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ON SOME RESULTS ON THETA CONSTANTS (I).
HISASI MORIKAWA

Dedicated to Professor Katuzi Ono on his 60th birtbday

D. Mumford has shown an excelent algebralization of theory of theta
constants and theta functions in his papers: On the equations defining
abelian varieties I, II, III (Invent. Math. 1. 237-354 (1966), 3. 75-135 (1967),
3. 215-244) (1967). Our starting point and idea, however, are something
different from those of Mumford; we begin our study at characterizing
abelian addition formulae among all the possible addition formulae, and
we want to give expressions to everything in words of matric notations.

§ 1. Commutative composition and 2-division points.

We mean by K the universal domain and by ch(K) the characteristic
of K.  For each finite additive group G we associate a system of indeter-
minates X, (¢€ G) and the projective space P, with the homogeneous
coordinate ring K[(X;)seql-

In the following we shall assume that the order |G| of G is always odd
and shall use the following notation for brevity;

Point in P, Homogeneous coordinates The a-component
x (xa,)aeG xa
m-d (x-a)a,eG X-g
x(b) (xa-#b)a,EG La+b
Matrix The (a, b)-component

(%—g+vYa+b)aca, vea Yeg+sYa+d

t

(¥—a+sYa+b)ace, vec Y-p+alo+a
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146 HISASI MORIKAWA

1. Commutative composition,
We choose a point e =(e,)se¢ in Py such that e.,=¢, (¢ G) and put
n = rank (e-;+,€4+5) aca, vec -

We shall define a commutative composition o relating with the point e.
Since the |[G[|X|G|-matrix (e-,+y€+p)acc, sec 1S Symmetric, we can find a
|G| X n-matrix S of rank » such that.

(€-g+5€a+d)aca, vea = S'S.

The matrix S is uniquely determined up to the right multiplication S—>
SM by orthogonal nXn-matrices M. We shall fix the pair (¢,S) in the
first half of the present paragraph.

DeriniTION (1. 1.1). Let 2=(2,)sc¢ and y=(¥.)eeec be two points in
P;.  We say that the composition xoy is well-defined with respect to e, if
there exist non-zero vectors (#,)sc¢ and (vq)se¢ Such that
[(e—-a+bea+b)aea. be@ (Y-a+sYa+d)aca, DEG]
ran
(- 045% g+0) acq, vea (#-g+sVa+p)aca, be
= rank (e—a+bea.+b>a.EG. beG -
This definition does not depend on the choice of homogeneous coordinates.
If non-zero vectors (#,)ee¢ and (v,)q¢ Satisfy the above relation, then
rank ((e—a,+bea+b)a.EG, beGy (x—-a,+bxa+b)aea. beG)
= rank ((e—a+bea+b)aEG. beGy (y—a+bya,+a)a.ea. beG)
= rank (€_,+p€a+p)acq, se¢ = rank S =n ..

Therefore we obtain two |G|X#n-matrices T and 7% such that
(X-gtp®ary) = ST
(y—a+bya+b) = SbT(y)y
were T and T are uniquely determined by the matrix S and points =,
y up to the multiplication by non-zero scalars. Since
((e—a,+bea,+b)a,e6, bEG(y—a+bya+b)aeG, beG )
rank |
(x—a*'bxa.*‘b)a.eG, bEG(u—a+bva+b)aeG. beG !

o T

INT®  (#egepVass)ace, vea) \O 1
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the matrix (#-q+sVa+s)ace, vee €quals to TT®, By virtue of the oddenss of
|G| the pair (—a+ b, a+b) runs over all the elements in G X G; this
means that the points # = (#,),c¢ and v = (v,)4ee in Py are uniquely deter-
mined by the given points 2 and y.

If we denote by x oy the point v, the point # is nothing else than
z'oy, i.e. the composition of z~' with y.

PropoSITION (1. 1. 2). oy is well-defined with respect to e, if and only
if there exist two |G| X n-matrices T and T such that
(T tsats)ace, pee = ST
(Y-asYa+v)ace, vee = STV,
and
((27% 0 Y)-aro(® © Y)ats)aca, vea = AT TV

with a non-zero scalar 2, where the scalar 2 depends on the choice of homogeneous
coordinates of the points.

This is the summation of the above results. It is also remarked that
z"loy is well-defined if and only if z oy is well-defined.

Prorosition (1. 1. 3). If xoy is well-defined, then yox and x'oy™' are
well-defined and

(l.1.3.1) Toe=1a, yoe=y,
(1. 1. 3. 2) Toy=you (commutativity),
(1.1.3.3) (oy)t =a"toy™t.

Proof. From the relations
TWITE = YTTD) = 271((57 0 ) gup(% © Y)ass)s
SzS ScT(z) Sts SET(y)
ra (T(y)ts T(y)tT(w)> = (T'(x)ts T(x)tT(y)),

we can conclude that

((y7! o %)_a+p(¥ © ®)g+p)acq, pec = 2TV

with a non-zero scalar 2, i.e. yox and y™'ox are well-defined. Replacing
z by 271, we know that y~'oz™! is well-defined. The commutativity comes
from the symmetricity of the matrix (e.g+s€a+5)ace, e¢ and, combining the
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above result with the commutativity, we have z'oy™' = (xoy)"'. Finally
zoe =g is a direct consequence of the matric equation.

t
(x-a+bxa+b)a56, beG = S Tz.

2. Orthogonal matrices associated with 2-division points.
A point e(f) in P is called a 2-division point of e if e(f)oe(f) is
well-defined and

e(f)oe(f) =e(f)oe(f) =e.
In other words

StS — lT(e(f))tT(e(f))

with a non-zero scalar 2. When 2=1, the homogeneous coordinates
(ea(f))aee e(f) is said to be normalized. We can always choose exactly four
normalized homogeneous coordinates:

(ea.(f))a.eGs (_' ea,(f))aEG’ (]/‘_—Qlea(f))aeay (—I/:iea,(f))aeaﬁ

where, if e(f) = e, e,(f) is replaced by i-¥e,(f) (a€ G).
Lemma (1. 2. 1).  If e(f) is a 2-division point, then e(f)™ = e(f).

Proof. If we choose (e-4(f)).c¢ as a homogeneous coordinates of e(f),
then

TXFYY) = (t(_e‘g'l;)))ae G, 1<i<n

and
n 1 n
33TV = 2 3 KD
n
= €_(eayrrlogiy = A 2 HESVHATD  (g,b € G)
i=1

with a non-zero scalar i. Since rank 7(«/) =g, we can conclude 7Xe/7)
— TN =0, l.e e(f)!=elf)
From e(f)™* = e(f) we obtain a scalar g,y =1 or —1 such that

e-olf) = €pea(f) (a€G).

We call the scalar ¢, the signature of the 2-division point e(f).

https://doi.org/10.1017/S0027763000013374 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013374

THETA CONSTANTS 149

ProPOSITION (1. 2. 2). A vector (%,)eec 5 a normalized homogeneous coor-
dinates of a 2-division point, if and only if there exists an orthogonal nXmn-matrix
M, such that

(@ a+0® g4p)aca, vea = S'M,'S,
i.e.
T = SM,, .

Proof. If (#4)4e¢ is a normalized homogeneous coordinates of a 2-
division point z, then

(x-a+bxa+b)ae(}, beG = StT(I)
and

S'S = (e-a+v€atd)acs, pec = TEIVTEID,

Hence we can choose the unique orthogonal matrix M, such that 7
=SM,. Conversely, if an orthogonal # x n-matrix M and a non-zero
vector (2,).e¢ satisfy the relation

tagt
(%= g+p% g+0)acc, vec = S'M'S,

then it follows

(S‘S S‘M‘S) (S‘S S'M'S >
rank =ra

k
SM'S  S'S SM'S  SM'M'S

S

= n = rank S'S.
This means that

(e-a+bea.+b)ae0. beG — ((x—1 ° x)—a+b(x ° x)a+b)aeG. beG s

i.e. (%4)4e¢ 18 2 normalized homogeneous coordinates of a 2-division point =z.

