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Abstract. We investigate the location of zeros for the partition function of the
anti-ferromagnetic Ising model, focusing on the zeros lying on the unit circle. We give
a precise characterization for the class of rooted Cayley trees, showing that the zeros
are nowhere dense on the most interesting circular arcs. In contrast, we prove that when
considering all graphs with a given degree bound, the zeros are dense in a circular sub-arc,
implying that Cayley trees are in this sense not extremal. The proofs rely on describing
the rational dynamical systems arising when considering ratios of partition functions on
recursively defined trees.
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1. Introduction
Partition functions play a central role in statistical physics. The distribution of zeros of the
partition functions is instrumental in describing phase changes in a variety of contexts.
More recently there has been a second motivation for studying the zeros of partition
functions, arising from a computational complexity perspective. Since the 1990s there has
been significant interest in whether the values of partition functions can be approximated,
up to an arbitrarily small multiplicative error, by a polynomial time algorithm. For graphs
of bounded degrees this is known to be the case on open connected subsets of the zero free
locus [Bar16, PR17]. In recent work of the last author with Regts [PR19, PR20], the zero
free locus was successfully described by first considering a specific subclass of graphs,
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Lee-Yang zeros of the antiferromagnetic Ising model 2173

the Cayley trees, for which the location of zeros can be described by studying the iteration
properties of a rational function.

A common theme in the papers [PR19, PR20] was that the Cayley trees turned out to
be extremal within the larger class of bounded degree graphs, in the sense that a maximal
zero free locus for Cayley trees proved to be zero-free in the larger class as well. This
observation is the main motivation for our studies here, where we investigate to what extent
the extremality of the class of Cayley trees holds for the antiferromagnetic Ising model.

Let G = (V , E) denote a simple graph and let λ, b ∈ C. The partition function of the
Ising model ZG(λ, b) is defined as

ZG(λ) = ZG(λ, b) =
∑
U⊆V

λ|U | · b|δ(U)|,

where δ(U) denotes the set of edges with one endpoint in U and one endpoint in U \ V .
In this paper we fix b > 0 and consider the partition function ZG(λ) as a polynomial in λ.
The case b < 1 is often referred to as the ferromagnetic case, while b > 1 is referred to as
the antiferromagnetic case.

For d ≥ 2 let Gd+1 be the set of all graphs of maximum degree at most d + 1. Given a
set of graphs H, we write

ZH = ZH(b) = {λ : ZG(λ) = 0 for some G ∈ H}.
When b < 1, the Lee–Yang circle theorem [LY52a, LY52b] states that for any graph G,
the zeros of ZG are contained in the unit circle S1. The zeros in the ferromagnetic case
have subsequently become known as the Lee–Yang zeros. To study the zeros of ZG for all
G ∈ Gd+1 one can consider the subset of finite rooted Cayley trees with down-degree d ,
which we denote by Cd+1. The Lee–Yang zeros of Cayley trees are studied in [MHZ75,
MH77, BM97, BG01, CHJR19] among other papers. In all of these papers some variation
of the following rational function plays an important role:

fλ(z) = fλ,d(z) = λ ·
(

z + b

bz + 1

)d

, (1)

where fλ is viewed as a function on the Riemann sphere. The significance of fλ in relation
to the Cayley trees is explained by the following lemma.

LEMMA 1.1. (E.g. [CHJR19, Proposition 1.1]) Let b ∈ R and d ≥ 2. Then

ZCd+1 = {λ : f n
λ (λ) = −1 for some n ∈ Z≥0}.

Thus complex dynamical systems can be used to study the zeros of the partition function
of Cayley trees. The following result from [PR20] shows that while the Cayley trees form
a relatively small subset of the class of all graphs of bounded maximal degree, the zero
free loci of these two classes are identical in the ferromagnetic case.

THEOREM 1.2. Let d ≥ 2. If 0 < b ≤ (d − 1)/(d + 1) then

ZCd+1 = ZGd+1 = S1.

https://doi.org/10.1017/etds.2021.25 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.25


2174 F. Bencs et al

FIGURE 1. Comparing zeros of Cayley trees (left) and spherically symmetric trees (right) for d = 2 and depth
at most 11.

If (d − 1)/(d + 1) < b < 1 then

ZCd+1 = ZGd+1 = Arc[λ1, λ1],

where λ1 = λ1(b) ∈ S1 is the unique parameter in the upper half plane for which fλ has
a parabolic fixed point.

Given α, β on the unit circle, we will use the notation Arc[α, β] for the closed circular
arc from α to β, traveling counterclockwise, and similarly for open and half-open circular
arcs.

When b > 1 the Lee-Yang circle theorem fails, and the set of zeros of the partition
function is considerably more complicated. Consider, for example, Figure 1, illustrating
the location of zeros for Cayley trees and for the larger class of spherically sym-
metric trees, defined in Definition 1.7 below, both for maximal down-degree d = 2
and maximal depth 11. The pictures are symmetric with respect to reflection in the
unit circle, but only few zeros outside of the unit disk are depicted because of space
limitations.

The pictures clearly demonstrate the appearance of zero parameters both on and off
the unit circle. In this paper we focus on describing the set of zeros on the unit circle.
Our main result shows that, contrary to the ferromagnetic case, the zero free locus for the
Cayley trees is strictly larger than that of the class of all bounded degree graphs.

We recall the following result from [PR20].

THEOREM 1.3. Let λ0 = eiθ0 ∈ S1 be the parameter with the smallest positive angle θ0

for which fλ0(λ0) = 1. Then

ZGd+1 ∩ R+ · Arc[λ0, λ0] = ∅,

but

λ0, λ0 ∈ ZCd+1 .
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Note that, in Figure 1, λ0 and λ0 are depicted by the conjugate pair of points with
smallest absolute argument. The other conjugate pair of points corresponds to λ1 and λ1,
having the same definition as in the ferromagnetic case.

Our main result is the following theorem.

THEOREM 1.4. Let d ≥ 2. If b ≥ (d + 1)/(d − 1) then

ZCd+1 ∩ S1 = ZGd+1 ∩ S1 = S1.

If 1 < b < (d + 1)/(d − 1) then:
(1) density for Cayley trees,

Arc[λ1, λ1] ∪ {λ0, λ0} ⊂ ZCd+1 ∩ S1;

(2) nowhere density for Cayley trees, the set

ZCd+1 ∩ Arc[λ0, λ1]

is a nowhere dense subset of Arc[λ0, λ1];
(3) density for arbitrary graphs, there exists λ3 ∈ Arc(λ0, λ1) such that

ZGd+1 ∩ Arc[λ0, λ3] = Arc[λ0, λ3].

Case (3) will be proved in §6, building upon results from earlier sections. Cases (1)
and (2) will be proved respectively in §4 and 3. The statement for b ≥ (d + 1)/(d − 1) is
simpler and will be proved at the end of §3.

Remark 1.5. The fact that the closure of ZCd+1 is strictly smaller than the closure of ZGd+1

also holds outside of the unit circle, a statement that is considerably easier to prove. For
example, the solution to the one-dimensional Ising model gives the density of zeros in a
real interval [−α−1, −α], for some α ∈ (0, 1). On the other hand, using Corollary 3.10,
one can prove the existence of a neighbourhood of λ = −1 where all accumulation points
of ZCd+1 must lie on the unit circle.

We prove case (3) for the subclass in Gd+1 given by the spherically symmetric trees.
These trees have the advantage that dynamical methods can be used to describe the location
of zeros, as indicated by the following lemma, whose proof will be given later in this
section.

LEMMA 1.6. Let d ≥ 2 and λ, b ∈ C. Then there exists a spherically symmetric tree T

with down-degree at most d for which ZT (λ, b) = 0 if and only if

g(λ) = −1

for some g ∈ Hλ,d+1.

Here Hλ,d+1 = Hλ,d+1(b) is the rational semigroup generated by fλ,1, . . . , fλ,d ,
that is,

Hλ,d = 〈fλ,1, . . . , fλ,d〉.
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We will prove that a specific subsemigroup of Hλ,d is hyperbolic for all λ ∈ Arc[λ0, λ2),
for some λ2 ∈ Arc(λ0, λ1). Moreover, we obtain uniform bounds on the expansion rate
on compact subsets of Arc[λ0, λ2). We also show that for any λ ∈ Arc[λ0, λ1], there
exists a sequence in the subsemigroup for which +1 lies on the Julia set. Combining these
two statements, we obtain uniform expansion along an orbit of +1. The density of zero
parameters is a consequence for λ sufficiently close to λ0.

We emphasize that in statement (3) of Theorem 1.4 we only consider zero parameters
in S1. Alternatively we can consider ZGd+1 ∩ S1, which is a priori a larger set. We prove in
§6 that this closure contains the circular arc

Arc[λ0, λ2),

which is the arc where the earlier discussed subsemigroup of Hλ,d acts hyperbolically. The
parameter λ2 can be explicitly calculated. Computer evidence in fact suggests that

ZGd+1 ∩ S1 = Arc[λ0, λ0].

