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SUMMARY
A mathematical theory of population genetics accounting for the genes

transmitted through mitochondria or chloroplasts has been studied. In
the model it is assumed that a population consists of Nm males and Nf
females, the genetic contribution from a male is /? and that from a female
1 - /?, and each cell line contains n effective copies of a gene in its cyto-
plasm. Assuming selective neutrality and an infinite alleles model, it is
shown that the sum (H) of squares of allelic frequencies within an indi-
vidual and the corresponding sum (Q) for the entire population are, at
equilibrium, given by

and

where p = 2/?(l-/?), Ne = {02/Nm+ ( l - / ? ) 2 / ^}" 1 , A is the number of
somatic cell divisions in one generation, and v is the mutation rate per cell
division. If the genes are transmitted entirely through the female the
formulae reduce to 8 ~ 1/(1 + 2nv) and Q ~ 1/{1 + (2#CA-|- 2n)v}. Non-
equilibrium behaviours of H and Q are also studied in the case of a
panmictic population. These results are extended to geographically
structured models, and applied to existing experimental data.

1. INTRODUCTION

Transmission genetics of mitochondria and chloroplasts in yeast has been
extensively studied by Birky and his associates, (Birky, 1975, 1978; Birky &
Skavaril, 1976 and Birky et al. 1978). Using the molecular method of restriction
enzymes, several studies have been carried out recently to investigate the evol-
utionary rate and the genetic variability maintained in the populations of extra-
nuclear genes of man, rodent species and others (Brown, George & Wilson, 1979;
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Avise et al. 1979a, b; Hayashi et al. 1979 and others). Among characteristic
features of genetical interest, Brown et al. have reported that the evolutionary
rate of mitochondrial genomes is considerably faster than that of ordinary Men-
delian genes. On the other hand, according to Avise et al., phylogenetic relation-
ships among different mitochondrial genomes can be identified and geographically
closer individuals tend to share genomes of closer relationship. Since these studies
are topical and important in population genetics and molecular evolution, we can
expect that in the near future a large amount of data of the similar nature will be
reported on various organisms. Therefore we believe it is quite appropriate to
formulate mathematical models for such genes contained in extranuclear genomes.
In this paper, we attempt to advance population genetics theory for genes existing
in indefinite multiple copies in each individual and transmitted mainly through
the cytoplasm.

2. MODEL

(1) Mode of inheritance. We assume that the genes in question reside in the cyto-
plasm and the number of copies existing in a cell is not necessarily constant, but
can vary in time without becoming extinct or too numerous. Prior to a cell division
the number of genes is approximately doubled, and reduced to half after the
division. The genes are transmitted through the gametes, which contribute
different proportions depending on the sex. We denote the average proportion of
the male's contribution by /? and that of the female by 1 — /?. Therefore, if /? = 0
the genes are transmitted entirely through eggs, and if /? = J both sexes contribute
equally. In one generation, every cell in the germ line goes through a certain
number of somatic cell divisions, at each of which the total number of genes is
doubled and then reduced by random partition. We denote by A the number of
cell divisions. As in the infinite neutral allele model of Kimura & Crow (1964), we
assume that every mutant is different from the pre-existing ones in the population,
and that the mutation rate for every cell division is v. We denote by n the harmonic
mean of the number of existing gene copies through cell generations. For instance,
if the numbers of genes in cell generations 1, 2, ..., t are nlt n2, ..., nt then

i t t \ \
— tllY. —). Another potential factor which can make the actual and

effective numbers different is the variation of replicating copies among the genes
(see Wright, 1931; Kimura & Crow, 1963). One generation cycle of cytoplasmic
genes modelled here is illustrated in Fig. 1.

