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Abstract
Disorder named entity recognition (DNER) is a fundamental task of biomedical natural language process-
ing, which has attracted plenty of attention. This task consists in extracting named entities of disorders
such as diseases, symptoms, and pathological functions from unstructured text. The European Clinical
Case Corpus (E3C) is a freely available multilingual corpus (English, French, Italian, Spanish, and Basque)
of semantically annotated clinical case texts. The entities of type disorder in the clinical cases are annotated
at both mention and concept level. At mention -level, the annotation identifies the entity text spans, for
example, abdominal pain. At concept level, the entity text spans are associated with their concept iden-
tifiers in Unified Medical Language System, for example, C0000737. This corpus can be exploited as a
benchmark for training and assessing information extraction systems. Within the context of the present
work, multiple experiments have been conducted in order to test the appropriateness of the mention-level
annotation of the E3C corpus for training DNERmodels. In these experiments, traditional machine learn-
ing models like conditional random fields and more recent multilingual pre-trained models based on deep
learning were compared with standard baselines. With regard to the multilingual pre-trained models, they
were fine-tuned (i) on each language of the corpus to test per-language performance, (ii) on all languages
to test multilingual learning, and (iii) on all languages except the target language to test cross-lingual trans-
fer learning. Results show the appropriateness of the E3C corpus for training a system capable of mining
disorder entities from clinical case texts. Researchers can use these results as the baselines for this corpus
to compare their own models. The implemented models have been made available through the European
Language Grid platform for quick and easy access.

Keywords: Information extraction; machine learning; natural language processing for biomedical texts

1. Introduction
With the rapid development of health information systems, more and more electronic health
records (EHRs), such as clinical narratives and discharge summaries, are available for research
(Figure 1). Extracting clinical entities like disorders, drugs, and treatments from EHRs has
become a topic of increasing interest (Figure 2). This task is important because it can help
people understand the potential causes of various symptoms and build many useful applica-
tions for clinical decision support systems. Moreover, the extraction of these entities forms the
basis for more complex tasks, for example, entity linking, relation extraction, and document
retrieval.
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Figure 1. Number of published case reports per year in PubMed extracted with the query “Case Reports[Publication Type]”.

Figure 2. Number of publications per year in PubMed about entity recognition extracted with the query “Entity
Recognition[Title/Abstract]”.

Since EHRs have an unstructured format, the entities of interest must first be identified and
extracted before being queried and analyzed.

Disorder named entity recognition (DNER) is the natural language processing (NLP) task of
automatically recognizing named entities of disorders in medical documents. For instance, the
excerpt below contains four disorder entities, that is, “abdominal pain”, “fever”, “fatigue”, and
“CML”.

DNER is considered a challenging problem, mainly due to name variations of entities. In fact,
disorder entities can appear in the text inmany forms that are different from their standard names.
For example, the entity diplopia can be mentioned in the text as seeing double images. Moreover,
entities are often ambiguous and context dependent, for example, “stroke” is a disorder in “com-
patible with an acute ischemic stroke”; however, it does not refer to the disorder in “to increase the
stroke volume with further fluids”. Entities can also consist of long multi-word expressions (e.g.,
“lesion in the mid portion of the left anterior descending coronary artery”) that make the task of
DNER even more difficult.

While it is true that existing tools for DNER have traditionally relied on rule-based and dic-
tionary lookup methods (e.g., MetaMap (Aronson 2001) and cTAKES (Savova et al. 2010)), the
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recent advancements in deep learning methods, such as BERT, have reshaped the field. Models
like PubMedBERT (Gu et al. 2021), CancerBERT (Zhou et al. 2022), and HunFlair (Weber et al.
2021) have gained prominence and demonstrated remarkable performance in DNER tasks.

European Clinical Case Corpus (E3C) (Magnini et al. 2020, 2021) is a freely available multi-
lingual corpus (English, French, Italian, Spanish, and Basque) of semantically annotated clinical
narratives that has been recently made available to the research community. In the corpus, a clini-
cal narrative is a detailed report of the symptoms, signs, diagnosis, treatment, and follow-up of an
individual patient, as illustrated in the extract below.

The clinical narratives in the E3C corpus were collected from both publications, such as
PubMed, and existing corpora like the SPACCC corpus, and also from admission tests for
specialties in medicine.

The E3C corpus consists of two types of annotations:

• clinical entities (disorders), which are annotated at the mention and concept level. The
mention-level annotation contains the entity text spans covering disorder entities, for
example, renal colic. The concept-level annotation was obtained by linking the annotated
entities to their corresponding concepts in the Unified Medical Language System (UMLS)
(Bodenreider 2004), for example, C0156129.

• temporal information, including events, time expressions, and temporal relations accord-
ing to the THYME standard (Styler IV et al. 2014).

In this article, a gap is filled concerning the exploitation of the E3C corpus for the develop-
ment of information extraction systems, showing the appropriateness of the annotation of clinical
entities for DNER tasks.

In this study, the clinical entity annotation of the E3C corpus has been used to train machine
learning (ML) models for DNER. Specifically, the mention-level annotation has been exploited to
compare traditional ML models like conditional random fields (CRFs) (Lafferty, McCallum, and
Pereira 2001) with more recent multilingual pre-trained models like XLM-RoBERTa (Conneau
et al. 2020). Concerning the multilingual pre-trained models, they were evaluated on each lan-
guage of the corpus by using three different configurations: (i) training on data in the target
language (monolingual training and evaluation), (ii) training on data in all languages (multilingual
training and evaluation), and (iii) training on data in all languages except for the target language
(cross-lingual training and evaluation).