In §2 we prove basic results regarding the attracting intervals of the maps fλ, to be used
in later sections. In §3 we consider the hyperbolic components in the parameter space of
the maps fλ, and prove case (2) of Theorem 1.4. In §4 we consider only parameters λ on
the unit circle and prove case (1).

In the remainder of this introduction we recall the relationship between partition
functions on Cayley trees and spherically symmetric trees on the one hand, and iteration
and semigroup actions on the other hand. In particular, we give a short proof of Lemmas
1.1 and 1.6. In the rest of the paper we will only consider the two dynamical systems, with
few references to partition functions.

1.1. Iterates and semigroups arising from trees. Let us recall from [PR20] (but see
also [CHJR19]) how the zeros of the Ising partition function ZG(λ) on some recursively
defined trees can be studied using iterations or compositions of rational functions.

Let v be a marked node of a graph G = (V , E). Note that

ZG = Zin
G,v + Zout

G,v ,

where Zin
G,v sums only over U ⊂ V with v ∈ U , and Zout

G,v sums only over U ⊂ V with
v /∈ U . It follows that

ZG = 0 ⇔ RG,v := Zin
G,v

Zout
G,v

= −1 or Zin
G,v = Zout

G,v = 0.

Suppose now that G = T is a tree. Denote the neighbours of v by v1, . . . , vk , and the
corresponding connected components of G − v by T1, . . . , Tk . Then it follows that

RT ,v = λ

k∏
i=1

RTi ,vi
+ b

bRTi ,vi
+ 1

.
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Hence when all the rooted trees (Ti , vi) are isomorphic, one obtains

RT ,v = λ

(
RTi ,vi

+ b

bRTi ,vi
+ 1

)k

.

Definition 1.7. Let d ≥ 2 and let ω = (k1, k2, . . .) ∈ {1, . . . , d}N. Let T0 be the rooted
graph with a single vertex. Recursively define the trees T1, . . . by letting Tn consist of a
root vertex v of degree kn, with each edge incident to v connected to the root of a copy
of Tn−1. We say that the rooted trees Tn are spherically symmetric of degree at most d .
Equivalently a rooted tree, with root v, is said to be spherically symmetric if all leaves
have the same depth n, and all vertices of depth 1 ≤ j < n have down-degree kj . When
all degrees kn are equal to d the tree Tn is said to be a (rooted) Cayley tree of degree d .

Note that for a spherically symmetric tree

Zin
n (λ) = λ(Zin

n−1(λ) + bZout
n−1(λ))kn ∈ R[λ], and

Zout
n (λ) = (bZin

n−1(λ) + Zout
n−1(λ))kn ∈ R[λ].

Since we will work with b /∈ {−1, +1} it follows by induction that Zin
n (λ) and Zin

n (λ)

cannot both be equal to zero, from which it follows that

ZG = 0 ⇔ RG,v = −1.

Noting that RT0,v = λ, it follows for Cayley trees that

RTn,v = f n
d (λ) = f n+1

d (+1),

where

f (z) = fd(z) = λ

(
z + b

bz + 1

)d

,

while for spherically symmetric trees we obtain

RTn,v = f n
ω (λ) := fkn ◦ · · · ◦ fk1(λ).

Hence we have proved Lemmas 1.1 and 1.6.
Motivated by this discussion, we introduce the notation

Zf := {λ ∈ C : f n(1) = −1 for some n ∈ N}.
and

ZH := {λ ∈ C : f n
ω (1) = −1 for some n ∈ N, ω ∈ {1, . . . , d}N},

where H again refers to the semigroup 〈f1, . . . , fd〉. Thus λ ∈ Zf if and only if
ZG(λ) = 0 for a Cayley tree G, while λ ∈ ZH if and only if ZG(λ) = 0 for a spherically
symmetric tree G.

2. J -stable components
Given a family of rational maps fλ parameterized by a complex manifold �, the set of
J -stable parameters is the set of parameters for which the Julia set Jλ moves continuously
with respect to the Hausdorff topology. The concept of J -stability plays a central role in
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the study of rational functions. We refer the interested reader to [MnSS83, McM94, Slo91]
for a more detailed description of J -stability.

Given a positive integer d ≥ 2 and b > 1, let fλ be the family of rational functions
given by equation (1) parameterized by � = Ĉ. We will write �stb for the set of J -stable
parameters and �hyp for the set of hyperbolic parameters, that is, the values for which fλ

has no critical points or parabolic cycles on Jλ. Recall that �stb is a dense open set and
that the set �hyp is an open and closed subset of �stb. Whether the equality �stb = �hyp

holds for the family given by equation (1) is a natural question, though not directly relevant
for our purposes.

Given λ ∈ �stb, we will write �stb
λ for the connected component of �stb containing the

parameter λ.

THEOREM 2.1. There exists a holomorphic motion of Jλ over (�stb
λ , λ) which respects the

dynamics, that is, there exists a continuous map ϕ : Ĉ × �stb
λ → Ĉ satisfying the following

properties.
(1) ϕμ is the identity at the base point λ, that is, ϕλ(z) = z.
(2) For every z ∈ Jλ the map ϕμ(z) is holomorphic in μ ∈ �stb

λ .
(3) For every μ ∈ �stb

λ the map z �→ ϕμ(z) is injective and can be extended to a
quasi-conformal map ϕμ : Ĉ → Ĉ.

(4) For every μ ∈ �stb
λ the map ϕμ : Jλ → Jμ is a homeomorphism. Furthermore, the

following diagram commutes:

Jλ Jλ

Jμ Jμ

fλ

ϕμ ϕμ

fμ

Such a map ϕ satisfies the following two additional properties.
(5) Given z ∈ Ĉ, the map ϕ−1

μ (z) is continuous with respect to μ,
(6) Let zn → z be a convergent sequence and assume that μ �→ ϕμ(z) is not constant.

Then there exist a subsequence nk and μk → λ so that

ϕμk
(znk

) = z.

Remark 2.2. The existence of a continuous map ϕ satisfying properties (1)–(4) was
proven by [MnSS83, Slo91], while the properties (5) and (6) follow immediately from
continuity of ϕ. The holomorphic motion is unique on the Julia set Jλ, in the sense that
any other continuous map ϕ̃ which satisfies properties (1)–(4) has to agree with ϕ on the
set Jλ × �stb

λ .

Define the two sets

F := {λ ∈ Ĉ | 1 ∈ Fλ}, J := {λ ∈ Ĉ | 1 ∈ Jλ}.
Given a connected component U ⊂ �stb, we further write FU = F ∩ U and JU = J ∩ U .
Since the Julia set Jλ moves continuously for λ ∈ U , it follows that FU is open while JU

is closed with respect the intrinsic topology of U .
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Definition 2.3. Let U be a connected component of �stb. We say that U is exceptional
if there exists λ ∈ JU so that μ �→ ϕμ(1) is constant, where ϕμ denotes the holomorphic
motion of Jλ over (U , λ).

Remark 2.4. Suppose that U is an exceptional component of �stb and let λ ∈ U be so that
the map μ �→ ϕμ(1) is constant. Given another λ̃ ∈ U , we have that ϕλ̃(1) = ϕλ(1) = 1,
and therefore that 1 ∈ Jλ̃. Let ϕ̃μ be the holomorphic motion of Jλ̃ over (U , λ̃). Then we
have

ϕ̃μ(1) = ϕμ ◦ ϕ−1
λ̃

(1) = 1 for all μ ∈ U .

This shows that if U is an exceptional component then JU = U and for every λ ∈ U the
map μ �→ ϕμ(1) is constant.

PROPOSITION 2.5. Let U be a connected component of �stb. Then the set JU is perfect
with respect to the intrinsic topology of U .

Proof. We already know that JU is closed in U , thus we only have to show that JU

contains no isolated points. If U is an exceptional hyperbolic component, then according
to Remark 2.4 we have JU = U and the result follows immediately. Assume instead that
U is not exceptional, let λ ∈ JU and ϕμ be the holomorphic motion of Jλ over (U , λ).

Since the Julia set of a rational map is perfect, it follows that we may take zn ∈ Jλ

which converges to 1, and is not identically equal to 1. By Theorem 2.1 we may therefore
find a sequence nk ≥ 0 and μk → λ so that ϕμk

(znk
) = 1 for every k. Since ϕμ(Jλ) = Jμ

we conclude that μk ∈ JU , proving that λ is not an isolated point of JU , and that JU is
perfect.

The definition of active parameters is classical [McM00, DF08], and was inspired by
[Lev81, Lyu83]. In all these works activity is always defined in terms of the family {f n

λ ◦
c(λ)}, where c(λ) is the parameterization of a critical point. For our purpose it is natural
to replace c(λ) with the point 1, even though the point 1 is never critical.

Definition 2.6. A parameter λ ∈ Ĉ is passive if the family {λ �→ f n
λ (1)}n∈N is normal in

some neighbourhood of λ, and is active otherwise.

We further remark that, given a marked point a(λ) and the corresponding family {f n
λ ◦

a(λ)}, it would be more accurate to say that the marked point a(λ) is passive/active at λ.
However, since in our case the marked point is always 1, we will refer to passive/active
parameters instead.

LEMMA 2.7. Every active parameter is in ZCd+1 .