The orthogonal matrix M,, is uniquely determined up to the multi-
plication by =+1. We call both =+ M,,, the orthogonal matrix associated
with a 2-division point e(f).

LEMMma (1. 2. 3). Me(f)Me(f) = Se(f)l.
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Proof. We choose the normalized homogeneous coordinates (e.(f))qeq
such that

(e—-a+b(f)ea+b(f>)a,ea. beG = SMe(f)tS.
Since e_,(f) = €y pea(f) (@€ G) and &%, =1, we have

SMe(f)ts = t(e—a.+b(f)ea,+b(f))a,eG, beG

= Ery(-qrs(f)eass(Naca, sea = ee(f)StMe(f):S-

o . . - ¢
This lmplleS Me(lf) = Me(f) = ee(f)Me(f) .

Lemma (1. 2. 4). Let e(f) and e(g) be two 2-division points of e such that
e(f)oelg) is well-defined and it is also a 2-division point of e. Let Moy Mg
and M, syoeqy be the orthogonal matrices associated with e(f), e(g) and e(f)o e(g),

respectively.  Then there exist scalars fioysy, ey and oy, oy Such that

(1. 2. 4. 1) Me5yMeoy = Lecsy, ecrMecrroeiay MeyMeisy = ey, ecryMecsroe
(1. 2. 4. 2) Bery ey = Moy ey = L

(1. 2. 4. 3) Bery erten o) = Een€e)€e(rroe)

(1. 2. 4. 4) Moy Moy = Eoirr€eCecrroecryMeryMewy — (commutator relation).

Proof. We choose the normalized homogeneous coordinates (eq(f))ecar
(ea(@)acas (e(f 0 9))ace such that
(e-a+o(fleass{faca, vec = StMe(f)tS’
(e—a+b(g)ea+b(g))a5(}. beG = StMe(g)zsa
((e(f) o €(9))-asv(e(f) © €(g)a+v)aca, bec = SbMe(f)oe(g)tS-

Since T(e(f)) = SMe(f), T(e(g» = SMe(g)
and ((E(f) ° e(g))—a+b(e(f) ° e(g))aﬂ))u.EG. beG = 26_(1}'). e(y)T(e(f))tT(e(g))
with non-zero scalars 2.y, . hence we have

t tQ — t t
ze(.f)- e(g)s MB(I)OG(G) S = SMU) Me(a) S,

t tQ t t
20(0)- e(f)S MG(U)Oe(f) S = SMG((J) Me(/) S.

From rank S =# we can conclude

t — t

ey, ety Mecryoey = Mery Mgy
t — t

Zooy, ety Mecryoey = Megy Mecry

t —
Ze(ry, ey Me(ryoety = ey, ecryMecrroetay
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By virtue of (1. 2. 3) we have

ey, e@CetryoeCerMecrroey = MecryMeqy
Ze(e), ecr€etrroerCecryMecryoea) = MegyMecry
Ao e@Ce(sr0e) = Aeta), e(s)

28y, e] = etry, ey Mecryoe) Recsy, eoryMecsyoecsy)

= (Me(,)‘Mem)‘(Me(,)’Me(g)) =1

Hence, putting

Hetr) o) = Ee(nCetrroe@he(s) e
Heg)s ey = Eer€e(rr0e)e(ds e(1)

we can conclude that

Becsy. o) = ey er) = 1,

Pe(ry, erteto), ey = Eetr)€ebe(s), e@he(n). o)
= Eun)CeBecnr0e@Recr), ey = Eecr)Eeorfe(rroe

M.ryMeqy = Lotry, ecorMecrroecar

Moy Meisy = Loy, ecryMecsroecar

The commutator relation is the direct consequence form (1. 2.4.1), (1. 2.
4. 2), (1. 2. 4. 3).

ProrosiTiON (1. 2.5). Let 4 be an additive group of exponent two and
{e(f)|f e 4y be the group of 2-division point of e such that f—>e(f) is an
isomorphism. Let {M,,|f € 4} be orthogonal matrices associated with e(f) (f € 4)
and posy, ey be the sign such that M, ,M.gy = Pecry, eyMecryoer ~ We denote by
L(4) the set {(a, f)la = 1, f € 4} with the composition

(a, f)(ﬁ; g) = (aﬁﬂe(f). e(g)yf + g),
and put
M((e, f)) = aMe(fy
Then I'(4) is two step nilpotent group such that

1) the exponent of I'(4) is two or four
2) 142!, where n = rank (e-,+v€a+0)acc, vecs
3) (e, f)—> M((a, f)) is a faithful matric representation of I['(4).
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Proof. From the definition it follows

M((et, M8, 9) = aBMeiyyMegy = @Bltecs, eoryMecrroec
= aBleis), eyMer+ay = M(aBLeiry, ey [+ 9))
= ((0" f)(ﬂ! g))o

This shows that (e, f)~—> M((e, f)) is a matric representation of I'(4) and
I'(4) is associative. By virtue of (1. 2.3) M, =e¢., I, hence the inverse
of (a,f) is given by (ag.s, f). Therefore I'(4) is a two step nilpotent
group whose exponent is two or four. For each finite subgroup X1 of 4
the subset I'(Y]) = {(a, f)]la = £ 1, f € X3} is a subgroup of I'(4). Since I'(}3)
is a finite two step nilpotent group whose exponent is two or four and the
characteristic of K is not two, by virtue of theory of representation of finite
nilpotent group, the representation (e, f)—> M((e, f)) is equivalent to a
monoidal representation whose matric components are contained in {+1,
+¢=7}. This means |[I'()|<4™!, ie. [3]|<22*x!. Since a finite set in
4 generates a finite subgroup of 4, we may conclude that [4]<2?*' »nl,
where 7 = rank (e-,+s€441)aca, v = deg My ).

We call the group I'(4) the two-step nilpotent group associated with
group {e(f)|f € 4} of 2-division points.

DeriNiTION (1. 2. 6). Let 4, be an additive group of type (2,...,2)
and 4, be the dual group of 4,, i.e. the group of homomorphisms
f——><f, f> of 4, into the roots of unity in K. Then the Heisenberg group
of dimension r is defined as a group isomorphic to the group H, = {(a, f +
Ale=+1,f+ Ffe 4, ®4,} with the composition

(a, f+ DB g+ §) = (@Bp<F,g>,(f+ 9) + (F + 9)).

27
LemMA (1. 2. 7). Let 4 be an additive group of type % -+ +,2) and 7
(fyg € 4) be numbers such that

Bro= toy =1 .U?.g =1, Uroltrgn = Lrgtnllg,n (fr9,h € 4)

Then the group I = {(a, f)la=+1,f 4} with the composition (a,f)(B,9) =
(@Bps.g f + ) is the Heisenberg group H, if and only if the center of I' is {(1,0),
(" 1, 0)}-
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Progf.  We shall prove by induction on . When » =1,I" is isomorphic
to H,, Assume Lemma for » —1. Let f, and f, be fixed elements in 4
such that (1, f)(1, f2) = (L, f2)(1, f1) N be the subgroup consisting of all
elements commutative with (1, f;) and (1, f;). Then 1, f,), @, f2)(1, f1+ f2)
are not contained in N, more over

I'=N+ (L fON+ @1, fIN+ 1, fi + [N

is a left coset decomposition. Therefore |I': N|=4. We shall show that
the center of N is again {(1,0),(— 1,0)}. Let (a,g9) be an element of the
center of N. Then (a,9) commutes with (1, f;) and (1, f,), therefore (a,g)
commutes with every element in I, i.e. (a,9) =(+1,0). Since |[N|=2%""D+1
this means that N is isomorphic to H,-,. We denote by X} the subgroup
{9/(1,9) = N} and by p an isomorphism of 4 onto 4,®4,.,®4,®D4,_,
such that

1) o(f) e d, 4(f) € 4,

2) p induces an isomorphism of N onto H,_;.

