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ON SOME RESULTS ON THETA CONSTANTS (I).

HISASI MORIKAWA

Dedicated to Professor Katuzi Ono on his 60th birthday

D. Mumford has shown an excelent algebralization of theory of theta

constants and theta functions in his papers: On the equations defining

abelian varieties I, II, III (Invent. Math. 1. 237-354 (1966), 3. 75-135 (1967),

3. 215-244) (1967). Our starting point and idea, however, are something

different from those of Mumford; we begin our study at characterizing

abelian addition formulae among all the possible addition formulae, and

we want to give expressions to everything in words of matric notations.

§ 1. Commutative composition and 2-division points.

We mean by K the universal domain and by ch{K) the characteristic

of K. For each finite additive group G we associate a system of indeter-

minates Xa {a e G) and the projective space PG with the homogeneous

coordinate ring K[{Xa)aeG].

In the following we shall assume that the order \G\ of G is always odd

and shall use the following notation for brevity;

Point in PG

X

x-1

x(b)

Matrix

(#-α+δ2/α+&)αe£, b(=G

{X-a+bVa+b/aeG, beG

Homogeneous coordinates

[•^a/aeG

{%-a)aeG

\%a+b)aeG

The (a, ^-component

M-a+bVa+b

M-b+aVb+a

The β-component

%-a

%a+b
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146 HISASI MORIKAWA

1. Commutative composition.

We choose a point e = (ea)asa in Po such that e-a = ea (βeG) and put

n = r a n k {e-a+bea+b)aeGt beG .

We shall define a commutative composition o relating with the point e.

Since the \G\ x |G|-matrix (e-a+bea+b)aeGtheG is symmetric, we can find a

|G|xn-matrix S of rank n such that.

(^-α+δ^α+δ/αeG, δe(? = S S .

The matrix S is uniquely determined up to the right multiplication S—>

SM by orthogonal nxw-matrices M. We shall fix the pair (e,S) in the

first half of the present paragraph.

DEFINITION (1. 1. 1). Let x~{xa)a^G and y = {ya)a^G be two points in

PG. We say that the composition x o y is well-defined with respect to e, if

there exist non-zero vectors (ua)asG and (va)aeG such that

Γ(α+δ^α+δ)αe(?, t>*G \Va+bVa+b)aeG, δe

rank

δs(?= r a n k (^-α+δ^α+δ)αeG,

This definition does not depend on the choice of homogeneous coordinates.

If non-zero vectors {ua)a^G and {va)asG satisfy the above relation, then

r a n k {{€^a+bea+b)aeG, bBG, (%-a+b%a+b)aeG, beGJ

= r a n k ((£-α,+&£α.+δ)αe<?, δeG> (V-a+bVa+a)a^G, beGJ

= rank {e^a+bea^)aeG, 6eG = rank S = n.

Therefore we obtain two \G\ x^-matrices T(x) and T{y) such that

were T{x) and T(y) are uniquely determined by the matrix S and points x>

y up to the multiplication by non-zero scalars. Since

, , w . „ „».„ , ,J/-α+δ2/α+δ)αe(?, &eG

rank

/S 0\/7 e Γ ( ! " \/S
= rank ( I

,0 lί\Tix) («.β +»»β + t)β.β. ».β/\0
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THETA CONSTANTS 147

the matrix {u^a+hυa+h)asGt beG equals to T(x)tT(y\ By virtue of the oddenss of

\G\ the pair (— a-\-b, a-\-b) runs over all the elements in G x G; this

means that the points u = (ua)aeG and v = {va)aBG in PG are uniquely deter-

mined by the given points x and y.

If we denote by x o y the point v, the point u is nothing else than

x'1 o y, i.e. the composition of x'1 with y.

PROPOSITION (1. 1. 2). x o y is well-defined with respect to e, if and only

if there exist two \G\x n-matrices T{x) and Tiy) such that

\%~a+b% a+b)aeGt δsG — £> 1

\V-a+bVa+b)aeG, &eG = = O i ,

and

with a non-zero scalar λ, where the scalar λ depends on the choice of homogeneous

coordinates of the points.

This is the summation of the above results. It is also remarked that

x"1 o y is well-defined if and only if x o y is well-defined.

PROPOSITION (1. 1. 3). If x o y is well-defined, then y o x and x'1 o y1 are

well-defined and

(1. 1. 3. 1) χoe = x 9 y o e = y 9

(1. 1. 3. 2) x o y = 2/ o x (commutativity),

(1. 1. 3. 3) [x o 2/)"1 = x-1 o y- i .

Proof From the relations

rank = rank

we can conclude that

with a non-zero scalar Λ', i.e. α/ ° ^ and 2/""1 o a? are well-defined. Replacing

x by αΓ1, we know that 2/"1 ° x'1 is well-defined. The commutativity comes

from the symmetricity of the matrix (e-a+bea+b)aeG, beG and, combining the

https://doi.org/10.1017/S0027763000013374 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013374


148 HISASI MORIKAWA

above result with the commutativity, we have x~ι o y1 ~ (x o y)"1. Finally

x o e = x is a direct consequence of the matric equation.

2. Orthogonal matrices associated with 2-division points.

A point e{f) in PG is called a 2-division point of e if e(f) ° e(/) is

well-defined and

In other words

with a non-zero scalar A. When A = 1, the homogeneous coordinates

{ea{f))aBG e{f) is said to be normalized. We can always choose exactly four

normalized homogeneous coordinates:

{ea{f))a*G> (-ea{f))aeG, {itteΛffiaeβ, {-^zzlea{f))a^G9

where, if e{f) =V e, ea(f) is replaced by λ~*ea(f) (a e G).

LEMMA (1. 2. 1). If e{f) is a 2-division point, then e(f)"1 = e{f).

Proof. If we choose {e-a{f))amG as a homogeneous coordinates of e(f),

then

and

(a,b e G)

with a non-zero scalar A. Since rank T«f)i = w, we can conclude

- 7\</)) = o, i.e. ^(Z)-1 = e{f).

From β(Z)"1 = ^(/) we obtain a scalar εe(/) = 1 or — 1 such that

e~a(f) = ee(/)ea{f) {a<=G).

We call the scalar se(/) the signature of the 2-division point e{f).
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PROPOSITION (1. 2. 2). A vector ( # α ) α e G is a normalized homogeneous coor-

dinates of a 2'division point, if and only if there exists an orthogonal nxn-matrix

Mx such that

l ^ - α + ^ α + W α e G , δeG = O Nίx O,

i.e.

T(x) = SMX.

Proof If {xa)aeG is a normalized homogeneous coordinates of a 2-

division point x, then

(^-α+δ^α+δ)αeί?, δeG = S T

and

Hence we can choose the unique orthogonal matrix Mx such that T{x)

= SMX. Conversely, if an orthogonal n x n-matrix M and a non-zero

vector (#α)α e G satisfy the relation

(X-a+bXa+b)a<zG, δeG = StMtS,

then it follows

IS'S S'ΛfS\ IS'S S'AfS \
rank — rank

XSΆfS S'S I \SAfS SMtMtSI
(IS 0\/I 7\/cS 0

= rank
\\0 SM/U I/\0

= n = rank SfS.

