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Generalized Albanese morphisms

Georg Hein

Abstract

We define nef line bundles Lr on a projective variety X with the property that, for
a curve C ⊂ X, the intersection Lr.C is zero, if and only if the restriction morphism
Hom(π1(X),U(r)) → Hom(π1(C),U(r)) has finite image up to conjugation. This yields a
rational morphism X

albr ����� Albr(X) contracting those curves C with Lr.C = 0. For r = 1
this is the Stein factorization of the Albanese morphism.

1. Introduction

The Albanese morphism X → Alb(X) of a complex algebraic variety X can be characterized in
different ways. The Stein factorization alb1 : X → Alb1(X) of this morphism can be described
by those curves C ⊂ Y which are contracted by alb1 (see Proposition 2.4). Of interest to us is
the following equivalence: a curve ι : C → X is contracted by alb1, if and only if the restriction
morphism Hom(π1(X),U(1)) → Hom(π1(C),U(1)) has finite image. A natural generalization would
be a morphism albr : X → Albr(X) with the following property:

(
a curve ι : C → X

is contracted by albr

)
⇔


 the restriction morphism

Hom(π1(X),U(r)) → Hom(π1(C),U(r))
has finite image modulo conjugation


 .

The aim of this paper is to give, at least birationally, such a morphism. Suppose the generalized
Albanese morphism with the above property existed. Take an ample divisor class Hr on Albr(X).
Define Lr to be the pull back of the ample line bundle OAlbr(X)(Hr) to X. Eventually, we would
obtain a nef line bundle Lr on X fulfilling the following:

(
for a curve C → X
Lr.C = 0 holds

)
⇔


 the restriction morphism

Hom(π1(X),U(r)) → Hom(π1(C),U(r))
has finite image modulo conjugation


 .

The main result of this paper is the construction of such a line bundle Lr (§ 3) with that property
(Theorem 4.2). This line bundle Lr is a generalized Theta line bundle. Since we use various facts (see
[DN89], [LPo96] and [Pop01]) about these bundles, a short résumé about these objects is presented
in §§ 3.1–3.4. In § 5, the line bundle Lr is used to construct a rational version X

albr ����� Albr(X) of
a generalized Albanese morphism. This morphism is studied for algebraic surfaces in § 6. We begin
this paper by reviewing the constructions of the classical Albanese morphism and describing its
fibers in § 2.

In [Kol95], Kollár points out that the Albanese morphism can be regarded as a U(1)-version
of the Shafarevich morphism. Hence, our morphism albr could be regarded as a U(r)-version of it.
Indeed, if the Shafarevich map X → Sh(X) existed, then albr would factor through it. Katzarkov
(see [Kat94] and [Kat97]) defined a reduction morphism for one representation π1(X) → GL(r).
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In the Kähler case, Eyssidieux [Eys04] showed that X̃r, the universal covering of X modulo those
elements of π1(X) which are in the kernel of all GL(r) representations, is holomorphically convex.

Notation. We work with schemes over the complex numbers. Since we need the restriction of
(semi)stable vector bundles to curves, we are required to use the concept of Mumford-Takemoto or
slope stability for vector bundles.

2. Two constructions for the Albanese variety

2.1 The classical construction for the Albanese variety. Here we assume that X is a
connected Kähler manifold. We define the Albanese variety Alb(X) to be the quotient

Alb(X) := H0(X,Ω1
X )∨/H1(X,Z).

If we choose a point x0 ∈ X(C), then we can define the Albanese morphism albX : X → Alb(X) by
x �→ ∫

γx
where γx is a path connecting x0 with x.

2.2 The Pic0(Pic0)-description of Alb(X). Let X be a smooth variety over an algebraically
closed field k. We consider the Picard torus Pic0(X), i.e. the component of Pic(X) containing OX .
Furthermore, we consider a Poincaré bundle L on X × Pic0(X). This bundle is not unique. To
normalize it we choose a point x0 ∈ X(k). If we require that L|{x0}×Pic0(X)

∼= OPic0(X), then the
Poincaré bundle L is uniquely determined. If we consider L as a family of line bundles on Pic0(X)
parametrized by X, then we obtain a morphism from X to the Picard torus of Pic0(X):

albX : X → Pic0(Pic0(X)) =: Alb(X).

2.3 Both constructions coincide for smooth varieties over Spec(C). The use of the same
notation in the above constructions is justified, because both coincide for a smooth projective
variety over Spec(C). This follows from the universal property of the Albanese variety and the
duality between the Albanese variety and the Picard torus (cf. [GH78]). The following proposition
describes the fibers of the Albanese morphism. Since it uses both descriptions (§§ 2.1 and 2.2), we
have to assume that X/Spec(C) is a smooth projective variety.

Proposition 2.4 (Description of the fibers of the Albanese morphisms albX : X → Alb(X), for a
projective complex manifold X (cf. [GH78, II.6])). If ι : Z → X is a connected cycle in X, then the
following conditions are equivalent:

(i) Z is contained in a fiber of the morphism albX ;

(ii) the image of ι∗ : H1(Z,Z) → H1(X,Z) is finite;

(iii) the pull back morphism ι∗ : H0(X,Ω1
X) → H0(Z,Ω1

Z) is trivial;

(iv) if ρ : π1(X) → U(1) is a representation of the fundamental group, then the restriction ρ|π1(Z)

has a finite image;

(v) if L is a line bundle on X ×S, then the pull back ι∗L on Z ×S is of the form L1 �L2, for any
Noetherian scheme S.

3. The line bundle Lr
3.1 The generalized Theta divisor, I: The determinant of cohomology. Generalized
Theta line bundles play a central role in this paper. Therefore, we repeat their definition, basic
properties, as well as the construction of global sections of these line bundles. Let C be a smooth
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projective curve of genus g. We assume that E is a vector bundle on S × C with S a connected
Noetherian scheme. We denote the projections as

S S × C
q�� p �� C.

