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The dynamics of turbulent flows past lateral cavities is relevant for multiple environmental
applications. In rivers and coastal environments, these lateral recirculating regions
constitute surface storage zones, where large-scale turbulent coherent structures control the
transport and fate of contaminants. Mass transport in these flows is typically represented by
one-dimensional first-order equations that predict the evolution of the spatially integrated
concentration between the cavity and the main channel. These models, however, cannot
represent the long-term evolution of the concentration or incorporate memory effects
induced by turbulence. In this investigation, we carry out large-eddy simulations (LES)
of the open-channel flow with a lateral square cavity of Mignot et al. (Phys. Fluids, vol.
28, issue 4, 2016, 045104). The model is coupled with an advection–diffusion equation
and a Lagrangian particle model to investigate the transport mechanisms in the cavity
and across the interface. From the simulations we provide quantitative comparisons of the
physical processes from both perspectives, and investigate the effects of turbulent coherent
structures on residence times and trajectories from finite-time Lyapunov exponents. From
the Lagrangian results, we identify general spatial distributions of time scales in the
cavity associated with the dynamics of coherent structures, providing new insights into the
mechanisms that drive the global transport. We also show that an upscaled model informed
by LES and based on a fractional derivative captures the evolution of concentration, and
the exchange between the cavity and the main channel, providing accurate predictions of
mass transport and reproducing the temporal dependence observed at larger scales.
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1. Introduction

Lateral recirculating regions play a fundamental role in the transport of mass and
momentum in fluvial environments and in open-channel flows. Intense shear at the
interface of the main turbulent channel with an adjacent volume of water creates vortex
shedding and flow separation at the side, which modify the instantaneous local velocities
and pressure fields (Jackson et al. 2012, 2013). In natural environments these regions
are called in-stream surface storage zones (SSZs), which are typically formed by logs,
boulders, vegetation or channel curvature that reshape the bank morphology. The SSZs
provide habitat diversity by creating regions with slower velocities, and they also control
the storage and release of contaminants along the river, affecting water quality, nutrient
cycles and the fate of pollutants originated by acid-mine drainage (DeAngelis et al.
1995; Fernald, Wigington & Landers 2001; Sukhodolov et al. 2009; O’Connor, Hondzo
& Harvey 2010; Sandoval et al. 2019). River restoration strategies often involve lateral
recirculating regions, designed to take advantage of the hydrodynamic environment or
to mitigate the impacts of pollutants in the river, modifying the channel morphology
to increase residence times, and promote biogeochemical processes and exchange with
subsurface flow (Mueller Price, Baker & Bledsoe 2016; Juez et al. 2018b).

Contaminant transport in these lateral recirculating regions is typically analysed from a
global perspective, representing the concentration of passive scalars by one-dimensional
(1-D) models (O’Connor et al. 2010; Jackson et al. 2012; Knapp & Kelleher 2020).
Since these approaches are based on the gradient diffusion hypothesis and an exchange
coefficient or by defining multiple exchange regions with more parameters, they have
a limited accuracy in flows dominated by large-scale and highly 3-D turbulent coherent
structures (Khosronejad et al. 2016).

To reduce the effects of specific arbitrary geometries and external factors, recent
investigations have focused on rectangular geometries, i.e. lateral cavities for open-channel
flows (e.g. Mignot et al. 2016, 2017; Sanjou, Okamoto & Nezu 2018; Ouro, Juez
& Franca 2020). The flow past cavities has been extensively studied for multiple
hydrodynamic and aerodynamic applications (Rockwell & Naudascher 1979; Liu & Katz
2013; Tuna & Rockwell 2014; Karimpour, Wang & Chu 2021), including processes such
as noise generation and flow-induced vibrations. The experimental analysis of mass
transport, however, has remained limited to dye experiments from an Eulerian perspective.
Measurements of the concentration of passive scalars on planes inside the cavity or
global measurements across the water depth have characterized the mass exchange through
optical techniques, providing quantitative estimations of the transport across the interface
between the cavity and the main channel (Uijttewaal, Lehmann & van Mazijk 2001;
Weitbrecht, Socolofsky & Jirka 2008; Sanjou & Nezu 2013; Mignot et al. 2017).

The recent work of Engelen et al. (2021) has been the first experimental investigation
to analyse the exchange process from a Lagrangian perspective. They used 3-D particle
tracking velocimetry to capture the trajectories of microspheres slightly denser than water,
and classified their paths at the interface to compute the global exchange coefficient.
The observations revealed an intricate Lagrangian dynamics, with particles zigzagging
and repeatedly crossing the interface, being either entrained or ejected into the main
channel. Quantifying the transport of particles for these measurements required a statistical
approach to interpret the results from Lagrangian motion with caution, as some of the
particles were lost during the tracking observations. Nevertheless, these results offered
valuable insights into the impact of small-scale processes on mass exchange over time.

A comprehensive understanding of exchange processes driven by turbulent coherent
structures is therefore critical for upscaling the results to the larger-scale 1-D models, and
accurately quantifying transport for environmental or restoration applications. Previous
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Transport mechanisms in a lateral cavity

studies have found that the initial mass exchange seems to follow the conventional
first-order 1-D equation to represent the initial evolution of the concentration (Uijttewaal
et al. 2001; Sandoval et al. 2019). However, as time progresses and smaller concentrations
are exchanged, the global model can significantly overpredict the mass transport. This is
especially problematic for contaminants that are toxic at low concentrations, as they may
become trapped for longer times in the cavity, changing the exposure periods and the
spatial distribution in the environment.

High-resolution numerical simulations can characterize the transport mechanisms by
capturing the dynamics of the turbulent coherent structures, since the collective effects
of turbulence on mass exchange in the cavity and at the interface with the main channel
are perceived as memory effects in upscaled 1-D representations. In this investigation we
perform large-eddy simulations (LES) of the lateral square cavity experiments of Mignot
et al. (2016) to study the leading mechanisms of mass transport. The main objective
of this research is to understand the transport dynamics from Eulerian and Lagrangian
perspectives, providing physical insights into the effects of small-scale processes on global
transport. The present work focuses on quantifying residence times and characterizing
regions of the flow that give rise to emergent large-scale behaviour with longer temporal
dependence by studying the concentration of a passive scalar or the trajectories of
particles, developing models that consider the influence of subgrid scales. Through this
analysis, different time scales observed in mass transport are identified and linked to the
complex spatial distribution of residence time statistics and the divergence of trajectories
in the cavity, quantified with finite-time Lyapunov exponents.