The results obtained with the above models were compared with the results of two baselines:
(i) the CoNLL-2003 baseline (Tjong Kim Sang and De Meulder 2003), which only recognizes
entities that appear in training data and (ii) a dictionary lookup baseline that uses the disorder
entities listed in UMLS to find the relevant entities in the text. In this comparison, the proposed
models outperformed the CoNLL-2003 baseline and were competitive with the dictionary lookup
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baseline. The consideredmodels performed also in line with the models that took part in (i) Task 1
of the ShARe/CLEF eHealth Evaluation Lab 2013 (Mowery et al. 2013), which focused on recog-
nition of disorder entities in clinical reports written in English and (ii) Task 3 of the DEFT 2020
challenge (Cardon et al. 2020), which required the recognition of clinical entities in a corpus of
clinical cases in French.

Once the entities have been recognized, they can be linked to concepts in standard vocabularies
such as UMLS. To show the appropriateness of the concept-level annotation of the corpus for
entity linking tasks, a preliminary experiment has been conducted in which a basic dictionary
lookup method has been tested in cascade to the considered models for DNER.

The findings of the present work show the appropriateness of the E3C corpus for training ML
models for DNER. The trained models can also be used to annotate clinical case texts in languages
other than the languages of the corpus. Researchers can use these results as baselines for this
corpus against which to compare their results. The top ranked model resulting from this study
has been made available through the European Language Grid (ELG) platform (Rehm et al. 2021).
This allows for easy access to experiment with it.

This work is structured as follows. Section 2 briefly surveys related work. Section 3 describes
the E3C corpus. Section 4 provides details on the procedure followed to conduct the experiments
of this work. Section 5 shows the results obtained by the models. Finally, Section 6 presents and
discusses the overall results.

2. Related work
Over the past decade, biomedical named entity recognition (BNER) has acquired more and more
relevance, with the ever-increasing availability of biomedical documents and the corresponding
deluge of biomedical entities scattered across them. As a matter of fact, the very unstructured and
chaotic nature of biomedical literature, with little to no compliance with agreed-upon standards
or naming conventions, colliding or polysemous acronyms and terms, etc., has driven researchers
to try and develop appropriate mechanisms to retrieve structured information from it as auto-
matically as possible. These mechanisms ranged from rule-based systems, statistical NLP, up to
ML-based approaches, the earliest of which appearing in literature more than 10 years ago for a
number of purposes (as in Atzeni, Polticelli, and Toti (2011); Toti, Atzeni, and Polticelli (2012),
for instance).

In the clinical domain, BNER has gained even more attention since some annotated datasets
have become available in challenges such as ShARe/CLEF eHealth Evaluation Lab 2013 (Mowery
et al. 2013), BC5CDR (Li et al. 2016), and n2c2 (Henry et al. 2019). In relation to annotated
datasets for languages other than English, it is worth mentioning the CAS corpus of clinical
cases annotated in French (Grabar, Dalloux, and Claveau 2020) and the multilingual E3C corpus
(Magnini et al. 2020, 2021), which is the subject of this study.

ManyMLmodels for BNER are models that have been widely used for entity recognition in the
newswire domain. Among these models, CRF (McCallum and Li 2003) was the most commonly
used.

More recently, deep learning models have been demonstrated to be very effective in many tasks
of NLP, including named entity recognition (NER). Long short-term memory (LSTM) combined
with CRF has greatly improved performance in BNER (Giorgi and Bader 2019). Word represen-
tation models such as Word2Vec (Mikolov et al. 2013) have become popular as they can improve
the accuracy ofMLmethods.With these models, words with similar meaning have a similar repre-
sentation in vector format. For example, fever and pyrexia are closer in distance (and hence more
semantically similar) than words with completely different meanings like fever andmuscular pain.
Lample et al. (2016) combined the power of word vector representation models, LSTMs and CRF,
into a single method for entity extraction. One of the limitations of word representation models

https://doi.org/10.1017/S1351324923000335 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000335


Natural Language Engineering 5

likeWord2Vec is that they produce a single vector representation for each word in the documents,
ignoring the context where the word appears. Unlike Word2Vec, BERT (Devlin et al. 2019) con-
siders the context word order and learns different representations for polysemous words. In their
study, the authors of BERT showed that pre-training such a contextual representation from large
unlabeled texts, followed by fine-tuning, achieves good performance even when labeled data are
scarce. RoBERTa (Liu et al. 2019) modified some key hyper-parameters of BERT and trained on
much larger amounts of data. BioBERT (Lee et al. 2019) demonstrated that pre-training BERT on
additional biomedical corpora helps it analyze complex biomedical texts.

Finally, multilingual transformer models like mBERT (Devlin et al. 2019) and XLM-RoBERTa
(Conneau et al. 2020) have obtained great improvements for many NLP tasks in a variety of lan-
guages. Specifically, XLM-RoBERTa is a large multilingual language model that was trained on
2.5 TB of data across 100 languages, including the five languages of the E3C corpus. These mul-
tilingual models enable to train and evaluate per-language data or perform cross-lingual learning
by training on one language data and evaluating on another different language data.

Many popular tools for BNER are based on dictionary lookup methods. For example, MedLEE
(Friedman 2000), MetaMap (Aronson 2001), and cTAKES (Savova et al. 2010). With most recent
tools, such as DNORM (Leaman, Islamaj Doğan, and Lu ), NER is initially performed using ML-
based methods which is followed by entity linking that can be rule- or ML-based. One of the main
drawbacks of this cascade approach is that it suffers from error propagation, an inherent drawback
of any pipeline architecture. To overcome this issue, OGER (Furrer, Cornelius, and Rinaldi 2020)
uses a parallel architecture, where NER and entity linking are tackled in parallel.