Proof. This is a standard normality argument. Assume first that d �= 2 or that λ �= −1.
Let λ be an active parameter and choose α0, β0 ∈ f −1

λ ({−1}) so that {−1, α0, β0} are
all distinct. Since −1 is never a critical value of fλ we can define two holomorphic
maps αμ, βμ so that fμ({αμ, βμ}) = −1 in a neighbourhood of λ. By conjugating
with a holomorphically varying family of Möbius transformation we may assume that
{−1, αμ, βμ} = {−1, 0, ∞}. Since the family {f n

μ(1)} is not normal at λ, by Montel’s
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theorem we conclude that it cannot avoid the three points {−1, 0, ∞} in a neighbourhood
of λ. Since {0, ∞} are both mapped to −1, the orbit f n

λ (1) cannot miss the point −1 near
λ, proving that λ ∈ ZCd+1 . When d = 2 and λ = −1 the point −1 is fixed and has only two
preimages {1, −1}. In this case we fix α0 = 1 and choose γ0 as one of the two preimages
of 1; the proof is then the same as above.

LEMMA 2.8. Let U be a non-exceptional component of �stb. Then every λ ∈ FU is
passive and every λ ∈ JU is active.

Proof. Given λ ∈ U , let ϕμ be the holomorphic motion of Jλ over (U , λ). If λ ∈ FU then
the orbit f n

λ (1) avoids the Julia set Jλ and, in particular, it avoids three distinct points
{a, b, c} ⊂ Jλ. Since the set FU is open we have that 1 ∈ Fμ for every μ sufficiently
close to λ, and therefore the orbit of f n

μ(1) avoids the set ϕμ({a, b, c}) ⊂ Jμ. Using the
normality argument from the proof of the previous lemma, we may therefore conclude that
{f n

μ(1)} is normal in a neighbourhood of λ, showing that λ is passive.
Suppose that there exists λ ∈ JU which is passive. Given any 0 < ε < diam(Jλ)/2, by

equicontinuity we can find δ > 0 so that

|f n
μ(1) − f n

λ (1)| < ε/2 for all μ ∈ B(λ, δ) and n ∈ N.

Given any open neighbourhood U � 1, there exists N ∈ N so that f N
λ (U ∩ Jλ) = Jλ.

Given w ∈ Jλ with distance at least ε from f N
λ (1), we can therefore find z ∈ U ∩ Jλ so

that f N
λ (z) = w. We conclude that we can construct a sequence zk ∈ Jλ converging to the

point 1 and a sequence of positive integers Nk so that

|f Nk

λ (zk) − f
Nk

λ (1)| > ε. (2)

By Theorem 2.1, up to taking a subsequence of zk if necessary, we may assume that there
exists a sequence μk ∈ B(λ, δ) so that μk → λ and so that ϕμk

(zk) = 1. This implies that

|ϕμk
◦ f

Nk

λ (zk) − f
Nk

λ (1)| = |f Nk
μk

(1) − f
Nk

λ (1)| < ε/2.

By continuity of the holomorphic motion, we may further assume that whenever k is
sufficiently large we have

|ϕμk
◦ f

Nk

λ (zk) − f
Nk

λ (zk)| = |ϕμk
◦ f

Nk

λ (zk) − ϕλ ◦ f
Nk

λ (zk)| < ε/2.

In combination with the previous inequality we conclude that for every k sufficiently large
we have

|f Nk

λ (zk) − f
Nk

λ (1)| < ε for all n ∈ N,

contradicting the definition of the sequence zk . Thus every λ ∈ JU is active.

3. Dynamics of the map fλ

For given d ≥ 2 and b > 1, we are interested in the dynamics of the map fλ under the
assumption that λ ∈ S1. In this case we have

fλ : B(0, 1) → Ĉ \ B(0, 1) → B(0, 1),

fλ : S1 → S1,
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and the restriction of f to S1 is orientation reversing. If we write respectively Fλ and Jλ

for the Fatou and Julia set of the map fλ, we conclude that

Fλ ⊃ Ĉ \ S1, Jλ ⊂ S1 for all λ ∈ S1. (3)

When λ ∈ S1, we further have

|f ′
λ(z)| = d(b2 − 1)

1 + b2 + 2b Re z
for all z ∈ S1. (4)

Therefore the value of |f ′
λ(z)| increases as Re z decreases. Recall that a rational map f

is expanding on an invariant set K if f locally increases distances, while it is uniformly
expanding if distances are locally increased by a multiplicative factor, bounded below by a
constant strictly greater than 1.

LEMMA 3.1. [PR20, Lemma 9] If b > (d + 1)/(d − 1) and λ ∈ S1 then the map fλ is
uniformly expanding on S1. If b = (d + 1)/(d − 1) then the map fλ is expanding on S1.

Definition 3.2. [PR20, Lemma 12] Given 1 < b < (d + 1)/(d − 1), we write λ1 ∈ S1 for
the unique parameter satisfying 0 < arg(λ1) < π and for which fλ1 has a parabolic fixed
point.

The following proposition describes the set of hyperbolic parameters on the unit circle.

PROPOSITION 3.3. We have

S1 ∩ �hyp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 if b >
d + 1
d − 1

,

S1 \ {1} if b = d + 1
d − 1

,

S1 \ {λ1, λ1} if 1 < b <
d + 1
d − 1

.

Proof. When b > (d + 1)/(d − 1), by Lemma 3.1 the map fλ is uniformly expanding and
therefore hyperbolic. When b = (d + 1)/(d − 1) and λ ∈ S1 \ {1}, for every z ∈ S1 either
z or f (z) is uniformly bounded away from 1. By (4) we obtain again that the map f 2

λ is
uniformly expanding, proving that fλ is hyperbolic. On the other hand when λ = 1 the
map fλ has a parabolic fixed point, and therefore it is not hyperbolic.

Given 1 < b < (d + 1)/(d − 1), λ1, λ1 are the unique parameters on the unit circle for
which fλ has a parabolic fixed point. Suppose that there exists λ ∈ S1 \ {λ1, λ1} which is
not hyperbolic. By (3) the set Ĉ \ S1 is contained in the Fatou set, and therefore the critical
points of fλ are also contained in the Fatou set. It follows that the map fλ must have a
parabolic cycle with period at least 2. Since there are at most two Fatou components we
conclude that the period of the parabolic cycle is exactly 2.

Notice that for every λ ∈ S1 we have that fλ(1/z) = 1/fλ(z), and therefore that

f n
λ (−1/b) = 1/f n

λ (−b)
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Let z1, z2 ∈ S1 be the parabolic cycle of fλ. These two points are parabolic fixed points for
f 2

λ and both of them have an immediate basin that must coincide with a Fatou component
of fλ. By replacing z1 with z2 if necessary, we may therefore assume that B(0, 1) is
the attracting basin of z1, while Ĉ \ B(0, 1) is the attracting fixed point of z2. This
shows that f 2n

λ (−1/b) → z1 and that f 2n
λ (−b) → z2, and therefore that z1 = 1/z2 = z2,

contradicting the fact that the period of the cycle is 2.

We notice that −1 is always a hyperbolic parameter, therefore the set �
hyp
−1 , that is, the

connected component of �hyp containing −1, is always well defined. On the other hand,
the set �

hyp
1 is defined for b �= (d + 1)/(d − 1) and does not coincide with �

hyp
−1 if and

only if 1 < b < (d + 1)/(d − 1).

PROPOSITION 3.4. Let b > 1. Then for every λ ∈ �
hyp
−1 the Julia set Jλ is a quasi-circle,

while the Fatou set Fλ contains exactly two components which are the attracting basin of
a (super)attracting 2-cycle. If we further assume that |λ| = 1 then Jλ = S1.

Let 1 < b < (d + 1)/(d − 1). Then for every λ ∈ �
hyp
1 the Julia set Jλ is a Cantor

set, while the Fatou set Fλ coincides with the attracting component of an attracting fixed
point.

Proof. The function g(z) = f 2−1(z) − z satisfies g(0) < 0 and g(−1/b) > 0. Since g is a
real map and f−1 maps the disk to the complement of its closure, we conclude that f−1 has
a periodic point of order 2 in B(0, 1). By (3) it is clear that J−1 = S1. The holomorphic
motion of J−1 over (�

hyp
−1 , −1) given by Theorem 2.1 now implies that the Julia set Jλ

is a quasi-circle for every λ ∈ �
hyp
−1 . The two components of F−1 are mapped into each

other, and by continuity the same holds for Fλ. Hyperbolicity of fλ implies that they are
the basin of a (super)attracting 2-cycle.

When 1 < b < (d + 1)/(d − 1) the map f1 has an attracting fixed point at 1. It is
well known that the Julia set of a rational function with a single invariant attracting
basin containing all the critical points is a Cantor set (see also [Mil00, Theorem B.1]).
Proceeding as above, we obtain that for every λ ∈ �

hyp
1 the set Jλ is a Cantor set and that

Fλ coincides with the attracting basin of a (super)attracting fixed point. Since the critical
points of fλ are not fixed points, we conclude that the fixed point is attracting.