This isomorphism induces an isomorphism of I" onto H, .
We denote by {+Urflf+ Ffed, @ 4.} the irreducible representation
of the Heisenberg group H, defined as follows.

Ursf = (o, n(f + f)oecd, nea,
ugn(f + f) = <f,g>80ern (frgh € 4v, f € 4.

This is the only irreducible representation of H, whose degree is greater
than one, because

H={L0}+ {(=1,0} 32 {Af+7(—=1Lf+ )}

S+f*0
is the conjugate class decomposition.
THEOREM (1. 2. 8). Let G be a finite additive group of odd order |G| such

that (ch(K),21G|) =1, and e = (e,)q¢ be a point in Py having the following
properties

1) e.,=¢e, (a e G),

2)  rank (e-qip€ats)aca, vec = 27
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3) there exists a group of 2-division points of e of order 4" whose associated
2-step nilpotent group has the center of order 2.

Let 4, be the additive group of type (2,+++,2) and 4, be its dual. Then there
exist an isomorphism of A, @ 4, onto the group of 2-division points f+ f—>
e(f + F), normalized homogeneous coordinates (e,(f + f)aee(f+ f € 4, @D 4,) and
a |G| X 2"-matrix S, such that

(1. 2. 8. l) (e—a,+bea,+b)a.EG. be@ — Sotso
(1. 2.8.2) (e-aro(f + Fle—ass(f + Pacs. vea = So'Ur+#Ss
(1. 2. 8. 3) Ce(rif) = <fy f>

Proof. Let 4 be an additive group of exponent two such that
{e(9)lg € 4} is the given group of 2-division points and g—e(g) is an
isomorphism. By the assumption the two step nilpotent group I'(4) has
the center {(1,0),(—1,0)}. Hence, by virtue of Lemma (1. 2.7) I'(4) is
isomorphic to the Heisenberg group H,. Namely we may choose an
isomorphism of 4, @ 4, onto the given group of 2-division points

f+ Ff—self + F)

and normalized homogeneous coordinates (e,(f+ f)) such that the map
(o, f + f)—> aMuri7) is a faithful representation of the Heisenberg group
H,. Hence there exists an orthogonal matrix P such that Meys+7) = PUs+fP™*
(f+ fe4,®4,), because {& Mer+s}, {£ Ur+7} are equivalent orthogonal
representations of H,. Putting S, = SP, we have

14 t
(e—u+bea.+b)aEG. peg = S°S = So So,

(e—-a.+b(f + fA)ea+b(f + f))aeG. be@ = SMe(f—{-f‘)tS = SOth‘l‘f‘tSO .

Since (1, f+ AQ, f+ f) =(<f, f>,0) and Mer+7) = earerl, we have
etrir) = <fy f>.

3. Specialization of group of 2-division points.

Since (a, f+ f)—>aUr+7 is an irreducible representation of the
Heisenberg group H,, the matrices Urrf (f+ f € 4, ® 4,) are linearly
independent and they generate the m X m-full matric algebra- over the
prime field %, .
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LemmA (1. 3.1).  If S = (Sa.)aca, es, Satisfies (e=aso(f + Fears f + )acs, vec
=SUrti’S. (f+fe€d,®4,), then specializations S—>S' of S correspond
one-to-one to specializations of e(f + f)—>e'(f+F) (F+Fed,@4,) where
specializations S—> S’ mean specializations as points of a projective space.

Proof. By the above consideration, quadratic monomials

{sa,.fsa..gla’b e G; ' he A,}

and
{eo S+ Pe(f+ Nla,be G f+Ffed,®4,)

are mutually linear combinations of the others over the prime field %,.
This proves Lemma.

TuEOREM (1. 3. 2). Let G be an additive group of odd order |G| such that
(ch(K),2|Gl) =1. Let e = (ey)aec be a point in Py such that e_, =e,. Assume
that rank (e-qiv€ars)aca, vec = 2" and there exists a group {e(f + HIf+Ffed, @
4.} of 2-division points of e of order A" whose associated 2-step milpotent group is
the Heisenberg group of dimension r. Let {'(f +Df+Fed4,®4,} be a
specialization of {e(f + /)| f + fed, @ 4.} such that {e'(f + Af+Ffed, @4}
is a group of 2-division points of the new origin e = ¢'(0).  Then rank (elq+pelss)
= 2' with non-zero s and the 2-step mnilpotent group associated with {e'(f + F)|f+
fed,®4,} is the Heisenberg group of dimensions s.

Proof. Denote m = rank (€’,+,€543)acc, 5e¢.  Lhen, from the assumption
there exist a [G|x m-matrix S and orthogonal m X m-matrices Me(r+7),
(f+ fed4,®4,) such that

(eia.+b(f + f)ea+b(f + f))a,eG. bsG — S’”Me'(f+f)ts’,
(e£a+b(f + f + g9 + g)eai-b(f + f + g9 + g))aEG. beG
=S8" Me(s+7) Meg+3)S"".

On the other hand, if we denote by S the [G]Xx 2"-matrix satisfying
(e—a.+b(f+ f)ea+b<f+ f))aEG. beG — Sth-H?tSs (f + f € Ar @ jr):

the specialization e(f + f)—>e'(f + f) is induced by a specialization S—>
S’ as follows:
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(eia+b(f + f)etll+b(f + f))aEG. veG — S'th+}?tS,-

We denote by S¢ a non-singular minor m X m-matrix in the |G|X m-matrix
S and by S§ the minor m x 2"-matrix in the |G|X 2"-matrix S’ correspon-
ding to S¥. Then

"Mer+#) = (S571S0) Ur+7'(STS0)-

Since Ursf(f+ fe4,®4,) generate the full 2" x 2"-matric algebra, the
orthogonal matrix Merif)f + fe 4, @ 4,) generate the full m X m-matric
algebra. Hence the 2-step nilpotent group associated with the group
F={(f+ NDif+Ffe4,®4,} has the center of order two. So, by virtue
of (1. 2. 7), it is sufficient to show the order |F| equals to 2** with a non-
negative s. 'The relation

e—a(f+ f) = <f9f>ea(f+f)
implies
elo(f + 1) =<fi r>el(f + P

hence by virtue of (1. 2. 2) we have

Matr hyMewroMer+7y = <Fo f> <Gy 9> <f + §, f + ¢> Me+o)
= <f,g> <G, f>Met+9).

The matric group {4 Merip)lf+ Ffed4,®4,} is an irreducible faithful
representation of I' and the quotient of I' by its center is isomorphic to
F. Hence

(£ Metrsi| f+ Fed, ®4,}
={I}+{=11+ 3 {£Mer+i}
e(f+1)ke

is the conjugate class decomposition of I'. Therefore the number of
conjugate classes of I' equals to |F|+1. On the other hand there exist
|F| irreducible characters of degree one of I, hence there exists only one
higher degree irreducible character that is the trace of {+ Mecr+7|f+ 7
€4,®4,}.

This shows the relation
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2|F|=|T|=F 4+ m*

Namely the order |F| of {¢'(f + /)| f+ fed,®4,}
is a square number = 2%,

4, Problems.

Denote by A, the projective variety in P; consisting of all the points
x such that for every 2-division point e(f) of e the composition e(f)o z is
well-defined.

Then the following are, in some sense, very big problems:

ProBLEM. Under what condition on e is A, an abelian variety of

dimension » with the composition given by e ?

ProBrLEM. Is the condition rank (e_,is€q+s)acc, se¢ =2’ necessary for A,
to be an abelian variety of dimension » ?