The paper is structured as follows: in § 2 the LES numerical model and the Eulerian
and Lagrangian mass transport equations to study the exchange between the cavity and
the main channel are described. Subsequently, in § 3 the results of the time-averaged
flow field and instantaneous features are presented and compared with the experimental
measurements. In § 4 the main characteristics of mass transport from both Lagrangian and
Eulerian perspectives are discussed, analysing the small-scale effects on global transport
represented from emergent large-scale relations. The statistics of particle exchange
between the cavity and the main channel are explored in § 5, by studying the distribution of
residence times inside the cavity as a function of the initial conditions, and expanding the
analysis to quantify the separation of trajectories from the finite-time Lyapunov exponent
in § 6. The conclusions in § 7 contain a summary of our findings and ideas for future
research.

2. Numerical framework for LES and mass transport

2.1. Governing equations of the flow
The governing equations for LES are the 3-D spatially filtered unsteady, incompressible
Navier–Stokes equations. They are expressed in non-dimensional form and Cartesian
coordinates as follows:

∂ ūi

∂xi
= 0, (2.1)

∂ ūi

∂t
+ uj

∂ ūi

∂xj
= − ∂P̄

∂xi
+ 1

Re
∂2ūi

∂xj∂xj
− ∂τij

∂xj
, (2.2)

where ūi are the filtered components of velocity with the bar denoting the grid filter, P̄
is the filtered pressure, Re is the Reynolds number and τij are the components of the
subgrid-scale (SGS) stress tensor. In the above equations all quantities have been made
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non-dimensional using the flow depth h and the bulk velocity in the main channel Ub as
characteristic length and velocity scales, respectively. Consequently, the Reynolds number
is defined as Re = Ubh/ν, where ν is the kinematic viscosity of the fluid.

The SGS tensor is defined as τij = uiuj − ūiūj = −2νtS̄ij, with S̄ij = (∂ ūi/∂xj +
∂ ūj/∂xi)/2 being the resolved-scale strain-rate tensor. The eddy viscosity is calculated
as νt = CvΔ̄

√
ksgs based on a one-equation LES turbulence model, the locally dynamic

kinetic energy model developed by Kim & Menon (1999), where ksgs = (ukuk − ūkūk)/2.
The model considers the filter size Δ̄ from the grid, solving a transport equation for the
SGS turbulent kinetic energy ksgs

∂ksgs

∂t
+ ∂

∂xj
(ūjksgs) = −τ

sgs
ij S̄ij + ∂

∂xj

[(
1

Re
+ νt

)
∂ksgs

∂xj

]
− Cε

(ksgs)3/2

Δ̄
. (2.3)

In the above equation, the three terms on the right-hand side correspond to the production,
diffusion and dissipation of ksgs. The dynamic coefficients Cε and Cv are employed to
determine the SGS dissipation rate εij and the turbulent viscosity νt, respectively, and
they are computed from the resolved flow field considering a test filter size Δ̂ = 2Δ̄. The
coefficient Cv is obtained by applying the least-square method suggested by Lilly (1992)
and Cε based on the SGS dissipation εsgs

Cv = 1
2

Lijσij

σlmσlm
, (2.4)

Cε =
(

1
Re

+ νt

)
Δ̂

(ktest)3/2

[
̂∂ ūi

∂xj

∂ ūi

∂xj
− ∂ ˆ̄ui

∂xj

∂ ˆ̄ui

∂xj

]
, (2.5)

where Lij = ̂̄uiūj − ̂̄uî̄uj is the Leonard stress tensor, σij = Δ̂ ˆ̄Sij
√

ktest and ktest = ( ̂̄ukūk −
ˆ̄uk ˆ̄uk)/2.

2.2. Eulerian mass transport model
The solute transport is based on an advection–diffusion equation for a passive scalar, to
predict the transport of the volumetric concentration

∂C̄
∂t

+ ūj
∂C̄
∂xj

= ∂

∂xj

[
(D + Dt)

∂C̄
∂xj

]
, (2.6)

where C̄ is the filtered concentration, ūj are the resolved velocity components of the flow
and D and Dt are the non-dimensionalized molecular and turbulent diffusion coefficients,
respectively. The diffusion coefficients are defined from the molecular Schmidt number
Sc = Re−1/D equal to 100, and a turbulent Schmidt number Sct = νt/Dt equal to 1,
which represent correctly the transport of passive scalars in water at ambient temperature
(Gualtieri et al. 2017).

2.3. Lagrangian model for fluid particles
In the Lagrangian approach, the path of discrete point elements of fluid without inertia
are tracked in time. These simulation of particle trajectories can represent small neutrally
buoyant particles associated with nutrients and minerals, pollutants such as microplastics
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or suspended fine sediment particles with low inertia and small Stokes number (Escauriaza
& Sotiropoulos 2009; Abarca et al. 2017).

To compute the fluid velocity at the particle location, the fourth-order partial Hermite
interpolation is used, which has been successfully employed in previous investigations of
particle simulations in turbulent flows (e.g. Balachandar & Maxey 1989; Choi, Yeo &
Lee 2004; Polanco 2019). To incorporate the effects of the SGS velocities, a stochastic
equation is used to obtain the local flow velocity considering the effects of unresolved
scales (Haworth & Pope 1986; Pope 1994; Gicquel et al. 2002; Fede et al. 2006; Berrouk
et al. 2007; Marchioli 2017). In this case, the SGS particle model of Vinkovic et al. (2006)
is implemented to obtain a velocity fluctuation (v′

i) that is added to the filtered flow field
at the particle position (vi). The motion of each particle is therefore computed from the
following set of equations:

dxi

dt
= v̄i + v′

i, (2.7)

dv′
i =

(
− 1

TL
+ 1

2ksgs
dksgs

dt

)
v′

i dt +
√

4ksgs

3TL
dηi(t). (2.8)

Equations (2.7) and (2.8) correspond to the particle trajectory and the stochastic SGS
model based on a Langevin equation (Vinkovic et al. 2006), respectively. The first term in
(2.8) is the deterministic memory of the velocity fluctuation, and the second is a zero-mean
Wiener noise scaled by the SGS turbulent kinetic energy, where the time scale is equal to
TL = 4ksgs/3C0ε

sgs, εsgs = C1ksgs3/2
/�̃ and dηi = η

√
t (η ∼ N(0, 1)). The values of the

model constants C0 and C1 are typically assumed as C0 = 2.1 and C1 = 1 (Haworth &
Pope 1986; Pope 1994; Gicquel et al. 2002; Fede et al. 2006; Berrouk et al. 2007).