Remark 3.5. A bicritical rational map is a rational map with two distinct critical
points (counted without multiplicity). The space of bicritical rational maps of degree
d was studied by Milnor [Mil00], where he shows that its Moduli space (the space
of holomorphic conjugacy classes) is biholomorphic to C2. In that paper he constructs
explicit conjugacy invariants f �→ (X, Y ). In our case the invariants associated to the map
fλ are given by

X = b2

1 − b2 , Y =
(

λ + 1
λ

)
bd−1

(1 − b2)d
.

A bicritical rational map is real if its invariants are real, or equivalently if there exists an
antiholomorphic involution α which commutes with the map. When b ∈ R \ {0, 1}, the
map fλ is real if and only if λ ∈ S1, and the corresponding involution is α = 1/z. The
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FIGURE 2. The position of Iλ for λ ∈ Arc(1, λ0) and for λ ∈ Arc(λ0, λ1).

results obtained by Milnor for real maps are sufficient to conclude that, given λ ∈ S1, the
Julia set is either a Cantor set or the whole circle.

The following definition follows from the proposition above. Recall that when 1 <

b < (d + 1)/(d − 1) by Proposition 3.3 we have Arc(λ1, λ1) = �
hyp
1 ∩ S1 and that when

λ ∈ S1 all fixed points of fλ are on the unit circle.

Definition 3.6. Given 1 < b < (d + 1)/(d − 1) and λ ∈ Arc(λ1, λ1), we write Rλ ∈ S1

for the attracting fixed point of fλ and Iλ for the connected component of Fλ ∩ S1

containing Rλ. Notice that the map fλ is an orientation-reversing bijection fλ : Iλ → Iλ.

THEOREM 3.7. Let 1 < b < (d + 1)/(d − 1). Then there exist unique parameters
λ0 ∈ S1 with 0 < arg(λ0) < arg(λ1) < π , so that when λ ∈ Arc[1, λ1),⎧⎪⎪⎨

⎪⎪⎩
Arc(1, λ) � Iλ for λ ∈ Arc[1, λ0),

Iλ = Arc(1, λ) for λ = λ0,

Iλ � Arc(1, λ) for λ ∈ Arc(λ0, λ1).

Similar inclusions hold for λ ∈ (λ1, 1].

The interval Iλ is illustrated in Figure 2 for the first and third cases. The existence of
λ0 and the first two inclusions follows from [PR20, Theorem 5]. Since the dynamics of
fλ is conjugate to the dynamics of fλ it will be sufficient to prove that Iλ � Arc(1, λ) for
λ ∈ Arc(λ0, λ1).

By the implicit function theorem the point Rλ moves holomorphically in a neighbour-
hood of Arc(λ1, λ1). Furthermore, by (4) it satisfies

Re Rλ >
b2(d − 1) − (d + 1)

2b
> −1. (5)

LEMMA 3.8. Let 1 < b < (d + 1)/(d − 1). Then for every λ ∈ Arc(1, λ1) we have
Im Rλ > 0.
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Proof. A simple calculation shows that 1 is an attracting fixed point for fλ if and
only if λ = 1. This fact, together with (5), implies that R1 = 1 and that Rλ �= ±1 as
λ ∈ Arc(1, λ1). If we differentiate both sides of the equation Rλ = fλ(Rλ) with respect to
λ and evaluate at λ = 1, we obtain

∂λRλ|λ=1 = Rλ

λ(1 − f ′
λ(Rλ))

∣∣∣∣
λ=1

= 1
1 − d(1 − b)/(1 + b)

> 0.

Therefore for λ ∈ Arc(1, λ1) sufficiently close to 1 the point Rλ lies in the upper
half plane. However as λ varies within Arc(1, λ1), the point Rλ moves on S1 without
intersecting {−1, 1}. Therefore Im Rλ > 0 on the whole of Arc(1, λ1).

Proof of Theorem 3.7. Let zλ, wλ ∈ S1 so that Iλ = Arc(zλ, wλ). Since the map fλ :
Iλ → Iλ is an orientation-reversing bijection, we have

fλ(zλ) = wλ, fλ(wλ) = zλ,

showing that zλ, wλ are fixed points for f 2
λ . The Fatou set is connected, therefore there

can be only one attracting or parabolic fixed point for f 2
λ , which is Rλ. This shows that

the cycle zλ, wλ is repelling. By the implicit function theorem the points zλ, wλ move
holomorphically and without collisions on some neighbourhood U ⊃ Arc(λ0, λ1).

By the previous lemma and (5) we have

Rλ ∈
{
x + iy

∣∣∣∣ y > 0, x >
b2(d − 1) − (d + 1)

2b
> −1

}
.

Suppose now that for some λ ∈ Arc(λ0, λ1) we have zλ ∈ Arc(1, Rλ). By (4) the map
fλ is a contraction on Arc[1, Rλ]. As the point z moves counterclockwise on Arc[1, Rλ],
its image fλ(z) moves clockwise on S1, starting at λ and ending at Rλ. Since fλ is a
contraction and ImRλ > 0, this is possible only if fλ : Arc[1, Rλ] → Arc[Rλ, λ] is an
orientation-reversing bijection. We conclude that wλ = fλ(zλ) ∈ Arc(Rλ, λ) and thus that
Iλ � Arc(1, λ).

If we differentiate both sides of zλ = f 2
λ (zλ) we obtain the equation

∂λzλ (1 − (f 2
λ )′(zλ)) = λ−1(zλ + f ′

λ(wλ)wλ). (6)

Since Iλ0 = Arc(1, λ), it follows that zλ0 = 1 is a repelling fixed point for f 2
λ0

. Further-
more, since |f ′

λ0
(1)| < 1 we must have |f ′

λ0
(λ0)| > 1 and |(f 2

λ0
)′(1)| > 1. If we evaluate

the expression above at λ = λ0 we obtain that

∂λzλ|λ=λ0 = 1
λ0

1 − |f ′
λ0

(λ0)|
1 − |(f 2

λ0
)′(1)| = C

λ0
,

for some positive constant C > 0. If we write λ(ε) = λ0e
iε then we obtain that

zλ(ε) = 1 + iCε + O(ε2),

therefore as λ ∈ Arc(λ0, λ1) is sufficiently close to λ0, we must have zλ ∈ Arc(1, Rλ) and
thus that Iλ � Arc(1, λ).
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This also proves that the point zλ moves counterclockwise as λ is close to λ0. We
will show that zλ moves counterclockwise on the whole arc between λ0 and λ1. Assume
otherwise. Then there is some μ ∈ Arc(λ0, λ1) such that

0 = ∂λzλ|λ=μ = 1
μ

(zμ + f ′
μ(wμ)wμ).

Note that, since zλ �= Rλ for any λ ∈ Arc(λ0, λ1), it follows that μ ∈ Arc(1, Rμ). As a
result we must have |fμ(zμ)| < 1, and therefore

|f ′
μ(zμ)| · |f ′

μ(wμ)| = |f ′
μ(zμ)| ·

∣∣∣∣ zμ

wμ

∣∣∣∣ < 1,

which contradicts the fact that zμ is a repelling fixed point of f 2
μ . This shows that zλ ∈

Arc(1, Rλ) for every λ ∈ Arc(λ0, λ1) and therefore Iλ � Arc(1, λ), concluding the proof
of the proposition.

Recall that for b > 1 the point −1 is a hyperbolic parameter and that �hyp is an open and
closed subset of �stb. Therefore the connected component �

hyp
−1 is a connected component

of �stb. The same is clearly true for �
hyp
1 when 1 is a hyperbolic parameter.

LEMMA 3.9. For b > 1 the component �
hyp
−1 is not exceptional. For 1 < b <

(d + 1)/(d − 1) the component �
hyp
1 is not exceptional.

Proof. When 1 < b < (d + 1)/(d − 1) the map fλ has an attracting fixed point at z = 1
for λ = 1, but not for nearby values of λ. The attracting fixed point therefore varies
holomorphically and non-constantly as λ varies, from which it follows that ϕλ(1) is
non-constant for λ near 1. Hence the component �

hyp
1 is not exceptional.

Suppose now that �
hyp
−1 is exceptional for some b > 1 and let ϕμ be the holomorphic

motion of J−1 over (�
hyp
−1 , −1). Since the holomorphic motion respects the dynamics we

obtain that for every μ ∈ �
hyp
−1 ,

f n
μ(1) = f n

μ ◦ ϕμ(1) = ϕμ ◦ f n
−1(1). (7)

This shows that when the degree d is even the function fμ maps 1 to a fixed point of fμ,
proving that f 2

μ(1) = fμ(1). On the other hand, when d is odd the point 1 is periodic
with period 2, and therefore f 2

μ(1) = 1. Once the values of b and d are fixed there

are only finitely many values of μ ∈ �
hyp
−1 for which equation (7) is satisfied, giving a

contradiction.

COROLLARY 3.10. Suppose that b > 1 and U = �
hyp
−1 , or alternatively that 1 < b <

(d + 1)/(d − 1) and U = �
hyp
1 . Then the set of accumulation points of ZCd+1 in U equals

JU . Moreover, if the degree d is even then

JU = ZCd+1 ∩ U . (8)
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Proof. We first prove the statement for general degrees d . By Lemmas 2.7 and 2.8 we
obtain the inclusion

JU ∪ (ZCd+1 ∩ U) ⊂ ZCd+1 ∩ U .