New state-of-the-art BNER tools such as HunFlair (Weber et al. 2021) and BERN2 (Sung et al.
2022) are based on deep neural networks. The training of HunFlair is a two-step process. First, in-
domain word embeddings are trained on a large unlabeled corpus of biomedical articles, which are
then used in the training of the NER tagger on multiple manually labeled NER corpora. BERN2
uses a multi-task NER model to extract biomedical entities, followed by a neural network-based
model to normalize the extracted entities to their corresponding entity identifiers in MESH. An
overview of the main deep learning methods used in BNER is presented in Song et al. (2021).

3. The E3C corpus
The E3C multilingual corpus (Magnini et al. 2020, 2021) includes clinical cases in five different
languages: Italian, English, French, Spanish, and Basque. Clinical cases are narratives written at the
time of the medical visit that contain the symptoms, signs, diagnosis, treatment, and follow-up of
an individual patient.

The clinical narratives were collected either from publications, like PubMed (journal abstracts)
and The Pan AfricanMedical Journal (journal articles), or from existing corpora like the SPACCC
corpus (dataset). Other documents were collected from admission tests for specialties in medicine
and abstracts of theses in medical science. The procedure used to collect the clinical narratives
was conducted in different ways depending on the type of document and resource. For example,
some of the documents in the English and French data were automatically extracted from PubMed
through the PubMed API. In order to restrict the query to abstracts of clinical cases, the article
category “clinical case” was selected in the API call. The documents extracted with this procedure
were checked by human annotators to verify that the contents of these documents correspond to
the definition of clinical case given in E3C. Such documents were finally split into three different
sets (called layers), each of them containing its own clinical cases without any intersection between
the clinical cases of two different layers.

• Layer 1: consists of clinical case texts with over 25K tokens per language. These texts
include manual annotations of clinical entities and temporal information.Clinical entities
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Table 1. Layer 1: document, sentence, and token counts; source type distribution; entities by
type and language.

English French Italian Spanish Basque

TextMetrics Documents 84 81 86 81 90
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sentences 1520 1109 1146 1134 3126
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tokens 29,359 29,256 29,902 28,815 34,052

Source PubMed 34 16 0 0 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Journal 50 65 68 0 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dataset 0 0 0 81 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Other 0 0 18 0 90

Entities Total 1024 1327 869 1345 1910
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Discontinuous 65 59 42 35 19
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nested 6 4 1 1 2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CUI-less 56 242 63 91 1373

(i.e., disorders like diseases or syndromes, findings, injuries or poisoning and signs or
symptoms) are annotated at mention and concept level (Figure 3). A limitation of the
mention-level annotation in E3C is that it does not specify which words inside a discon-
tinuous entity span are actually part of the entity or not. For example, the entity respiratory
signs in the text respiratory, digestive, laryngeal, vascular, or neurologic signs has been anno-
tated by tagging the whole text span. This limitation is largely due to the tool (WebAnnoa)
used to perform themanual annotation andwhich does not allow the annotation of discon-
tinuous entities. Regarding the concept-level annotation, the disorder entities are mapped
to their concept unique identifiers (CUIs) in UMLS. If an entity was not found in UMLS,
then it was labeled CUI-less. The average inter-annotator agreement for the mention-
and concept-level annotations is 75.00 (F1 measure) and 91.00 (accuracy), respectively.
Temporal information and factuality are events, time expressions, and temporal relations
according to the THYME standard (Styler IV et al. 2014). Table 1 presents a comprehensive
overview of the data. It includes the exact counts of documents, sentences, and tokens per
language, as well as the number of documents per language and source type. Additionally,
the table highlights that only very few entities are discontinuous or nested.

• Layer 2: over 50K tokens of clinical case texts automatically annotated for clinical entities.
The annotated entities were produced with a dictionary lookup method that matches the
clinical entities in the text with the disorders in UMLS. A manual assessment of the quality
of these annotated entities would be too demanding in terms of human resources. For this
reason, the quality of Layer 2 was estimated through an indirect evaluation using the results
obtained by the dictionary lookup method on Layer 1 (see Table 7).

• Layer 3: over 1M tokens of clinical case texts or other medical texts with no annotations to
be exploited by semi-supervised approaches.

To let researchers compare their models under the same experimental conditions, Layer 1 has
two partitions: one for training purposes (about 10K tokens) and one for testing (about 15K
tokens) (Table 2). The reason for having a testing partition larger than that of training is that

ahttps://webanno.github.io/webanno/

https://doi.org/10.1017/S1351324923000335 Published online by Cambridge University Press

https://webanno.github.io/webanno/
https://doi.org/10.1017/S1351324923000335


Natural Language Engineering 7

Table 2. Number of documents and disorder entities in the training and test
partitions of Layer 1.

Training Test

Documents Entities Documents Entities

All 178 2791 244 3684

English 36 463 48 561
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

French 36 596 45 731
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Italian 36 361 50 508
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spanish 36 525 45 820
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Basque 34 846 56 1064

Figure 3. Example of annotated clinical case text. Each clinical entity is annotated with its name span and associated with
its corresponding CUI in UMLS. The annotation does not specify which words inside a discontinuous entity span are actually
part of the entity or not.

larger test datasets ensure a more accurate calculation of model performance. As regards Layer 2,
researchers are free to use its automatically annotated entities in addition to the manual annotated
entities in the training partition of Layer 1 for training their models.

4. Methods
One of the purposes of the present work is to establish the appropriateness of the clinical entity
annotation of the E3C corpus to train an information extraction system for DNER. To do this, the
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Table 3. Number of annotated entities before and after data preprocessing.