ProBLEM. Under what condition on e has A, a group of 2-division
points of e whose associated 2-step milpotent group is the Heisenberg
group of dimension » ?.

§ 2. Symmetric theta structures on abelian varieties.

1. Symmetric theta structures.

Let A be an abelian variety and X be a divisor on A. We mean by
gx the subgroup of A consisting of all the points ¢ such that X,~X, i.e.
there exists a function f such that (f) =X, — X. When gy is a finite group,
the divisor X is called to be non-degenerate.

Let X be a non-degenerate positive divisor such that /(X) is coprime
to the characteristic cZ#(K), where /(X)=dim |X|+1. Then the order of
gr is exactly /(X)? and there exists a non-degenerate skew symmetric
bicharacter ex(s,¢) on gy, 1.e. ex(s,¢) is a function on gy X gy with values
roots of unity in the universal domain such that

ex(s + s’y t) = ex(s, t)ex(s', t),
ex(s,t + t') = ex(s, t)ex(s, t'),

ex(s, tex(t,s) =1, ex(s,s) =1 (s, ¢, € gx)
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and moreover ex(s,*)=1 if and only if s =0,

A divisor X is called to be symmetric if (—d,)1(X) = X, where — 4, is
the involution # —> — u. We shall give a definition of a symmetric theta
structure which is more concrete as compared with the Mumford’s original

definition in its expression.

DeriniTiON (2.1.1). Let G be a finite additive group of which order
[G] is coprime to the characteristic chi(K). A symmetric G-theta structure
means a pair (X, p) of a symmetric positive divisor X on an abelian variety
A and an isomorphism p of G@ G onto the subgroup gy = {t € A|X,~X}

such that

(2.1, 1. 1) Xao = X,

(2.1.1. 2) Ka, &> = ex(ap, 4p) = ex(—dp, ap),
(2. 1. 1. 3) ex(ap, bp) = ex(Gp, bo) = 1

(a,bs G; a6 G),

where G means the dual of G and <a,4> means the pairi
which defines G.

o

TueOREM (2. 1. 2). Let (X,p) be a symmetric G-theta structure on an
abelian variety A such that 1(X) and the order |G| are coprime to 2ch(K). Then
there exists a unique system of functions ¢.(u) (@€ G) on A such that

(2.1.2.1) (pa) + X >0,

(2. 1. 2. 2) eolu)=1, @_o(u)=¢u(—u)
(2. 1. 2. 3) Pars(t) = ©o(u + bP)py(u),

(2. 1. 2. 4) Polu + dp) = Ka, &> ¢q(u)

(a,be G; 4,6 G).

Proof. From the definition of gy there exists a system of functions
f() (a€ G) such that (f,) =X_,, —X. The zero divisor of f,(u + bp) as
a function in # is given by

X—(a+b)p - X-—bp = (X—(a+b)p - X) - (X—bp — X)
= (fratvyp) — (fbp) = (flat0yoS55)s (@b < G).
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This implies that

fa+b(u) = Ta..bfa(u + bp)fb(u) (a9 be G)

with non-zero constants 7,,; this 7 can be regarded as a 2-cocycle of G
with coefficients in the multiplicative group i.e.,

0r(ay by ¢) = Tyl atn.clanrclars =1, (@ b,¢c € G).

Since the 2-cohomology of a finite group with coefficients in the multiplica-
tive group of an algebraically closed field is always trivial, hence there
exist non-zero constants 8, (¢ € G) such that

Tap = aﬁ(ay b) = ﬁ;lb.ﬂaﬁb (as be G)-

Putting ¢.(u) = Bz'fu(u) (a€ G), we obtain a system of functions ¢,(u)
(@€ G), such that

($a) + X >0, oo(u)=1,
¢a+b(u) = ¢a.(% + bp)Sﬁb(u)’ (a! be G).

Let 7 be the natural isogeny of A onto the quotient abelian variety B =
AlGp of A by Go. Then, since Xe =X (@ G), there exists a positive
divisor U on B such that z7'(U)=X. From the symmetricity it follows
the symmetricity of U and the equality Xz = X (¢ G) implies that there
exist non-zero constants X(a,d) such that

¢a(u + dp) = x(a, d)¢a(u)’
X(d, 5 + é) = X(d, 5)1(61, 5)’
1a+ b,¢) = xa, b, &)y, (abe G; é4,6,¢€ 6.

Let » be the degree of the isogeny 7 and z’ be the isogeny of B onto A
such that =z’ = ndz, and let Fy(u) (ns =0) be the functions on B such that

(Fs) = (%53)—1(U_3) - (naB)-l(U)-

Let s and ¢ be points in B such that u?s=un% =0, z'se Gp, 7't € Go.
Then by virtue of the definition of e,y(s,?) = ey,4(s,¢) and the equation
X =z"1(U) it follows
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¢7T'S(7t,u) = T.ans(u)y
ows(a’u + a't) =V Fps(u + t) = 7.Eey,n(nS, t) Fps(ut)

=eg_,,(ns, t)¢ns(7f’u)
with non-zero constants 7,. Since =’ Y(X) = (ndp)"(U) = n?U, we obtain

ex(n's,7't) = enop(S, t) = enp(ns, t) = ey .(ns, t),

(nts =0, o’se Gp, 't < Gp).

This means that
balu + o) = ex(ap, do)p.(u) = Ka,&>¢.(u),
i.e.,
e, d) =<K, &>, (a€G,ac G).

From the symmetricity X = (—d,)"(X) we have (—d,)(X_,,) = X,, (a € G),
hence there exist non-zero constants o, (¢ € G) such that

¢a(* M) = Pa¢—a(u) (LZ S G).

Since @qp(tt) = ¢o(u + bo)gs(u) (a € G), we have

p~a—b¢a—b(u) = @arp(— u) = ¢a('— u + bp)¢b(_ u)
=0_q0-pPp-altt — bp)¢b(u) = PooPyP-a-p(tt).

This means 0,0, = 4+ (@0 G). Hence, putting

gpa(”) = P%aﬂ%(u) (a e G),
we obtain the system of functions in Theorem. Let us prove the unique-
ness. Let ¢.(u) (a€ G) be another system of functionss satisfying the
condition in Theorem. Then the quotients &, = ¢,(u)/@.(u) (@€ G) are

constants such that &,+, =88, and &2 =¢,, =1 (@,b€ G). The oddness of
|G| implies §, =1 (e G). This completes the proof of Theorem.

DerinrTioN (2. 1. 3).  Let (X, p) be a symmetric G-theta structure on
an abelian variety A such that the order |G| is coprime to 2ch(K). The
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system of functions ¢,(u) (e€ G) in Theorem (2. 1. 2) is called #he canonical
system of functions on A associated with a symmetric G-theta structure (X, p). If
X is very ample the canonical system of functions ¢,(#) (¢ < G) defines a
projective embedding of A into P,;. We call the embedding the projective
embedding of A associated with a symmetric G-theta structure (X, p) and we call
the image of the origin the system of symmetric theta null-values. We use the
same notation #—> ¢(u) for the projective embedding of A into P;.

ProrosiTioN (2. 1. 4). Let (X, 0) be a symmetric G-theta structure on A
such that |G| is coprime to 2ch(K) and X is a very ample divisor satisfying that
the map a: {f|(+X>01R{F1()+ X >0} —>{gl(g) + 2X > 0} is surjective.
Let ¢,(u) (as G) be the canonmical system of functions on A associated with (X, p)-

Then the dimension of the linear space spaned by ¢_,(u)e.(u) (a€ G) is given by
2dimA.