This means that

(^-α+δ^α+δ)αeί7, δeG = ( ( β " 1 ° ^ ) _ α + 6 ( a ; O X)a+b)a

i e. (a;α)αeG is a normalized homogeneous coordinates of a 2-division point #,

The orthogonal matrix Me(f) is uniquely determined up to the multi-

plication by ± 1. We call both ± MeU) the orthogonal matrix associated

with a 2-division point e{f).

LEMMA (1. 2. 3). Me ( / )Me ( / ) = 6β(/)/.

https://doi.org/10.1017/S0027763000013374 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013374


150 HISASI MORIKAWA

Proof. We choose the normalized homogeneous coordinates (ea(f))a*σ

such that

Since e-a(f) = εe{f)ea{f) [a e G) and ε2

e(f) = 1, we have

( f ) O , b*G = &e(f)S Me{f) S

This implies M~elκ = *Me</) = εe{nMe{f).

LEMMA (1. 2. 4). Z,^ β(/) and e{g) be two 2-division points of e such that

e{f) ° e{g) is well-defined and it is also a 2-diυisίon point of e. Let M e ( / ) , Me(g)

and Me{f)Oe{9) be the orthogonal matrices associated with e{f), e{g) and e(f) o e(g)9

respectively. Then there exist scalars μe(fh e(g) and μe(gh β ( / ) such that

(1. 2. 4. 1) Me(f)Me(g) = Pe(f), e(g)Λfe(/)θβ(0)> M e ( g ) M e ( / ) = ^e(g), e{f)Me{f)θe(g)

(1. 2. 4. 2) /^e(/), e(g) == Pe(g), e(f) = 1>

( 1 . 2. 4. 3) A*e(/). e(sr)/^e(g), β(/) = £e(f)£e(g)£e(f)oe(g)

(1. 2. 4. 4) Me(f)Mm = εe(/)εe(g)εe(/)oe(/)Me(/)Me(ί7) (commutator relation).

Proof We choose the normalized homogeneous coordinates (0α(/))αe<?,

(0α(0))αβσ> (e(f°g))a*σ such that

(W) o e{g))-a+b{e{f)

Since T ( e ( / ) ) = SM e ( / ), T ( e ( & ) )

and ((*(/) o e(g))-a+Mf) ° ^(^))α+ 6)α ί ?. & G ^c/), β ( Λ

with non-zero scalars Λe(/), e ( g ), hence we have

^β(/). e(g)S Λfβ(/)oβ(g) S = SMe(f) Me(Q) S,

^e(g), e(f)S Me(g)Oe(f) S — SMe^ iWe(/) «S.

From rank S = n we can conclude

' W ) , e(g) Me(f)Oe(g) = Me{f) Me{g),

β̂(</), β(/) Me(f)Oe(g) = M e ( g ) M β ( / ) ,

^e(/). e(p) Me(f)oe(g) = λe(<g), ^
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By virtue of (1. 2. 3) we have

e(g)£e(f)oe(g) =

= (Mβ(f)

tMβ(g)Y(Mβ(f)

tMβζg)) = /.

Hence, putting

, e(g)>

we can conclude that

* e(g)

, e(g) ~

The commutator relation is the direct consequence form (1. 2. 4. 1), (1. 2.

4. 2), (1. 2. 4. 3).

PROPOSITION (1. 2. 5). Z ^ J έe α/z additive group of exponent two and

{e{f)\f^Δ} be the group of 2-division point of e such that f—>e(f) is an

isomorphism. Let { M e ( / ) ! / e J} be orthogonal matrices associated with e[f) ( / e Δ)

and μe(f)t eW be the sign such that Me(f)Me(g) = μβif)t e(g)Meif)oe(g) We denote by

Γ(Δ) the set {{a, f)\a = ± 1,/ e Δ] with the composition

(«f f)(β> 9) = {<xβμe(f)t e(g), f + )̂»

M{(a, /)) = aMe(f).

Then Γ{Δ) is two step nilpotent group such that

1) the exponent of Γ(Δ) is two or four

2) \Δ\<22n"1nU where n = rank {e-a+bea+b)aeGtbeG,

3) {a, f) >M{{a,f)) is a faithful matric representation of Γ(J).
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Proof. From the definition it follows

M{{a, f))M((β, g)) = aβMeσ)Me(g) = aβμe(fh e(g)

= <*βPe(f). e(g)Me(f+g) = M{aβμe(f)t e(g)9 f + g))

= M((a,f)(β,g)).

This shows that (α,/)-—> M((a, f)) is a matric representation of Γ(J) and

Γ(J) is associative. By virtue of (1. 2. 3) M\U) — εe(/) /, hence the inverse

of (a,f) is given by (aεe(f),f). Therefore Γ(Δ) is a two step nilpotent

group whose exponent is two or four. For each finite subgroup 2 of Δ

the subset Γ(Σ3) = {(α,/)|α = ± l , / e Σ l is a subgroup of Γ(J). Since Γ(Σ)

is a finite two step nilpotent group whose exponent is two or four and the

characteristic of K is not two, by virtue of theory of representation of finite

nilpotent group, the representation (a9f) >M((a,f)) is equivalent to a

monoidal representation whose matric components are contained in {±1,

±i/=ΐ}. This means |Γ(Σ)|<4nw!, i.e. IΣK22"-1**!. Since a finite set in

Δ generates a finite subgroup of Δ, we may conclude that |J |<2 2 n~ 1 n!,

where n ~ rank(£_α+6eα+δ)αe(?, δ s G = deg Me(/).

We call the group Γ{Δ) the two-step nilpotent group associated with

group W / ) | / e i ) of 2-division points.

r

DEFINITION (1. 2. 6). Let Δr be an additive group of type (2,. . , ,2)

and Δr be the dual group of Δr, i.e. the group of homomorphisms

/ — > < / , / > of Δr into the roots of unity in K. Then the Heisenberg group

of dimension r is defined as a group isomorphic to the group Hr = {(«,/ +

/ ) | α = ± l , / + / e J r θ i r l with the composition

(α, / + f)(β, g+g) = (aβ </, flr>, (/+£) + (/+ #).