Therefore it suffices to show that every λ ∈ FU either is an isolated point of ZCd+1 or is
not contained in ZCd+1 . The map fλ is hyperbolic, therefore the orbit of 1 converges to an
attracting periodic point Qλ of period N . By Proposition 3.4 when U = �

hyp
1 the Fatou

set Fλ is connected and N = 1. Similarly, when U = �
hyp
−1 , the set Fλ is the union of two

distinct connected components, and N = 2.
The parameter λ is passive, therefore f 2n+k

μ (1) → f k(Qμ) uniformly on some small
ball B(λ, ε), where k = 0, 1 and Qμ is the holomorphic continuation of the periodic
point Qλ. The point −1 cannot be an attracting periodic point of order 1 or 2, thus
Qμ, fμ(Qμ) �= −1. We conclude that whenever n is sufficiently large the point f n

μ(1)

is bounded away from −1. Therefore the intersection B(λ, ε) ∩ ZU only contains isolated
points.

Now suppose that d is even and let λ ∈ ZCd+1 ∩ U . Let N > 0 be the first integer so
that f N

λ (1) = −1. Since d is even the point −1 is periodic with period N . If N > 2 the
point −1 is a repelling periodic point, since attracting fixed points in U have period 1 or 2.
On the other hand −1 cannot be an attracting periodic point with order 1 or 2. This shows
that ZCd+1 ∩ U ⊂ JU , which proves (8).

PROPOSITION 3.11. Let 1 < b < (d + 1)/(d − 1). Then the set J
�

hyp
1

is a Cantor set, with

respect to the intrinsic topology of �
hyp
1 .

Proof. Proposition 2.5 states that J
�

hyp
1

is a perfect set. Therefore we only need to show
that every connected component K of this set consists of a single point. Let ϕμ be the
holomorphic motion of J1 over (�

hyp
1 , 1). By Theorem 2.1 the map ϕ−1

μ (1) is continuous
and sends K inside J1. Since J1 is a Cantor set we conclude that ϕ−1

μ (1) is constant on K ,
and therefore that ϕμ(c) = 1 for some c ∈ Ĉ and every μ ∈ K .

If K contains more than one point then by the identity principle we must have ϕμ(c) = 1
for all μ ∈ U , and in particular c = ϕ1(c) = 1, thus showing that �

hyp
1 is an exceptional

component, contradicting Lemma 3.9. We conclude that K is a single point.

Combining the previous proposition with Corollary 3.10, we conclude the proof of claim
(2) in Theorem 1.4.

Now let us consider b ≥ (d + 1)/(d − 1). For every λ with |λ| = 1 the map fλ

is expanding on the unit circle, even uniformly expanding when λ �= 1 or when b >

(d + 1)/(d − 1), and the Julia set equals the unit circle. Thus all λ on the unit circle,
except perhaps λ = 1, are contained in a hyperbolic component, hence the Julia set
varies holomorphically. The preimages of −1 lie dense on the unit circle by the uniform
expansion. Observing that the hyperbolic component is not exceptional it therefore follows
that +1 is a preimage of −1 for a dense set of parameters λ. We have therefore proved the
first statement in Theorem 1.4.
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FIGURE 3. The graphs of the holomorphic motions respectively in case (1) and (2) of Lemma 4.1.

4. Restriction to the unit circle
Throughout this section it will be assumed that b > 1.

LEMMA 4.1. Let λ ∈ S1 ∩ �hyp, and let ϕμ be the holomorphic motion of Jλ over
(�

hyp
λ , λ). Assume that 1 ∈ Jλ and that one of the two following conditions is satisfied:

(1) the partial derivative ∂μϕμ(1)|μ=λ �= 0;
(2) there exist sequences zn, wn ∈ Jλ both converging to 1 and satisfying 1 ∈

Arc(zn, wn).
Then there exists a sequence λn ∈ S1 converging to λ so that 1 is a repelling periodic point
for each map fλn .

See Figure 3 for an illustration.

Proof. Given λ ∈ S1, the Julia set Jλ is contained in the unit circle. Therefore for every
ε > 0 there exists δ > 0 so that the map μ �→ ϕμ(1) sends Iδ = B(λ, δ) ∩ S1 inside a
relatively compact subset of Iε = B(1, ε) ∩ S1. By continuity of the holomorphic motion
we may assume that the same is true for the map μ �→ ϕμ(z) whenever z ∈ Jλ is
sufficiently close to 1. The map ϕμ(z) : Iδ → Iε can be interpreted as a map between
intervals. We will denote its graph by �(z) ⊂ Iδ × Iε.

Assume first that condition (1) holds. Let zn ∈ Jλ be a sequence of repelling periodic
points so that zn → 1 and zn �= 1. Since ∂μϕμ(1)|μ=λ �= 0 the graph �(1) intersects the
line w = 1 transversally at the point (λ, 1). By Theorem 2.1, when n is sufficiently large
the graph �(zn) is uniformly close to �(1) and therefore it intersects the line w = 1 in
(λn, 1) for some λn ∈ Iδ \ {λ} close to λ. It follows that λn → λ and that 1 = ϕλn(zn) is
a repelling periodic point for fλn

Assume now that condition (2) holds. Since repelling periodic points are dense in the
Julia set, we may assume from the beginning that the zn and wn are repelling periodic
points for fλ. When n is sufficiently large the graphs �(zn) and �(wn) are both close to
�(1). Furthermore, since the map z �→ ϕμ(z) is injective, we conclude that

ϕμ(1) ∈ Arc(ϕμ(zn), ϕμ(wn)) for all μ ∈ Iδ ,

meaning that the graph �(1) lies in between �(zn) and �(wn).
It follows that when n is sufficiently large there exists λn ∈ Iδ \ {λ} close to λ so that

either ϕλn(zn) = 1 or ϕλn(wn) = 1. As in the previous case we obtain that 1 is a repelling
periodic point for fλn and that λn → λ, concluding the proof of the proposition.
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PROPOSITION 4.2. Let λ ∈ S1 be so that 1 is a repelling periodic point for fλ. Then
λ ∈ ZCd+1 ∩ S1.

This proposition is proved after Lemma 4.5. We claim that it is enough to prove the
statement for hyperbolic parameters. When b > (d + 1)/(d − 1), by Proposition 3.3 all
points in the circle are hyperbolic, and the claim is certainly true. Assume instead that
1 < b ≤ (d + 1)/(d − 1) and that the proposition holds for hyperbolic parameters. Given
λ ∈ �

hyp
−1 ∩ S1, by Corollary 3.4 the Julia set Jλ coincides with the unit circle, and by

Lemma 4.1 we may find parameters in �
hyp
−1 ∩ S1 arbitrarily close to λ for which 1 is a

repelling periodic point. It follows that λ ∈ ZCd+1 ∩ S1 and that

�
hyp
−1 ∩ S1 ⊆ ZCd+1 ∩ S1.

This shows that the proposition holds also when λ ∈ S1, proving the claim (by

Proposition 3.3, non-hyperbolic points on the circle are in �
hyp
−1 ∩ S1).

From now on we will fix λ ∈ S1 ∩ �hyp so that 1 is a repelling point for fλ. Given such
λ, we will write N for the period of the point 1, and ϕμ for the holomorphic motion of Jλ

over (�
hyp
λ , λ).

LEMMA 4.3. Suppose that b ≥ (d + 1)/(d − 1) or that N ≥ 3. Then there exist sequences
zn, wn ∈ Jλ both converging to 1 and satisfying 1 ∈ Arc(zn, wn).

Proof. Suppose first that b ≥ (d + 1)/(d − 1) or that 1 < b < (d + 1)/(d − 1) and λ ∈
Arc(λ1, λ1). In this case Jλ = S1, and the result follows immediately.

When instead 1 < b < (d + 1)/(d − 1) and λ ∈ Arc(λ1, λ1), by Proposition 3.4 the
Julia set Jλ ⊂ S1 is a Cantor set. Suppose for the purpose of contradiction that the lemma
is false, so that 1 ∈ ∂Î , where Î is a connected component of Fλ ∩ S1. The connected
components of Fλ ∩ S1 are open arcs which are mapped one to another by fλ and are
eventually mapped into the invariant arc Iλ containing the unique attracting fixed point Rλ.

If 1 ∈ ∂Î it follows that for some n > 0 we must have f n
λ (1) ∈ ∂Iλ. But Iλ is invariant

and we are assuming that 1 is periodic, therefore 1 ∈ ∂Iλ. However, this is not possible
when N ≥ 3 since the boundary points of Iλ are repelling periodic points with period 2,
giving a contradiction.

The point 1 is a fixed point if and only if λ = 1. If 1 < b < (d + 1)/(d − 1) then the
point 1 is an attracting fixed point for f1, thus if 1 is a repelling periodic point for fλ we
must have N ≥ 2.

LEMMA 4.4. Suppose that 1 < b < (d + 1)/(d − 1) and that N = 2. Then
∂μϕμ(1)|μ=λ �= 0.