For a geometric point s ∈ S, we let Es be the vector bundle p∗(E ⊗ q∗k(s)) on C. Since S is
connected, the rank r and the degree d of Es do not depend on the choice of s ∈ S. We say that E
is a family of rank r vector bundles of degree d on C parametrized by S. If all the vector bundles
Es are semistable, then we obtain a morphism S → MC(r, d) to the moduli space of S-equivalence
classes of semistable vector bundles on X. Twisting E with a line bundle q∗L does not change this
morphism. Therefore, the families E and E ⊗ q∗L are considered to be equivalent.

For a coherent sheaf F on C, we obtain a line bundle det(q!(E ⊗ p∗F )) on S by taking the
determinant of cohomology. This way, we obtain a morphism from the Grothendieck group K(C)
to the Picard group Pic(S). Since

det(q!((E ⊗ q∗L) ⊗ p∗F )) ∼= det(q!(E ⊗ p∗F )) ⊗ L⊗χ(C,F⊗Es),

this line bundle is twist invariant whenever χ(C,F ⊗ Es) = 0. Thus, we consider the subgroup
K(C)⊥(r,d) of K(C) generated by coherent sheaves F with χ(C,F ⊗ Es) = 0. The main result of
Drezet and Narasimhan in [DN89] is that the line bundles det(q!(E ⊗ p∗F )) for F ∈ K(C)⊥(r,d)

descend to line bundles on the moduli space MC(r, d), and the resulting morphism K(C)⊥(r,d) →
Pic(MC(r, d)) is surjective.

3.2 The generalized Theta divisor, II: The generalized Theta line bundle. We define
the generalized Theta bundle first in the case when d = 0. We take a vector bundle F of rank 2
and determinant ωC on C. By the Riemann–Roch theorem for curves, we have [F ] ∈ K(C)⊥(r,0).
We denote the generalized Theta line bundle OS(Θ) to be the line bundle det(q!(E ⊗ p∗F ))−1 on S.

For d arbitrary, we need a base point s0 ∈ S. We choose a vector bundle F of rank 2r and
determinant ω⊗r

C ⊗ det(Es0)−⊗2. Again, we have [F ] ∈ K(C)⊥(r,d) and define OS(Θ) to be the line
bundle det(q!(E ⊗ p∗F ))−1 on S.

Remark. In both cases, we defined a multiple of the classical generalized Theta divisor. (When
d = 0, we have defined the second power, whereas for d arbitrary, we have defined the 2 ·(r, d) power
of it.) However, to define the appropriate root, further choices are involved.

3.3 The generalized Theta divisor, III: Global sections. Let OS(Θ) = det(q!(E ⊗ p∗F ))−1

be the Theta line bundle and m a natural number. Suppose we are given a finite number of vector
bundles {Gi}i=1,...,n on C with [G] = m[F ] in K(C). The following construction of Le Potier (see
[LPo96]) assigns each Gi a global section θGi in Γ(OS(mΘ)). First we take a line bundleN on C such
thatGi⊗N is globally generated for all i, and q∗(E⊗p∗N−1) = 0. LetR := rk(Gi). Therefore, we have
surjections (N−1)⊕(R+1) πi−→ Gi. The kernel of πi is the line bundle M := det(Gi)−1 ⊗ N−⊗(R+1).
Since [Gi] = [Gj ] in K(C), the determinant line bundles of Gi and Gj coincide. Hence, the line
bundle M is independent of i. From the short exact sequence 0 →M

αi−→ (N−1)⊕(R+1) πi−→ Gi → 0,
we pass to the long exact sequence

0 → q∗(E ⊗ p∗Gi) → R1q∗(E ⊗ p∗M)
R1(αi)−−−−→ R1q∗(E ⊗ p∗(N−1)⊕(R+1)) → R1q∗(E ⊗ p∗Gi) → 0.

By construction, R1(αi) is a homomorphism of vector bundles of the same rank. Thus, we obtain a
section

θGi := det(R1(αi)) ∈ Γ(det(R1q∗(E ⊗ p∗(N−1)⊕(R+1))) ⊗ (R1q∗(E ⊗ p∗M))−1).
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The sections θGi are sections of the line bundle OS(mΘ). The base change theorem yields that the
vanishing loci V (θGi) are given by

V (θGi) = {s ∈ S | H∗(C,Gi ⊗ Es) �= 0}.

3.4 The generalized Theta divisor, IV: Base point freeness. One the one hand, it is
obvious that any pair E and F of vector bundles on C with H∗(C,E ⊗ F ) = 0 is a pair of
semistable vector bundles. On the other hand, a result of Popa (see [Pop01]) says that, for any
semistable vector bundle E on C, and any integer a � rk(E), there exists a vector bundle F on C
with rk(F ) = 2a rk(E) and det(F ) = ω⊗a

C ⊗ det(Es0)−⊗2a where Es0 is an arbitrary bundle with the
same rank and degree as E. Thus, for a � r, the base points of the sections in OS(aΘ) described
in § 3.3 are the points s ∈ S parametrizing unstable vector bundles. Drezet and Narasimhan
[DN89] showed that the generalized Theta line bundle is an ample line bundle on the moduli space
of S-equivalence classes of semistable vector bundles. Note that this allows us to distinguish
S-equivalence classes [E1] and [E2] whenever we have a vector bundle G with H∗(E1 ⊗ G) = 0
and H∗(E2 ⊗G) �= 0.

3.5 The setup. We fix a smooth projective variety X of dimension n with a very ample line
bundle OX(H) and a positive integer r. Furthermore, we choose a geometric point x0 ∈ X. Let
Mr = MX(r, 0, 0, . . . , 0) be the moduli space of S-equivalence classes of slope semistable rank r
bundles E with trivial Chern classes in H∗(X,Z). If E is a vector bundle parametrized by Mr, then
we write [E] for the corresponding point in Mr(C). By the theorem of Uhlenbeck and Yau (see
[UY86]), Mr parametrizes flat vector bundles on X or representations of π1(X) in U(r) modulo
conjugation. This implies that, for [E] ∈ Mr, the restriction E|C of E to any curve C ⊂ X is a
semistable vector bundle. This implication is the reason why we have to restrict ourselves to the
moduli space of flat vector bundles on X. Moreover, Mr is a projective scheme provided that we
pass to S-equivalence classes of semistable bundles. This means we identify any vector bundle E in
a short exact sequence 0 → E′ → E → E′′ → 0 of slope zero bundles with the direct sum E′ ⊕ E′′.
Hereafter, we will use the symbol Mr (or Mr(X)) for the projective moduli space of S-equivalence
classes of slope semistable bundles on X.