LEMMA (1. 2. 7). Z ί̂ J έ̂  an additive group of type (2, ,2) and μf%g

(/, g & Δ) be numbers such that

/ = (f,g,

Γ={(α,/) |α = ± l , / ε J} Z£;z% ίfe composition {a,f){β,g) =

(aβμf,g,f+g) is the Heisenberg group Hr if and only if the center of Γ is {(1,0),

(-1,0)}.
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Proof. We shall prove by induction on r. When r — 1, Γ is isomorphic

to H19 Assume Lemma for r — 1. Let fx and f2 be fixed elements in Δ

such that (l,/i)(l,/2) =¥ (l,/2)(l,/i) N be the subgroup consisting of all

elements commutative with (1, Λ) and (1, / 2 ). Then (1,/Ί), (l,/2)(l,/i + Λ)

are not contained in N, more over

Γ = N + (1, Λ)iV + (1, f2)N + (1, fx + /2)ΛΓ

is a left coset decomposition. Therefore | Γ : iV] — 4. We shall show that

the center of N is again {(1,0), (—1,0)}. Let {a,g) be an element of the

center of N. Then (a,g) commutes with (1, fx) and (l,/2), therefore (a,g)

commutes with every element in Γ, i.e. (a,g) — (±1,0). Since \N\ =2 2 ( r " 1 ) + 1

this means that N is isomorphic to Hr-i. We denote by 2 the subgroup

{g\{l9g) & N) and by p an isomorphism of Δ onto ẑ  © J r - i ® Δx® Δr-\

such that

1)

2) ]0 induces an isomorphism of N onto Hr^ι.

This isomorphism induces an isomorphism of Γ onto Hr .

We denote by ( ± ί / / + / | / + / e J r © i r ) the irreducible representation

of the Heisenberg group Hr defined as follows.

Uf+f = (Ug,h(f

u9,h{f + /) = < / , g>δg+f,h (/, g,hξΞ Δr,f SΞ Δr).

This is the only irreducible representation of Hr whose degree is greater

than one, because

#={(1,0)}+ {(-1,0)} Σ {( l ,/+/),(-l ,/+/)}
/+/Φ0

is the conjugate class decomposition.

T H E O R E M (1. 2. 8). Let G be a finite additive group of odd order \G\ such

that {ch{K),2\G\) = 1, and e-{ea)a&G be a point in PG having the following

properties

1) e-a = ea [a e G),

2)
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3) there exists a group of 2-division points of e of order 4 r whose associated

2-step nilpotent group has the center of order 2.
r

Let Δr be the additive group of type (2, , 2) and Δr be its dual. Then there

exist an isomorphism of Δr@Δr onto the group of 2-division points f+f—>

e{f + f), normalized homogeneous coordinates (ea{f + /))αS(?(/ + / s Δr ® Δr) and

a |G] X 2r-matrix SQ such that

(1 . 2. 8. 1) (£-α+&£α+δ)αe(?, b*G = SQS%

(1. 2. 8. 2) (*-«+*(/ + /)*-«+*(/ + /))«.*. b,G = SjUf+f'Si

(1. 2. 8. 3) ε</+/) = </, / >

Let Δ be an additive group of exponent two such that

{e(g)\g & Δ] is the given group of 2-division points and g—re(g) is an

isomorphism. By the assumption the two step nilpotent group Γ(Δ) has

the center {(1,0), (—1,0)}. Hence, by virtue of Lemma (1.2.7) Γ(Δ) is

isomorphic to the Heisenberg group Hr. Namely we may choose an

isomorphism of Δr ® Δr onto the given group of 2-division points

and normalized homogeneous coordinates (ea(f + /)) such that the map
(α> f+f) —> aMecf+f) is a faithful representation of the Heisenberg group
Hr. Hence there exists an orthogonal matrix P such that M?c/+/) = PU/+/P"1

( / + / e i r ® Jr), because {± M</+/)}, {+ Uf+f] are equivalent orthogonal
representations of Hr . Putting So = SP, we have

[β-a+bβa+bJaeG, b^G =z O O = SQ SQ ,

(*-«+»(/ + f)ea+b(f + f))amθ. b*G = SM*f+ffS = SjUf+fSo .

Since (1, / + /)(1, f + f)- ( < / , / > , 0) and M</+/) = ε</+/)/, we have

= <Λ

3. Specialization of group of 2-division points.

Since («,/+/)—>aU/+f is an irreducible representation of the
Heisenberg group ϋfr, the matrices C//+/ ( / + / e J r © i r ) are linearly
independent and they generate the w x m-full matric algebra over the
prime field k0.
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LEMMA (1. 3. 1). If S = (sa,g)a*G, g&dr satisfies (e-a+b(f+f)ea+b(f + f))amβ, M

= Sf£//+/S. ( / + / e j r © i r ) , then specializations S—>S' of S correspond

one-to-one to specializations of e(f + /) — > e'(f +/) (/ f / G i r θ Δr) where

specializations S — > S' mean specializations as points of a protective space.

Proof By the above consideration, quadratic monomials

{sa,fSa,g\a9b e G; g,h & Δr}

and

are mutually linear combinations of the others over the prime field kQ.

This proves Lemma.

THEOREM (1. 3. 2). Let G be an additive group of odd order \G\ such that

(ch{K),2\G\) = 1. Let e = {ea)aeG be a point in PG such that e-a = ea. Assume

that rank (̂ -α+δ̂ α+δ)αaG, δe<? = 2r βWύ? there exists a group {e(f + f)\f+f e J r ©

i r } of 2-division points of e of order 4 r zflλo.̂  associated 2-step nilpotent group is

the Heisenberg giroup of dimension r. Let {er{f + / ) ) / + / e J r © J r J be a

specialization of W/+/) |/ + / G j r © i r } such that {e'{f + / ) ! / + / e J r © ir}

i$ Λ ,groMp (?/ 2-division points of the new origin er = e'(0). Then rank (eίa+bea+ι>)

= 2s with non-zero s and the 2-step nilpotent group associated with {e'(f + f)\f +

f ^ Δr® Δr} is the Heisenberg group of dimensions s.

Proof Denote w = rank(eία+6eα+&)α«Eσ. δeσ- Then, from the assumption

there exist a [Glxm-matrix S" and orthogonal m x m-matrices Me'(/+f),

(/ + / G j r © i r ) such that

(eίa+b(f+f)e'a+b(f+f))amo. δeG = VMscf+ffS"

(e'-a+df +f + g + g)ea+b(f + f + g + g))amσ. beG

= S"M*>(f+ffM*(g+$fS".