Training Test

Gold Pre-processed Gold Pre-processed

All 2791 2695 3684 3526

English 463 437 561 516
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

French 596 569 731 695
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Italian 361 345 508 481
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spanish 525 509 820 800
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Basque 846 835 1064 1054

training and test partitions of Layer 1 of the E3C corpus v2.0.0b have been used. A CRF model is
set as the baseline to compare state-of-the-art pre-trained models to a traditional ML model. All
the evaluated models were configured splitting the training partition randomly into two parts: a
portion (80% of the documents) for training and a portion (20%) for tuning the models (devel-
opment set). The resulting best configuration of each model was tested on the test partition. To
assess the performance of the models, a standard F1-score has been used, which is a combination
of precision and recall (Rijsbergen 1979). The experiments were performed with Google Colab,c a
free cloud-based service that allows the execution of Python code. One limitation of using Google
Colab is that users who have recently used more resources in Colab are likely to run into usage
limits and have their access to GPUs temporarily restricted.

4.1. Preprocessing
Training and test data must be converted to an appropriate format before feeding intoMLmodels.
Typically, models for entity recognition require input data to be in IOB format and the models in
the present work are no exception. In turn, to generate the IOB format, the input data must be
tokenized and split into sentences. Even though the E3C corpus has already been pre-tokenized
and sentence segmented, its documents are distributed in a format (UIMA CAS XMI) that has to
be transformed into IOB before being used by the models. Unfortunately, the IOB format cannot
be adopted to represent discontinuous or nested entities, which are both present in the corpus.
Concerning the representation of the discontinuous entities (3.4% of the total entities in the cor-
pus), some extensions to the IOB scheme have been proposed, such as the scheme of Tang et al.
(2013). This scheme requires the tokens inside a discontinuous entity to be known exactly. Since
the mention-level annotation of the corpus does not provide such information for the discontin-
uous entities (see Section 3), this kind of entities has been removed from consideration. As far as
the nested entities are concerned, it has been observed that there are few of them in the corpus
(0.2% of the entities). For this reason, only the topmost entities have been considered. Another
issue that had to be addressed was related to the character encoding of a document (IT101195).
Given that it was not possible to parse this document correctly, the latter has been discarded from
the corpus. Table 3 shows that, despite these shortcomings, 96.6% (2695 out of 2791) of the enti-
ties in the training partition and 95.7% (3526 out of 3684) of those in the test partition have been
preserved after data preprocessing. The pre-processed data have been made available through the
GitLab repository.d

bhttps://live.european-language-grid.eu/catalogue/corpus/7618
chttps://colab.research.google.com
dhttps://gitlab.fbk.eu/zanoli/e3c_ner_xlm/
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4.2. Evaluation of the models
CRF (Lafferty et al. 2001) is a well-known ML method that has been widely used in NER
(McCallum and Li 2003). In the present work, the CRF method has been implemented via an
adaptation of the code by Korobov (2021). For each running word, the (lowercase) word itself and
prefixes and suffixes (1, 2, 3, 4 characters at the start/end of the word) have been used as features.
Each of these features has been extracted for the current, previous, and following (lowercase)
words. With this procedure, the CRF modele has been trained and evaluated on each language of
the corpus.

Traditional ML models like CRF usually require a large amount of data to achieve high per-
formance. Unfortunately, available annotated datasets for DNER, including the E3C corpus, only
consist of a few hundred thousand annotated words.

Transfer learning is a ML technique that helps users overcome scarcity of labeled data by
reusing models pre-trained on large datasets as the starting point to build a model for a new
target task. In his 2021 book, Azunre (2021) expressed this concept as follows: “Transfer Learning
enables you to adapt or transfer the knowledge acquired from one set of tasks and/or domains,
to a different set of tasks and/or domains. What this means is that a model trained with massive
resources—including data, computing power, time, cost, etc.—once open-sourced can be fine-
tuned and re-used in new settings by the wider engineering community at a fraction of the original
resource requirements.”

In an attempt to exploit the ability of pre-trained models like RoBERTa to achieve better results
than other ML models on small datasets, the RoBERTa and BERT models have been compared.
As these models are pre-trained on English data, they have been fine-tuned and evaluated on the
English portion of the corpus only.

In the present study, the XLM-RoBERTa model has been tested to take advantage of the
multilingual annotation of the corpus. This is possible because multilingual models such as XLM-
RoBERTa are pre-trained on the corpus from multiple languages and hence they can be used for
NER tasks in more than one language. XLM-RoBERTa has been evaluated in three different set-
tings. In the first setting, the model has been tested on each target language data by fine-tuning
on data in the target language. This evaluates per-language performance. In the second setting,
the models have been fine-tuned on data in all languages to evaluate multilingual learning. In the
third setting, the models have been fine-tuned on data in all languages except the target language,
and performance has been evaluated on the target language. In this way, the exploitability of the
E3C corpus has been evaluated for cross-lingual transfer learning.

Since the XLM-RoBERTamodel comes pre-trained on generic corpora, its performancemay be
limited when the model is used to annotate clinical case texts. To see how much this model com-
pared to state-of-the-art models in the biomedical domain, the English portion of the E3C corpus
has been used to compare XLM-RoBERTa with the BERN2, HunFlair, and BioBERT models.

Unlike Layer 1, which contains manual annotated entities, Layer 2 consists of automatically
annotated entities. For the purpose of investigating the appropriateness of Layer 2 for training
ML models, documents from Layer 1 and Layer 2 have been concatenated into one larger train
dataset. Then, the XLM-RoBERTa model was fine-tuned on such a dataset.