3.6 The line bundle OM(DH). Using the polarization H on X, we can define a polarization
DH on M . We choose a faithfully flat morphism ψ : M̃ → M such that we have a universal sheaf
Ẽ on M̃ ×X. This means that, for any point m̃ ∈ M̃ , the sheaf Ẽm̃ := Ẽ|{m̃}×X is a sheaf which
belongs to the S-equivalence class given by ψ(m̃). The theory of Quot schemes gives the existence
of such morphisms. Let C = H1 ∩ H2 ∩ · · · ∩ Hn−1 be a complete intersection of n − 1 divisors
Hi ∈ |H|. Furthermore, we take a rank 2 vector bundle F on C with det(F ) ∼= ωC . We consider the
following morphisms.

M̃ ×X
Ψ ��

q̃

��

p̃

����
��

��
��

� M ×X
p

�����������

q

��

X

M̃
ψ �� M

On M̃ , we define the line bundle O(D̃H) to be the determinant of cohomology

OM̃ (D̃H) := det(q̃!(Ẽ ⊗ p̃∗F ))−1.

This line bundle descends to M , i.e. there exists a line bundle OM (DH) and an isomorphism
OM̃ (D̃H) ∼= ψ∗OM (DH). Furthermore, the line bundle OM (DH) does not depend on the choice
of the morphism ψ : M̃ →M (see [DN89]).
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Lemma 3.7. The first Chern class D̃H := c1(OM̃ (D̃H)) is given by

D̃H = q̃∗((2c2(Ẽ) − c21(Ẽ)).p̃∗Hn−1).

In particular, we have DaH = an−1DH .

Proof. This is straightforward computation using the Grothendieck–Riemann–Roch formula

D̃H = −[q̃∗(ch(Ẽ) · Td(q̃) · p̃∗ch(F ))]1,

and the equalities

ch(Ẽ) = r + c1(Ẽ) +
c21(Ẽ) − 2c2(Ẽ)

2
+ · · · ,

Td(q̃) = p̃∗Td(X) = 1 − p̃∗KX

2
+ · · · ,

ch(F ) = ch(OX ⊕OX(KX + (n − 1)H)) · ch(OH)n−1 = 2Hn−1 +KX .H
n−1.

Whereas the first two equalities are standard, the last equality follows from the adjunction formula
and the fact that a vector bundle F on a curve C is determined in the Grothendieck group K(C)
by its rank and determinant.

Lemma 3.8. The line bundle OMr(a ·DH) is base point free for a � r2.

Proof. This is just the statement of Popa’s theorem given in § 3.4.

Lemma 3.9. The line bundle OMr(DH) is ample.

Proof. The proof uses the fact that, on a projective variety of dimension at least two, the vector
bundles E and E′ with the same Hilbert polynomial are isomorphic, if and only if their restrictions
to a sufficiently big ample divisor H are isomorphic. This follows from the following long exact
sequence.

Hom(E,E′(−H)) �� Hom(E,E′) �� Hom(E,E′|H) �� Ext1(E,E′(−H))

H0(E∨ ⊗E′(−H)) Hom(E|H , E′|H) H1(E∨ ⊗E′(−H))

If we have a bounded family of vector bundles as in the case of those parametrized by Mr, then we
can choose a divisor H such that, for any two bundles in this family, the cohomology groups on the
left- and right-hand sides vanish.

The restriction theorem of Mehta and Ramanthan (see [MR84]) tells us that, for a semistable
vector bundle E and H big enough, the formation of graded objects commutes with restriction
to H. Thus, we obtain an embedding Mr = Mr(X) � � �� Mr(H). Repeating the argument, we end
up with an embedding Mr

� � �� Mr(C) for a complete intersection curve C. By Lemma 3.7, we
may assume that this curve C is the curve we considered in the construction of O(DH).

By construction, O(DH) is the pull back of the generalized Theta line bundle on Mr(C). This
line bundle is known to be ample by the work of Drezet and Narasimhan (see [DN89]). Thus, the
lemma holds.

3.10 The families Er,i. Let M red
r =

⋃l
i=1Mr,i be the decomposition of the reduced scheme

underlying Mr into its irreducible components, and let M̃r,i be the normalization of the compo-
nent Mr,i. We have a morphism αi : M̃r,i → Mr and consider the globally generated line bundle
(by Lemma 3.8) Nr,i := α∗

iO(r2 ·DH). Let Cr,i be the intersection of dim(M̃r,i) − 1 general global
sections of Nr,i. By Bertini’s theorem, Cr,i can be assumed to be a smooth irreducible curve.
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Thus, by Langton’s theorem (see [Lan75]), we have a universal vector bundle Er,i on Cr,i × X.
If the universal vector bundle EM on Mr×X existed, then Er,i would be the pull back of this bundle
to Cr,i ×X.

3.11 The line bundle Lr,i. We consider the vector bundle Er,i on Cr,i×X and the morphisms

Cr,i Cr,i ×X
q�� p �� X.

We define the line bundle Nr,i on the curve Cr,i by Nr,i := det(Er,i|Cr,i×{x0}). Let Gr,i be a vector
bundle on Cr,i with rk(Gr,i) = 2r, and det(Gr,i) ∼= ωrCr,i

⊗N−2
r,i . Similar to the definition of OMr(DH)

in § 3.6, we define the line bundle by

Lr,i := det(p!(Er,i ⊗ q∗Gr,i))−1.

3.12 Remark. Unfortunately, in contrast to OMr(DH), the line bundle Lr,i is not independent
of the choices. We next give an example for this dependence on the choice of the family Er,i.