On the other hand, if we denote by S the | G | x 2r-matrix satisfying

/ ))α.G. t*G = S'Uf+f'S, (f+f<=Δr® Jr)9

the specialization e[f + f) — > e'(f + f) is induced by a specialization

Sr as follows:
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We denote by Si' a non-singular minor m X m-matrix in the | G | x m-matrix

S" and by So the minor m x 2 r-matrix in the \G\x 2 r-matrix S' correspon-

ding to S'£. Then

Since U/+f (/ + / <Ξ Δr® Δr) generate the full 2r x 2r-matric algebra, the

orthogonal matrix M β ' ( / + / ) ( / + / ε J r ® i r ) generate the full m X m-matric

algebra. Hence the 2-step nilpotent group associated with the group

F= {e'{f + / ) ! / + / e J r ® i r } has the center of order two. So, by virtue

of (1. 2. 7), it is sufficient to show the order \F\ equals to 22S with a non-

negative 5. The relation

implies

e'-a(f + f) = <f, f> e'a(f + f),

hence by virtue of (1. 2. 2) we have

M?(f+f)Me>(g+§)M*(f+f) = < / , / > <& 9><f+g,f+ 9> Me>(g+g)

The matric group {± Mβ'(/+/)|/ + / e J r © i r } is an irreducible faithful

representation of Γ and the quotient of Γ by its center is isomorphic to

F. Hence

is the conjugate class decomposition of Γ. Therefore the number of

conjugate classes of Γ equals to | F | + 1 . On the other hand there exist

|F1 irreducible characters of degree one of Γ, hence there exists only one

higher degree irreducible character that is the trace of {+ Mer(/+f)\f + f

e Δr®Δr}.

This shows the relation
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Namely the order \F\ of {*'(/ + f)\f+ f e Ar ® Δr\

is a square number = 22\

4. Problems.

Denote by Λe the projective variety in PG consisting of all the points

x such that for every 2-division point e(f) of e the composition e(f) © x is

well-defined.

Then the following are, in some sense, very big problems:

PROBLEM. Under what condition on e is Λe an abelian variety of

dimension r with the composition given by e ?

PROBLEM. IS the condition rank(£_α+δ£α+δ)αeG, δe<? = 2r necessary for Λe

to be an abelian variety of dimension r ?

PROBLEM. Under what condition on e has Λe a group of 2-division

points of e whose associated 2-step milpotent group is the Heisenberg

group of dimension r ?.

§ 2. Symmetric theta structures on abelian varieties.

1. Symmetric theta structures.

Let A be an abelian variety and X be a divisor on A. We mean by

Qx the subgroup of A consisting of all the points t such that Xt^X, i.e.

there exists a function / such that (/) —Xt — X When gx is a finite group,

the divisor X is called to be non-degenerate.

Let X be a non-degenerate positive divisor such that l(X) is coprime

to the characteristic ch{K), where l(X) = dim \X\ + 1. Then the order of

gx is exactly l(X)2 and there exists a non-degenerate skew symmetric

bicharacter ex(s, t) on gx, i.e. ^(5, t) is a function on gx x gx with values

roots of unity in the universal domain such that

+ s\ t) = βχ[s, t)ez{s'91),

+ t') = eAs, t)eAs, t')9

ex(s, t)eχ(t, s) = 1, eAs, s) = 1 (s, 5', t, t'
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and moreover ^(s,#)==l if and only if s = 0.

A divisor X is called to be symmetric if {—δAY
1{X) = X> where — δA is

the involution u — > — u. We shall give a definition of a symmetric theta

structure which is more concrete as compared with the Mumford's original

definition in its expression.

DEFINITION (2. 1. 1). Let G be a finite additive group of which order

\G\ is coprime to the characteristic ch{K). A symmetric G-theta structure

means a pair {X, p) of a symmetric positive divisor X on an abelian variety

A and an isomorphism p of G®0 onto the subgroup gx = {t e A\Xt~X}

such that

(2. 1. 1. 1) Xάp = X,

(2. 1. 1. 2) <C#,β> = ex(aρ,άp) = ex(—άp,ap),

(2. 1. 1. 3) * x(αp, fa) = ex(<2/0, fa) = 1

{a,b<=G; 4 ί e (5),

where (5 means the dual of G and <C#, 0> means the pairi

which defines ό.

THEOREM (2. 1. 2). Let {X9 p) be a symmetric G-theta structure on an

abelian variety A such that l(X) and the order \G\ are coprime to 2ch(K). Then

there exists a unique system of functions φa(u) {a e G) on A such that

(2.1.2.1) (<Pa) + X>0,

(2. 1. 2. 2) φ,{u) ΞΞ 1, φ^a{u) = ^ α ( - a),

(2. 1. 2. 3) ΨaUu) = ?<*(** + bp)φb(u)9

(2. 1. 2. 4) pβ(κ + dp) = <C

From the definition of gx there exists a system of functions

f(u) (a e G) such that (fa) = X_αp - X The zero divisor of fa(u + bp) as

a function in ^ is given by

X-(a+b)p X-bρ — \X-(a+b)β X) \X-bp X)

— (/(α+6)p) "~ if'bp) — (f(a+b)pfbp)9 (β, & e G).
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This implies that

/«+&(*) = ϊa.Jaiu + bp)fb{u) (a, b e G)

with non-zero constants 7α,5; this 7 can be regarded as a 2-cocycle of G

with coefficients in the multiplicative group i.e.,

37{a, b, c) = 7btC7£btC7atb+erz}ι, = 1, (β, δ, c e G).

Since the 2-cohomology of a finite group with coefficients in the multiplica-

tive group of an algebraically closed field is always trivial, hence there

exist non-zero constants βa {a e G) such that

r α > δ = dβ(a9 b) = βZlbβaβb (a, b e G).

Putting φaku) = β^faW {a e G), we obtain a system of functions 0α(#)

(a e G), such that

Φa+M = ^ α ( ^ + bp)φb(u), {a, b e G).

Let 7r be the natural isogeny of A onto the quotient abelian variety B =

A/Op of A by Op. Then, since X?p = X (ά e 6), there exists a positive

divisor U on B such that 7Γ"1 (C7) = X From the symmetricity it follows

the symmetricity of U and the equality Xdp = X (a e G) implies that there

exist non-zero constants *(#,£) such that

Φa{u + άρ) =X{a9ά)φa{u),

l(a, b + c) = χ(α, ί)χ(α, c),

%(α + b, c) = χ(α, £)χ(δ, c), (a,b<Ξ G; ά,b,c e (5).

Let w be the degree of the isogeny JΓ and π' be the isogeny of 2? onto A

such that ππ = n^5, and let F8{u) {ns = 0) be the functions on B such that

(Fs) = (n -̂Ht/-.) ~ W W ) .

Let s and t be points in J5 such that n2s = n2ί = 0, π's e Gί?, π'ί e G/o.

Then by virtue of the definition of enU[s91) = eσt7i{s, t) and the equation

X = π-i(u) it follows
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φπ'stfu) = TsFns{u),

ψπ>s(π'u + π't) = TsFns(u + t) = TsEeUin(ns9 t)Fns(u)

= eu,n(ns>t)φns{π'u)

with non-zero constants Ts. Since π'~ι(X) = (nδBy
ι{U) Ξ= n2£/, we obtain

ex{πs,πrt) = en2u{s, t) = enU{ns, t) = eUt7l{ns, t),

{n2s = 0, π's e G o,

This means that

^α(^ + dp) = ex{ap,άρ)φa{u) = ^a9

i.e.,

, (β e G,« e G).