Proof. The linear space of all the quadratic forms in ¢, («) (@€ G)
is the linear space corresponding to the complete linear system [2X].
Hence the dimension of the linear space is given by

[(2X) = 2dimA](X) = 2dimA| [,

From the oddenss of |G| it follows that the functions ¢-g4p(#)@e+s(2) (@b
€ G) span the whole linear space. On the other hand

Pogrp(U)Parp(tt) = @-oltt + bO)o(u + bP)p-5()?,
Ogro(# + E0)Pop(ut + E0) = K2b, 6> 0 g 1p(U)P g 15(8)
(a,be G; ¢ 6),

hence, if we denote by #» the dimension of the linear space spaned by
¢-o(u)po(u) (a€ G), then we have

20imA |G| = [(2X) = r|G].

This proves r = 2dim4,

2. Addition formula.

We shall show that, if ¢(0) is the system of G-theta nullvalues asso-
ciated with a symmetric G-theta structure on an abelian variety A4, then
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rank (¢-4+5(0)0445(0))ges, veq = 2%mA
and
o(u) o p(v) = o(u + v),

where o is the commutative composition with respect to ¢(0).

Lemma (2. 2. 1). Let (u,v) —> a(u,v) = (— u + v,u + v) be the endomorphism
of Ax A, and let X a symmetric divisor on A. Then

THXXA+AXX)~2Xx A+ A X X).

Progf. Denote by k a field over which A is defined and X is rational.
Let # and v be independent generic points over %k  Then X,+ X_,—2X
~0 by Theorem 30 Corollary 2, § 8 [III], i.e., there exists a function
f(#) on A defined over k(v) such that (f) = X, + X, —2X. Putting F(x,v)
= f(u), we have a function in # and v defined over % such that

(F)YAxv)=(f)xv

by Theorem 1 Corollary 3, VIII [IV]. Since (—6,)™(X,) = X_,, it follows
that

XX A+ AX X)AX ) =((—8)X) + X)) X v
= (X, + X,) X v.

The divisor (XX A+ A x X) has no component of the type AXxY,,
hence we can conclude that

(F)=c (X XA+ AXX)—2XXA—AXY
with a divisor ¥ on A. Let ¢ = (— 4040 be the endomorphism of A x A
such that r(#,v) = (¢ — v,u +v). Then by virtue of the symmetricity of X

we have

XX A+ AXX)=0H (XX A+ AX X).
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Therefore, exchanging (#,v) and ¢ by (v,#) and r, we obtain similarly a
function Fi(u,v) such that

(F)=r (X XA+AXxX)—Y, XxXA—2A%x X
= (X XA+AXX)—-Y, X A—-2Ax X
with a divisor Y,. This means
YIXA4+2AX X~2XXA+AXY
and
Y, ~2X~7Y.
Therefore finally we get

THXXA+AXX)~20XXx A+ AX X).

THEOREM (2. 2. 2). (Addition formula). Let (X,p) be a symmetric G-theta
structure on an abelian variety A such that |G is coprime to 2ch(K) and X is a
very ample divisor satisfying that the map e: {f|(f)+ X >0} ® {f|(f) + X > 0}
—> {91(g) + 2X > O} is surjective. Let u—> o(u) be the projective embedding of A
into P; associated with (X, p). Then

p(u) o 9(v) = ¢(u + v)
and
rank (¢ -+p(0)04+5(0))acq, pee = 2%im4,
where o is the commutative composiion with respect to ¢(0).
Proof. For the sake of exactness we shall make the distinction between
the components ¢,(#) (a€ G) of the projective embedding #-—> ¢(#) and

the elements @,(#) (a= G) of the canonical system of functions associated
with (X, ¢) i.e., the fuctions such that

(¢a.) + X > 0’ ¢0(“) = 1’ ¢—a(u) = 950.('_ u)’
Basltt) = Polut + bO)P(10),  Balu + E0) = Ka, &> @alu),
(a,b € G, ¢ < G).
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By virtue of (2. 2. 1) there exists a function F(u,v) such that
(F)=c( XX A4+ AX X)—2(XX A+ A X X),

where ¢ is the endomorphism (#,0) —> (—u + v,u + v). First of all,
putting

P_a,o(ts V) = Goass(— s + V)@ aro(tt + v)F(u,v)
and

Vol ) = F(u + ap,v + bp)ga(u)*@y(v)?
we shall show

Do o(tt,v) =V, (,0), (@b € G).
By virtue of the symmetricity of X it follows

(—0uxa) Mo (XX A+ AX X)—2(X X A+ A X X))
= (XX A+AXxX)—2XXx A+ A x X),

hence we can conclude that F(— u,— v) = eF(u,v) with a non-zero constant
e. From the definitions we can caluculate the divisors of @,, and ¥, ,:

(@ap) = 0 (Xeiauy X A+ AX Xoiaan) —2X X A+ A X X)
o) = (0 (XX A+AXX)cany —2X X A+ AX X)
=0 (Xgy X A+ AX X)) —2X X A+ A+ X)
= (Dg,5).

Therefore there exist non-zero constants &,, such that
D1, 0) = &a, ¥ an(u,0), (a0 € G).
Let us show the relation
Eanbarer = Egrar, prery  (@,0,0,0" € G).
From the definition we have

£0.0Pa+ar pinlthy V)
=& F(u+ (@4 a)o,v 4 (b4 8)0)Gasa(tt)Gpu(v)?
=& (u+ (@a+a)e,v+ (b + 0)0)gau + aP)ps(v + b 0)2Go(u)*@,(v)*
=T, 0t + a 0,0+ b 0)G o (u)?F0(v)?
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= Pear(—u + v+ (=@ + 0)0)fan(u + v+ (a' + 0)0)F(u + d'p,
v+ U 0)B o (1)2Fo(v)?

¢-(a+ar)+(b+br)(— u+ U)@(a+a;)+(b+bz)(% + 0) F (4, 0)¥ oy, (0t v)
¢al+b/(_ u + v)@aﬁbr(” + v)F(u’ Z))

o U, v
= a%a',bb(';/:I(v)’ ) ZFa,/,b/(u’ 'U) = Ea-éa,l.blﬁb/ wa+al. b+bl(u, U).
arb\y ar,br

This means
Eovar, vt = Eabarrs  (a,d, 0,0 € G).
We shall next show
beav =640 (a0 E G).
Since
F(—u,—v) =¢eF(u,v)

and

it follows

ga.bF(— u + ap,—v + bp)¢a(— u)2¢b(_ 2))2

= Ea,bwa,b(—’ U, — U) = @ﬂ..a(’" u, — Z))

= Gogro(th — V)Paro(— 2 — V)F(— u, — v)

= €¢a-o(“ u -+ v)¢a+b(u + U)F(u, 'U)

=&0_q,p(#,v) = €§g,-a¥-a,-p(%, )

=6 g, o6F (0 —ap,— v+ 00)p_o(0)*P-p(v)?

=6 g, F(—u+ a0, —v+ b0)p_o(— u)2G_(— v)%
This implies

Eams =Eap (a,b € G).

and

1= E-a.—béb,b = 8a..b‘sa,b = 520.. 2b (a,b S5 G)-

Since the order |G| is odd, it follows &,,=1
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and

Goaso(— % + 0)@asp( + V)F (2,0) = F(u + ao,v + bo)pa(u)*3,(v)?,
(a,b € G).

By virtue of (2. 1. 4) there exists a subset H of G such that the cardinal
|H| is 2dim4 and the functions @-.+(#)@.+(u) (a* ® H) are linearly indepen-
dent. Let z be the natural isogeny of A onto the quotient B = A/Gp and
U be the positive divisor on B such that z7'(U)=X. Denoting by the
same symbol ¢ the endomorphism (#,3)—>(—a + 3,4 +7%) of BX B, by
virtue of (2. 2. 1) we have a function on B X B such that

(= UXB+BxU)~2(Ux B+ BxU).