Let X be a curve, and Er,i be a family of degree zero vector bundles on X parametrized by Cr,i.
For a point c ∈ Cr,i, we consider the vector bundle Ec := Er,i|{c}×X . Furthermore, we assume that
Ec is not stable. Thus, we have a short exact sequence 0 → E ′

c → Ec → E ′′
c → 0 of degree zero vector

bundles on X. Denote by E ′
r,i the kernel of the natural surjection Er,i → E ′′

c . The families E ′
r,i and Er,i

parametrize the same S-equivalence classes of vector bundles on X. A straightforward computation
shows that the resulting line bundles Lr,i and L′

r,i fulfill

L′
r,i = det(E ′

c)
2 rk(E ′′

c ) ⊗ det(E ′′
c )−2 rk(E ′

c) ⊗ Lr,i.
Thus, we can only hope that the numerical type of Lr,i is well defined. This is the case, as we will
see in the next section (see Corollary 4.4).

3.13 We end this section by defining the line bundle Lr on X by

Lr :=
l⊗
i=1

Lr,i.

4. Properties of the line bundles Lr
4.1 Relations defined by nef line bundles. Let L be a nef line bundle on a proper variety
X. This line bundle defines an equivalence relation ∼L on the geometric points of X as follows:

x ∼L x′ ⇔
{

there exists a closed curve C ⊂ X
with x ∈ C, x′ ∈ C, and L.C = 0

}
.

We define the relation � on nef line bundles by: the condition L1 � L2 holds if for any curve C ⊂ X
the inequality L1.C > 0 implies L2.C > 0.

We write L1 ≺ L2 if L1 � L2 holds, and there exists a curve C ⊂ X with L1.C = 0 and
L2.C > 0. If L1 � L2 holds, then the relation ∼L2 is contained in ∼L1 , i.e. if x ∼L2 x

′, then we have
x ∼L1 x

′. Whenever both relations L1 � L2 and L2 � L1 hold, we write L1 ∼ L2. This means that
the relations ∼L1 and ∼L2 coincide.

If we have a chain L0 ≺ L1 ≺ · · · ≺ Lk of nef line bundles, then we have strict inclusions
(NE(X)∩L⊥

k ) ⊂ (NE(X)∩L⊥
k−1) ⊂ · · · ⊂ (NE(X)∩L⊥

0 ) in the cone of curves. Since the orthogonal
complements L⊥

i are linear subspaces of H2(X,R), we deduce that k � ρ(X) = dim(NE(X)).
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Theorem 4.2. The line bundle Lr,i is nef, i.e. for any morphism ι : Y → X of a smooth curve Y to
X, the degree of the line bundle ι∗Lr,i is non-negative. Furthermore, if the degree of ι∗Lr,i equals
zero, then for all geometric points y1 and y2 of Y there exists an isomorphism ECr,i×{y1} ∼= ECr,i×{y2},
and all the vector bundles on Y parametrized by Cr,i are S-equivalent.

Proof. We divide the proof into eight steps.

Step 1: Reduction to the case where X is a smooth projective curve. Since all the vector bundles
parametrized by Mr restrict to semistable bundles on every closed subscheme ι : Y → X of X, the
pull back (id × ι)∗Er,i is a family of semistable rank r vector bundles on Y parametrized by Cr,i.
Since the determinant of cohomology commutes with base change, we may assume X = Y . Thus,
we consider the vector bundle Er,i on the surface Cr,i ×X and the following morphisms to smooth
curves:

Cr,i Cr,i ×X
q�� p �� X.

Step 2: The line bundles L1 and L2 := Lr,i. Let F be a vector bundle on X with rk(F ) = 2r
and det(F ) = ωrX . For a point x0 ∈ X, we set Nr,i := det(Er,i|Cr,i×{x0}). Let G be a vector
bundle on Cr,i of rank 2r with det(G) = ωrCr,i

⊗ N−2
r,i . We set L1 := det(q!(Er,i ⊗ p∗F ))−1 and

L2 := det(p!(Er,i ⊗ q∗G))−1. The nefness property of Lr,i is equivalent to deg(L2) � 0.
The line bundle L2 is the generalized Theta line bundle constructed in § 3.2 for the family Er,i

of vector bundles on Cr,i parametrized by X with distinguished point x0. The line bundle L1 is the
r-fold power of the generalized Theta line bundle from § 3.2 for the family Er,i of vector bundles of
degree zero on X parametrized by Cr,i.

Step 3: deg(L1) = deg(L2). We use the Grothendieck–Hirzebruch–Riemann–Roch theorem to com-
pute the degrees of the line bundles L1 and L2. Let us fix the notation before doing so. By c0 and
x0, we denote two geometric points of Cr,i and X. We use Fp and Fq to name the fibers p−1(x0)
and q−1(c0). The genera of Cr,i and X we denote by gC and gX . Since we are only interested in
the degrees, we may assume ωX = OX((2gX − 2)x0) and ωCr,i = OX((2gC − 2)c0). For the same
reason, we have ch(F ) = 2r+2r(gX−1)x0 and ch(G) = 2r+(2r(gC−1)−2(

∫
Cr,i×X(Fp.c1(Er,i))))c0.

Furthermore, let Td(Cr,i) = 1 − (gC − 1)c0 and Td(X) = 1 − (gX − 1)x0 be the (numerical) Todd
classes. Then we have

deg(L1) = −
∫
Cr,i

ch(q!(Er,i ⊗ p∗F ))

= −
∫
Cr,i×X

ch(Er,i ⊗ p∗F )p∗Td(X)

= −
∫
Cr,i×X

ch(Er,i)p∗ch(F )p∗Td(X)

= −
∫
Cr,i×X

ch(Er,i)p∗(ch(F )Td(X))

= −
∫
Cr,i×X

(
r + c1(Er,i) +

c21(Er,i) − 2c2(Er,i)
2

)
p∗(2r)

= r ·
∫
Cr,i×X

(2c2(Er,i) − c21(Er,i)).
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Analogously, we obtain for the degree of L2 that

deg(L2) = −
∫
Cr,i×X

(
r + c1(Er,i) +

c21(Er,i) − 2c2(Er,i)
2

)
q∗

(
2r −

(
2
∫
Cr,i×X

(Fp.c1(Er,i)c0)
))

= r ·
∫
Cr,i×X

(2c2(Er,i) − c21(Er,i)) + 2 ·
(∫

Cr,i×X
Fp.c1(Er,i)

)
·
(∫

Cr,i×X
Fq.c1(Er,i)

)
.

