exists a map $f: C \rightarrow \mathcal{C}(\mathscr{A})$ such that $\delta(f(c), f(d))=\delta(c, d)$ for all $c, d \in C$. Then there exists an apartment $\mathcal{C}\left(\mathscr{A}^{\prime}\right)$ such that $C \subset \mathcal{C}\left(\mathscr{A}^{\prime}\right)$.

Proof Follows from [Tit81, §3.7.4].

Let $T \subset S$ and let c be a chamber of the building B. The residue of type T of c is the set $\rho_{T}(c)$ of those chambers c^{\prime} for which $\delta\left(c, c^{\prime}\right) \in W(T)$. The residue is called spherical whenever $W(T)$ is finite. Given any residue ρ of B and any chamber x, there exists a unique chamber c in ρ at minimal numerical distance from x. This chamber has the property that $\delta(x, d)=\delta(x, c) \delta(c, d)$ for each chamber d of ρ. The chamber c is called the projection of x onto ρ and is denoted by $\operatorname{proj}_{\rho}(c)$ [Ron89, Corollary 3.9].

Lemma 6.2 Let $\mathcal{C}(\mathscr{A})$ be an apartment of \mathscr{B} and $C \subset \mathcal{C}(\mathscr{A})$ be a set of chambers. Suppose that there exists a residue ρ and a chamber $c \in C$ such that $c \in \mathcal{C}(\rho)$ and $\operatorname{proj}_{\rho}\left(c^{\prime}\right)=c$ for all $c^{\prime} \in C$. Then for any chamber $d \in \mathcal{C}(\rho) \backslash\{c\}$ there exists an apartment $\mathcal{C}\left(\mathscr{A}_{d}\right)$ such that $C \cup\{d\}$ is contained in $\mathcal{C}\left(\mathscr{A}_{d}\right)$.

Proof Let $d \in \mathcal{C}(\rho) \backslash\{c\}$ and let $w_{d}:=\delta(c, d)$. Let d^{\prime} be the unique chamber of $\mathcal{C}(\mathscr{A})$ such that $\delta\left(c, d^{\prime}\right)=w_{d}$. For any $c^{\prime} \in C$, we have $\delta\left(c^{\prime}, d\right)=\delta\left(c^{\prime}, c\right) \cdot w_{d}=$ $\delta\left(c^{\prime}, d^{\prime}\right)$ because $\operatorname{proj}_{\rho}\left(c^{\prime}\right)=c$. It follows that the function $f: C \cup\{d\} \rightarrow C \cup$ $\left\{d^{\prime}\right\}$, which maps d to d^{\prime} and induces the identity on C, preserves the W-distance δ. Therefore, the existence of an apartment $\mathcal{C}\left(\mathscr{A}_{d}\right)$ such that $\mathcal{C}\left(\mathscr{A}_{d}\right)$ contains $C \cup\{d\}$ follows from Lemma 6.1.

Before stating the main result of this section, we need to introduce some additional terminology and notation.

- $|\mathscr{B}|_{0}$ denotes the CAT(0)-realization of the building \mathscr{B}, as defined in [Dav98]; it is a piecewise Euclidean simplicial complex. For each chamber $c \in B$ there is an associated CAT(0)-convex subcomplex $|c|_{0} \subset|\mathscr{B}|_{0}$, which we call the associated geometric chamber. For every subset $C \subset \mathcal{C}(\mathscr{B})$ we denote by $|C|_{0}$ the union of geometric chambers $|c|_{0}$ associated to chambers $c \in C$. We say that a subcomplex $X \subset|\mathscr{B}|_{0}$ is combinatorial whenever it is a union of geometric chambers. If \mathscr{A} is any apartment of \mathscr{B} the subcomplex $|\mathscr{A}|_{0}$ is isometric to $|W|_{0}$. As a simplicial complex, $|\mathscr{A}|_{0}$ is isomorphic to the first barycentric subdivision of the Davis complex $|W|_{0}$.
- Given $x \in|\mathscr{B}|_{0}$, we set $\rho(x):=\left\{\left.c \in \mathcal{C}(\mathscr{B})|x \in| c\right|_{0}\right\}$ and $\sigma(x):=\bigcap_{c \in \rho(x)}|c|_{0}$. The set $\rho(x)$ is a (spherical) residue. The subcomplex $|\rho(x)|_{0}$ is a neighbourhood $N(x)$ of x in $|\mathscr{B}|_{0}$. For every chamber $c \in \mathcal{C}(\mathscr{B})$, the set $\operatorname{Int}(c)$ of points $x \in|\mathscr{B}|_{0}$ such that $\rho(x)=\{c\}$ is an open subset of $|\mathscr{B}|_{0}$. It is the interior of $|c|_{0}$ and its closure is $|c|_{0}$.
- Given $E \subset|\mathscr{B}|_{0}$, we set $\mathcal{C}(E):=\left\{\left.c \in \mathcal{C}(\mathscr{B})| | c\right|_{0} \subset E\right\}$. For example, given any $x \in|\mathscr{B}|_{0}$ we have $\mathcal{C}(N(x))=\rho(x)$. We say that a subcomplex $\mathscr{A} \subset|\mathscr{B}|_{0}$ is a geometric apartment provided \mathscr{A} is combinatorial and $\mathcal{C}(\mathscr{A})$ is an apartment of \mathscr{B}.
- Given a geometric flat $F \subset|\mathscr{B}|_{0}$ and any subset $E \subset|\mathscr{B}|_{0}$, we denote by $\operatorname{dim}(F \cap E)$ the dimension of the Euclidean subspace of F generated by $E \cap F$; by convention, the empty set is a Euclidean subspace of dimension -1 .
Now let $F \subset|\mathscr{B}|_{0}$ be a geometric flat of dimension n. Since the combinatorial subcomplexes $N(x)$ are neighborhoods of x, we have