Since

(Fl={ X XA+ AXX)—2XXA+AX X)
= (m,2) (o (UX B+BXU)—2UxXx B+ BxU))
= (m, 2)"H((f)),

we may assume that F(u,v) = f(zu,zv).
From the relation

¢-a.*'(u + dp)ﬂza,*(u + ﬁp) = ¢—m*(u)¢a*(u) (LZ+ = HraA S G)

we can conclude that there exist linearly independent functins g,+(#) (a* € H)

such that
Puar()Par(u) = gar(zu), (a* & HY).
Since
020) = 2dim';11((f)
and

|Gl =VI(X) = deg(x) =G| I(U),

we can conclude that [(2U) = 2dim4 and ga+(u)' (et € H) form a linear base
of the space of functions on B corresponding to the linear system |2U].
The functions ¢_.+(#)g,+(u) (a*,b* € H) form a linear base of the functions
corresponding to the linear system 2(UX B+ BXU) on B X B, hence
there exist constants a,-,+(a*,b* € H) such that
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f(ﬂ'u, 7”)) = 2 ac*.d*gc*(“u)gf(nv)

ct, d*eH

and
F(uv) =c* ;eH ac*,d*¢—c*(u)¢c*(u)¢—d*(v)sad*(v)-

By virtue of the relation (x), translating the variables » and v, we have

Gges(— % + V) gus(tt + V) F (ut,v)
= F(u + ap,v + bp)o,(u)¢0y(v)?
= EH e+ Bgr (8 -+ O) P (2t + a0) g+ (v + b0)By+(v + DO) B ()2 F,(v)?

c* dre

= 2 e, Pt ra(#)Ber s a(#)Boar1s(V)Baras(V).
ct,dteH

In the words of the homogeneous coordinates (¢,(#)),ee of ¢(u) this relation

can be expressed as follows

(s Ogip(— # + )04t + V)
=T(u,0) 2 g Pecrra(th) Opraa(U)O_ g+ 15 (0)Pa44(v) (@b € G).

ct,d*eH
with a non-zero 7(u,v), where 7(u,v) depends on the homogeneous coordi-
nates (¢o(#))aces (Pa()acos (Pal— 2 + 0))ace, (Paltt + v))ace. Replacing F(u,v)
and a4+ by 7(0,0)"'F(u,v) and 7(0,0)"'e,,.*, we may assume that
(st ?a+5(0)Pa+5(0) = o ;EH%*,d*‘P—c*+a(0)€0c*+a(0)¢-—d*+b(0)‘/’d"+b(0),

(a,b = G).
We shall next show the relation
(****) (aafb*)a,*EH. pteH = (¢~a++b*(o)§0a"+b+(0));"1e1-1, bteH o

We mean by [ the exponent of G and O, the subring of the rational
number field @ consisting of all the elements of which denominators are
not divided by /. We denote by 2 the 2r-times direct sum Q/O, @ Q/O,
@...®DQIO, of the quotient additive group Q/O, and by £, the subgroup
of 2 consisting of all the elements of which order are at most ™, were
r=dim A. The additive group G@® G can be regarded as a subgroup of
2 by a fixed monomorphism and the isomorphism ¢ of G@ G onto gy
can be extended to an isomorphism of @ onto the group of the /-power
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division points on A as abstruct groups. Since p(2) is dense on A in
Zariskis sense and the functions ¢_,(u)e,«(u) (¢ € H) are linearly inde-
pendent, there exists a positive integer m such that 2, >G@® G and

rank (¢-o+(u + b0)@a*(u + 0P))aen, veg, = 29™4.
Putting # =0, b=0 and v =u + bp in (%), we have
(P-a*(tt + 00)pa* (s + bP))a*en, veg,
= 7(0,0)"(¢-a+0*(0)Pa+0*(0))a*err, p*en(@a* v*)a"er, p*en(P-a* (U + DO)0 o+ (s + B0))a*err, b2,
Since
|H| = 2dimA4  7(0,0) =1
and
¢-a*(0) = ¢4+(0),
we can finally conclude that

7(0, 0)b(@-a*+b*(0)€0a*+b*(0))a‘e11. ser(@atpt) =1

and
(@a*,p)a’en, verr = (SD—a*+b*(0)§0a++b*(0));3ef1, breH o
Therefore
((?—aﬂ(o)?’aﬂ(o))aea, beG (- +0(0)Pat6(v))ace, ves )
rank
P gis(U)Pars(W))aca, vee  (T(Uy V)Poarp(— % + V)@qus(te + V))acq, vee

= rank (¢-4+5(0)¢4+5(0))acq, sec -

This proves the relation.

o(u) o 9(v) = @(u + v).

§3. Symplectic group.
In the present paragraph we shall assmue that the order of G is

always coprime to 2ck#(K). Canonically identifying G with the bidual é,
we may put

Ld,a>» =<Ka,6> (aeG, de 6).

If a—>as is a homomorphism of G into another finite additive group H,
the dual ¢ of ¢ is the homomorphism of A into G such that
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Kao,b> = Ka, 65>, (ae G, be H).

Each endomorphism (q,4)—> (a,d)s of G®G has the unique matric
representation

a B a B
g = ( ), (a.a‘)( ) = (aa 4 dr, ap + ad)
7T 0 7T 0

such that «a,B,7,8, are homomorphisms of G into G,G into G,G into G,G
into G, respectively. The dual ¢ of ¢ is given by the endomorphism of
GOG

a 7 a 7 L )
=\ ,  (@,a) = (d¢a + aB, ar + ao),

g 4 g 6

where &,4,7,6 are the duals of «,8,7,5, respectively.

1. Symplectic group and its action on P;.
Let J be the isomorphism of G®G onto G@® G such that

(a’ d)] = (_ a, a)-

The symplectic group Sp(G@® G) means the group consisting of all the
automorphisms

of G® G such that

namely
af = pa, 16 =47,
ab — pf = idg, 6 — 7= idg.
TueorReM (3. 1.1). Let G be a finite additive group of which order is

coprime to 2ch(K). Then the symplectic group Sp(G @ G) acts on the projective
space Py as follows
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«
((T B)x) =617 X K40 6> < 1@+ 1), 6B+ @D Tasrsr

aeG

(a e G, (a 'B\ e Sp(G® G)\,
r a8/ /

a B . .
where (( )x) means the a-component of the homogeneous coordinates of the point
T 0/ Ja

(7 5) .
PG .

COROLLARY (3. 1. 2)
(DRSS
x) = <<——dd, a,B>>xaa ’
0 o 2

0 —7t
(( >x> =G| X Ka,—d>u,;, .
7 0 a icG

Proof of Theorem (3. 1. 1).

It is sufficient to show

(726 s = G HE &)

((a ‘9), (a' ﬁ,)eSP(G®G)>.

7T 0 o
Putting
AR M
7”, 5” - T 5 r’ a’
and
( a" ‘B”) )
o = x|,
(TU 5" .
35 5
Uy = @ s
r 6/ \\7 6') a
we have
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2a=1GI7 DL 0, —> K5 (@@’ +d1""), a8 + 60" Basrsay
éeG 2 2
and
o= G172 K10, —5> K5 (aa + B1), af + 60> K+ (aa + bp), — 6>
6,6eG
«%‘ (@ + BT) + ¢, (aa + 57’)‘8, + o’ DB tbyyal+ir) .
Replacing ¢ by ¢ + af+ 83, we can conclude that

e = GI" I K4-a,~b> <5 (aa+ by), =&

b,ée

Kb @a by’ + cr'), af’ + B0 + 60> Savrborer -
o B o'’ BI/ 3/ _Bl a"é' _ ﬁ”f’, %
7 b} = 7'’ 5") ___fr 5‘/ = 7,1/31 . 5//2”, % ’

<<—§_ (aa + bp), —¢> = <<% a(@’§ — g'f) + % b8 — 8T, —E>

Since

it follows

(aa” + by"") = -5 af” + 50"), =&
(aa” + by"), —e0"> K5 (ap" +63"), ¢ >
Hence we obtain the relations
() Uq = IGI'II;, Ee <<% a,—b> <<% (ae’’ + by'""), af’ + 65" >
KaF' + B3/, 61> K &'y 60 SWaursbyrts -

Now we shall divide the proof of Theorem into five steps.
STEP 1.

