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Aberration-corrected electron microscopy can resolve the smallest atomic bond-lengths in nature [1-3]. 

However, the high-convergence angles that enable spectacular resolution in 2D can only achieve limited 

3D atomic resolution for all but the smallest objects (c.a. 5 - 10 nm). We show aberration-corrected 

electron tomography can offer new limits to 3D imaging by sampling several focal planes at each specimen 

tilt. We present a theoretical foundation for aberration-corrected electron tomography by establishing 

analytic descriptions for resolution, sampling, object size, and dose—with direct analogy to the Crowther-

Klug criterion. 

Remarkably, aberration-corrected scanning transmission electron tomography can offer dose-efficient 3D 

reconstruction that measures complete specimen information of unbounded object sizes up to a specified 

cutoff resolution [4]. With aberration-corrected electron tomography, defocus and specimen tilt are 

combined (Figure 1a,b). This breaks the long-accepted Crowther limit when the specimen tilt increment 

is twice the convergence angle or smaller. When the tilt angle matches the convergence angle, 3D 

resolution is half the 2D resolving power across any object size. For finite object sizes, unprecedented 

limits to 3D resolution are achievable. Atomic resolution (1.5Å) 3D imaging is allowed across extended 

objects ( > 15 nm) using currently available microscopes and modest specimen tilting (3°) and verified 

here by quantum mechanical scattering simulations. 

Here we present large-scale multislice simulations run on high performance computing systems to validate 

the theoretical limits of aberration-corrected tomography and demonstrate 3D atomic resolution imaging 

of extended specimens. The simulated object incorporates three FePt nanoparticles, inspired by Yang et 

al. [5], arranged to occupy a 15 nm cube in 3D. Images were calculated with a fully quantum-mechanical 

multiple scattering simulation [6] for each tilt and defocus. The multislice algorithm available in the 

Prismatic package [7] provides GPU accelerated implementations and parallelization across multiple 

cores. This simulation consists of over 1300 projection images at 13 defoci (figure 1a) and 105 tilt 

increments (figure 1b) that requires a total of ~500 million wavefunctions to propagate through the 15nm 

specimen. The simulated data was used to tomographically reconstruct all three nanoparticles positioned 

at varying z-heights within the simulation at atomic resolution (Fig. 1c). 

In aberration-corrected tomography each through-focal stack is mapped to Fourier (k-) space to fill 

information within a 3D contrast transfer function (CTF) [4]. The object is reconstructed from a simple 

inverse Fourier transform. Figure 1c shows an atomic resolution aberration-corrected tomography 

reconstruction from simulated data across a 15 nm field of view in three dimensions. Here, aberration-

corrected tomography allows a reconstruction nearly 5 times larger than the Crowther criterion [8] 

prediction for traditional tomography. 

Surprisingly, aberration-corrected tomography is not necessarily dose intensive. Despite the large amount 

of image data required by aberration-corrected electron tomography, the dose can be chosen to mitigate 
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total specimen exposure. Extending the dose fractionation arguments presented by Hoppe [9] and Saxton 

[10], we show aberration-corrected electron tomography allows tunable dose allocation across any number 

of tilts and focal planes when information is oversampled. Multislice simulation demonstrates the dose 

fractionation theorem for through-focal imaging in Figure 2. By adding Poisson noise, we simulate several 

low dose images spanning a single depth-of-focus (~2.8 nm).  The average of these low-dose images is 

compared to a single high-dose image (Fig. 2e) with equivalent total dose (Fig. 2c,d). Each carry identical 

information. As expected, the SNR is equivalent for several averaged images across defoci at lower dose 

or a single high-dose image. We extend this to the full range of defocus. When the through-focal stack is 

evenly oversampled along defocus, the quality of the reconstruction is dependent only on the total dose, 

not the distribution of dose. Unfortunately, we anticipate aberration corrected tomography follows 

traditional dose requirements where 3D resolution scales inversely with dose^1/4 [10,11] and atomic 

resolution requires substantial beam exposure. 

With aberration-corrected electron tomography, we can proceed to higher resolution across larger fields-

of-view to know the structure of extended specimens in all three dimensions [12-14]. 

 
Figure 1. a) Through-focal image stack highlighting limited depth of focus in STEM imaging for a 

200keV probe with 30mrad convergence angle. No single image captures all nanoparticles in focus 

simultaneously. b) Our simulation collects a through-focal image stack at each tilt angle. c)  Aberration-

corrected electron tomography reconstruction with atomic resolution. 
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Figure 2. Dose fractionation for through-focal acquisition a) Adjacent defocused images in through-focal 

image stack can summed without any loss of information as long as defocus sampling requirement is met. 

b) Defocus sampling requirement is set by the depth-of-focus. Multislice simulation with Poisson noise 

shows the equivalence of SNR in c,d) sum of low dose defocused images and e) a single high dose image. 
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