2.4. Computational details
The 3-D cavity flow configuration studied by Mignot et al. (2016) was simulated by
considering the entire experimental set-up and the same Reynolds number equal to
Re = 11 667. The rectangular channel length is 4.9 m long and B = 0.3 m wide.

The computational domain considers the entire experimental channel, spanning 70h ×
4.29h × h in the streamwise (x), spanwise (y) and vertical (z) directions, respectively, as
shown in figure 1. The lateral square cavity is located at the centre of the total length with
sides of dimensions 4.29h.

The structured numerical grid, shown in figure 2, consists of 981 × 281 × 101 points in
the x, y and z directions, corresponding to a total of approximately 27 million nodes with
a resolution at solid boundaries of �x+

i ≤ 1. No-slip boundary conditions are applied at
solid surfaces, and the free surface is represented as symmetry boundary due to the small
Froude number of the flow (Fr = 0.2), which represents values observed in low-gradient
streams, where no significant deformation of the free surface is observed. At the inflow
of the computational domain that coincides with the channel entrance, we prescribe
a uniform bulk flow to which we add a synthetic unsteady stochastic inlet using the
random flow generator of Smirnov, Shi & Celik (2001), representing the turbulence of
the experimental inlet in Mignot et al. (2016). The entire channel is simulated to make
sure that the development of the boundary layer is reproduced, and that the outlet has no
influence on the dynamics observed in the cavity section. The minimum, maximum and
mean grid resolutions in wall units are presented in table 1. The maximum spacings in x, y
and z correspond to the regions at the outlet, main channel and mid-channel, respectively.
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Flow

W
c /h = 4.29

L e/h
 = 32.86

Lc/h
 = 70

L/h
 = 4.29 W/h = 4.29

h

Figure 1. Geometry of the computational domain (not to scale). The grid comprises the entire length of the
experimental set-up.

xy

z

Figure 2. Details of the computational grid in the cavity region. The X axis corresponds to the flow direction
in the main channel.

In table 1, the shear-layer region is centred at the interface, considering 20 % of the cavity
volume, and a streamwise extension slightly longer than the cavity.

The filtered Navier–Stokes equations in generalized curvilinear coordinates are
solved using a dual time-stepping artificial compressibility iteration scheme, employing
second-order-accurate finite-volume method on a non-staggered computational grid.
The discrete equations are advanced in time by adopting the pressure-based implicit
preconditioner of Sotiropoulos & Constantinescu (1997), enhanced with local time
stepping and V-cycle multigrid acceleration. The one-equation turbulence model is
integrated with second-order schemes, advancing the solution in pseudo-time using the
standard alternate direction implicit scheme. Applications and the performance of this
model have been tested and discussed in great detail in a series of previous papers (Paik,
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�x+
min �x+

max �y+
min �y+

max �z+
min �z+

max 〈�x+〉 〈�y+〉 〈�z+〉
Entire domain 0.8 240 0.8 107 0.8 19 59.5 25.5 8.3

Cavity 0.8 55 0.8 57 0.8 19 20.3 19.6 8.3
Shear layer 0.8 55 0.8 38 0.8 19 16.5 8.3 8.3

Table 1. Maximum, minimum and mean spatial resolutions at different regions in wall units.

Escauriaza & Sotiropoulos 2007, 2010; Escauriaza & Sotiropoulos 2011a,b,c; Link et al.
2012; Gajardo, Escauriaza & Ingram 2019; Gotelli et al. 2019; Sandoval et al. 2019;
Soto-Rivas, Richter & Escauriaza 2019; Sandoval et al. 2021), in which the accuracy of the
methods has been demonstrated by qualitative and quantitative comparisons with available
experimental data, in terms of mean flow quantities and turbulence statistics.

The Eulerian mass transport equation (2.6) is solved using the algorithm implemented
in Sandoval et al. (2019), advancing in time by using the dual-time-stepping method. The
advective term of the transport equation is discretized using the second-order-accurate
upwind scheme with a flux limiter (Leonard 1991) to resolve steep gradients and avoid
unphysical oscillations, while central differencing is employed for the diffusive flux.

The particle trajectories in the Lagrangian model are obtained from (2.7) integrated
in time, using a third-order Runge–Kutta scheme by coupling the LES model with the
open-source code LIGGGHTS (Kloss et al. 2012) for particle simulations, as in the recent
work of González et al. (2017) and Escauriaza et al. (2023). The stochastic velocity
equation (2.8) is solved by an Euler–Maruyama scheme (Gicquel et al. 2002; Fede
et al. 2006). All the simulations for the flow and mass transport are carried out using
a non-dimensional physical time step of �t = 0.01 (0.0042 s), which is scaled with the
water depth h, and the bulk velocity Ub.

The difference between Eulerian and Lagrangian approaches is due to the effect
of diffusive transport in the continuum simulations, which has been also observed in
simulations of mass transport in the blood flow of aneurysms (Reza & Arzani 2019) and in
porous media (Henri & Diamantopoulos 2022). The numerical scheme of Leonard (1991)
implemented in the solution of (2.6) has demonstrated its accuracy in capturing advective
transport in open-channel flows for passive and active contaminants (Lin & Falconer
1997; Gross, Koseff & Monismith 1999; Devkota & Imberger 2009; Paik, Eghbalzadeh &
Sotiropoulos 2009), and in LES of scalar transport (Sharan, Matheou & Dimotakis 2018).
To verify the Eulerian results presented in this work, we carried out the procedure outlined
by Muppidi & Mahesh (2008), performing a separate calculation with a significantly
smaller time step. Muppidi & Mahesh (2008) commented on the potential influence
of numerical dissipation on mass transport, and integrated the advection–diffusion
equation in direct numerical simulations using a smaller time step to ensure the correct
representation of advective mass fluxes at high resolutions. The results we obtained here
with a higher temporal resolution, reducing the time step by one order of magnitude
(�t = 0.001 or 0.00042 s), showed no changes on the instantaneous mass transport and
statistics that we report on this investigation.

3. Flow in the lateral cavity

In this section we present briefly the time-averaged and instantaneous flow field obtained
from the LES. We compare the computed results with the experimental measurements of
Mignot et al. (2016), to show the good agreement of the simulations with the time-resolved
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Figure 3. Non-dimensional time-averaged velocity magnitude and streamlines. (a) Experimental horizontal
plane at z/h = 0.7 for comparison. (b) Transverse plane at the interface showing the mean transverse velocity
and where the time-averaged inflow and outflow occurs in the cavity; (c) and (d) correspond to the horizontal
planes where most of the inflow and outflow occur, respectively.