$$
\forall x \in F, \exists c \in \mathcal{C}(\mathscr{B}) \text { such that } x \in|c|_{0} \text { and } \operatorname{dim}\left(F \cap|c|_{0}\right)=n
$$

And since every geometric chamber is the closure of its interior, we deduce that

$$
\forall x \in F, \exists y \in F \text { such that } x \in \sigma(y) \text { and } \operatorname{dim}(F \cap \sigma(y))=n
$$

These two basic facts will be used repeatedly in the following.
Theorem 6.3 Let $F \subset|\mathscr{B}|_{0}$ be a geometric flat of dimension n and let c_{0} be a chamber such that $\operatorname{dim}\left(F \cap c_{0}\right)=n$ (the geometric chamber associated to c_{0} is also denoted by $\left.c_{0}\right)$. Define $C\left(F, c_{0}\right):=\left\{\operatorname{proj}_{\rho(x)}\left(c_{0}\right) \mid x \in F\right\}$. Then there exists a geometric apartment \mathscr{A} such that $C\left(F, c_{0}\right) \subset \mathcal{C}(\mathscr{A})$. In particular, we have $F \subset \mathscr{A}$.

Proof The proof is by induction on n, the case $n=0$ being trivial. We assume now that $n>0$.

Let $F_{0} \subset F$ be a Euclidean hyperplane such that $\operatorname{dim}\left(F_{0} \cap c_{0}\right)=n-1$. By induction, the set $C\left(F_{0}, c_{0}\right)$ is contained in the set of chambers of some apartment. In view of Lemma 6.1, it follows from Zorn's lemma that the collection of all those subsets of $C\left(F, c_{0}\right)$ which contain $C\left(F_{0}, c_{0}\right)$ and which are contained in the set of chambers of some apartment, has a maximal element.

Let C_{1} be such a maximal element and choose a geometric apartment \mathscr{A}_{1} such that $C_{1} \subset \mathcal{C}\left(\mathscr{A}_{1}\right)$. Set $X:=\mathscr{A}_{1} \cap F$. Note that X is closed and convex.

Suppose by contradiction that C_{1} is properly contained in $C\left(F, c_{0}\right)$. The rest of the proof is divided into several steps. The final claim below contradicts the maximality of C_{1}, thereby proving the theorem.

Claim 1 For every $x \in X$, we have $\operatorname{proj}_{\rho(x)}\left(c_{0}\right) \in C_{1}$.
Since \mathscr{A}_{1} is a combinatorial subcomplex, we have $\sigma(x) \subset \mathscr{A}_{1}$. Since $c_{0} \in \mathcal{C}\left(\mathscr{A}_{1}\right)$, we have $\operatorname{proj}_{\rho(x)}\left(c_{0}\right) \in \mathcal{C}\left(\mathscr{A}_{1}\right)$. Therefore, the claim follows from the maximality of C_{1}.

Claim 2 For every $c \in C_{1}$, there exists $x \in X$ such that $\operatorname{proj}_{\rho(x)}\left(c_{0}\right)=c$.
Given $c \in C\left(F, c_{0}\right)$, there exists $x \in F$ such that $\operatorname{proj}_{\rho(x)}\left(c_{0}\right)=c$. If now $c \in C_{1}$, then $\sigma(x) \subset|c|_{0} \subset \mathscr{A}_{1}$. Thus $x \in F \cap \mathscr{A}_{1}=X$.