The setup used to evaluate all the pre-trained models mentioned above (except HunFlair for
which its own scripts were usedf) is essentially the same as that implemented in dl blog (2021),
which uses the Python script run_ner.pyg to execute its code.

One of the main hyper-parameters that may affect the accuracy of pre-trained models is the
number of learning epochs. In fact, while too many epochs can lead to overfitting of the train-
ing dataset, too few epochs may result in an underfitting model. The optimal number of epochs

ealgorithm:lbfgs, c1:0.1, c2:0.1, max_iterations:100
fhttps://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR.md
ghttps://raw.githubusercontent.com/huggingface/transformers/v3.1.0/examples/token-classification/run_ner.py
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Table 4. Deep learning models and hyper-parameters used in the setup.

model epochs batch max_len seed learning_rate optimizer

XLM-RoBERTa xlm-roberta-base 4 8 450 16 5e-5 adam
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RoBERTa roberta-base
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BioBERT biobert-base-cased-v1.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BERN2 1.1.0

HunFlair 0.11.3 4 32 450 16 1e-5 SGD

Transformers v3.1.0 was used to perform the experiments except for BERN2, which was evaluated with transformers v4.9.0.

for fine-tuning pre-trained models is generally low. For example, the authors of BERT recom-
mend only 2–4 epochs. Taking these considerations into account, the loss function calculated
on the development partition of the corpus has been used to detect when a model is overfitting.
A good fit is when the loss function stops improving after a certain number of epochs and begins to
decrease afterward. In this study, the search of the optimal number of epochs was limited between
2 and 4 to avoid going beyond the application usage limits of Google Colab. For most of the eval-
uated models, the optimal number of epochs was found equal to 4. For the rest of the models, the
observed optimal number of epochs was 3 without, however, a significant difference in the loss
gap between 3 and 4 epochs. For this reason, all the models have been fine-tuned with 4 epochs as
shown in Table 4.

To ensure the reproducibility of results, the random seed hyper-parameter was set to a fixed
value (16). Since the choice of the seed value can result in substantial differences in scores (Reimers
and Gurevych 2017), each experiment was repeated 30 times, varying the seed each time. This set
of experiments was conducted with a dedicated PCh to overcome the computational time lim-
itation of Google Colab. Eventually, statistical differences between two models were calculated
using the paired permutation test (Noreen 1989; Dror et al. 2018). This was done by using the
permutation_test functioni of the Mlxtendj python library.

The results of the considered models have been compared with those of two baseline methods
often used in the literature. A first baseline was produced by a system that only identifies entities
appearing in the training split of the corpus. This baseline was used at CoNLL-2003 in the task of
NER. The second baseline finds an exact string match for each disorder name in UMLS to a word
or phrase in each document of the test. This baseline owes a lot to the one used by Jonnagaddala
et al. (2016). The only difference is that in this work UMLS has been used as a controlled
vocabulary instead of the MEDIC vocabulary (Davis et al. 2012).

The reason why state-of-the-art NLP tools like cTAKES and MetaMap have not been included
among these baselines is that these tools are often only available for English and they are not easily
adaptable to other languages such as the ones of the E3C corpus.

To provide researchers with benchmarking baselines on the concept-level annotation of the
corpus, entity linking has been implemented in cascade to the best performing model (XLM-
RoBERTa). The approach for entity linking used here is practically the same as the one proposed
by Alam et al. (2016). Specifically, in the present work a dictionary lookup based on UMLS has
been adopted instead of the Comparative Toxicogenomics Database to select the best-matching
concept (see the pseudocode in Algorithm 1). UMLS consists of more than 100 source vocabular-
ies, including SNOMED CT, which is subject to license restriction when it is used in SNOMED

hUbuntu 20.04, GeForce RTX 2080 ti
ipaired:True, method:approximate, num_rounds:100000
jhttp://rasbt.github.io/mlxtend/
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Table 5. F1 measure of themachine learningmodels and baselines (dictionary lookup, CoNLL-
2003) on the mention-level test set.

English French Italian Spanish Basque Avg

XLM-RoBERTa-ML 59.84 61.97 58.58 64.07 71.34 63.16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLM-RoBERTa-PL 52.12 57.50 63.65 62.42 67.04 60.55
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLM-RoBERTa-CL 48.67 54.16 53.49 55.79 46.99 51.82

CRF 38.34 35.97 51.59 52.50 66.33 48.95

dictionary lookup 45.86 59.46 54.21 66.01 9.59 47.03
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CoNLL-2003 29.31 37.13 41.74 46.05 53.44 41.53

XLM-RoBERTa is fine-tuned and evaluated on all languages (-ML), per-language (-PL), and cross-language (-CL).
The results of the deep learning models were computed with a fixed random seed (16).

Algorithm 1. Pseudocode for concept normalization. pred_entities are the entities recognized by the XLM-RoBERTamodel.
gold_entities, UMLS are dictionaries in which disorder entities are associated with their concept unique identifiers (CUIs) in
UMLS.

1: procedure NORMALIZATION(gold_entities, UMLS, pred_entities)

2: for all entityi ∈ pred_entities do
3: if entityi ∈ gold_entities then
4: entityi_id← gold_entities.getMostFrequentEntityCUI(entiyi)

5: else if entityi ∈ UMLS then
6: entityi_id← UMLS.getMostFrequentEntityCUI(entityi)

7: else

8: entityi_id← CUILESS

9: end if

10: end for

11: end procedure

nonmember countries like Italy. This restriction has been addressed by removing SNOMED CT
from the experimentation. The results using the presented approach for entity linking have been
compared with the results of the two baselines that have also been used to evaluate DNER: the
CoNLL-2003 and dictionary lookup baselines. In particular, in order to evaluate entity linking, the
baselines have been configured in such a way that they only select complete unambiguous entities
appearing in the training data (CoNLL-2003) or in UMLS (dictionary lookup). The standard met-
ric used to evaluate the linked entities is the metric used for NER (F1-score). Particularly, in entity
linking tasks an entity link is considered correct only if the entity matches the gold boundary and
the link to the entity is also correct.