2-D particle-image velocimetry (PIV) observations reported in a horizontal plane at
z/h = 0.7. In all the results the velocity and time are made non-dimensional using the
bulk velocity and the water depth.

3.1. Mean flow
The time-averaged flow field in the cavity is mostly two-dimensional, with a simple
structure that is illustrated in the different planes depicted in figure 3. The flow exhibits the
following features: (i) a shear layer with a strong transverse gradient of streamwise velocity
and converging streamlines at the interface; (ii) a large vortical structure induced by the
flow in the main channel, which occupies most of the cavity volume; (iii) a time-averaged
inflow that enters the cavity from the trailing corner at the downstream boundary and
close to the bed and a time-averaged outflow that occurs close to the upstream boundary
mainly at the middle of the channel; (iv) secondary small corner vortices generated by the
interaction of the rotating flow with the walls. In figure 3 we can also observe the disparity
of velocity magnitudes inside the cavity, with velocities at the centre of the vortex that
are one order of magnitude smaller compared with the shear layer, inducing a significant
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Figure 4. (a) Time-averaged streamwise non-dimensional velocity profiles at the interface between the cavity
and the main channel. (b) Non-dimensional streamwise velocity gradient. The solid lines correspond to the
present simulations, and the red circles to the experimental data of Mignot et al. (2016).

variability of time scales associated with these structures in the lateral region, as observed
in previous investigations (Sanjou & Nezu 2013; Drost et al. 2014).

The measured and calculated streamwise velocity profiles and gradients at the horizontal
plane z/h = 0.7 depicted in figure 4, show that the simulations are in very good agreement
with the measurements, reproducing the velocity magnitude across the interface and the
spreading of the time-averaged shear layer in the presence of the adverse pressure gradient
imposed by the impinging point at the trailing edge of the cavity, which increases the
thickness of the shear layer downstream.

3.2. Instantaneous flow field
To identify the coherent dynamics of the flow in the cavity and at the interface with the
main channel, we visualize the instantaneous resolved vertical vorticity distributions in
figure 5, and the 3-D instantaneous q-criterion iso-surfaces in figure 6.

The images are snapshots of vorticity near the interface separated by 200 time steps
(0.84 s), and the first and last encompass an entire period of the shear-layer vortex
shedding, as described below. The sequence for the horizontal plane at z/h = 0.7 shows
the general characteristics of the instantaneous flow driven by a shear-layer instability that
develops at the interface, which encounters an adverse pressure gradient produced by the
flow impingement on the downstream corner of the cavity interface. Vortex shedding is
initiated at the leading edge of the interface, generating a sequence of vertically aligned
vortices that travel and impinge on the trailing corner. The instantaneous shear layer
consists of up to two large counter-clockwise vortical structures that are continuously
shed in a seemingly periodic manner, with associated smaller clockwise structures. These
vortices divide when they impact the downstream corner, producing a wall jet inside the
cavity that induces the rotation in the enclosed volume, in agreement with what is observed
in the experiments of Mignot et al. (2016). The interface plane is marked with a dashed
line in the figure to show that the core of shear-layer vortices are sometimes encountered
inside the cavity, while outside excursions of the vortices can also occupy a section of the
main channel in a low-frequency flapping motion of these structures across the interface.
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Figure 5. Sequence of non-dimensional resolved vertical vorticity contours in the horizontal plane z/h = 0.7.
The dashed line aids in visualizing the precise location of the vortex cores with respect to the cavity zone.
The images are separated by 0.86 s , equivalent to 2 non-dimensional times (2 × h/Ub). This temporal interval
corresponds to half of the period of the lead frequency of vortex shedding.
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Figure 6. Three-dimensional instantaneous evolution of the shear layer visualized with q-isosurfaces (q =
1.0). The 3-D images are coloured by non-dimensional pressure, separated by a temporal interval equal to
half the period of the vortex shedding. The locations of prominent vertical-axis and longitudinal vortices are
indicated in the panels. Note that, to identify the instantaneous low-pressure cores, each panel has a different
scale.
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Figure 7. Three-component velocity spectra at two different positions of the lateral cavity flow. (a) At the
interface; and (b) inside the cavity, near the end boundary. Curves in blue, red and black correspond to spectra
of streamwise, transverse and vertical velocity components, respectively.

The visualization of the flow in figure 6 also shows that longitudinal coherent structures
engage in complex interactions with the large-scale vortices inside and outside the cavity,
with a highly 3-D structure of the flow in the interface and cavity regions illustrated by
the q isosurfaces. The q-criterion (Hunt, Wray & Moin 1988) is defined in regions of
the flow where the difference between the norm of the resolved rate of rotation (Ωij)
and the resolved rate of strain tensors Sij is positive. This scalar quantity, obtained as
q = 0.5(ΩijΩij − SijSij) > 0, can help identify vortical structures in regions where local
rotation rate is larger than the strain rate, even though it has limitations where there is high
shear and both quantities are very large.

The images and animations in the supplementary material show a very rich dynamics,
in which columnar vortices of the shear layer that emerge at the interface are elongated
and connected by longitudinal worm-like vortical streaks, impinging at the trailing edge of
the cavity. The figure sequence helps to clarify the mechanisms that generate the rotation
inside the lateral cavity, and how the wall jet produced at the interior downstream wall is
heavily influenced by the periodic vortex shedding and internal feedback with the shear
layer, which experiences a continuous flapping modulated by the low-frequency rotation
inside the cavity (see similar processes described by Liu & Katz 2013).

These comparisons demonstrate the ability of the LES model to resolve the large-scale
flow patterns, and leading mechanisms of momentum transport captured in previous
experimental analyses (Liu & Katz 2013; Mignot et al. 2016). In figure 7, we also show
the power spectra for time series of the three velocity components at two representative
points in the domain: at the interface of the cavity with the main channel, and close to
the end boundary near the opposite wall. The analysis shows that the model reproduces
the leading frequencies measured in the experiment of Mignot et al. (2016), with a
vortex-shedding frequency of the shear layer equal to 0.58 Hz, which corresponds to a
period of four dimensionless times (the Strouhal number, Str = fh/Ub, is equal to 0.25).
The two frequency peaks in figure 7(a) show two harmonics ( f1/f2 = 0.5), confirming
the strong influence of the shear layer in the slower and the less energetic flow dynamics
inside the cavity, dominated by a single large vortical structure. It is worth noting that the
spectrum inside the cavity, as depicted in figure 7(b), corroborates the lower energy levels
in the slow recirculation flow near the opposite wall, in contrast to the turbulent shear layer
at the interface.
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Transport mechanisms in a lateral cavity

The −3 slope observed at low frequencies could be due to the fact that the largest
turbulent scales at the interface and inside the cavity are mostly two-dimensional, with
vertically oriented axes of structures confined by the depth, creating a range of turbulent
scales for which the 3-D energy transfer is suppressed (Jirka 2001). Analyses of similar
flows and detailed discussions of this phenomenon are discussed in Uijttewaal & Booij
(2000) and Proust & Nikora (2020).