Since Cr,i parametrizes a family of X vector bundles of degree zero, the intersection number∫
Cr,i×X Fq.c1(Er,i) equals zero. Thus, we end up with the claimed equality.

Step 4: L⊗r
1 is globally generated. Thus, deg(L2) = deg(L1) � 0. This is a direct consequence of

Lemma 3.8.
To prove deg(L1) � 0, we need fewer premises. Indeed, if at least one point of c ∈ Cr,i

parametrizes a semistable vector bundle Ec on X, then a power of L1 has a non-trivial section
θG (see §§ 3.3 and 3.4) which is what we need.

If the degree of L1 is positive, then we consider two points s1, s2 of Cr,i with the property that
a section θG vanishes at s1 but not at s2. It follows from the remark at the end of § 3.4 that the X
vector bundles parametrized by s1 and s2 are not S-equivalent.

From now on, we assume that the degrees of L1 and L2 are zero. For the following steps see
also the proof of Theorem I.4 in Faltings’ article [Fal93] or for the simpler rank 2 case see [Hei99,
Theorem 3.4].

Step 5: For any two geometric points P and Q of X, the vector bundles Er,i|Cr,i×{P} and Er,i|Cr,i×{Q}
are isomorphic. We show that, given a point P ∈ X, for almost all points Q ∈ X, we have an
isomorphism between Er,i|Cr,i×{P} and Er,i|Cr,i×{Q}. From this statement, the assertion of step 5
follows immediately. Fix a geometric point c0 ∈ Cr,i. Let Ec0 := Er,i|{c0}×X be the semistable vector
bundle on X parametrized by c0. Take a vector bundle FP on X such that H∗(X,FP ⊗ Ec0) = 0.
Such a bundle exists as we have seen in § 3.4. Moreover, it defines a global section θFP

in a power
of L1 which does not vanish at c0. Since deg(L1) = 0, this section has an empty vanishing divisor.
The description of the vanishing divisor of θFP

(see § 3.3) implies that H∗(X,FP ⊗ Er,i|{c}×X) = 0
for all points c ∈ Cr,i. This implies that R∗q∗(Er,i ⊗ p∗FP ) is zero. Now we consider a non-trivial
extension F in Ext1(k(P ), FP ):

(SP ) 0 → FP → F
πP−→ k(P ) → 0.

The scheme P(F ) parametrizes surjections π : F → k(Q) from F to torsion sheaves of length one.
The subset of P(F ) where H∗(X, ker(π) ⊗ Ec0) = 0 is open and not empty because it contains πP .
Thus, for a general point Q of X, there exists a short exact sequence

(SQ) 0 → FQ → F → k(Q) → 0

with H∗(X,FQ ⊗ Ec0) = 0. Applying the functor R∗q∗(Er,i ⊗ p∗(−)) to the short exact sequences
(SP ) and (SQ), we obtain that q∗(p∗F ⊗ Er,i) is isomorphic to Er,i|Cr,i×{P} and to Er,i|Cr,i×{Q} as
well.

Thus, all the vector bundles on Cr.,i parametrized by X are isomorphic to the vector bundle
G := q∗(p∗F ⊗ Er,i).

Step 6: The filtration F ∗(Er,i) on the vector bundle Er,i. If we consider the Harder–Narasimhan
filtration on G := q∗(p∗F ⊗E), then the graded summands need not be simple bundles. We consider
a slight generalization by taking G1 to be a subsheaf of G which is stable of maximal possible slope.
Defining F 1(Er,i) := G1 � p∗Hom(q∗G1, Er,i), and F l(Er,i) := π−1

1 (F l−1(Er,i/F 1(Er,i))), where π1
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is the surjection from Er,i → Er,i/F 1(Er,i), we obtain a filtration 0 = F 0(Er,i) ⊂ F 1(Er,i) ⊂ · · · ⊂
F k(Er,i) = Er,i on Er,i with the property that the jth graded object grj(Er,i) := F j(Er,i)/F j−1(Er,i)
is of the form Gj � Fj . By definition the slopes µj := µ(Gj) = deg(Gj)/rk(Gj) form a decreasing
sequence µ1 � µ2 � · · · � µk.

Restricting the filtration F ∗(Er,i) to a fiber p−1(x) of p, we obtain a filtration of G which does
not depend on the choice of x ∈ X. The restricted vector bundle F j(Er,i)|p−1(x) appears in the
Harder–Narasimhan filtration of G, if and only if µj > µj+1. Therefore, we use HNF∗(Er,i) to name
the subfiltration of the filtration F ∗(Er,i) consisting of those F j(Er,i) with µj > µj+1.

Step 7: Numerical invariants of the filtration F ∗(Er,i). In the Grothendieck group K(Cr,i ×X), we
can identify Er,i with the direct sum of the graded objects grj(Er,i):

[Er,i] =
k∑
j=1

[grj(Er,i)] =
k∑
j=1

[Gj � Fj ].

Since the Chern character of the product Gj � Fj is given by

ch(Gj � Fj) = q∗ch(Gj).p∗ch(Fj)
= rk(Gj) · rk(Fj) + [rk(Gj)p∗c1(Fj) + rk(Fj)q∗c1(Gj)] + p∗c1(Fj).q∗c1(Gj),

we deduce the equality
∫
Cr,i×X ch(Er,i) =

∑k
j=1 deg(Gj) · deg(Fj). In step 3, we identified the left

hand side with [−1/(2r)] deg(L1). Thus, we have
k∑
j=1

deg(Gj) · deg(Fj) = 0. (1)

The degree degX(F j(Er,i)|q−1(c)) of F j(Er,i), restricted to a fiber of q, is given by

degX(F j(Er,i)|q−1(c)) =
j∑

m=1

rk(Gm) · deg(Fm).