5. Results
Table 5 shows that all the pre-trained models, which are based on XLM-RoBERTa, outperform
the CoNLL-2003 baseline and perform better on average than the dictionary lookup baseline. The
results of these models are also higher than the results of the traditional ML model (CRF).
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Table 6. Precision, recall, and F1 measure of the machine learning models and
baselines (dictionary lookup, CoNLL-2003) on the English mention-level test set.

Precision Recall F1 Average F1

BERN2 54.97 75.00 63.44 62.98±1.08
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HunFlair 54.59 71.51 61.91 62.66↑±0.86
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BioBERT 51.37 68.99 58.90 58.28↑±0.95
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLM-RoBERTa-ML 51.85 70.74 59.84 56.95↑±1.08
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLM-RoBERTa-PL 45.67 60.66 52.12 55.29↑±1.76
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BERT 46.13 62.40 53.05 53.45↑±1.29
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLM-RoBERTa-CL 40.81 60.27 48.67 50.16±1.25
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RoBERTa 43.65 63.95 51.89 49.09±5.11

CRF 51.81 30.43 38.34

dictionary lookup 37.08 60.08 45.86
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CoNLL-2003 43.51 22.09 29.31

Average F1 measure and standard deviation are calculated over 30 randomseeds [1–30]. (↑) indicates
that the average F1 measure of the model is significantly better than the one immediately below for
p-value≤ 0.05.

The XLM-RoBERTa-ML model fine-tuned on all language data simultaneously (multilingual
learning) performs better (except for Italian) than XLM-RoBERTa-PL fine-tuned on each language
data separately (per-language learning), with a F1 measure of 63.16 and 60.55, respectively.

XLM-RoBERTa-CL fine-tuned on all language data except the target language and evaluated on
the target language (cross-lingual transfer learning) produces lower results for Basque (F1 mea-
sure: 46.99) than for the other languages of the corpus. Finally, UMLS, used to implement the
dictionary lookup baseline, has a low coverage in Basque (F1 measure: 9.59).

On the English data, Table 6 highlights that the results of the state-of-the-art BNER tools such
as BERN2 and HunFlair are substantially better than the results of the other tested models. The
BERN2 result (F1 measure: 63.44) is higher than that of the median for all systems (F1 measure:
58.90) participating in Task 1 of the ShARe/CLEF eHealth Evaluation Lab 2013, but lower than
the best result in Task 1 (F1 measure: 75.00).

With regard to the tradeoff between precision and recall, all models based on deep learning
show higher recall values than precision values on the English and Italian data (Tables 6 and 7),
while they show a closer balance between precision and recall on the French, Spanish, and Basque
data (Tables 7 and 8).

On the French data (Table 7), XLM-RoBERTa-PL (F1 measure: 57.50) and CRF (F1 measure:
45.29) perform in line with multilingual BERT and CRF tested by the participants of Task 3 at
DEFT 2020 (F1 measure: 53.03 and 49.84, respectively).

As far as the exploitation of Layer 2 for training the models is concerned, fine-tuning XLM-
RoBERTa on the concatenation of documents of Layer 1 and Layer 2 produces lower results than
when XLM-RoBERTa is fine-tuned on Layer 1 only (Table 9).

Concerning entity linking, Table 10 shows that the proposed approach (F1 measure: 50.37)
performs much better than the dictionary lookup (40.93) and CoNLL-2003 (39.0) baselines. It
also performs comparable on average with the results of the dictionary lookup baseline method
used at the BC5CDR task (F1 measure: 52.30) and better than the dictionary lookup baseline on
the NCBI dataset (F1 measure: 33.10).
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Table 7. Precision, recall, and F1 measure of themachine learningmodels and baselines (dictionary lookup, CoNLL-
2003) on the French and Italian mention-level test sets.

French Italian

Precision Recall F1 Average F1 Precision Recall F1 Average F1

XLM-RoBERTa-ML 60.16 63.88 61.97 59.97↑±1.16 50.47 69.78 58.58 61.53↑±1.30
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLM-RoBERTa-PL 55.57 59.57 57.50 55.11↑±1.53 60.31 67.39 63.65 60.32↑±2.53
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLM-RoBERTa-CL 61.81 48.20 54.16 54.34±1.64 43.28 70.00 53.49 54.86±1.32

CRF 61.12 35.97 45.29 65.88 42.39 51.59

dictionary lookup 71.14 51.08 59.46 48.46 61.52 54.21
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CoNLL-2003 58.51 27.19 37.13 67.48 30.22 41.74

Average F1 measure and standard deviation are calculated over 30 random seeds [1–30]. (↑) indicates that the average F1 measure of the
model is significantly better than the one immediately below for p-value≤ 0.05.

Table 8. Precision, recall, and F1 measure of the machine learning models and baselines (dictionary lookup,
CoNLL-2003) on the Spanish and Basque mention-level test sets.