(2) Population structure. We will deal with two situations. A simple one is of
course a random mating population consisting of Nf females and JVm males. The
other is a one- or two-dimensional stepping-stone structure in which the population
consists of circularly arranged L separate colonies or Lx x L2 colonies on a surface
of a torus-like space. We assume that all the colonies in the population have equal
size and that each colony receives immigrants from the two (one-dimensional case)
or four (two-dimensional case) neighbouring colonies at a rate m per generation.
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3. ANALYSES

(1) Random mating populations. Let H be the probability that two randomly
chosen genes from a single individual are identical by descent, and Q be the anal-
ogous probability for two genes taken from separate individuals. To study the
stationary values and transient behaviour for H and Q, we derive equations de-
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Fig. 1. Diagram illustrating one generation cycle of cytoplasmic genes, assuming
n = 6, ft = ^, and every gene duplicates exactly once at each cell division. Symbols
O a n d 9 indicate two allelic forms of a gene.

scribing the change in these quantities. We will first see the change due to random
sampling of gametes and formation of zygotes. If we denote by H' and Q' the
quantities after the sampling and fertilization, we have

and
H' = ( l - 2 / ? ( l - -fi)Q (1)

(2)
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in which l/JVT
e = 02/Nm + {l -fi)2/Nf. The first term in the right-hand side of (1)

is the probability that two genes taken from an individual are derived from a single
individual in the previous generation, and the second term is the probability that
they are derived from two separate individuals. Similarly, the first term in the
right-hand side of (2) is the probability that two genes in separate individuals are
from a single individual and the second term is the probability that they are
derived from two separate individuals of the previous generation.

After the fertilization, every cell goes through somatic cell division A times, at
each of which changes in H and Q are as follows:

(3)

Q'= (l-i

where v is the mutation rate per cell division and n is the inbreeding effective
number of genes. If the cell division is repeated A times and we denote the resulting
quantities by H' and Q', we have

H' = ( 1 - i W l - i ) H + b (4)

and

Q' = (1-V)2XQ, (5)

in which

Combining these equations (1), (2), (4) and (5), we have the following equations
describing the change in one complete generation,

c' = Mc + b, (7)

in which c is the column vector (H, Q), M is the matrix

W;e

and b is the column vector (6, 0) where b is given in (6).
The equilibrium values of c can be obtained by replacing c' by c in (7) and

solving the resulting equation. Denoting these equilibrium values by H and Q,
we have

& _ 1
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Q =

(10)

( 1\A

1 — I . It is important to note that if p <| 1 —

( 1—I or equivalently if B 4, -, the genetic contribution from males can be
n) n

ignored without altering the results significantly. When this is the case, the main
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Fig. 2. Genetic identities (H and Q) as functions of/?, for random mating populations,
where N, = Nm = N/2. N = 104, v = 10s; , A = 10, n = 10; —, A = 1,
n = 103.

feature of the genetic polymorphisms will be determined by the balance between
mutation and the ratio of the number of cell divisions in a generation to the
number of genes. It might be worth mentioning, however, that even if the value
of fi alone is small, the contributions of male gametes cannot always be ignored.
In fact, if /? is small, but A is also small and n is large, the male sex can play a
significant role in determining the amount of genetic variability. The relationships
among these parameters are shown in Fig. 2.

It is interesting to note that either from the recurrence equation (7) or from the
explicit formulae (9) and (10), we can get

Q_= i i _
ft 1 + {(1 - v)~u -l}Ne~ 1 + 2NevX

This is a simple formula giving the relationship between 6 and Q, and interest-
ingly it is independent of the values of n, 6 and Q. Analogous formulae have been
worked out for the multigene family model by Ohta (1978), and also for a geo-

https://doi.org/10.1017/S0016672300020292 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300020292


296 N. TAKAHATA AND T. MARUYAMA

graphically structured population model of Mendelian genes by Maruyama &
Kimura (1980).