From the symmetricity X = (- ^)" 1 (^) we have ( - δA)-\X-ap) = Xap {a e G),

hence there exist non-zero constants pa [a e G) such that

0α(*~ W) = PaΦ-aW {a S G).

Since ^α+δ(w) = ^α(zi + bp)φb{u) {a e G), we have

p-a-bφa-b{u) = 0α+δ(— «) = Φa{~ U + bp)φh{— U)

= p-ap.bφ-.a{u — bp)φb(u) = P-aP-bΦ-a-b(u)>

This means paPb=Pa+b (a,b^G). Hence, putting

<Pa(u) = PiaΨaW (a GΞ G),

we obtain the system of functions in Theorem. Let us prove the unique-

ness. Let φa(u) (a e G) be another system of functionss satisfying the

condition in Theorem. Then the quotients ζa = ψa{u)lφa{u) {a e G) are

constants such that ζa+b = ζaζb and ζl = ζ2a = 1 (^ b e G). The oddness of

)G| implies ξ"α = 1 (a e G). This completes the proof of Theorem.

DEFINITION (2. 1. 3). Let {X, p) be a symmetric G-theta structure on

an abelian variety A such that the order \G\ is coprime to 2ch{K). The
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system of functions <pa(u) (a e G) in Theorem (2. 1. 2) is called the canonical

system of functions on A associated with a symmetric G-theta structure (X, p). If

X is very ample the canonical system of functions φa{u) {a e G) defines a

projective embedding of A into PG. We call the embedding the projective

embedding of A associated with a symmetric G-theta structure {X, p) and we call

the image of the origin the system of symmetric theta null-values. We use the

same notation u >φ(u) for the projective embedding of A into PG.

PROPOSITION (2. 1. 4). Let {X, p) be a symmetric G-theta structure on A

such that \G\ is coprime to 2ch{K) and X is a very ample divisor satisfying that

the map a : {/)(/) + X> 0} (x) {/[(/) + X> 0} — > {g\(g) + 2X> 0} is suήective.

Let φa(u) ( U I G G ) be the canonical system of functions on A associated with (X, p).

Then the dimension of the linear space spaned by φ-a{u)φa(u) {a e G) is given by

Proof The linear space of all the quadratic forms in <pa(u) (a e G)

is the linear space corresponding to the complete linear system \2X[.

Hence the dimension of the linear space is given by

l(2X) = 2dimAl{X) = 2 d i m A | G | .

From the oddenss of \G\ it follows that the functions φ-a+bMφa+b{u) {a,b

e G) span the whole linear space. On the other hand

φ-a{u + bp)φa{u + bp)φ-b{u)2,

b{u + Cp) = <26, C> ψ-a+bWψa+b{u)

{a,b(Ξ G; c e 0),

hence, if we denote by r the dimension of the linear space spaned by

{a e G), then we have

This proves r = 2dimA.

2. Addition formula.

We shall show that, if φ{0) is the system of G-theta nullvalues asso-

ciated with a symmetric G-theta structure on an abelian variety A, then
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r a n k (?-α+δ(O)y>α+6(O))αe(?, b.σ = 2άimA

a n d

φ(u) o φ(v) = p(« + v)9

where o is the commutative composition with respect to φ(0).

LEMMA (2. 2. 1). Let {u,v) —>σ{u9v) = (— u + v, u + v) be the endomorphism

of Ax A, and let X a symmetric divisor on A, Then

σ~ι(X X A + Ax X)^2{Xx A + Ax X).

Proof. Denote by k a field over which A is defined and X is rational.

Let u and v be independent generic points over k. Then Xv + X-Ό — 2X

^ 0 by Theorem 30 Corollary 2, § 8 [III], i.e., there exists a function

f{u) on A defined over k[v) such that (/) = Xv + X-v — 2X. Putting F(u,v)

= f(u)9 we have a function in u and v defined over k such that

(F)(A x υ ) = (f)xv

by Theorem 1 Corollary 3, VIII [IV]. Since (- δJ-^X,) = X-v, it follows

that

σ'ι{X XA + AX X)(A xv) = ( (- δA)-ι(X*) + Xv)xv

= (X_υ + Xv) x v.

The divisor "̂̂ -X" x A + A x X) has no component of the type A x Yl9

hence we can conclude that

(F) = σ'ι{X xA + AxX)-2XxA-AxY

with a divisor Y on A Let τ = (— δA9δA)σ be the endomorphism of L̂ x ̂ 4

such that τ(w, v) = (M — v, M + υ). Then by virtue of the symmetricity of X

we have

τ~ι{X X A + AX X) = σ-χ{X X A + A X X).
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Therefore, exchanging {u9v) and σ by {v9u) and τ, we obtain similarly a

function Fx(u9v) such that

= σ~\X xA + AxX)-Y1xA-2AxX

with a divisor Ylm This means

7! X A + 24 X X - 2Xx A + AxY

and

Therefore finally we get

σ~\X xA + AxX)

THEOREM (2.2.2). {Addition formula). Let {X9p) be a symmetric G-tketa

structure on an abelian variety A such that \G\ is coprime to 2ch{K) and X is a

very ample divisor satisfying that the map α :{/!(/) + X> 0} (x) {/((/) + X> 0}

— > {9K9) + 2X> 0} w surjective. Let u—>φ{u) be the projective embedding of A

into PG associated with (X, p). Then

φ{u) o φ(v) - φ{u + V)

and

rank (^- α + 6 (0)^ α + δ (0)) α e ί ? , δ e G = 2dimA,

where o is the commutative compositon with respect to φ(0).

Proof For the sake of exactness we shall make the distinction between

the components φa(u) (a e G) of the projective embedding u — > ψ{u) and

the elements φa{u) {a e G) of the canonical system of functions associated

with {X9φ) i.e., the fuctions such that

), φa{u + Cp) = <tf, C >

{a9 b^GyC^ ό).
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By virtue of (2. 2. 1) there exists a function F(u9v) such that

(F) = σ-\X xA + AxX)-2(XxA + AxX),

where σ is the e n d o m o r p h i s m (u,v)—>(— u + v, u + v). First of all,

p u t t i n g

Φ-aΛu,v) = £-α+δ(— M + v)φa+b{u + v)F(u,v)

and

ΨaΛu,v) = f{u + ap,v + bp)φa{ufφb{v)2,

we shall show

ΦaJu, v) = rα,δ(^, v), (β, ft e G).

By virtue of the symmetricity of X it follows

(- dA^Y^σ'KX X A + Ax X)-2(Xx A + AX X))

= σ-λ{X X A + A X X) - 2{X X A + Λ X X),

hence we can conclude that F{— u, — υ) = εF{u, v) with a non-zero constant

ε. From the definitions we can caluculate the divisors of Φa,b and ΨaΛ :

( ί β | ί ) = ^H^-cα.δ) XA + A x X-(α+δ)) - 2(X x A + A x X)

(Fα.*) = ( ^ ( ^ X 4̂ + A X X)\-a,-b) -2(XxA + AxX)

= σ-H^α-b X ̂  + A X X-a-b) -2{Xx A + A + X)

= (*α.δ).