4. Mass transport

Since the LES shows good qualitative and quantitative agreement with the experimental
measurements, we use the numerical simulations to explore how the turbulent structures
at the interface and inside the lateral cavity influence the mass exchange with the main
channel. The main objective is to provide insights on how the exchange processes driven
by turbulent coherent structures have a global effect on the transport of contaminants in
open-channel flows and other environmental applications.

Here, we perform an analysis of mass transport from Eulerian and Lagrangian
perspectives, starting from a converged instantaneous solution of the flow. For the
continuum approach, we fill the cavity with a passive scalar assuming volumetric
concentration C = 1.0 in the entire lateral volume and solve (2.6), as described in the
previous section. For the Lagrangian approach, we uniformly distribute 1.08 × 105 passive
particles inside the cavity and integrate their trajectories from the instantaneous flow field,
using (2.7) and (2.8) to compute transport statistics. The findings presented here have also
been tested with particle resolutions smaller by an order of magnitude, yielding consistent
and identical results.

We analyse the time series of mass flux across the interface and study the implications
of the small-scale processes on the global mass exchange and transport, which can be
quantified from large-scale representations typically used in the study of contaminant
transport in fluvial systems (O’Connor et al. 2010; Sandoval et al. 2019).

The evolution of transport for Eulerian and Lagrangian cases is depicted in figure 8,
showing how the shear-layer vortices emerging at the interface entrap the contaminant in
the lateral cavity, transporting mass downstream in the main channel. The time sequence
of concentration contours in the Eulerian case, and particles coloured by their velocity
magnitude in the Lagrangian simulations, can help visualize the leading role of these
large-scale vortices, which also entrain fluid from the main channel into the recirculating
region as the cavity is emptied.

To provide quantitative insights into the global decrease of the concentration in the
cavity we study the flux across the interface, which is the large-scale response of the system
to the overall effects of the turbulent coherent structures on mass transport, between the
channel and the lateral storage zone. For the Lagrangian data we computed the flux as the
difference in the number of particles inside the cavity at two consecutive times divided by
the total number of particles and the time window. For the Eulerian data we considered the
difference in the volume-averaged concentration divided by the time. The time series of
mass flux in figure 9, show that the LES captures the periodicity and transport fluctuations
across the interface driven by the shear layer. The filtered data at larger time scales show
that the leading frequency of transport observed in these plots coincides with the periodic
velocities induced by the the vortex shedding at the interface. The fluxes at the interface
also show negative excursions, or negative transport, due to the re-entrance of mass in the
cavity, which is a phenomenon clearly captured by the Lagrangian model with particle
trajectories that perform a complex zigzagging at the interface, as will be subsequently
shown (see also Engelen et al. 2021).
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Figure 8. Plan view of transport evolution from the lateral cavity in the Lagrangian (a–c) and Eulerian (d–f )
simulations. The sequences show the influence of the shear layer on the mass exchange toward the main
channel. Both sequences correspond to one shear-layer period (1.72 s, or 4 non-dimensional times), but they
are displayed at different physical times to enhance clarity of the transport processes in each case. Additional
details can be observed in the supplementary movies of the paper.
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Figure 9. Time series of Lagrangian and Eulerian mass flux across the cavity interface. The mass exchange
reveals a periodicity linked to the vortex-shedding frequency. The figure at the right shows the more fluctuating
Lagrangian flux with larger excursions.

To evaluate the mass transport at a global scale, lateral recirculating regions are
typically analysed by using transient storage models. A 1-D transport equation for the
averaged concentration represents the exchange with the main channel as proportional
to the concentration gradient. Through the instantaneous information provided by LES,
we can understand in detail the driving mechanisms for the mass exchange and improve

984 A1-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.99


Transport mechanisms in a lateral cavity

the large-scale formulations computing the instantaneous volume-averaged concentration
inside the cavity. The global large-scale model represents the time evolution of the
concentration in the cavity as follows:

d〈C〉
dt

= Qmc

∀c
(Cm − 〈C〉), (4.1)

where 〈C〉 and Cm are the spatially averaged bulk concentration in the cavity and in the
main channel respectively, Qmc is the volumetric flux from the main channel to the cavity
and ∀c is the cavity volume. The instantaneous flux across the interface is computed from
an exchange velocity across the interface E, and is expressed in terms of the interface
width W

d〈C〉
dt

= E
W

(Cm − 〈C〉). (4.2)

The exchange velocity is estimated as proportional to the bulk velocity in the main
channel E = kUb, where k is known as the dimensionless mass exchange coefficient. The
model for the cavity concentration is written as

d〈C〉
dt

= kUb

W
(Cm − 〈C〉). (4.3)

For the cavity that is initially full, the analytical solution of this equation shows that the
concentration decays exponentially, such that

〈C〉/C0 = e−t/τ , (4.4)

where C0 is the initial concentration inside the cavity and corresponds to the maximum
value, and τ is the mean residence time, related to the mass exchange coefficient k as
follows:

τ = W
kUb

. (4.5)

The magnitude of the exchange is typically estimated from experiments, using dye
releases or measuring the transverse velocity at the interface, fitting the solution to the
data (Knapp & Kelleher 2020). In our numerical simulations we can directly compute
the contaminant mass remaining in the cavity, either from the instantaneous concentration
field or from the particles in the Lagrangian model.

Figure 10 shows (4.4) with the flux computed from LES in a semilog plot, where the
exchange coefficients and time scales associated with this model are related to the slope
of the curves. As expected, the Eulerian and Lagrangian results yield different exchange
coefficients, due to the mixing effects of the continuum approach. The contaminant is
diluted in fluid from the main channel that has been entrained in the cavity by the
shear layer. Clear fluid from upstream enters the cavity, facilitating the mixing with the
contaminant by advective and diffusive processes. In the Lagrangian model, however, there
is no molecular or turbulent mixing. This effect was verified in our calculation by changing
the number of particles and by performing an additional Eulerian calculation at a higher
temporal resolution, to discard the potential influence of the numerical discretization of
the advective terms.