The equilibria given in (9) and (10) are values just before each meiotic division.
Modifying (7) slightly, however, we can obtain the equilibrium values of H and
Q immediately after fertilization, which can be significantly different, particularly
when A is large or n is small. They are

# i ~ / i _ 2N«vX

and

~ 4
where the superscript 1 refers to the values immediately after fertilization. The
differences between these values at the two different times will be small if values
of p and 2NevA are small. However, if p and 2NevX are large, the difference of
ft1 and 6 can be large, while Q1 and Q are always approximately the same. This
is intuitively clear; if p and 2Nev\ are large the entire population will be highly
polymorphic (small Q) and the individual level (H) of the homozygosity will also
be low at the time of fertilization, but with a large number of somatic divisions the
value of H will be much increased. Therefore under this circumstance we have
H1 «? H.

So far we have dealt with the stationary values of H and Q. It is also important
to see the rate at which the equilibria are attained when these values are per-
turbed. To do this we need to change the recurrence equation (7) into a linear
system. Let A be the vector consisting of the differences of H from its equilibrium
value H and of Q from Q, i.e. A is the column vector (H — £l, Q — Q). Through
simple algebra, we have then

A' = M A, (11)

where A' refers to the difference vector one generation later and M the matrix
given in (8). Now the difference vector A decreases to zero and its rate is related
to the eigenvalues of the M matrix. Since the recurrence relationship is given
for discrete time measurement, the actual rate of approach is given by one minus
the eigenvalues, and they are

and

1 -A 2 ~ i _ { i -

where Â s refer to the eigenvalues of M. Obviously 1 — Ax < 1 —A2, and thus
asymptotically the difference vector A approaches zero at a rate given by (12). It
is interesting to note that when p is small, the eigenvector associated with A1 co-
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indices nearly with the Q axis in a two-dimensional H and Q plane. This implies
that when p is small, perturbed values of H and Q return quickly to equilibrium in
H, and then slowly to Q. On the other hand, if p is significantly large, both H and
Q approach their stationary values at a rate given by (12). Equation (11) can be
explicitly solved and the differences at generation t are given by

Ht-6 = r A r [{(ou - A,) X\ - (an - Xx) A'} x (Ho -6) + a12 (Af - Aj) (Qo - Q)]
A 1 -A 2

and

Qt~Q = r - V f((a22 - Aa) Af - (a22 - Xj) A|} x (Qo -Q) + a21 (AJ - Aj) (Ho -6)],Ai~A2

in which the subscripts in Q and H indicate the time measured in generations, and

an = ( i -
(13)

We should like to note that the theory presented for the random mating popu-
lation is mathematically analogous to the models of multigene families studied by
Ohta (1978, 1980). The fusion of female and male gametes corresponds to the
crossing-over between different chromosomes in the multigene family model. The
sampling and distribution of genes at each somatic cell division correspond to the
intrachromosomal crossing-over. The present model also has a mathematical
analogy with a geographical population model for Mendelian genes, in which ex-
tinction and replacement of local subpopulations are incorporated (Maruyama &
Kimura, 1980). The extinction of a local subpopulation is followed by a replace-
ment in the geographical model. Succession of local populations without their
becoming extinct corresponds to the somatic cell divisions.

(2) Geographically structured populations. Some species are quite sessile or move
very little geographically. For such species, geographically closer individuals are
more closely related genetically, and therefore the population structure becomes
an important factor in determining the genetic variability. In this section we shall
attempt to cope with this problem using the stepping-stone model (Kimura &
Weiss, 1964). The mathematics used here is very close to that used in Maruyama
(1970), and therefore we shall present key equations and the final formulae.

Following Maruyama (1970), let the population occupy a circular habitat with
L colonies and each colony have effective size Ne. Let us assume that short-range
migration occurs only between adjacent colonies with the rate m, i.e. the ith colony
receives migration from the i + lth colony at the rate m/2 and it also receives
migration from the i — lth colony at the same rate. This is a special case of geographi-
cally structured populations studied, and for details the reader may refer to Kimura
& Weiss (1964) and Maruyama (1970).