Proof. Suppose instead that ∂μϕμ(1)|μ=λ = 0 and write fλ(z) = λg(z). Since the point
ϕμ(1) is a repelling periodic point of period 2 for fμ, it follows that

0 = ∂μ(f 2
μ ◦ ϕμ(1))|μ=λ

= g(λ) + f ′
λ(λ).

https://doi.org/10.1017/etds.2021.25 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.25


Lee-Yang zeros of the antiferromagnetic Ising model 2189

For λ ∈ S1 we then have |f ′
λ(λ)| = |g(λ)| = 1, and therefore |(f 2

λ )′(1)| = |f ′
λ(1)| < 1,

contradicting the fact that 1 is a repelling fixed point with period 2.

Since λ is a hyperbolic parameter, there exist an integer j ≥ 1, an open neighbourhood
U ⊃ Jλ and κ > 1 so that whenever z, w ∈ U are sufficiently close we have

|f jN
λ (z) − f

jN
λ (w)| ≥ κ|z − w|.

Given δ > 0 sufficiently small, we may further assume that the same is true for fμ when
we take μ ∈ Iδ = B(λ, δ) ∩ S1. Since the map μ �→ Jμ is continuous with respect to the
Hausdorff distance, we may further assume that Jμ ⊂ U for every μ ∈ Iδ . We therefore
obtain the following lemma.

LEMMA 4.5. There exists ε > 0 so that for every μ ∈ Iδ and z, w ∈ Jμ distinct we can
find k ≥ 0 so that

|f kN
μ (z) − f kN

μ (w)| ≥ 2ε.

Proof of Proposition 4.2. Let λ ∈ �hyp ∩ S1 be a parameter for which 1 is a repelling
periodic point of period N ≥ 2. We will assume first that b ≥ (d + 1)/(d − 1) or that
N ≥ 3.

By Lemma 4.3 there exist two sequences in Jλ converging to 1: one contained in the
upper half plane and one in the lower half plane. Since the backward images of the point −1
accumulate on the Julia set Jλ, and thus on every point in such sequences, we may find two
preimages αλ, βλ of the point −1 contained in Iε = B(1, ε) ∩ S1 so that 1 ∈ Arc(αλ, βλ).
Write M1, M2 > 0 for the two positive integers so that f M1(αλ) = f M2(βλ) = −1.

Take δ > 0 and write Iδ = B(λ, δ) ∩ S1. Then if δ is sufficiently small we have ϕμ(1) :
Iδ → Iε and we can find two continuous functions αμ, βμ : Iδ → Iε so that f M1(αμ) =
f M2(βμ) = −1 and

ϕμ(1) ∈ Arc(αμ, βμ) for all μ ∈ Iδ .

Lemma 4.3 shows that condition (2) in Lemma 4.1 is satisfied. It follows that there exists
λ′ ∈ Iδ \ {λ} arbitrarily close to λ so that 1 is also a repelling periodic point for fλ′ , and
therefore 1 ∈ Jλ′ . Furthermore, by Lemma 3.9 the holomorphic map ϕμ(1) is not constant,
therefore we may choose λ′ so that 1 �= ϕλ′(1).

By Lemma 4.5 we may find k so that |f kN
λ′ (ϕλ′(1)) − f kN

λ′ (1)| ≥ 2ε, and since
ϕλ′(1) ∈ Iε is a periodic point for fλ′ of period N we conclude that

|f kN
λ′ (1) − 1| ≥ |f kN

λ′ (1) − ϕλ′(1)| − |ϕλ′(1) − 1| ≥ ε,

showing that f kN
λ′ (1) ∈ S1 \ Iε.

The map μ �→ f kN
μ (1) is continuous and we have

f kN
λ (1) = 1 ∈ Arc(αλ, βλ), f kN

λ′ (1) �∈ Arc(αλ′ , βλ′).

Therefore we may conclude that there exists λ′′ ∈ Arc(λ, λ′) so that either f kN
λ′′ (1) = αλ′′

or f kN
λ′′ (1) = βλ′′ , see Figure 4 for an illustration of the points λ

′
and λ

′′
. Since αλ′′ and

βλ′′ are preimages of the point −1 we conclude in both cases that λ′′ ∈ ZCd+1 ∩ S1. Since
λ′, and thus λ′′, can be chosen arbitrarily close to λ, we must have λ ∈ ZCd+1 ∩ S1.
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FIGURE 4. The position of the points λ′ and λ′′.

Suppose now that 1 < b < (d + 1)/(d − 1) and that N = 2. We notice that once b and
d are fixed, this can happen only for finitely many values of λ. Combining Lemma 4.4 and
Lemma 4.1. we can find λ′ ∈ �hyp ∩ S1 arbitrarily close to λ for which 1 is a repelling
fixed point for fλ′ with period greater than 3. Since the proposition holds for λ′ it must
hold for λ as well, concluding the proof of the proposition.

Proof of claim (1) in Theorem 1.4. We already showed that Lemma 4.1 and Proposition 4.2

together imply �
hyp
−1 ∩ S ⊂ ZCd+1 ∩ S. Therefore when 1 < b < (d + 1)/(d − 1), by

Proposition 3.3 we have

Arc[λ1, λ1] ⊂ ZCd+1 ∩ S.

If λ = λ0 or λ = λ0, then 1 is a repelling 2-cycle of fλ0 , therefore by Proposition 4.2
we have {λ0, λ0} ⊂ ZCd+1 ∩ S.

5. Hyperbolic semigroups and expanding orbits
Throughout this section we will assume that d ∈ N≥2 and b ∈ (1, (d + 1)/(d − 1)) are
fixed.

Definition 5.1. Given λ ∈ Ĉ, we define the semigroup H = 〈f1, . . . , fd〉 as the semi-
group generated by the maps

fk(z) = λ

(
z + b

bz + 1

)k

, k = 1, . . . , d .

We will write Fk , Jk for the Fatou and Julia set of the map fk and FH , JH for the Fatou
and Julia set of the semigroup H .

For most values of λ we can give the following precise characterization of the semigroup
H , which will not be used later in the paper but may be interesting in its own right.
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PROPOSITION 5.2. For all but countably many λ ∈ Ĉ the semigroup H is freely generated
by {f1, . . . , fd}.
Proof. Let S be the free group generated by {f1, . . . , fd} and write � : S → H for the
homomorphism

�[fi1 · · · fik ] = fik ◦ · · · ◦ fi1 .

Given a word s = fi1 · · · fik ∈ S, the map �[s] is a rational map in both z and λ. Its
degrees with respect to z and λ are equal to

degz(s) = i1 · · · ik ,

degλ (s) = 1 + ik + ik · ik−1 + · · · + ik · · · i1.

We notice that the map �[s](1) is also a rational map in λ of degree

deg′
λ(s) = 1 + ik + ik · ik−1 + · · · ik · · · i2.

The set S is countable, therefore it is sufficient to show that for every s1, s2 ∈ S either
�(s1) = �(s2) for finitely many λ or s1 = s2.

Suppose instead that s1 = fi1 · · · fik and s2 = fj1 · · · fjl
satisfy �(s1) = �(s2) for

infinitely many λ. Using the identity principle, it is not hard to show that �(s1)(z) =
�(s2)(z) holds for all λ ∈ Ĉ. This shows that the maps �(s1) and �(s2) coincide as
rational maps in both variables z and λ, and therefore that

i1 = degz(s1)

degλ(s1) − deg′
λ(s1)

= degz(s2)

degλ(s2) − deg′
λ(s2)

= j1.

If we now write s′
1 = fi2 · · · fik and s′

2 = fj2 · · · fjl
we obtain that �(s′

1) = �(s′
2) also

holds for infinitely many λ and therefore i2 = j2. Iterating this procedure, we obtain that
s1 = s2, concluding the proof of the proposition.

Notice that for k ≤ d we have (k + 1)/(k − 1) ≥ (d + 1)/(d − 1) and hence b ∈
(1, (k + 1)/(k − 1).

Notation 5.3. For simplicity of notation we are avoiding (where possible) the use of the
subscript λ. As an example, notice that we are writing fk instead of the more accurate fk,λ.
The function fd will play an important role in the analysis of the semigroup H . Therefore
we will write λ0 and λ1 for the parameters obtained by Theorem 3.7 applied to the map
fd , and I for the immediate attracting arc relative to the function fd (if it exists). When it
is necessary to distinguish between different values of the parameter λ we will write fk,λ

and Iλ.

We will write � for the set of all possible sequences with entries in {1, . . . , d}. For
every element g ∈ H we can find ω ∈ � and n ∈ N so that g = f n

ω , where we write

f n
ω = fωn ◦ · · · ◦ fω1 .

For 0 ≤ m ≤ n we will further write

f n,m
ω = fωn ◦ · · · ◦ fωm .
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Definition 5.4. We define the length of an element g ∈ H as the minimum integer n for
which g = f n

ω for some ω ∈ �.

We proved in §4 that for any λ in the closed arc Arc[λ1, −1] there exist a (rooted)
Cayley tree Tn of degree d and a parameter λ′ ∈ S1 arbitrarily close to λ so that

ZTn(λ
′, b) = 0.