The numerical results show that the exponential decay of this first-order model separates
from the actual decay when there is still 40 % of the initial total mass in the cavity. The
exchange coefficient k is estimated from the instantaneous average concentration in the
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Figure 10. Comparison for the evolution of averaged concentration from LES, and the large-scale model with
a fractional derivative of order α = 0.96. For Eulerian and Lagrangian cases the global model captures the
evolution of the instantaneous mass inside the cavity, representing the memory effects induced by the collective
interactions of turbulent coherent structures.

Eulerian case, whereas, for the Lagrangian data, the value of k is obtained by counting the
fraction of the initial number of particles that remains inside the cavity over time.

The non-dimensional global residence times obtained from Lagrangian and Eulerian
data are τL = 102 and τE = 130, respectively. This statistic represents the average time
that particles or the passive scalar remain inside the cavity, if we assume that transport is
proportional to the concentration difference between the two zones. The mean residence
times obtained here are similar to the values obtained by previous studies for cavity flows
at different aspect ratios L/W (Jackson et al. 2012; Sanjou & Nezu 2013; Drost et al.
2014). The mass exchange coefficients from Lagrangian and Eulerian data are kL = 0.042
and kE = 0.033, respectively, and are also consistent with data in the literature for lateral
cavity flows (Weitbrecht & Jirka 2001; Sanjou & Nezu 2013; Mignot et al. 2016, 2017;
Sandoval et al. 2019).

From the work of Sandoval et al. (2019) on a natural lateral cavity, the global model
based on a time-fractional differential equation can be used to better describe the evolution
of mean concentration in the cavity, which captures the complex emergent dynamics that is
the consequence of the interactions of turbulent coherent structures inside the recirculating
region. We maintain the same exchange coefficients kL = 0.042 and kE = 0.033, solving
the following equation:

dα

dtα
〈C〉 = −kUb

W
hm

h
(〈C〉 − Cm) , (4.6)

where α corresponds to the order of the fractional derivative. The solution of this equation
corresponds to a Mittag–Leffler function, which generalizes the exponential solution.

In figure 10 we show that, at short time scales, the first-order linear model represents
correctly the initial emptying process that transitions to a heavy-tail behaviour with an
apparent change of the decay rate at approximately t = 120 for (C = 0.4). The order of
the fractional derivative α = 0.96 reflects the memory effects induced by the collective
dynamics of the turbulent flow. Stronger memory effects have been also observed in natural
surface storage zones, enhanced by complex bathymetries that induce upwelling events and
large 3-D flow features as discussed in Sandoval et al. (2019).

All these characteristics observed in the global dynamics of mass transport, such as the
periodicity of the fluxes and the evolution of the cavity concentrations that departs from
classical gradient diffusion transport, point to the conclusion that multiple time scales
influence the exchange with the main channel.
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Figure 11. Histogram of Lagrangian residence times in the entire cavity volume, showing the theoretical decay
given by the exponential function and the equivalent power-law distribution from the fractional model, which
can represent better the extreme values of the distribution.

Therefore, memory effects generate a wider distribution of residence times in the cavity.
We investigate their distribution by constructing their histogram, as shown in figure 11. The
power-law probability density function associated with the memory effects revealed by the
fractional model, with the tails decaying with a −1.96 slope in a semilog plot, is linked
to the exponent of the fractional derivative and represents better the extreme values of the
residence time distributions.

From the LES results and particle trajectories, we can further analyse the effects of
coherent structures on global statistics and identify the topology of the flow in the cavity
that explains the global observations in experiments and simulations. In the following
sections we study in detail the spatial distribution of the residence times inside the lateral
recirculating region, and compute statistics that are closely linked to particle trajectories
across the interface.

5. Spatial residence time statistics

The analysis of the global transport reveals a wide distribution of residence times
imposed by the turbulent coherent structures of the flow. Three-dimensional maps of the
residence time distribution inside the cavity are generated by the following procedure:
(a) particles are randomly distributed occupying the entire cavity volume; (b) the
Lagrangian simulation is performed, tracking each individual particle position and
recording the time they remain inside the cavity (residence time); and (c) after the
simulation is finished, the particle initial position is coloured by the residence time
obtained in the previous step. Therefore, by analysing how long particles remain inside
the cavity and relating it to their initial positions, we can visualize the spatial distribution
of these time scales and identify sections with similar residence times occupying distinct
volumes inside the cavity.

In figure 12(a) we plot three different planes of the 3-D map of residence times, coloured
by their magnitude at the initial location of each particle. The horizontal plane x–y, and
vertical y–z and x–z planes are organized from top to bottom, showing the large disparity of
time scales in the lateral recirculating region, which seem to be organized according to the
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Figure 12. Spatial distribution of particle residence times according to their initial positions. Slices correspond
to x–y, y–z and x–z planes from top to bottom. (a) Non-averaged values of initial position of particles coloured
by their residence time, showing regions with groups of particles with similar time scales. (b) Values averaged
over the first four dimensionless times (equivalent to one shear-layer period).

large-scale vortices observed in the simulations. Two relevant aspects of the Lagrangian
mass transport can be visualized: (i) there are global patterns of residence times that
appear in the cavity volume, with smaller values near the interface and upstream wall,
and a region occupied by longer time scales in the vicinity of the central vortex core; and
(ii) inside these global sections that gather trajectories with similar residence times, there
is an irregular distribution of scales and local fluctuations induced by turbulence, which
are embedded in most of the cavity volume. The blue regions emerge as the clear imprint
of shear-layer vortices, with short residence times at the locations close to the interface
and return leg of the central core rotation, where these vortices can easily extract a large
number of particles from the cavity.
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To reduce the grainy structure produced by local fluctuations, we perform a
period-average filtering, based on the scale of the shear layer T = 4.0, where these specific
global regions can be better identified. The plots in figure 12(b) show the same planes but
computed with the period-averaged residence time, capturing a clearer spatial distribution
of the large-scale global patterns. Regions of different time scales separated by two orders
of magnitude are observed, the largest is associated with the main vortex core in the central
region, with residence times above 120; and the second at the interface and upstream
boundary influenced by the shear layer, with residence times lower than 40. All other
regions have residence times between these two values (40–120). This finding is similar
to the multiple-region models proposed by Drost et al. (2014) and Sandoval et al. (2019),
which consist of two exchanges zones corresponding to the perimeter of the main eddy
and the core of the recirculation region. Our findings, however, differ slightly from those
of Drost et al. (2014) and correspond to two regions with completely different time scales:
the vortex core time scale (tvc = 150) and the interface and upstream boundary influenced
by the shear-layer time scale (tsl = 4). We found that all other areas inside the cavity
are influenced by more than one time scale and mainly by the eddy turnover time scale
(ted = 50). Our findings provide a more complete understanding on the identification of
regions that trap and release mass in lateral recirculating regions and are in agreement with
Juez et al. (2018a), who observed that sediment particles tended to flow into the core of
the main recirculating eddy and settle there (as also discussed in Ouro et al. 2020).