Spanish Basque

Precision Recall F1 Average F1 Precision Recall F1 Average F1

XLM-RoBERTa-ML 65.45 62.75 64.07 64.40↑±1.21 69.45 73.34 71.34 71.19↑±1.08
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLM-RoBERTa-PL 62.34 62.50 62.42 60.89↑±2.18 65.64 68.50 67.04 67.64↑±2.17
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLM-RoBERTa-CL 63.09 50.00 55.79 56.60±1.34 57.05 39.94 46.99 46.09±1.60

CRF 71.80 41.37 52.50 80.60 56.36 66.33

dictionary lookup 69.63 62.75 66.01 75.00 5.12 9.59
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CoNLL-2003 73.63 33.50 46.05 81.08 39.85 53.44

Average F1 measure and standard deviation are calculated over 30 random seeds [1–30]. (↑) indicates that the average F1 measure
of the model is significantly better than the one immediately below for p-value≤ 0.05.

Table 9. Precision, recall, and F1 measure of XLM-RoBERTa-
ML fine-tuned on the concatenation of documents of Layer 1
and Layer 2 compared to XLM-RoBERTa-ML fine-tuned using
documents of Layer 1.

English French Italian Spanish Basque

L1+L2 49.41 55.67 54.39 56.38 56.54
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L1 59.84 61.97 58.58 64.07 71.34

One of the main outcomes of this study is the integration of the considered models into the
ELG platform, a cloud platform providing easy access to hundreds of commercial and noncom-
mercial language technology resources (tools, services, and datasets) for all European languages.
To do this, a pipeline has been implemented, which consists of the best model for DNER
(XLM-RoBERTa-ML) in combination with the described approach for entity linking. Then, the
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Table 10. F1 measure of entity linking in cascade to XLM-RoBERTa-ML (the approach of the present work) and
baselines (dictionary lookup and CoNLL-2003) calculated on the concept-level annotation of the corpus. For
each column, the highest value of among the three approaches is displayed in bold.

English French Italian Spanish Basque Avg

This work’s approach 44.10 47.03 46.35 51.31 63.04 50.37
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(73.70) (75.90) (79.13) (80.10) (88.36) (81.04)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dictionary lookup 41.39 50.61 51.59 52.18 8.88 40.93
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CoNLL-2003 22.47 33.16 39.88 46.05 53.44 39.0

In brackets the accuracy measure, which is calculated as the number of correctly linked entities divided by the total number of all
correctly recognized entities.

Figure 4. Running the pipeline for DNER from its page in the ELG platform.

pipeline has been packed as a docker image and deployed on the platform as an ELG service.k
This allows users to experiment with the pipeline in three different ways: (i) trying the pipeline
from its web page in ELG (Figure 4), (ii) running the pipeline by command line from their shell
(Figure 5), and (iii) using the pipeline from their Python code by exploiting the ELG Python SDK.
The pre-processed datasets used for training and testing the models are hosted on GitLab.l

khttps://live.european-language-grid.eu/catalogue/tool-service/9283
lhttps://gitlab.fbk.eu/zanoli/e3c_ner_xlm/
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Figure 5. Running the pipeline for DNER from the user’s shell.

6. Discussion
Machines are much faster at processing knowledge compared to humans, but they require manu-
ally annotated datasets for training. The overall outcome of the experiments shows that the E3C
corpus can be used to successfully train and evaluate ML models for DNER.

One of the main problems that had to be faced was related to the preprocessing of the E3C cor-
pus. In fact, the corpus contains both discontinuous and nested entities that cannot be addressed
using the classical IOB tagging scheme (Section 4.1). Although there are extensions to the IOB
schema capable of encoding discontinuous entities, they cannot be applied to the E3C corpus due
to the lack of required information in the annotation of the corpus. For this reason, the discon-
tinuous entities have been removed from consideration (3.4% of the total number of entities in
the corpus). Concerning the nested entities, given the relatively small number of them in the cor-
pus (0.2%) and the difficulty of working with formats other than IOB, it was decided to use the
topmost entities of the corpus only.

Regarding the effectiveness of the considered models, Table 5 compares the results of the ML
models trained on the mention-level annotation with the results of two baselines often used in
the literature. Significantly, the ML models outperform the CoNLL-2003 baseline, since the latter
only identified entities seen in the training data. This suggests that the E3C corpus can be used to
train models that generalize well on unseen data.

Surprisingly, higher values for multilingual learning (XLM-RoBERTa-ML) than for training
on each language separately (XLM-RoBERTa-PL) have been detected (with a F1 measure of 63.16
and 60.55, respectively) (Table 5), whereas Conneau et al. (2020) found no substantial differences
between the two learning approaches on the CoNLL datasets (with a F1 measure of 89.43 and
90.24, respectively). This points toward the idea that the five languages data of the E3C corpus can
be put together to form a larger partition and this improves the accuracy of the trained models.
The reasons for contradictory results with the Italian data depend on the specific random seed
value used for experimentation as discussed later in this section.

The experiments conducted to evaluate cross-lingual transfer (XLM-RoBERTa-CL) (Table 5)
validate the appropriateness of the corpus to train models on data available for one language to
recognize disorder entities in another language. As expected, the highest accuracy values were
obtained with those models fine-tuned and tested on the Romance languages of the corpus
(Italian, Spanish, and French), all of which stem from Latin. On the other hand, Basque has no
Latin base. Consequently, it is not surprising that training on Romance languages and testing on
Basque did not produce optimal results. Despite these not ideal results for Basque, however, they
are considerably higher than the results produced by the dictionary lookup baseline. This shows
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that the E3C corpus is also applicable to low-resource languages that have no training data and
with a low level of coverage in medical vocabularies.

Turning now to the comparison between deep learning models and more traditional ML mod-
els, much higher values for the pre-trainedmodels (XLM-RoBERTa) than CRF (Table 5) have been
found. This fact is explainable by considering that pre-trained models allow for fine-tuning this
task on a much smaller dataset than would be required in a model that is built from scratch like
CRF.