Recall from [PR20, Theorem B], on the other hand, that for any λ ∈ [1, λ0), any r ≥ 0
and any graph G of degree d we have

ZG(r · λ, b) �= 0.

The situation for the arc Arc(λ0, λ1) appears to be more complicated. If we only
consider Cayley trees of degree d it is possible to show that there indeed exist zeros
of the partition function of some tree Tn on the arc Arc(λ0, λ1). However, as shown
in §3, these zeros form a nowhere dense subset of the arc. Our purpose is to show
that zeros of the partition for general bounded degree graphs are dense in Arc[λ0, λ3],
where λ3 is a parameter on the unit circle close to λ0. In order to do so we will
consider the class of rooted spherically symmetric trees of bounded degree for which,
according to Lemma 1.6, the zero parameters can be understood by studying the semigroup
dynamics of H .

In what follows we will study the semigroup dynamics (mostly) under the assumption
that λ ∈ S1. Under these assumptions for any g ∈ Hλ we have g(Ĉ \ S1) = Ĉ \ S1, and
therefore that

Ĉ \ S1 ⊂ FHλ , JHλ ⊂ S1.

5.1. Hyperbolicity of the semigroup.

LEMMA 5.5. There exists λ2 ∈ Arc(λ0, λ1) so that for every λ ∈ Arc[λ0, λ2) and every
k ∈ {1, . . . , d − 1} we have

f1 ◦ fk(I ) � I . (9)

Proof. Assume first that λ = λ0 and recall that by Theorem 3.7 we have I = Arc(1, λ0).
The Möbius transformation γ (z) = (z + b)/(bz + 1) is a bijection of the unit circle into
itself which reverses the orientation, and fk(z) = λ0γ (z)k . The map fd : I → I is an
orientation-reversing bijection and therefore satisfies fd(I ) = I . It follows immediately
that, if we write � for the length of the arc I , the image fk(I ) is an arc of length �k/d < �,
therefore the map fk : I → S1 is not surjective.

Notice that when the point z moves counterclockwise on the arc I = Arc(1, λ0) starting
at the point 1, its image fk(z) moves clockwise on the unit circle, starting at λ0 = fk(1),
until it reaches fk(λ0). In principle it is possible that fk(z) rotates once or more times
around the circle, but since fk is not surjective on I this does not happen. We conclude that
fk : I → Arc(fk(λ0), λ0) is also an orientation-reversing bijection, and since the length
of the arc fk(I ) is less than the length of I , we must have fk(λ0) ∈ I . If we now compose
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with the map f1 we find that

f1 ◦ fk(I ) = f1(Arc(fk(λ0), λ0)) = Arc(f1(λ0), f1 ◦ fk(λ0)) � I .

Since I moves continuously in λ, the same holds sufficiently close λ0, which implies the
existence of λ2.

In the following we will denote by λ2 the parameter with the maximal argument that
satisfies the requirements of the previous lemma.

Definition 5.6. We define the semigroup Ĥ ⊂ H as the semigroup generated by the maps

Ĥ = 〈f̂1, . . . , f̂d〉,

where f̂d = fd and f̂k = f1 ◦ fk for k ∈ {1, . . . , d − 1}. We will write FĤ , JĤ for the
Fatou and the Julia set of the semigroup Ĥ .

Since FH ⊂ FĤ , it follows that Ĉ \ S1 ⊂ FĤ . Furthermore, by the previous lemma the
interval I is invariant for every map in Ĥ for λ ∈ Arc[λ0, λ2), and therefore it is contained
in FĤ , proving that for these λ,

(Ĉ \ S1) ∪ I ⊂ FĤ , JĤ ⊂ S1 \ I , (10)

and therefore that the Fatou set FĤ is connected.
Similarly to the case of the semigroup H , given ω ∈ � and 0 ≤ m ≤ n, we will write

f̂ n
ω = f̂ωn ◦ · · · ◦ f̂ω1 ,

f̂ n,m
ω = f̂ωn ◦ · · · ◦ f̂ωm .

Also in this case every element of the semigroup can be written as f̂ n
ω for some ω ∈ � and

n ∈ N.
By the previous lemma, given λ ∈ Arc[λ0, λ2), it follows that there exists a closed

arc J ⊂ I so that f̂k(J ) � J for every k = 1, . . . , d . Indeed, if we write I = Arc(z, w),
this property is satisfied by J = Arc[ζ , η], where ζ is sufficiently close to z and η lies in
Arc(fd(ζ ), f −1

d (ζ )) (where the preimage is taken inside I ). We may therefore define the
family C and the closed arc K as follows:

C := {J ⊂ I | J �= ∅ closed arc such that f̂k(J ) � int(J ) for all k = 1, . . . , d},
K :=

⋂
J∈C

J . (11)

In this definition int(J ) refers to the interior of J with respect to the topology of the unit
circle.

LEMMA 5.7. Let λ ∈ Arc[λ0, λ2). Then the set K ⊂ I is a non-empty closed arc which is
forward invariant under Ĥ . Furthermore, the map λ �→ Kλ is upper semicontinuous for
λ ∈ Arc[λ0, λ2).
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Proof. Write CQ for the subset of all intervals J ∈ C whose extrema are rational angles.
Notice that, given J ∈ C, there exists J ′ ∈ CQ for which J ′ ⊂ J , and therefore

K =
⋂

J∈CQ
J .

Given J ∈ C, we have that fd(J ) � J and J ⊂ I , proving that the arc J contains the
unique attracting fixed point of fd . This shows that for any pair J1, J2 ∈ C the intersection
J ′ = J1 ∩ J2 is non-empty. Furthermore, one can show that J ′ is again an element of C.
Similarly, given J1, J2 ∈ CQ, one has that J1 ∩ J2 ∈ CQ.

The set CQ is countable, hence we can enumerate its elements as {Jk}k≥1. If we write
Lk = J1 ∩ · · · ∩ Jk it then follows that Lk ∈ CQ, that Lk+1 ⊂ Lk and that

K =
∞⋂

k=1

Lk .

This shows that K is the intersection of a nested family of non-empty, compact and
connected arcs, and therefore that K is a non-empty closed arc. Since every Lk is forward
invariant for any g ∈ Ĥ , the same holds for K .

We will now write Cμ, Kμ in order to study parameter values close to λ. On the other
hand, we will write Lk for the set defined above for the parameter value λ. For every
positive integer k we have Lk ∈ Cμ for every μ ∈ Arc[λ0, λ2) sufficiently close to λ,
and for such parameters μ it then follows that Kμ ⊂ Lk . Since Lk is a sequence of
nested sets approximating Kλ, we conclude immediately that the map μ �→ Kμ is upper
semicontinuous at the point λ, concluding the proof of the lemma.

PROPOSITION 5.8. Let λ ∈ Arc[λ0, λ2). Then every limit of a convergent sequence in Ĥ

with divergent length is constant on FĤ and contained in K .

Proof. Let gk ∈ Ĥ be a sequence with divergent length that converges uniformly to g∞ :
FĤ → F Ĥ = Ĉ. Choose sequences ωk ∈ � and nk ∈ N so that gk = f̂

nk
ωk

, and notice that
since the sequence gk has divergent length we must have nk → ∞. Since FĤ ∩ S1 �= ∅, it
follows that FĤ is connected. Write ρ for the hyperbolic metric of FĤ .

The Fatou set FĤ is forward invariant with respect to each element in the semigroup.
In particular, we have f̂1(FĤ ) ⊂ FĤ . Since the closed arc K ⊂ FĤ is forward invariant,
it contains the unique attracting fixed point R1 of f̂1 (which coincides with the attracting
fixed point of f1). Assume now that f̂1(FĤ ) = FĤ . Since f̂1 is invertible, it then follows
that the Fatou set FĤ is completely invariant with respect to f̂1, and therefore it contains
the whole attracting basin of R1. Since f̂1 is a Möbius transformation, we conclude that
the Julia set of the semigroup JĤ must consist of a single point, giving a contradiction.
Therefore

f̂1(FĤ ) � FĤ .

For every k = 2, . . . , d the map f̂k has two critical points {−b, −1/b} ⊂ FĤ . It follows
from the Schwarz–Pick lemma that for every k = 1, . . . , d the map f̂k is a contraction
with respect to the metric ρ. This means that for every compact set Q ⊂ FĤ we may find
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a constant cQ < 1 so that for any z, w ∈ Q we have

ρ(f̂k(w), f̂k(z)) ≤ cQ · ρ(w, z), k = 1, . . . , d .

Let K be as in (11), r ∈ R>0 and define Q = Bρ(K , r), where the ball is taken with respect
to the hyperbolic metric of FĤ . Given z ∈ K and w ∈ Bρ(z, r), we know that for every
k, n ≥ 0 we have f̂ n

ωk
(z) ∈ K and

ρ(f̂ n
ωk

(w), f̂ n
ωk

(z)) ≤ ρ(w, z).

This shows that f̂ n
ωk

(w), f̂ n
ωk

(z) ∈ Q, and thus that

ρ(f̂ nk
ωk

(w), f̂ nk
ωk

(z)) ≤ c
nk

Q · ρ(w, z),

which finally implies that g∞(w) = g∞(z) for every w ∈ Bρ(z, r). We took r to be
arbitrary and thus we can conclude that g∞ is constant. For every g ∈ Ĥ and z ∈ K it
follows that g(z) ∈ K , completing the proof.