Since the restriction of Er,i to a fiber of q is semistable of degree zero, we deduce that

Aj :=
j∑

m=1

rk(Gm) · deg(Fm) � 0, (2)

and Ak = 0. Having in mind that µj := deg(Gj)/rk(Gj), we rewrite (1) as

0 =
k∑
j=1

µj · rk(Gj) · deg(Fj) =
k∑
j=1

Aj · (µj − µj+1),

where we set µk+1 = 0. The inequalities (2) and µj � µj+1 imply, therefore, that Aj = 0 whenever
µj > µj+1.

Step 8: S-equivalence of all bundles parametrized by Cr,i. The conclusion of the preceding steps is
that each quotient grjHNF := HNFj(Er,i)/HNFj−1(Er,i) is, on the one hand, semistable of degree zero
when restricted to the fibers of q. On the other hand, when restricting to a fiber of p we obtain a
vector bundle which is an extension of stable vector bundles of the same slope. Thus, the restriction
of grjHNF to both families of fibers is semistable.

If we construct the Theta line bundle associated to grjHNF, then we obtain a line bundle of degree
zero on X. This follows from the computation in step 7. Now we have a semistable family of vector
bundles parametrized by X with degree zero Theta divisor. The argument of step 5 yields that all
the bundles parametrized by the family grjHNF on X are isomorphic.
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In other words, the direct sum
⊕l

j=1 grjHNF of the graded objects gives the same direct sum of
semistable vector bundles of degree zero on each fiber of q. In short, all vector bundles parametrized
by Cr,i are S-equivalent. The proof of Theorem 4.2 is complete.

Theorem 4.3. Let ι : Y → X be a morphism of a smooth curve Y to X. We obtain a morphism
ιMr,i : M̃r,i(X) → Mr(Y ) by the pull back of vector bundles. The following two conditions are
equivalent:

(i) the degree of ι∗Lr,i is zero;

(ii) the morphism ιMr,i maps M̃r,i(X) to a point.

Proof. We consider the morphisms Cr,i
� � α �� M̃r,i(X)

ιMr,i �� Mr(Y ) . Theorem 4.2 implies that the
degree of ι∗Lr,i is zero, if and only if ιMr,i(Cr,i) is a point. This implies the theorem because M̃r,i(X)
is irreducible, and Cr,i is the intersection of ample divisors.

Corollary 4.4. The equivalence classes of the nef line bundles Lr,i and Lr with respect to ∼
(see § 4.1) depend neither on the choice of Cr,i ⊂ M̃r,i nor on the choice of the vector bundle Er,i
on Cr,i ×X. Furthermore, these equivalence classes are independent of the chosen polarization H
on X.

Corollary 4.5. C4.5 The line bundle Lr on X is nef. For a morphism ι : Y → X of a smooth
curve Y to X, we have deg(ι∗Lr) = 0, if and only if the morphism Mr(X) → Mr(Y ) is locally
constant.

Proposition 4.6. The line bundles {Lr}r∈N satisfy the inequality Lr1 � Lr2, for r1 � r2. There
exists a number R ∈ N such that Lr � LR for all r.

Proof. If r1 < r2, then we have an embedding of moduli spaces Mr1 → Mr2 given by [E] �→
[E ⊕O⊕(r2−r1)

X ]. Thus, we deduce from Theorem 4.3 that the inequality Lr1 � Lr2 holds. We have
seen in § 4.1 that in the chain L1 � L2 � · · · � Lr � · · · there are at most ρ(X) strict inclusions.
This proves the second assertion of the proposition.

4.7 The line bundle L∞. We use the name L∞ for the line bundle LR of the above proposi-
tion. When referring to this line bundle, we should be aware that L∞ is only a class in {nef line
bundles}/∼. Considering these equivalence classes (with the discrete topology), we have limr→∞Lr
∼ L∞.

In the following theorem, we have summarized the results of this section.

Theorem 4.8 (Properties of the line bundles Lr). Let X be a projective variety. We have an
infinite sequence of nef line bundles L1 � L2 � · · · � Lr � · · · and a nef limit line bundle L∞
with limr→∞Lr ∼ L∞ on X such that for any morphism ι : Y → X of a smooth curve Y to X the
following conditions are equivalent:

(i) deg(ι∗Lr) = 0;
(ii) the restriction morphism Mr(X) →Mr(Y ) is locally constant;

(iii) for any connected scheme Z and every vector bundle E on Z × X parametrizing semistable
rank r vector bundles on X with trivial Chern classes, the pull back (idZ × ι)∗E parametrizes
only one S-equivalence class on Y ;

(iv) modulo conjugation only finitely many U(r) representations of π1(Y ) are induced by those of
π1(X).
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5. The generalized Albanese morphisms

5.1 The construction of the generalized Albanese morphism. If Lr or some power of it
were base point free, then it would define a morphism ψ : X → Pm. Let ϕ : X → Albr be the Stein
factorization of ψ, i.e. ϕ is surjective with connected fibers. Two geometric points x and x′ of X
have the same image under ϕ, if and only if x ∼Lr x

′. By Theorem 4.8, the map ϕ would meet
the requirements of a generalized Albanese variety. Indeed, a curve Y ι−→ X would be contracted
by ϕ, if degY (ι∗Lr) = 0. This means (by Theorem 4.8) that all families of semistable rank r vector
bundles on X with trivial Chern classes become constant when restricted to Y , or only finitely
many representation classes modulo conjugation of π1(Y ) in U(r) are induced by representations of
π1(X).

If no line bundle Lr with Lr ∼ Lr is base point free (note that L⊗k ∼ L, for all k > 0),
then Tsuji’s nef reduction theorem provides us with a rational version of the generalized Albanese
variety up to birational equivalence. In this case we obtain only a birational model of the Albanese
morphism and variety.