The fluctuations and spatial variability observed inside the cavity, as depicted in the
fine-grained figure 12(a), indicate that particles starting very close to each other can have
significantly different residence times, highlighting the complex Lagrangian dynamics
of the flow driven by the interplay between the central slow vortex core motion, and
particles approaching the interface that can rapidly leave the cavity or remain inside for
arbitrarily long times. A closer analysis of the particle trajectories shows that streamwise
vortices between pairs of the columnar vortices that are part of the shear layer induce a
vertical motion that reintroduces particles inside the lateral cavity. The sequence of images
in figure 13 shows the instantaneous positions coloured by residence time and vertical
velocity, in which particles at the interface that approach the region between two vertical
axis vortices are re-entrained and remain inside for a longer period. This can be identified
by particle pockets of green and yellow residence times at the shear layer. Animations of
the flow show that these particles oscillate at the interface, which was described as particle
zigzagging by Engelen et al. (2021), leaving and re-entering the cavity one or more times.
Re-entrained particles by vertical velocity events of longitudinal vortices circle around the
central vortex at least once more, adding to their residence time a turnover time scale on
average every cycle they remain inside. The vortex dynamics inside the cavity influences
the approach trajectory of particles approaching the interface. When they reach the dark
blue zones in figure 12, they will likely exit the cavity immediately.

To summarize the variability of particle residence times we compute the spatial
distribution of the standard deviation of local residence time at each point (in units
of time) and the non-dimensional coefficient of variation, corresponding to the ratio
between the standard deviation and the mean residence time. Since these statistics exhibit
a less pronounced variability in horizontal planes, in figure 14 we show depth-averaged
magnitudes. The spatial distribution observed in the standard deviation of residence times
is influenced by the complex instantaneous dynamics of the shear layer, and connects
to the physical mechanisms observed in figure 13. Large and small values of standard
deviation are related to regions of small and large residence times, respectively. The red
region of large standard deviation at the left in figure 14 coincides with an internal shear
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Figure 13. Sequence of Lagrangian transport across the interface, with particles coloured by residence time
(a–c) and vertical velocity (d–f ). The re-entrainment of particles at the interface can be identified by particle
pockets that sit between two vortices of the shear layer, which are advected back in the cavity by vertical
motions. This 3-D effect of streamwise vortices is the leading re-entrainment mechanism.

layer produced by the vortex core in the centre of the cavity and the return flow near the
upstream wall, which divides particles that exit or remain inside, where the latter circle the
large-scale vortex one or more times. The coefficient of variation distribution shows the
influence of the region between vortices, where there is a large disparity of residence times
with respect to the average due to the periodic re-entrainment. Due to the small residence
times in these zones, the large coefficient of variation implies that particles reaching these
positions oscillate at the interface one or more times to finally exit or remain inside the
cavity, and the largest values are explained by this zigzagging at the interface. Particles
starting in these regions have residence times lower than 30 or 40, which is less than the
time it takes to a particle that start close to the interface and circling the cavity before
reaching the interface again.

6. Finite-time Lyapunov exponents

The spatial distribution of residence times generated by the coherent structures reveals
regions built by particles trajectories that organize the flow into ordered patterns,
accumulating trajectories with similar time scales. To formalize the detection of these
volumes inside the cavity and at the interface, we study the range of time scales that
emerge from the Lagrangian transport, calculating the 3-D finite-time Lyapunov exponents
(FTLE) of particle trajectories (Haller 2015).
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Figure 14. Depth-integrated statistics of the residence times in the cavity volume. (a) Standard deviation; and
(b) coefficient of variation.

The FTLE are used to measure the rate of separation of neighbouring trajectories
over a specific time interval. They are commonly used to identify Lagrangian coherent
structures in the flow and to provide a quantitative evaluation of the time scales embedded
in the particle transport, which characterize the flow complexity. The technique consists
of computing the local flow deformation gradient, through the calculation of the largest
stretching of trajectories that begin from a close initial condition, and assumes that the
growth of the separation evolves in an exponential fashion, integrated forward in time.

The magnitude of this separation is used to identify flow structures associated with
time scales of trajectories. Larger values of FTLE indicate the rate at which nearby
particles move apart. We initially consider the uniform spatial distribution of particles
inside the cavity at t = 0, and a varying final integration time t = T . The local deformation
gradient is a 3 × 3 matrix at each node of the Eulerian grid based on the derivatives of
particle positions. The magnitude of the deformation is the largest eigenvalue λmax of the
Lagrangian strain tensor ΛΛΛ, computed over the time interval

σ T
t (x, y, z) = 1

T
ln

√
λmax(ΛΛΛ), (6.1)

where σ T
t (x, y, z) is the FTLE at the position (x, y, z) in the time interval 0 < t < T .

In figure 15 we show the 3-D FTLE for a dimensionless time T = 30, where we can
identify three regions inside the cavity. The largest values of FTLE equal to or larger than
σ 30

t = 0.17 can be observed at the interface and in the upstream boundary in blue, whereas
the smallest values that are one order of magnitude smaller are encountered at the centre of
the cavity in the red region, σ 30

t = 0.08, which is consistent with the analysis of residence
times. The largest values of FTLE in the blue region at the interface and upstream wall,
correspond to zones where a significant number of particles leave the cavity and others
remain inside, increasing the separation distance. The smallest values of FTLE at the
centre of the cavity are due to the longer time scales within the central vortex core, where
particles remain for longer periods and their separation evolves slowly. The computation of
FTLE for these longer time scales shows that, in the dynamically rich turbulent conditions
of the flow, all particle trajectories ultimately diverge from all the regions identified inside
the cavity, as they have positive repulsive values of the σ 30

t exponents. The FTLE regions,
depicted with different colours in figure 15, provide a simplified skeleton of the overall
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Figure 15. Three-dimensional FTLE show regions of the cavity associated with different time scales for an
observation period of a non-dimensional time equal to T = 30.