Proof. If we put
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in (¥), then we get

ta = 1617 T K4 0,65 < 0,65 b —e7> K~ of, 263 0aey
From the orthogonal relation
for & =0

1
|G|t 2 Kb, —eT> = {
beG 0

otherwise

we obtain #, = z4.(a € G).

Stap 2. If 7' =0, then

G k) -6 )

Proof. Putting 7" =0 in (), we have

o = 1617 D& 0,63 K- (aa” + "), B’ + 55" Saeribyr = 74 (a G,

SteEP 3. If o’ =08 =0 and ker (5) = {0}, then

GG =06 )

Proof. Putting o’ =¢ =0 in (¥), we get.
Uy = G170 Lt a,—b> KL (aa” + b7), ap” + 65>
be=G 2 2

<<CZ‘B” + 55", 6T,>>xd¢"+5-r"+ér' .

Since ker (3) = {0}, we may replace ¢ by ¢3. Therefore from 3 =41’ we
get

ua =161 2@«% a, (b + &> < (@a” + G+ &7, ag’ + (b+ 03"

<<_§_ érn _ 65”>> «% a, (',“>> «% (6113" + 55/'), 67">>

<<% (@’ + by"), — 0" D@ sy «
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On the other hand
<<é_ a’ é>><<—‘]2-— (a‘Bn + 5511), ér”>> «% (aa" + 57’”), -‘65”>> — 1,
hence

4o = (G BLE 7", =6" > (a0,

teC

By virtue of the result in Step 1 we know that each element in S,(G® G)
induces an invertible projective transformation on P;; this means that

GI7 B&— 6", =63 % 0,
ée@ 2
Therefore # = z as poins in P;.

Step 4. If o =" =0 and ker (3) % {0}, then

(S [V R W VN

Proof. Putting o’ =4 =0 in (), we have

4e = G172, 2@«% a,—b> <<_;. (aa’ + 1), af”’ + b5'">
<<£l‘3" + 56"9 ET’>>xaa”+l;‘f”+(f‘T’ .
From the relation

(0{” ﬂ”) (‘BT, __a):l._l)
71/ 5/1 57’ ___Tfl—l ’
we get

uq = |ker (3)]71G]72 31 KL a, —(b+d>LL (aa” + G+ dy”,
qekeé(a) 2 2
b,le

aB’ + b+ d)d">Kap" + (b+ d)o", er DT aar 1 +dyrr iy »
Since 8a — yf = idg, we observe that
Ldr,e> =0 (d € ker (5))

if and only if ¢ =0. Therefore we can conclude that
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e = G174, =65 K- (aa” + b7, af" + 6" S¥ar iy = 20 (@€ ),

Step 5. Denote by M, the subset of Sp(G® G) consisting of all the
elements such that y =0 or a =6 =0, and denote by M, n=1,2,3,-- )
the subsets of Sp(G@ G) which are the natural images of the products
M XM;x -+« xM, into Sp(G@® G). Since M, generates the whole group
Sp(G@® G), we have

SPG®G=UM, McMcMc::--.

By virtue of the results in Step 2, 3, 4 it follows that
(00")x = a(d’x), (0€ SDGDE), o M)
We shall prove Theorem by the iduction on n. Assume that
(00)z = o('), (6€ SPGB G), o € M,)).
If ¢ is an element in SP(G® G) and o/, - -+, o, be elements in M, then

by virtue of the assumption we can conclude that

o{(of+ + »an)%) = a((ol* * * 07-1) (o72))
= (a(a]+ * » ohoy)) (on2) = (001 * * Opey) (072)

= (go}+ * ~aph)x.

This completes the long proof of Theorem (3. 1. 1).

2. Action of Sp(G@® &) on commutative compositions.
It will be shown that the action of Sp(G@® G) on P; carries commuta-
tive compositions to commutative compositions.

THEOREM (3. 2. 1). Let G be a finite additive group of which order is coprime
to 2ch(K)., Let e = (e5)seq be a point in Py satisfying e-, =¢, (@€ G) and ¢
be an element in Sp(G® G). Then the composition xoy of two points x, y 1is
well-defined if and only if the composition ox ©ay is well-defined, where o means
the composition with respect to e and © means the composition with respect to ge.
Moreover it follows

dgx @y =o(x o y)

and
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rank ((0€)-q+5(0€)a+s)acc, veg = 7aNK (- gty €q 1) acq, pege

Proof. First of all we shall show that (se)., = (0e), (@€ G):

a B
(( > e> = |G| ZL<<% ((—a), —é>><<%((—a)a + ar), (—a) B+ a0> e(—aya+ar
r 0 —-a acG

=WWE<%m—®<iwmew+@Mwm
aeC 2

-7 3Je).

It is sufficient to prove Theorem for the special elements

ol 7
0o a1 \r 0

in Sp(G® G).

Case 1.

By virtue of (3. 1. 2) we have
o(e)—a+bo(e)a+b = <<aay aﬁ>> <<ba’ b13>>e—(—a+b)ae(a+b)a’ (a,b € G)y

hence, denoting by D the |G|x|G|-diagonal matrix of which (g, a)-compo-
nent is <aa,af’>, we have

rank ((6€)-4+5(0€)a+v)acq, vea = rank (D(e(—a+b)ae(a+b)u)aEG. sec D)

= rank (e-q+4€a+5) aca, sea>

(€-q+1€atb)aca, b6 (YarrYatv)acq, vec
= rank ,
(B g 40 % att)aca, vee (AT 0 Y)oars(® © Y)arp)aca, vec
D(e(—a+b)ae(a+b)u)aeG. seaD D(y(—a+b)uy(a+b)u)aea. secD
= rank , \
\ D (x(~a+b)ax(a+b)a)a50, vec D D(2'(w o y)(—a+b)a(x y)(a+b)a)aECr'D
( ((Ue)—a+b(ae)a+b)meb)aec¥. beG ((ay)-—a-ﬂ;(‘fy)ai-b)aEG, be@ )
= ran
((0%)-g+0(0%) atv)aca, vea  (A0(2X © Y)-g+40(2 © Y)a+b)aea, vec!/

with a non-zero scalar. This proves o(x o y) = o Qoy.
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Case 2.

By virtue of (3. 1. 2) we have

(0€)-q+s(0€)ass = |G| 2 ‘172 (;<<—a + b, —a><Ka+ b, —5>>e(d+5)re(ﬁ+13)r

= |G| 2 K—a, =G+ b>K=b, a+ 5> e_arbyy ecariry

a,beG

)|

Denote by D the |G|x |G|-matrix of which (g,d)-component is |G|~'K—a,d>.
Then, since 7 is an isomorphism of G onto G, we have

rank ((6€)-o+5(0€)a+s)acq, vea = Tank (D(e(—a +6)r€ca+6)r)act, 6e¢"D)
= rank (e_q+:€a+b)acc, vec
(e—a+bea+b)u,eG.beG (y—a+bya.+b)a,ea
= rank \
(X-a+0Tatd)aca, vec (A2 0 Y)_gup (% © Y)gts)aeq, ve
" ( D(ec—a+byy €ca+byr)act 6’ D)  D(Yc—at+byr Ycatbyy)act 5 D) )
= ran

DM&_arbyr Bat+byr)acé 56" D DAz oY) a5y (XoY)casbyr) 2 62" D

< ((Ue)—a+b(”e)a+b>aea, ceG ((ay)—a+b(ay)a+b)aea. b )
=Ta
t((ax)—-aﬂ(ax)a*-b)as(;, beG (lo(w_l ° y)—aﬂrba(w y))a.+b)u.EG.b G

with a non-zero scalar.  This proves o(x o y) = o2 © gy.