Therefore there exist non-zero constants ξatb such that

Φα,&(^ v) = ξa.bΦa,b{u, v), {a, b e G).

Let us show the relation

%a,b£ar,br = = ?a + ar, b+bff [β9 U ,b,b G G ) .

From the definition we have

^)/°, v + (ft + b')p)φa+ar(u)2φb+bf(υ)2

+ (β + α')P, v + (ft + b')ρ)φa{u + tfi0)2£6(z; + b'p)2φa{u)2φb(v)2

a'p,v + brp)φaf(u)2φb,(υ)2
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φ-a+b(- u + υ + ( - a' + b')p)φa+b{u + υ + [a' + b')p)F{u + βV,

f + b'p)φaf{u)2φbf{v)2

ar+br{— U + v)φa,+b,{u + v)F(u,v)

This means

^a + ar, b+bf = ^a,bSa',br 9 (#j β'> ^j ^ ' ^ G )

We shall next show

f-o,-δ = fα.δ, (β,ft S G).

Since

F{-u,-v) = εF(u,v)

and

^_α(w) = ^α(— «) (α e G),

it follows

ί α , δ ^ ( - u + ap,-v + bρ)φa{- u)2ψb(- v)2

= ϊa,b¥a,b(- U,-V)= Φa,a(- U, ~ V)

= φ-a+biu — v)φa+b(— u — v)F{— u, — υ)

= εφa-b{— u + v)φa+b{u + v)F(u,v)

= εΦ-a,-b{u,v) = £ζ-a.-aΦ-a.-b(u,v)

= ξ-a,-bεF(u — ap, — v + bρ)φ-a{u)2φ-b{v)2

= ξ-a,-bF(- u + βp, - v + bp)φ.a{- u)2φ.b(- υf.

This implies

f-α.-6 = £α.6 (̂ , 6 G G).

and

1 = ί-α.-6?b,6 = ία.bία.δ = ?2a, 2& (<̂> b G G).

Since the order [G| is odd, it follows fa>6 = 1
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and

φ-a+b(— u + v)φa+b{u + v)F(u,v) = F(u + ap,v + bp)φa{u)2φb(v)2,

{a,b<=G).

By virtue of (2. 1. 4) there exists a subset H of G such that the cardinal

\H\ is 2άimA and the functions φ-a+Mφa

+(u) {a+ 3 H) are linearly indepen-

dent. Let π be the natural isogeny of A onto the quotient B = ^4/^^ and

U be the positive divisor on B such that π"\U) = X. Denoting by the

same symbol σ the endomorphism (ύ,v)—>{— U + v,ύ + v) of B x B, by

virtue of (2. 2. 1) we have a function on B X B such that

(/) = σ»i(i/ x B + BxU)-2(Ux B + BxU).

Since

(JP) = σ'x{X X A + Ax X)-2(Xx A + Ax X)

= feπ)-1^"^^ X B + BxU)-2{Ux B + BXU))

we may assume that F{u,v) = f(πu,πv).

From the relation

(u + «/>) = φ-d+Mφa+iu) {a+ <= H, a e

we can conclude that there exist linearly independent functins

such that

Since

/(2C7) = 2d™Al(U)

and

we can conclude that 1{2U) = 2 d i m A and ^α+(^) (a+ e /ί) form a linear base

of the space of functions on B corresponding to the linear system \2U\.

The functions g-a+{u)ga+(u) {a+,b+^H) form a linear base of the functions

corresponding to the linear system 2(U x B + B x U) on B X B9 hence

there exist constants ^ , ^ + , δ + £ ί ί ) such that
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υ)= Σ <xe\d+ge+(πu)gd+{πv)
c+,d+t=H

and

F(uv) = Σ uc+td+φ-Au)φAu)φ-d+{v)φAv).
c+,d+zΞH

By virtue of the relation (*), translating the variables u and v, we have

= F(u + ap,v + bp)φb{u)2<PM2

= Σ ae*d+φ-c+{u + aρ)φc+{u + ap)φ-d+(v + bp)ψAv + bρ)φd(u)2φb{v)2

c+, d+€=I£

In the words of the homogeneous coordinates {<pa{u))aeG of ^(M) this relation

can be expressed as follows

(**) 9-α+&(- « + v)φa+b{u + v)

= T(u,v)c+ ^Hae*td*φ^+a{u)φc*+a{u)φ^+ι,{v)φd*+d{v) (a,b<Ξ G).

with a non-zero 7(u,v), where Γ(^,^) depends on the homogeneous coordi-

nates (φa(u))amG9 {<Pa{v))aeG, (ψai" u + v))aeG, (φa{u + v))a*Q. Replacing F(u,v)

and ac\d+ by T(fi9ϋ)"ιF{u9v) and T{09ϋ)"ιac\d% we may assume that

(a,b<=G).

We shall next show the relation

We mean by / the exponent of G and Ot the subring of the rational

number field Q consisting of all the elements of which denominators are

not divided by /. We denote by Ω the 2r-times direct sum QjOt ® QIOt

® . . . ®QIOι of the quotient additive group QIOL and by Ωm the subgroup

of Ω consisting of all the elements of which order are at most lm, were

r — dim A. The additive group G ® ό can be regarded as a subgroup of

Ω by a fixed monomorphism and the isomorphism p of G © <5 onto ^

can be extended to an isomorphism of Ω onto the group of the /-power
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division points on A as abstruct groups. Since p{Ω) is dense on A in

Zariskis sense and the functions φ-a+(u)φb

+(u) (a+ e H) are linearly inde-

pendent, there exists a positive integer m such that Qmz> G® G and

r a n k (p..α+(*ί + bρ)φa

+{u + bρ))a

+*Ht b*Ωm = 2dimA.

Putting u = 0, b = 0 and υ - uΛ-bp in (**), we have

Since

l i ί | = 2 d i m Λ , r(o,o) = i

and

?>_α+(0) = y>α +(0),

we can finally conclude that

r(o9oy(φ-a++Aθ)φ*++Aθ))a+*Ht t>+,H(aa\b

+) = I

a n d

Therefore

rank

= r a n k {<P-a+b(0)<Pa+M)aeG, δeG .

This proves the relation.

φ(u) o ̂ (z;) = ^(^ + v).

§ 3. Symplectic group.

In the present paragraph we shall assmue that the order of G is

always coprime to 2ch{K). Canonically identifying G with the bidual G,

we may put

If α—»tf<7 is a homomorphism of G into another finite additive group H,

the dual £ of σ is the homomorphism of H into 0 such that
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(β 6 G , ί e H).