Claim $3 \operatorname{dim}(F \cap X)=n$.
This is clear since $c_{0} \cap F \subset X$ and $\operatorname{dim}\left(F \cap c_{0}\right)=n$.
Claim 4 There exists a Euclidean hyperplane $F_{1} \subset F$ which is contained in \mathscr{A}_{1} and which bounds an open half-space of F, none of whose points is contained in \mathscr{A}_{1}. In other words, the hyperplane F_{1} is contained in the Euclidean boundary ∂X of X.

Let $c \in C\left(F, c_{0}\right) \backslash C_{1}$ and let $x \in F$ be such that $\operatorname{proj}_{\rho(x)}\left(c_{0}\right)=c$. By Claim 1, x does not belong to X. Given $x_{0} \in c_{0} \cap F$, we have $\left[x_{0}, x\right] \cap X=\left[x_{0}, y\right]$ for some $y \in X$ because X is closed and convex. Let $F_{1} \subset F$ be the Euclidean hyperplane parallel to F_{0} and containing y. We have $F_{1} \subset X$ by convexity. Furthermore, it is clear from the definition of y and F_{1} that any point $z \in F \backslash F_{1}$ on the same side of F_{1} as x does not belong to \mathscr{A}_{1}.

Claim 5 Let $x_{1} \in F_{1}$ be such that $\operatorname{dim}\left(F_{1} \cap \sigma\left(x_{1}\right)\right)=n-1$. For all $c \in C_{1}$, we have $\operatorname{proj}_{\rho\left(x_{1}\right)}(c)=\operatorname{proj}_{\rho\left(x_{1}\right)}\left(c_{0}\right)$.

Let $c_{1}:=\operatorname{proj}_{\rho\left(x_{1}\right)}\left(c_{0}\right)$. Suppose by contradiction that there exists $c \in C_{1}$ such that $\operatorname{proj}_{\rho\left(x_{1}\right)}(c) \neq c_{1}$. Let h be a (Coxeter) half-space of the apartment $\mathcal{C}\left(\mathscr{A}_{1}\right)$ containing c_{1} but not $c_{2}:=\operatorname{proj}_{\rho\left(x_{1}\right)}(c)$. Thus h contains c_{0} but not c.

Since $\sigma\left(x_{1}\right) \subset\left|c_{1}\right|_{0} \cap\left|c_{2}\right|_{0}$, we have $\sigma\left(x_{1}\right) \subset \partial|h|_{0}$. Therefore, since $F_{1} \subset \mathscr{A}_{1}$ (see Claim 4) and since $\operatorname{dim}\left(F_{1} \cap \sigma\left(x_{1}\right)\right)=n-1$, we deduce from Lemma 4.1 that $F_{1} \subset \partial|h|_{0}$. By Claim 4, the set X, as a subset of F, is entirely contained in one of the Euclidean half-spaces of F determined by F_{1}. Since $F_{1} \subset \partial|h|_{0}$, we deduce that X, as a subset of \mathscr{A}_{1}, is entirely contained in one of the Coxeter half-spaces of \mathscr{A}_{1} determined by $\partial|h|_{0}$. Since $c_{0} \subset X \cap|h|_{0}$, we obtain $X \subset|h|_{0}$.

Since $c \in C_{1}$, there exists $x \in X$ such that $\operatorname{proj}_{\rho(x)}\left(c_{0}\right)=c$ by Claim 2. Since $X \subset|h|_{0}$ and since $|h|_{0}$ is a combinatorial subcomplex, we have $\sigma(x) \subset|h|_{0}$ and hence $\operatorname{proj}_{\rho(x)}\left(c_{0}\right) \in h$ by the combinatorial convexity of Coxeter half-spaces. This contradicts the fact that h does not contain c.

Claim 6 There exist $d \in C\left(F, c_{0}\right)$ and an apartment \mathscr{A}_{d} such that $C_{1} \cup\{d\} \subset \mathcal{E}\left(\mathscr{A}_{d}\right)$.
Let $x_{1} \in F_{1}$ be as in Claim 5. By Claim 1 we have $c_{1}:=\operatorname{proj}_{\rho\left(x_{1}\right)}\left(c_{0}\right) \in C_{1}$. Let $y \in F \backslash X$ be such that $x_{1} \in \sigma(y)$. Let $d:=\operatorname{proj}_{\sigma(y)}\left(c_{0}\right)$. Clearly $d \in C\left(F, c_{0}\right)$. Furthermore $d \notin C_{1}$, otherwise we would have $y \in \sigma(y) \subset d \subset \mathscr{A}_{1}$, whence $y \in X$, which is absurd. Since $\sigma\left(x_{1}\right) \subset \sigma(y) \subset d$, the claim follows from Lemma 6.2 together with Claim 5.