3. Action of Sp(G® Q) on symmetric G-theta structures.

We shall show that the action of Sp(G@® G) on P; defined in the be-
ginning of §3 is nothing else than the action on symmetric G-theta struct-
ures.

TueorREM (3. 3. 1). Let (X, p) be a symmetric G-theta structure on an abelian
variety A such that the order of G is coprime to ch(K) and X is very ample. Let
0.(u) (@EG) be the canonical system of functions associated with (X, p) and let

(a ﬂ) be an element in Sp(G @ G). Let X' be the zero divisor of the function
7 O

N <5 dr, 65506 W)

aeCG
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and let p' be the isomorphism of G® G into A such that

.
P = °p,
r 0

e, (a,a)p" = ((aa + dy)p, (@B + dd)p). Then (X', 0") is a symmetric G-theta
structure such that the regular map

u—> P(u) = ( )so(u)

r 0
is the canonical projective embedding of A associated with (X', p'), where

Golt) = |G17 TL -0, =25 K- (aa + &), @B + G5 Pae ey ()

Conversely let (X', ") be a symmetric G-theta structure on A such that X' is linearly

a B
equivalent to X. Then there exists an element ( ) in Sp(G® G) such that

r 0
o B
pl = ( o
r O
and X' is the zero divisor of the function

IG17 £&5-ar, @ paln).

Progf. We shall prove the first part. We may put

3 K- @, —a> K- (aa + dp), 4+ 43> 0aurar ()
¢a(u) - aeG

3 Kt b, 45 par(n)

aeG

because ¢,(u) (@€ G) are linearly independent and
Zé<%dr, as>> ¢ar(u) = |ker (1) @o(u) + - -+

It is sufficient to show

(/-’-o(u) = 19 J;a(u) = 950,(—”)’
a+b(u) = &a(u + bpl)ﬂﬁb(u),
a(u + EP’) = <<ay é»ﬂﬁa(u)’ ((Z,b S G, ¢ E G)-

S &
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The first two relations are the direct consequences of the definition of
Jo(u) (@€ G). From the elementary properties of symplectic matrices and
the bicharacter € , > we get the following relations:

<<~§— dy, 66> Kdr, bE>

«% dr, b8+ d6> <<% dr, b8 —a,b

KL-dy, 0B + @3> K5 b, —a> K- 0, bay
= KL ba, —bE> <5 (ba + ), bF + @0,
K5 dr, a0 K, 65>

«% by, (6 + O8> «% ay, 66>

I

<<—3— dr, (@ + &)5> <<-§— as, er>

K4 er, —E0> K5 @+ )y, @+ 05,

«% a, —&> <<~]2; (aa + dr), a + a6> Kae + dy, B>

<<% (@+0), —a> <L (aa + ap), @+ b)g + a0> L5 b,6>

<<% (ae + dp), DED>

&L ba,—bp> <G (a+0), —a> < (a+ b+ ar), (a+ Bp+ @D
K- ba, —ag— 0> <L b,6> K- aw, bESK -y, bE>
= &L ba,—bES K@+ b), —6> <1 (@+ 0B + ), (@+ b+ a0,

- <<% a,—6> <<—;— (ae + d7), aB+ @8> Kaa + dy, 6>

Il

KL, —(a+ 0> <3 (aa +dp), ap+ @+ 0> K-aa, 6

<<—§— ar, 66> <<% a,&>
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<<% by, —6> Ka, &> <<% a — @+ &> <<%m+(a+ &), af+ (d+6)o>

«% 4> <<—§— aa, — 5> <<~§— ar, —er> «% ae, ea>>-<<%ér, >

K1 67,60> K@, K50, —(0+ O <5 (aa+@+0)y, ap+ @400

On the other hand from the definition of p’ it follows

Pagtar (U + bO") = @y rar (4 + bap + bJP)
— Plat+batar @+ 080) _  Kaa + dr, bE> O atpya+ar(th)

s (1 + bB0) ©qq(2t)

and

Pas+tdr (M -+ Ep,) = Paa+tidr (u + 57’!’ + 6510)

— Past(a+é)r (u + ¢60) _ Kaa + ar, o> goaa+(ﬁ+£‘)r(u) .

§Dér(u + 65!‘7) goé'{(u)

Hence we can conclude
Ga (u + bp') Py(u)
3 K3 @ —a> K5 (aa + dp), af + @0 Pausar 4+ bP)

aec@G

T Ky dry @85y + bo)

I Koy by =@ - (bex + )y 0+ 85 Paarar (1)

_Eé <<% dy, 46> Par(u)

T 6= 0> K (@ ), 0+ a0 K Gy, BEDPCarierar(®)

3 Ky dpy 0 Kdp, bEY 9o 1 ar1)

I, b= < (bt dr)y 03+ @D s sy ()

3} «% dy, 45 9ay ()
ieG

‘EGA<<—%— (@+b), —a> <<% (@ + be + dr), (@ =+ b)B + G0>P(atbya+ar®)

—Ec<<"§‘ ar, 46> Pay ()

= 95a+b(u)9
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Jolu + é0’)

> <<—— a,—a> <<—~ (aa + ar), aB + 46> g0 4 a;(w =+ CP')

ieC

_Eé <<7 ar, @3 ¢ar(u 4 ¢0')

‘Eé<<% a, —d> «% (aa + ay), aB + Go>> Kaa + dy, €0 Pagtcatery(t)

3, K b, 0% K, 60> Ky, 859 Panscarsn®)

<a,¢ T4 (@ —(at > K-laat @+a7), o+ @+ 5> va rcarar®)

3y <<— @+ Oy, (@+ 0)d>eate, ()

ieG

1l

Ka, &> gqo(u).

This proves the first part of the theorem. We shall next show that if (X', o)
is a symmetric G-theta structure on A such that X’ is linearly equivalent
to X, then X’ =X. Let ¢,(#) (a € G) be the canonical system of functions
associated with (X’,p). Then the quotients ¢i(u)/¢.(u) (a € G) satisfy the
conditions

(PalPa) = Xlo— X0, @0(u)let(u) =1,
Q4w + ¢0)|@q(u + ¢p) = o4(u)leo(u), (@€ G, ¢< G).

If we denote by = the natural isogeny of A onto the quotient B = A/G and
by U and V the divisors on B such that z7'(U)= X and z"Y(V) = X’, then
there exist functions %,(x) (a € G) satisfying

(ha,) = V—na. - U—na,
and

va(w)pa(n) = holzu), (a€ G).

On the other hand |G| =vVI(X) =7/I(X') = deg(x) yI({U) = deg(z)/I(V) and
deg (z) = |G| = |G]. Hence I(U)=1(V)=1. This means that the functions
ho(it) (aeG) are constants, i.e., X = X’. Finally we shall complete the proof
of the second part of the theorem. Let a, 8, 7,  be the homomorphisms
of G into G, G into G, G into G, G into G such that

( )
p p .
7 5
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Then
1= ex(ap’,bp") = exl(aa + ap)o, (ba + bH)p) = Ka,b(pa — af)>.
and
1= ex(do’, bo’) = ex((ar + ad)p, (b7 + bo)0)
= <Ka,b(67 — 16)>.
This implies that ga = «f and 67 =75. Moreover we have

La,é>

Il

ex(ap’,ap’) = e((ae + ap)p, (ar + a4d)e)
Kaa,dd> K—ap, ar> = Ka,dda — 1> = Lalad — pf), &>
(ae G, éd= G),

I

hence

a B A
This shows that ( ) is an element in Sp(G® G). Let X7 be the zero
T 0

divisor of

KLoar, ao> paw).

aeG 2

Then (X", p’) is a symmetric G-theta structure on A such that X'/ is linearly
equivalent to X’. Hence by the above result we can conclude that

X" = X'. This completes the proof of Theorem (3. 3. 1).
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