Each endomorphism (β,<2) >{a,ά)σ of G® 0 has the unique matric

representation

(a β\ la β

[ I (ά)[ , aβ + άδ)
r δl \r δl

such that a, β, 7, δ, are homomorphisms of G into G, G into 6, ό into G, ό

into ό, respectively. The dual a of σ is given by the endomorphism of

G@G

._!άf\ lά f\_ * .*
σ~\β δl9 {a' Λβ Sl~iaa + aβ' aϊ + a3)'

where ά,β,7,δ are the duals of a,β,7,δ, respectively.

1. Symplectic group and its action on PG.

Let / be the isomorphism of G © G onto 0 © G such that

(a,ά)J = (— ά,a).

The symplectic group Sp{G © (?) means the group consisting of all the

automorphisms

a β

7 δ

of G © 0 such that

la β\ lά 7

namely

aβ = j3α, ra = δf,

aδ — βf = ίrfσ, δά — ϊβ= idQ.

THEOREM (3. 1.1). Let G be a finite additive group of which order is

coprime to 2ch(K). Then the symplectic group Sp(G © ό) acts on the protective

space PG as follows
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r δl L
la β\

β£G, | ε Sp{G(
\r δl

a β\ \
)x means the a-component of the homogeneous coordinates of the point

r δl la

a β\
)x in PG.

r δl

COROLLARY (3. 1. 2)

\0 ά-1

(° -'-
\r o.

Proof of Theorem (3. 1. 1).

It is sufficient to show

\r δl \r' d'H \r δl \\rr δr

I la β \ l a β \ s p { G @ ό

\\r δl \rr δ'l

Putting

la" β"\ = la β\ la' β'

\r" δ") ~ \r δl \r d'

and

ha" β"\ \

\\r" δ"l L

we have

r δi \\r δ'l
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%a — I G I " 1 Σ ^~7Γ a) ~G^> ^-7Γ~ (a0C" "^ ^ * " ) J β β " + άδ"^> %ao"+άraεG ^ ^

and

< - | - (Λα + bϊ) + gr, (βα + bγ)β' + cβ'»«(«+«r)β'+ίr).

Replacing c by c + aβ + ίδ, we can conclude that

b,c(=G 2 2

<g-ί- {aa'Abγ" + cr'), ^ ' + ££" + c^ r> Xd*»f$r"+dτ'

Since

/α i3\ /«" ^ \ / ί' - ^ \ la"S'-β"t',

\r δ) \r" δ") \-r δ'j \r"δ' - δ"f, *

it follows

«-|- {aa + br), -c » = «^- β(α"ί' - β'T) + \ b{r"'δ' - δ"f), -c»

= «^- (βα" + bγ") - \ [aβ" + bδ"), -c»

= < - L (βα" + br"), - W'» « ^ - (aβ" + bδ"), c/ » .

Hence we obtain the relations

ua = IGI -1 Σ . < ^ β, - 5 » < - L ( α α " + ^")» a$" + 5 5 " »

άβrr + bδ/9 cT'^ < - | - ί r

f,

Now we shall divide the proof of Theorem into five steps.

STEP 1.

:r ((; 3- - - -
Proof. If we put
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(«' '\_ (« γ . i s

V δ'l \r δl \-f
in (*), then we get

S,C<ΞG Δ

From the orthogonal relation

1 for cΐ = 0

0 otherwise

we obtain ua = ^α(« e G).

STAP 2. If r' = 0, then

γ o i l \\T 0/ \γ o

Proof Putting γr = 0 in (*), we have

STEP 3. If ar = β' = 0 βnrf A«r(δ) = {0},

Proof. Putting a' = δ' = 0 in (*), we get.

6,c=G

Since ker(δ) = {0}, we may replace c by c3. Therefore from γ" = 3ΐ' we

get

ua=\G\-i Σ <4-β> -(i + ί l ^ T ^ ' + ̂  + ^ W
S,c<=G 2 2

<-|- ^r" - cδ"» «-^- «, c» «-|- (aβ" + ίί"), c>"
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On the other hand

1 1 rt 1 //

< —̂̂ — a,c2><^—— (aβ + δ^ ), c^ 2> <S—(## + bγ/f), —cδf/^> = 1,

hence

By virtue of the result in Step 1 we know that each element in SP{G ® &

induces an invertible projective transformation on PG; this means that

Therefore u = z as poins in Pσ.

STEP 4. If a' = δ' = 0 βwrf ker (δ) =¥ {0},

\r δl V o// \r δl W

Proof. Putting α' = δ' = 0 in (*), we have

ua= \G\

" + U", cr"

From the relation

/*" β"\ = ifr' -«V-ι

\y" δ") ~ W" -rf'-1

we get

β/3" + {$ + <?)£"» <^/5" + (5 + J)^1

Since δά — γβ= ids, we observe that

if and only if c = 0. Therefore we can conclude that
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ua = Id"1 Σ.«4- a> - ί » < 4 - ( β α " + V'), *J9" + &"»*«.-+**" = *a (a e G).

STEP 5. Denote by Λ/i the subset of Sp(G © ό) consisting of all the

elements such that γ = 0 or α = δ = 0, and denote by Mn (n = 1, 2, 3, )

the subsets of Sp{G@ό) which are the natural images of the products

MtXMiX xM1 into Sp{G@ό). Since Mx generates the whole group

Sp{G®0), we have

Sp{G ® 0) = U Mn, Mx c M2 c M3 c .
n

By virtue of the results in Step 2, 3, 4 it follows that

(σσ')x = *(</&), ((7 e Sp(G ® (?), • e AfJ.

We shall prove Theorem by the iduction on n. Assume that

{σσ')x = *(</&), (tf e Sp(G ® 6), σ e Mn-!).

If <τ is an element in Sp{G © 6) and σ/, , σ'n be elements in Λf, then

by virtue of the assumption we can conclude that

σ((σ[."σ'n)x) = σ((σi- .σ'n-ί)(σ'nx))

= WflrJ *£-!)) Wa?) = ( ^ ff^J (σίx)

= {σσ{ <τί)a5.

This completes the long proof of Theorem (3. 1. 1).

2. Action of Sp{G©'G) on commutative compositions.

It will be shown that the action of Sp{G®6) on PG carries commuta-

tive compositions to commutative compositions.

T H E O R E M (3. 2. 1). Let G be a finite additive group of which order is coprime

to 2ch{K). Let e = (ea)ae0 be a point in PG satisfying e-a = ea (tf e G) and σ

be an element in Sp{G@ό). Then the composition χoy of two points x, y is

well-defined if and only if the composition σx © σy is well-defined, where o means

the composition with respect to e and © means the composition with respect to σe.

Moreover it follows

σxύσy = σ{x o y)

and
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rank ((σe)-α+&(<70)α+&)αeσ. b*G = rank te-α+δ ea^)a^G, 6 e C?.