Table 6 indicates that state-of-the-art tools for BNER like BERN2 and HunFlair outperform the
other tested models.

With regard to how the considered models compare to models evaluated on other datasets for
BNER, the results obtained with BioBERT (F1 measure: 58.90) on the English data of the corpus
are lower than the results achieved by the BioBERT authors on the NCBI (F1 measure: 89.71)
and BC5CDR (F1 measure: 87.15) datasets. Then, the results on the English data are also lower
than the results that the authors of this work achieved by evaluating BioBERT on the dataset used
in Task 1 of the ShARe/CLEF eHealth Evaluation Lab 2013 (F1 measure: 82.02). This non-ideal
performance on the E3C corpus was not completely unexpected. In fact, the experiments carried
out also show lower results of the CoNLL-2003 baseline on the E3C English data (F1 measure:
29.31) than of those of the CoNLL-2003 baseline on the NCBI (F1 measure: 69.01) and BC5CDR
(F1 measure: 69.22) datasets. On the E3C English data, the CoNLL-2003 baseline also produces
considerably lower results than the CoNLL-2003 baseline tested on the ShARe/CLEF dataset (F1
measure: 51.03). This implies that many entities are shared between the training and test parti-
tions of the compared datasets and suggest why the models tested on the E3C corpus perform far
differently than the models tested on the other datasets. Then, it is interesting to note that the
ML models trained on the E3C corpus achieved one of the highest classification accuracy values
in comparison with the CoNLL-2003 baseline. This result would seem to support the hypothesis
that the patterns learned from E3C can help recognize new entities not seen during the training
of models.

As far as the results obtained on the French data are concerned (Table 7), XLM-RoBERTa-ML
(F1 measure: 61.97) performed in line with the second best system (F1 measure: 61.41) in Task 3 of
the DEFT 2020 challenge (Cardon et al. 2020) on the sub-task of identifying pathologies and signs
or symptoms (disorders in E3C). This system was based on a hybrid architecture of LSTM+CRF
in cascade to BERT. Then, XLM-RoBERTa-PL (F1 measure: 57.50) and CRF (F1 measure: 45.29)
perform in line with multilingual BERT (F1 measure: 53.03) and CRF (F1 measure: 49.84) tested
by the participant teams in Task 3 (Copara et al. 2020). It is important to note that the performance
of the models on the DEFT dataset is lower than that of the models on the other datasets discussed
before, but also that the CoNLL-2003 baseline (F1 measure: 16.35) on the DEFT dataset is lower
than the CoNLL-2003 baseline on such datasets.

When computational resources are limited, random seed is one of those hyper-parameters that
are often kept constant to reduce the number of system configurations to evaluate. To see how
the random seed setup can affect the model performance, the results of the pre-trained models
calculated with one fixed random seed were compared to the results of the models calculated over
30 different random seeds. Significantly, the average F1 measure computed over the 30 random
seeds (Tables 6–8) confirms the results obtained with a fixed random seed that the ML mod-
els outperform the considered baselines. The observations made on how the considered models
compare to models evaluated on other datasets are also confirmed. Looking at how the mod-
els compare to each other, XLM-RoBERTa-ML was thought initially better than BioBERT on the
English data, while XLM-RoBERTa-PL was considered better than XLM-RoBERTa-ML on the
Italian data. However, a more careful analysis based on the average F1 measure revealed that these
results were due to the fixed random seed used in the experimentation. This stress the impor-
tance of testing deep learning models with many random seeds, but also that this often requires
expensive hardware and extensive computational costs.

https://doi.org/10.1017/S1351324923000335 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324923000335


Natural Language Engineering 17

The exploitability of Layer 2 for training ML models is discussed as follows. The study car-
ried out was not successful in proving its usefulness for improving NER (Table 9). However, this
may depend on the methodology chosen for this experiment. In fact, documents from Layer 1
and Layer 2 have been concatenated into one large dataset for training the models. However, the
distant supervision method used to annotate Layer 2 may have induced incomplete and noisy
labels, making the straightforward application of supervised learning ineffective. It is the authors’
opinion that using heuristic rules to filter out sentences with potentially low matching quality
(e.g. sentences that contain other entities besides the entities annotated in the training partition of
Layer 1) might be beneficial for using Layer 2 successfully.

In an attempt to provide researchers with baselines on the concept-level annotation of the
corpus, a dictionary lookupmethod has been implemented in cascade to the model for DNER that
on average performed better than others on all five languages of the corpus (XLM-RoBERTa-ML).
This approach performs largely in line with the dictionary lookup baseline method but better than
the CoNLL-2003 baseline (Table 9). It also performs comparably on average with the dictionary
lookup baseline used at the BC5CDR task (F1 measure: 52.30) and better than the dictionary
lookup baseline on the NCBI dataset (F1 measure: 33.10).

The authors of the present work are confident that their findings may be useful for people to
better understand the appropriateness of the E3C corpus for training DNER models. The authors
believe that the trained models might also be applied to unseen languages that are not covered
by any language of the corpus but that share grammatical structures and patterns with them.
These models might also represent a valuable solution for low-resource languages for which does
not exist any annotated data. Researchers can use these results as the baselines for this corpus to
develop and compare their own models. The distribution of the considered models through the
ELG platform enables clinical researchers and practitioners to have quick and easy access to these
models.

7. Conclusion
This work has discussed experiments carried out on the E3C corpus of biomedical annotations,
showing the appropriateness of the corpus itself for training ML models and developing a system
capable of mining entities of disorders from clinical case texts. The results achieved in this regard
form a first baseline that researchers can use to compare their results and systems with. Clinical
researchers and practitioners can experiment with the resulting models via the ELG platform.
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