Lagrangian dynamics inside the cavity that can be used for choosing different zones in
multiple-region models that solve a different 1-D mass transport equation for each of these
regions (Drost et al. 2014; Sandoval et al. 2019).

Similarly, in figure 16 we show horizontal x–y planes at middle depth of FTLE for
different values of the integral scale T = 1, 5, 10, 30. In the context of the present
simulations, it is important to note that T = 30 was shown to be better for visualizing the
regions of different time scales. Since all particles escape the cavity, the diagrams saturate
for larger values of T as particles separate faster when they are transported in the main
channel. In figure 16 we show that the largest FTLE values are related to the evolution of
the shear layer at the interface from T = 1 to T = 10, where the central region between
vortices pairs identified in the residence time animation can be distinguished. At T = 30
not only does the interface have larger values of FTLE but also the upstream boundary of
the cavity, which corresponds to the faster-moving region or outer flow that envelops the
central core. The FTLE analysis delineates clearly the three regions in the cavity: the shear
layer, the intermediate zone of rotating particles and the core with an exponent one order
of magnitude smaller. In this last region, around 35 % of the total particles remain when
the global concentration is C = 0.4, occupying the central 25 % of the cavity volume,
underscoring its effects on the suppression of global transport for long times.

7. Conclusions and future work

We performed LES of the flow past an open-channel lateral square cavity to investigate
the mass transport mechanisms using Eulerian and Lagrangian approaches. The model
reproduces quantitatively the mean flow and instantaneous features observed in the
experimental measurements, with the predominant role of the shear layer in the flow
dynamics, shedding periodic vortices that impinge on the downstream corner of the cavity,
inducing the recirculating flow inside the volume.

The mass transport between the lateral cavity and the main channel was studied by
solving an advection–diffusion equation for the continuum analysis, and the transport of
passive particles through the implementation of coupled equations for the particle paths
and the instantaneous velocity, incorporating the effects of unresolved turbulent scales
with the addition of a stochastic term. In both Eulerian and Lagrangian simulations, the
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Figure 16. Horizontal x–y planes of repulsive FTLE at different final times T = 1, 5, 10, 30 at middle depth
z/h = 0.5; (a) T = 1, (b) T = 5, (c) T = 10, (d) T = 30.

total mass is initially located inside the cavity, to track the evolution of the exchange with
the main channel and the temporal mass decay inside the cavity volume.

Simulations showed that the interplay of the shear layer with the central core region
is the dominant transport mechanism between the cavity and the main channel, as the
central vortex inside the volume retains mass for longer periods of time, on average, while
the faster vortices of the shear layer extract mass continuously to the main channel. Even
though this interaction is a general description of the mass exchange mechanisms, specific
details of transport have implications at larger scales, as revealed by the simulation results.

The high-resolution mass transport of the LES model provided new insights into
the exchange process from a global perspective, identifying small-scale processes
that influence global transport and informing large-scale models that are commonly
implemented to predict contaminant transport in environmental flows. The spatially
integrated data of the mass inside the cavity showed that the classical approach with a
first-order equation fails to represent the transport evolution for averaged concentrations
below 0.4. The upscaled fractional equation model captured better the emergent behaviour
of mass transport, in which the exchange coefficient k is maintained for the continuum
and particle descriptions, while the order of the time derivative represents the temporal
dependence of the mass exchange. This fractional model represented better the statistical
distribution of long residence times, and it showed the same exponent for Eulerian and
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Lagrangian transport, α = 0.96, exhibiting consistent memory effects induced by the
combined influence of the interacting turbulent coherent structures of the flow for both
transport approaches.

The spatial distribution of residence times for Lagrangian transport in the cavity
revealed a complex fluctuating 3-D field, where initial conditions that exhibit similar
residence times are grouped in specific regions inside the cavity volume. Mean residence
times are longer for particles that start near the central vortex core with slower flow
velocities, while particles that only remain in the cavity for shorter times typically start
close to the interface or the upstream boundary. The complex instantaneous dynamics of
the internal interaction of the shear layer with the central core produces an enveloping
region with a high variability of residence times. Particles in this region that do not leave
the cavity immediately go around the central vortex and face the interface again, repeating
the process after a time scale equal to the turnover time of this large vortical structure.
The analysis of individual trajectories also showed that the model captures the remarkable
behaviour of particles at the interface described by Engelen et al. (2021), with particles
that exit the cavity and are re-entrained, zigzagging at the interface due to the dynamics of
the shear layer. The simulations results show that most of the re-entrainment events occur
by streamwise vortices that produce vertical velocity events and strong inflow to the cavity
of fluid that is encountered between the main columnar vortices of the shear layer.

The FTLE technique was also used to further investigate the mixing regions inside the
cavity, quantifying the separation rate of trajectories starting from all the regions in the
volume. Through the FTLE tested for different integration periods, we identified three
regions with separation exponents of different orders of magnitude: the slowest central
core where particles remain trapped for longer periods of time, the enveloping region
around the cavity and the shear layer at the interface. Calculations of the FTLE for
different time scales were also capable of capturing the re-entrainment region between
two subsequent vortices of the shear layer. This analysis links the spatial distribution of
the FTLE with the memory effects revealed by the fractional transport equation, as 35 % of
remaining particles are located in the central region when the global particle concentration
is equal to 0.4. The simplified dynamics depicted by the FTLE analysis with different
zones of similar time scales inside the cavity is important for 1-D multiple-region models
of mass transport.

The Lagrangian results presented here contribute to identifying critical zones of
mass storage and release, and the general spatial distributions of time scales in the
cavity associated with the dynamics of coherent structures, providing new insights into
the mechanisms that drive the global transport. This Lagrangian framework has the
advantage of generating complete information of the particle dynamics without the risk of
losing trajectories, as can occur experimentally with particle tracking velocimetry (PTV)
(Engelen et al. 2021), improving the reliability and sensitivity analysis of mass transport,
and complementing previous experimental and field observations.

Future research will focus on extending the analysis of the Lagrangian patterns to
open-channel lateral cavities. We will seek to connect the topology of time scales to
global parameters such as the Froude number (Karimpour et al. 2021), the Reynolds
number and the aspect ratio of the cavity via numerical simulations. Exploring this
multi-dimensional phase space will provide a better understanding of the description of
global transport characteristics and potentially propose modifications to the geometry of
the lateral recirculating regions that can optimize or control residence time statistics. We
will also simulate the transport of fine sediments or inertial particles as contaminants that
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can be deposited or resuspended, investigating the effects of the processes studied in this
work for different geometries and flow parameters at laboratory and field scales.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.99.
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