Theorem 5.2 (see [BCE02, Theorem 2.1], see also [Tsu00]). There exists a dominant rational

map X
albr ����� Albr(X) with connected fibers such that:

(i) the line bundle Lr is numerically trivial on all compact fibers F of albr of dimension dim(X)−
dim(Albr(X));

(ii) for every general point x ∈ X and every irreducible curve C passing through x with
dim(albr(C)) > 0, we have C.Lr > 0;

(iii) there exist compact fibers of albr.

Furthermore, the pair (albr,Albr(X)) is uniquely determined up to birational equivalence.

5.3 The chain of generalized Albanese morphisms. Even though we end up with an infinite
sequence of rational morphisms X

albr ����� Albr(X) , for each r ∈ N, there are at most ρ(X) + 1
different generalized Albanese morphisms, since for almost all r ∈ N, we have Lr ∼ Lr+1. Since
Lr � Lr+1, we get a rational morphism Albr+1(X) ����� Albr(X). So, we end up with the following
commutative diagram.

Alb∞(X)

���
�
�

�������� X
alb∞��� � � � �

albr

���
�
�

��� � � � � �
alb1

������������������������

· · · ����� Albr+1(X) ����� Albr(X) ����� · · · ����� Alb1(X)

Proposition 5.4 (Functoriality). If ψ : X → X ′ is a morphism of projective varieties, then we
have ψ∗L′

r � Lr for all r ∈ N ∪ {∞}. Therefore, we have the following commutative diagram.

X
ψ ��

albr

���
�
� X ′

albr

���
�
�

Albr(X) ����� Albr(X ′)

Proof. Suppose that ι : Y → X is a morphism from a smooth curve to X with deg(ι∗ψ∗L′
r) > 0.

This implies by Theorem 4.3 that there exists a family E ′ of rank r vector bundles with trivial Chern
classes on X ′ parametrized by a connected scheme Z such that the pull back (idZ×(ψ◦ι))∗E ′ of E ′ to
Z×Y parametrizes different S-equivalence classes on Y . However, then the family E = (idZ×ψ)∗ also
parametrizes rank r vector bundles on X which pull back to non-S-equivalent classes. Consequently,
again by Theorem 4.3, deg(ι∗Lr) > 0.
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Proposition 5.5. If ψ : X → X ′ is an étale morphism of projective varieties, then we have
Lr � ψ∗L′

r·deg(ψ) for all r ∈ N. Furthermore, L∞ ∼ ψ∗L′∞.

Proof. The proof is analogous to the preceding one. We simply have to consider the push forward
of a family of rank r vector bundles on X to X ′. The statement about L∞ is easily obtained from
Lr � ψ∗L′

r·deg(ψ) � Lr·deg(ψ) and the fact that Lr ∼ L∞ for r � 0.

5.6 Remark. Since the first Albanese variety and morphism exist, it would be enough to have
the base point freeness of some power of Lr on every fiber of the Albanese variety to obtain the
following regular morphism.

X
albr ��

alb
		�������������� Albr(X)

��
Alb(X)

This is used to study the generalized Albanese morphisms in the case of algebraic surfaces in the
next section.

6. The case of algebraic surfaces

6.1 We consider here the case of a polarized projective algebraic surface (X,H). In this case, we
can make a much stronger statement than Theorem 5.2. The generalized Albanese morphism is well
understood if X is not of general type (see § 6.9). The rest of this section is devoted to the proof of
the following theorem.

Theorem 6.2. Let (X,H) be a polarized projective surface. Then there exists a surjective morphism
albr : X → Albr(X) with connected fibers, and an effective divisor D on X, such that for all
morphisms ι : C → X of irreducible curves with ι(C) �⊂ D the following conditions are equivalent:

(i) albr(ι(C)) is a point;

(ii) the associated morphism Hom(π1(X),U(r)) ι∗ �� Hom(π1(C),U(r)) modulo conjugation has
a finite image;

(iii) for any base scheme S and any rank r vector bundle E on X × S such that, for each s, Es is
semistable with numerically trivial Chern classes, the pull back of E to C × S is a family of
S-equivalent vector bundles.

The divisor D of exceptions can be written in the form D = C1 + C2 + · · · + Cl, where the Ci
are irreducible and form a basis of a proper subspace of the rational Néron–Severi vector space
NS(X) ⊗ Q. In particular, we have l < dimQ(NS(X) ⊗ Q).

6.3 Preparations for the proof. We consider the nef line bundle Lr on X satisfying the
equivalence of Theorem 4.3. There are two extreme cases where the proof is a simple remark.
When C.Lr > 0, for all curves C, then we set albr to be the identity morphism of X. If C.Lr = 0
for all curves, then we set Albr(X) = Spec(C), and we are finished.

Thus, we assume from now on that Lr is a numerically non-trivial nef line bundle vanishing on
a non-empty set {Ci}i∈I of irreducible curves. It follows from the construction that all the curves
Ci in this family are contracted to points by the classical Albanese morphism.

Being a nef divisor, Lr is the limit of ample divisors (with rational coefficients), which yields
L2
r � 0. This implies the following lemma.

Lemma 6.4. If C ⊂ X is an effective divisor with C2 > 0, then C.Lr > 0.
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Proof. We assume the contrary. Since Lr is nef this means that C.Lr = 0. The Hodge index theorem
(see [BPV84, IV.2.15]) implies that L2

r � 0 with equality only when Lr is torsion. From L2
r � 0 and

the assumption that Lr is numerically non-trivial we derive a contradiction.

The proof of Theorem 6.2 is subdivided into three cases depending on the dimension of X in
the Albanese variety. This is by definition the dimension of Alb1(X).