Proof. First of all we shall show that (σe)~a = (σe)a (# e G):

)e) = IGI-1 Σ . « - f ((-a), -a^^((~a)a + άϊ)9 (-a
r δl l-a ά(ΞG Δ Δ

= IG \ -1 Σ .«~- β>

It is sufficient to prove Theorem for the special elements

/0 -f"'\

0/

in Sp(G ® 0).

1.

(a β\

(* %

σ =

\0

By virtue of (3. 1. 2) we have

σ(e)-a+bσ{e)a+1) = < α α , α β > < δ α , bβ^>e-.(-a+b)ae{a+b)a, (a, b e G),

hence, denoting by D the [G| x IG\-diagonal matrix of which (^^-compo-

nent is <ξiaa,aβ^9 we have

= r a n k (^-α+δ^α+&)α€(?, 6sG>

^-α+δ^α+δyαe*?, δeG? [Va+bVa+t>)a<=G, beG
= rank

= rank

= rank

with a non-zero scalar. This proves σ(x o y) =' σχ
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Case 2.

[0 - r 1

c —

\r
By virtue of (3. 1. 2) we have

(σe)-a+b(σe)a+b= | G | " 2 Σ <£-<:
ά,8(=G

= | G | - 2 ^ < < - ^

Denote by D the \G\ x |G|-matrix of which (α,α)-component is

Then, since γ is an isomorphism of ό onto G, we have

= rank

= rank
(or1 o 2/)_α+6

= rank

= rank

with a non-zero scalar. This proves σ{x o y) = σX

3. Action of Sp(G@G) on symmetric G -̂theta structures.

We shall show that the action of Sp(G®0) on PG defined in the be-

ginning of §3 is nothing else than the action on symmetric G-theta struct-

ures.

THEOREM (3. 3. 1). Let {X, p) be a symmetric G-theta structure on an abelian

variety A such that the order of G is coprime to ch(K) and X is very ample. Let

φa(u) (αeG) be the canonical system of functions associated with (X, p) and let
a β\

be an element in Sφ(G@G). Let X' be the zero divisor of the function
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and let p' be the isomorphism of G® ό into A such that

la β\
p' = \ UP,

\r 91

i.e., (a,ά)pr = ((aa + άγ)p, {aβ + άδ) p). Then (X',p') is a symmetric G-theta

structure such that the regular map

la β\
u > φ{u) = ψ{u)

\r δl

is the canonical projective embedding of A associated with (Xf, p'), where

Ψa(u) = IGI -1 Σ . « 4 - a, - « » « 4 " (α α + «»' ββ + άδ>φa«+ar («).

Conversely let [Xr, ρι) be a symmetric G-theta structure on A such that Xf is linearly
la β\

equivalent to X. Then there exists an element in Sp(G ® G) such that

\r 5/

a β\

r δ)

and X' is the zero divisor of the function

Proof We shall prove the first part. We may put

a, -
ψaW =

\ \ y,
/ i ̂  N

aeG

because ψa{u) {a e G) are linearly independent and

ΣΛ"C-i-^> άδ^ψάr(u) = |ker (T-)|^0(M)'+ .

It is sufficient to show

φa+bW = φa{u + bp')φb{u),

φa(u + cpr) = <ζa, c^φa{u), {a, b e G, c G (?).
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The first two relations are the direct consequences of the definition of

ψa{u) {a e G). From the elementary properties of symplectic matrices and

the bicharacter <S > S> we get the following relations:

- | - άr, bβ + «5» < - L άγ, ^ » -a, b

άr bβ

ftα, ~δ^» «- | - (6« + άf), bβ

(ά + c)r,

β, -«» « i (βα

= < - | - (β + b), - β » « ^ - (β« + άγ), (a + b)β + άδ^> «-l- b,

(act

ba, - ^ » < - | - (β + b), - « » «- |- ((β + b)β + άr), (a + b)β +

-±-ba, -aβ- <0»«-|-M»«-!-αα, &#»«:-!-4r,

- |- (α + 6), - o > «- |- «α

e, -(ά + ί ) » « ^ - (aa + άr), aβ+(ά+ c)δ > «- |- eer,

https://doi.org/10.1017/S0027763000013374 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000013374


THETA CONSTANTS 179

= <±-cγ,cδ^<ζa, ί » « i - β , -(β

On the other hand from the definition of p' it follows

<Pa*+άr (u + bp;) = ^ α + β > (M + to/o + bβp)

and

<pcr{u)

Hence we can conclude

Ψa (U + bpr) φb(u)

2
fl£G

Σ
ά&G

Σ <4-«r,

Σ

2
aeG

-7Γ a, c» «-^ aa, -αJ» «^- aϊ, -cΎ» «-|- βα, ^ > < JπίT,
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CPf)

ά&G

Σ

G

Σ
fl6G

This proves the first part of the theorem. We shall next show that if {Xf, p)

is a symmetric G-theta structure on A such that Xf is linearly equivalent

to X, then X1 — X. Let <p'a{u) {a e G) be the canonical system of functions

associated with (Xf, p). Then the quotients <PaWI<pu{u) {a e G) satisfy the

conditions

Pί(κ + cp)lφa(u + CP) = φ'a{u)l<pa(u)9 ( β e G , c e G).

If we denote by π the natural isogeny of A onto the quotient B = 4̂/(5 and

by U and 7 the divisors on B such that π'ι{U) = X and π'ι{V) = Xf, then

there exist functions ha{u) {a e G) satisfying

and

<Pa{u)lφa(u) = ha{πu), {a e G).

On the other hand | G | = / / ( Z ) =τ/l(Xr) = deg(π) //(£/) = deg(π)//(F) and

deg(π) = 161 = | G | . Hence /(£/) = /(F) = 1. This means that the functions

ha(ΰ) (αeG) are constants, i.e., X = X ' . Finally we shall complete the proof

of the second part of the theorem. Let a, β, γ, δ be the homomorphisms

of G into G, G into 0, G into G, 0 into 6 such that

a β

r
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Then

1 = ez{ap',bp') = ex((aa + aβ)p, (ba + bβ)p) = ^a,b(βά - aβ)^>.

and

1 = ex{άP',bP') = eA(άϊ + άδ)p, (bΐ + 6δ)p)

This implies that βά = aβ and δf = Tδ. Moreover we have

<S«,β> = ex(aρr,aρr) = e{(aa + aβ)p9 {άϊ + άδ)ρ)

= ^aa,άδ^>^-aβ,άr^> = <&a,ά{δά - Tβ)^> = <a(aδ - βf), <β>

{a(=G, ά(Ξ G),

hence

δά — ϊβ= ido, at — βf = idg.

ίa β\
This shows that is an element in Sp{G@G). Let X" be the zero

\r δl
divisor of

Then (X"9 ρf) is a symmetric G-theta structure on A such that Xπ is linearly

equivalent to X'. Hence by the above result we can conclude that

X" = X'. This completes the proof of Theorem (3. 3. 1).
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