Clearly, Theorem 5 of the introduction is an immediate consequence of Theorem 6.3, combined with Corollary 3.

References

[BH93]
B. Brink and R. B. Howlett, A finiteness property and an automatic structure for Coxeter groups. Math. Ann. 296(1993), no. 1, 179-190.
[BH99] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften 319, Springer-Verlag, Berlin, 1999.
[BRW05] U. Baumgartner, B. Rémy, and G. A. Willis, Flat rank of automorphism groups of buildings. Transform. Groups 12(2007), no. 3, 413-436.
[Cap06] P.-E. Caprace, Conjugacy of 2-spherical subgroups of Coxeter groups and parallel walls. Algebr. Geom. Topol. 6(2006), 1987-2029.
[CM05] P.-E. Caprace and B. Mühlherr, Reflection triangles in Coxeter groups and biautomaticity. J. Group Theory, 8(2005), no. 4, 467-489.
[Dav98] M. Davis, Buildings are CAT(0). In: Geometry and Cohomology in Group Theory. London Math. Soc. Lecture Note Ser. 252, Cambridge, 1998. Cambridge University Press, 1988, pp. 108-123..
[Deo89] V. V. Deodhar, A note on subgroups generated by reflections in Coxeter groups. Arch. Math. (Basel), 53(1989), no. 6, 543-546.
[Gro93] M. Gromov, Asymptotic invariants of infinite groups. In: Geometric Group Theory. London Math. Soc. Lecture Note Ser. 182, Cambridge, Cambridge University Press, 1993, pp. 1-295.
[HP98] F. Haglund and F. Paulin, Simplicité de groupes d'automorphismes d'espaces à courbure négative. In: The Epstein birthday schrift. Geom. Topol. Monogr. 1. Geom. Topol. Publ., 1988, pp. 181-248.
[HW06] F. Haglund and D. Wise, Special cube complexes. Geom. Funct. Anal. 17(2008, no. 5, 1551-1620.
[Hum90] J. E. Humphreys, Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics 29. Cambridge University Press, Cambridge, 1990.
[KK04] M. Kapovich and B. Kleiner, The weak hyperbolization conjecture for 3-dimensional CAT(0) groups. Groups Geom. Dyn. 1(2007), no. 1, 61-79.
[Kle99] B. Kleiner, The local structure of length spaces with curvature bounded above. Math. Z. 231(1999), no. 3, 409-456.
[Kra94] D. Krammer, The Conjugacy Problem for Coxeter Groups. Ph.D. thesis, Universiteit Utrecht, 1994. http://www.maths.warwick.ac.uk/ $/ \% 7$ Edaan/index_files/Proefschrift12.dvi.
[NR03] G. A. Niblo and L. D. Reeves, Coxeter groups act on CAT(0) cube complexes. J. Group Theory 6(2003), no. 3, 399-413.
[NV02] G. Noskov and E. Vinberg, Strong Tits alternative for subgroups of Coxeter groups. J. Lie Theory 12(2002), no. 1, 259-264.
[Rém04] B. Rémy, Topological simplicity, commensurator super-rigidity and non linearity of Kac-Moody groups. With an appendix by P. Bonvin. Geom. Funct. Anal. 14(2004), no. 4, 810-852.
[Ron89] M. Ronan, Lectures on Buildings. Perspectives in Mathematics 7. Academic Press, Boston, 1989.
[Tit81] J. Tits, A local approach to buildings. In: The Geometric Vein. Springer, New York, 1981, pp. 519-547.
[Wis05] D. T. Wise, Approximating flats by periodic flats in CAT(0) square complexes. Canad. J. Math. 57(2005), no. 2, 416-448.

Département de Mathématiques, Université libre de Bruxelles, CP216, Bd du Triomphe, 1050 Bruxelles, Belgium
e-mail: pcaprace@ulb.ac.be
Laboratoire de mathématiques, Université Paris-Sud - Bât. 425, 91405 Orsay Cedex, France
e-mail: frederic.haglund@math.u-psud.fr

[^0]: Received by the editors September 22, 2006.
 The first author is an F.N.R.S. research fellow.
 AMS subject classification: Primary: 20F55; secondary: 51F15, 53C23, 20E42, 51E24.
 Keywords: Coxeter group, flat rank, CAT(0) space, building.
 (C)Canadian Mathematical Society 2009.