Let Qi(i = 0, 1, 2, ..., L — 1) be the probability that two homologous genes taken
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randomly from two individuals belonging to populations i steps apart are identical
by descent. And let H be the probability that two homologous genes sampled from
a single individual are identical by descent. Then the total changes in H and Qo due
to the random sampling of gametes, mutation and cell division are given by the
same formula as (7) of the panmictic case. Now the changes in Qi for i > 1 during
somatic cell division are given by

Gi = (l-»)»*&. (14)

And by migration, Qi for i ^ 0 are further altered,

[)i+2, (15)

whereas H remains unchanged. Therefore the time-dependent solutions of H and
Q'ts can be determined by these recurrence relations. In particular, the equilibrium
values can be explicitly obtained by substituting H' for H and Q\ for Qt:

{(p) pQ0} \ (16)

and

cos ^ ? , (17)

where AA. = 1 if k = 0 or k = L/2 and AA = | otherwise, £fc = 0 and £,k =
{ l - m ( l - c o s [277/fc/X])}2 for k > 0, gr = (l-v)™{8/Ne-Q0/Ne). In the above
formula, i / and Qo are implicit, but they can be determined explicitly. Let alx, a12,
a21 be the same as given in (13), and let a22 = — a21. Then the explicit formulae for
ft and Qo are

and

where b is the non-zero element of b given in (6), \A\ is the determinant of the
matrix whose entries are a^s, and

An interesting relationship between the local and global variabilities follows
from (17). To see this let
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1 L-\ ^

= 7 L Qi
• " t = 0

Thus Q is the probability of identity for two randomly chosen genes from the
whole population. Upon substitution of Qt given by (17) into the above equation
and rearranging, we have

(l-v)™} ~ 2NT\v

where NT = ZJve. In deriving (18), we assumed the equal colony size and restricted
migration pattern, but the formula can be proved to be true for more general
models of population structure. The only requirement is that the population has
stable structure which allows an equilibrium state to exist. A similar formula has
been derived for Mendelian genes in a very general situation (Maruyama, 1970;
Crow & Maruyama, 1971).

Although one- and two-dimensional models are mathematically the same, the
dimension of the space is known to have large effects on the amount of genetic
variability and other quantities of biological interest (Kimura & Weiss, 1964;
Maruyama, 1972). Therefore we feel it necessary to present corresponding formulae
for a two-dimensional case. We assume that the population consists of Lx x L2

colonies of equal size and that they are located on grid points of a two-dimensional
lattice forming the surface of a torus. Let Qu be the probability analogous to Qk,
in which k indicates the number of steps apart along one axis and I the steps along
the other axis. Also let £$ = 0 and

£$ = { l ~ ( l - cos | ^ } ( i = 1, 2 and k = 1, 2, ...,Lt),

where m is the migration rate. Further let A|p = 1 if j = 0 or = Lf/2 and Ajf =
otherwise. Now using these notations, we define

Then we have the following formulae for the two-dimensional model:

ft =
l (

Q = (!-»)"(£-4,) gp>gg> cos 27111/^ cos 2njkjL2
Vi> NeL,L2 f f { l - ( l - V ) ^ / D

and finally

L,L2 g « tfr{l-(l-«)">
where Ne is the effective size of a single subpopulation and NT = LxL2Ne. Formula
(20) is a two-dimensional version of the relationship given in (18).
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4. DISCUSSION

We have attempted to provide a mathematical model and analysis for the genetic
variability maintained by the extranuclear genes transmitted through mito-
chondria or chloroplasts. We assumed that all the alleles are selectively neutral.
This appears to be consistent with some of the observations made on these genes.
For instance, Brown et al. (1979) argue that a seemingly rapid evolutionary rate of
these genes is probably due to the possible dispensability of mitochondrial genes
existing in multiple copies. They also suggest that these genes may have less
functional constraints and therefore are relatively more free to be substituted.
Furthermore it is known that many of the important mitochondrial proteins are
genetically coded by nuclear genes (see Beale & Knowles, 1978). Taking these
considerations into account, it may not be too unrealistic to assume that there are
a large number of possible alleles to which a mitochondrial gene can mutate with-
out altering its function.