6.5 The nef reduction for Alb1(X) = Spec(C). We consider the curves {Ci}i∈I as vectors in
the rational Nerón–Severi space NSQ(X). The dimension of this vector space is the Picard number
ρ(X) of X. The points {Ci}i∈I lie on the hyperplane {C ∈ NSQ(X) | C.Lr = 0}. Suppose that there
is a non-trivial linear relation among the Ci. If the number of these curves exceeds ρ(X) − 1, then
we have at least one such relation. We write the linear relation a1C1 + · · · + amCm = am+1Cm+1 +
· · · + aMCM with positive rational ai, and Ci different from Cj whenever i �= j.

After multiplication with a positive integer, we may assume the ai to be integers. We set D1 :=
a1C1 + · · · + amCm and D2 := am+1Cm+1 + · · · + aMCM . Since D1 and D2 coincide in NSQ(X),
their difference is torsion in the Nerón–Severi group. So again, after multiplying with an integer,
we may assume that the effective Cartier divisor classes D1 and D2 coincide. (Here we use the fact
that the Picard torus, the dual of the Albanese torus, is trivial.)

Because D1 and D2 have no common components, D2
1 = D1.D2 � 0. In view of Lemma 6.4, and

D1.Lr = 0, we conclude that D2
1 = 0. This implies that D1 and D2 are disjoint.

Consequently, the line bundle L := OX(D1) ∼= OX(D2) has two linearly independent sections
which do not intersect. Thus, L is base point free and defines a morphism whose Stein factorization
we denote by albr : X → Albr(X).

On the one hand, we have that F.Lr = 0 for all fibers of albr. On the other hand, suppose
C.Lr = 0 for a curve C ⊂ X. Let F be an irreducible fiber of albr(X). If C were not contained in a
fiber, then we would have (C +mF )2 > 0 for m � 0. However, we have (C +mF ).Lr = 0, which
contradicts Lemma 6.4. Thus, each curve C with C.Lr = 0 is contained in a fiber.

This means that the effective divisor D of Theorem 6.2 can be taken to be the empty set once we
have a linear relation between the {Ci}i∈I in NSQ(X). Since the resulting morphism albr contracts
all these curves, we conclude that albr does not depend on the chosen linear relation.

6.6 The nef reduction when Alb1(X) is a curve. We consider the morphism alb1 : X →
Alb1(X). This morphism is the Stein factorization of the classical Albanese morphism. It follows
from L1 � Lr that each curve C with C.Lr = 0 is contained in a fiber of this morphism. Let F be
the generic fiber of alb1.

If F.Lr = 0, then all curves C with C.Lr = 0 are contracted by alb1. Consequently we set
albr = alb1 and Theorem 6.2 is proven.

We suppose now that F.Lr is positive. The set of curves {Ci}i∈I consists of components of
reducible fibers of the morphism alb1. We will show that this set is not only finite but linearly
independent in NSQ(X). Indeed, if there were a linear relation, then we would obtain (see § 6.5) an
effective divisor D1 = a1C1 + · · · + amCm. This divisor satisfies D2

1 = 0, D1.Lr = 0, and consists of
fiber components. This contradicts Zariski’s lemma (see [BPV84, Lemma III.8.2]), because F.Lr > 0
for all fibers F . This shows that Theorem 6.2 holds when setting albr = idX .

6.7 Remark. The finite collection of curves {Ci}i∈I must have a negative definite intersection
matrix, because of Zariski’s lemma. Thus, by Grauert’s criterion (see [BPV84, Theorem III.2.1]),
there exists a contraction of these curves. However, this contraction is not necessarily a projective
morphism. If it were, we could take this contraction to be our generalized Albanese morphism albr.
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6.8 The nef reduction for dim(Alb1(X)) = 2. In this case, the generalized Albanese mor-
phism alb1 : X → Alb1(X) contracts finitely many curves. Among those curves are the {Ci}i∈I
which are numerically trivial with respect to Lr. The intersection matrix of these {Ci}i∈I is
negative definite. This yields that these curves form a basis of a proper subspace of NSQ(X).
Again, just setting albr = idX , the assertions of Theorem 6.2 are fulfilled. As before, § 6.7 applies.

6.9 Surfaces of Kodaira dimension less than 2. Let X be a projective algebraic surface
of Kodaira dimension κ(X) � 1. We assume that X is minimal. This is not a restriction, because
the fundamental group of rational curves is zero. Table 1 gives the generalized Albanese morphism
for these surfaces following the Enriques–Kodaira classification (see [BPV84, VI]). The sixth and
seventh rows are perhaps the most interesting ones. They show that the generalized Albanese
morphisms may reveal more of the surface than the classical one. We assume in these two rows that
the surface X is not a product of two curves.

Table 1. Surfaces X with κ(X) � 1.

κ(X) class of X the generalized Albanese morphism
−∞ rational surfaces X → Spec(C)
−∞ ruled surfaces X → B with g(B) � 1 X → B

0 Enriques surfaces X → Spec(C)
0 K3 surfaces X → Spec(C)
0 tori X → X

0 hyperelliptic surfaces Alb1(X) is an elliptic curve, whereas
Albr(X) ∼= X , for r � 1 (see also § 6.10)

1 properly elliptic surfaces with Alb1(X) is an algebraic curve, and
smooth elliptic fibration Albr(X) ∼= X , for r � 1 (see also § 6.10)

1 properly elliptic surfaces with only albr : X → Albr(X) is the elliptic
generically smooth elliptic fibration fibration for all r ∈ N

6.10 A class of examples. Let G be a finite group with |G| elements and C1, C2 be two smooth
projective curves with a G action such that:

(a) the genera gC1 and gC2 are positive;

(b) G acts free on C1, i.e. the quotient map C1 → C1/G is étale;

(c) there are no G-invariant global sections in H0(C2, ωC2), which is equivalent to C2/G ∼= P1.

We obtain a free G-action on C1 × C2. Let X := (C1 × C2)/G be the quotient of this action and
p : C1 × C2 → X the projection. Since C1 × C2 is embedded into its Albanese variety, we deduce
from Proposition 5.5 that L|G|.C > 0 for all curves C ⊂ X. Thus, albr = idX : X → X for all
r � |G|, whereas the classical Albanese morphism is just the map to the curve C1/G.
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