Precise modes of replication and partition of the mitochondrial genes are not
known, but we think the following two situations are likely to include the reality.
The first is to assume that every gene replicates exactly once prior to a cell division
and then the genes are partitioned randomly into two daughter cells. The second
model assumes that prior to a cell division, genes replicate independently for a
random number of times and theoretically form an infinite gene pool, and then
each resulting daughter cell receives approximately n copies randomly chosen from
the pool. In the first case, the effective number of the genes is 2ra— 1, while in the
second case it is equal to n. The difference arises for the same reason as for popu-
lations in which each individual is assumed to have exactly the same number of
offspring and in which the offspring number is a random variable.

We shall examine the effect of some parameter values on fl and Q. It has been
shown that if the product nft is less than A, H is close to unity. And in general this
appears to be the case in most higher organisms, because /? is likely to be at most
a few per cent and n is also not greater than 1000, while A seems to be of the
order of 10 or 100. Therefore it is reasonable to take the H value as very close to
one, as was observed by Avise et al. (1979a, 6). On the other hand, the values of
Q are much influenced by the total population size NT, the mutation rate v, the
migration rate m and A. If A is large and n is small, the value of fi has small effect
on H and Q. On the other hand, when A is small and n is large, the paternal effect
on H and Q becomes large. These relationships are illustrated in Figs. 2 and 3,
where considerable decreases in aand Q are apparent as fi increases. When ft = \
and Nem > 1, Q is nearly equal to 1/(1 + nNTv), which is the mean level of homo-
zygosity expressed by a population consisting of nNT/2 nuclear genes. The
requirement that the female gametes determine primarily the level of B. and Q
is P <̂  X/n, and if this condition is satisfied the effect of the male gametes can be
ignored without altering the results much.

According to Avise et al. (1979a, b), the mitochondrial genes from a single
individual or from individuals belonging to a single local population show very
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little genetic diversity, while the genes collected from a large geographical area
are strongly divergent. This implies the necessity of an analysis in which the
geographical structure of the population is considered. Using formulae (19) and
(20) for a two-dimensional torus-like space, we have carried out some calculations
to examine the effect of the geographical structure, We found that the local
differentiation seems to be essentially the same as that expected for the nuclear

1 0

0-8

0-6

0-4

0-2 Q (0 = 0-5)

10"6 10"5 10-" 10" 10~2

Fig. 3. Genetic identities (H, Qo and Q) as functions of migration rate, for one-dimen-
sional geographically structured populations where N denotes the total population
number and N, = Nm = JV/2. N = 104; v = 106; L = 16; A = 10; n = 10.

genes, except that the mitochondrial genes are slightly more polymorphic than
the Mendelian genes. Therefore it appears that the results of Avise et al. are con-
sistent with the expectation based on our present theory.

We are quite confident that the model dealt with here takes nearly all the bio-
logically known facts into account and therefore is fairly general. However, we
are also aware that the biology of these genes is still at a rather early stage,
particularly in regard to the ways of replication and partition of the extranuclear
genes, and thus when it is fully understood the model may need to be slightly
altered. In this context, the effective number of extranuclear genes in a cell used
here is rather ambiguous and should be defined more precisely in future like that
of nuclear genes. At any rate, because of its generality we believe that the present
paper will provide a model useful in advancing the population genetics of cyto-
plasmic genes.

We are grateful to Drs J. Felsenstein, W. Birky, Jr and T. Ohta for many helpful discussions
and constructive criticism. This work was supported partly by grants 439016 and 439017
from the Ministry of Education, Japan.
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