We recall the following definition of hyperbolicity for semigroups, introduced in
[Sum97, Sum98].

Definition 5.9. Let G be a rational semigroup and consider the postcritical set

PG :=
⋃
g∈G

{critical values of g}.

We say that the semigroup is hyperbolic if PG ⊂ FG.

PROPOSITION 5.10. The semigroup Ĥ is hyperbolic.

Proof. In our case the postcritical set can be written as

PĤ =
⋃
ω∈�
n∈N

f̂ n
ω ({−b, −1/b}).

It is clear that f n
ω ({−b, −1/b}) ∈ Ĉ \ S1 for every n and ω. Furthermore, by the previous

theorem we know that every limit point belongs to K , showing that

PĤ ⊂ (Ĉ \ S1) ∪ K ⊂ FĤ .

Given ω ∈ �, we write Fω, Jω for the Fatou and Julia sets of the family {f̂ n
ω }. By (10)

we have that

Jω ⊂ JĤ ⊂ S1 \ I

and one can show that if z ∈ Jω its orbit avoids the set I . On the other hand, given z ∈
Fω ∩ S1, by Proposition 5.8 we can find n > 0 so that f̂ n

ω (z) ∈ I . We conclude that we can
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FIGURE 5. Sets used in the proof of Lemma 5.11.

write

Jω =
⋂
n∈N

(f̂ n
ω )−1(S1 \ I ). (12)

The following lemma shows expansivity of the dynamics on the Julia set Jω of every
sequence ω. The result corresponds to [Sum98, Theorem 2.6]; for the sake of completeness
we provide a sketch of the proof.

LEMMA 5.11. Let λ ∈ Arc[λ0, λ2) and κ > 1. Then there exists a positive integer N ≥ 1
so that for any ω ∈ � and z ∈ Jω we have

|(f̂ N
ω )′(z)| ≥ κ .

Sketch of the proof. We start by choosing an open simply connected neighbourhood
V ⊂ (Ĉ \ S1) ∪ I containing K and two open simply connected neighbourhoods U ′ � U

containing S1 \ I and disjoint from PĤ and V , see Figure 5 for an illustration. Then choose
C > 1 so that dρU ′ ≥ C · dρU , where we write dρU , dρU ′ for the infinitesimal hyperbolic
metric of the two sets.

By Proposition 5.8 there exists a positive integer N0 so that

f̂ N0
ω (U \ U ′) ⊂ V for all ω ∈ �, for all n ≥ N0.

Given ω ∈ � and z ∈ Jω, by (12), we have f̂ n
ω (z) ∈ U ′ for every n. Therefore we

may define U0 ⊂ U ′ as the connected component of (f̂
N0
ω )−1(U) containing z. Since

U is simply connected and disjoint from the postcritical set, the map f̂
N0
ω preserves the

hyperbolic metrics of U0 and U . Since U0 ⊂ U ′, this implies that

|(f̂ N0
ω )′(z)|U ≥ C.
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The hyperbolic metric of U and the Euclidean metric are comparable on U ′. Therefore
by taking an integer k sufficiently large, which does not depend on the choice of the
sequence ω and z, we conclude that the value N = kN0 satisfies the requirements of the
lemma.

We will now show that, once we are bounded away from λ2, the value of N can be
chosen independently of λ. It will be convenient to reintroduce the subscript λ in order
to distinguish between different parameter values. It is clear the set Jω is dependent on λ,
thus it will be denoted by Jω,λ.

LEMMA 5.12. Let λ′ ∈ Arc[λ0, λ2) and κ > 1. Then there exists a positive integer N ≥ 1
so that for any λ ∈ Arc[λ0, λ′], any ω ∈ � and any z ∈ Jω there exists 1 ≤ n ≤ N so that

|(f̂ n
ω,λ)′(z)| ≥ κ .

Proof. Given λ ∈ Arc[λ0, λ2), let Nλ be the minimum integer for which the previous
lemma is valid. Suppose now that there exists a sequence λk ∈ Arc[λ0, λ′] such that Nk =
Nλk

→ ∞. It follows that we may find sequences ωk ∈ � and zk ∈ Jωk ,λk
so that

|(f̂ n
ωk ,λk

)′(zk)| < κ for all 0 ≤ n ≤ Nk − 1.

By passing to a subsequence if necessary, we may assume that the three following
conditions are satisfied:
(1) the parameters λk converge to λ∞ ∈ Arc[λ0, λ1];
(2) the points zk converge to z∞ ∈ S1;
(3) the sequences ωk and ωk+1 agree on the first k elements.

Since the arc Iλ varies continuously in λ and by (12) every zk ∈ S1 \ Iλk
, it follows that

z∞ ∈ S1 \ Iλ∞ . Let ω∞ be the sequence given by ω∞,k = ωk,k , where ωk,n denotes the nth
element of the sequence ωk . Then it is clear that ωk and ω∞ agree on the first k elements.
Given n ∈ N, we have

f̂ n
ω∞,λ∞(z∞) = lim

k→∞ f̂ n
ωk ,λk

(zk) ∈ S1 \ Iλ∞ ,

proving that z∞ ∈ Jω∞,λ∞ . Furthermore, when k is sufficiently large we have n ≤ Nk ,
therefore

|(f̂ n
ω∞,λ∞)′(z∞)| = lim

k→∞ |(f̂ n
ωk ,λk

)′(zk)| ≤ κ ,

contradicting the previous lemma.

PROPOSITION 5.13. Let λ′ ∈ Arc[λ0, λ2) and κ > 1. Then there exists a positive integer
N ≥ 0 so that for any λ ∈ Arc[λ0, λ′], any ω ∈ � and any z ∈ Jω,λ we have

|(f̂ N
ω,λ)′(z)| ≥ κ .

Proof. Let N as in the previous lemma. For any λ ∈ S1, any ω ∈ � and any n ∈ N the
rational map f̂ n

ω,λ has no critical points on the unit circle. We may therefore find a constant
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ε > 0 such that

|(f̂ n
ω,λ)′(z)| > ε for all λ, z ∈ S1, for all ω ∈ �, for all n ≤ N .

Let j ∈ N so that ε · κj > κ .
Suppose now that λ ∈ Arc[λ0, λ′], that ω ∈ � and that z ∈ Jω,λ. Thanks to the previous

lemma there exist positive integers J ≥ j and n1, . . . , nJ ∈ {1, . . . , N} which satisfy
(j − 1) · N < n1 + · · · + nJ ≤ jN and so that the following assertion holds: if we write
m0 = 0 and mi = n1 + · · · + ni then for i ∈ {1, . . . , J },

|(f̂ mi ,mi−1
ω,λ )′(f̂ mi−1

ω,λ (z))| ≥ κ ,

showing that

|(f̂ jN
ω,λ )′(z)| ≥ |(f̂ jN ,jN−mj

ω,λ )′(f̂ mj

ω,λ(z))| · κJ ≥ ε · κj ≥ κ .

By choosing jN instead of N , we conclude the proof of the proposition.

5.2. Existence of expanding sequences.

LEMMA 5.14. Given d ∈ Z≥2, m ∈ {1, . . . , d − 1}, t ∈ (0, 1) and s ∈ (0, t), there exists
a k ∈ {1, . . . , d − 1} such that

Ak :=
(

2m − s

d

)
· k + t

is an element of the interval (1, 2) when reduced modulo 2.

Proof. Note that either m < (d + s)/2 or m > (d + s)/2, since s /∈ Z. We consider these
two cases separately.

If m < (d + s)/2 then Ak+1 − Ak < 1 for all k. It follows that for any open interval
(a, a + 1) contained in the interval [A0, Ad ], there exists an integer 0 < k < d such that
Ak ∈ (a, a + 1). Since A0 = t < 1 and Ad = 2m + t − s > 2, there exists a k such that
Ak ∈ (1, 2).

Now assume that m > (d + s)/2 and define

Ãp =
(

2(d − m) + s

d

)
· p + t − s.

Observe that Ak − Ãd−k = 2(k + m − d), and thus Ak ≡ Ãd−k(mod 2). Therefore it
suffices to find a p ∈ {1, . . . , d − 1} for which Ãp ∈ (1, 2). Such a p can be found by the
same argument as above, because Ã0 = t − s < 1, Ãd = 2(d − m) + t > 2 and Ãp+1 −
Ãp < 1.

PROPOSITION 5.15. Let d ≥ 2 and λ ∈ Arc[λ0, λ1). Then for every z ∈ S1 \ I there exists
ω ∈ � so that z ∈ Jω.

Proof. Choose 0 < t < 1 so that λ = eiπt . The function fd can be written as fd(z) =
λ · γ (z)d , where γ (z) = (z + b)/(bz + 1) is a Möbius transformation that fixes the unit
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circle. It follows that we can find d disjoint sets J0, . . . , Jd−1 such that

f −1
d (Arc(1, λ)) = J0 ∪ · · · ∪ Jd−1,

ordered in such a way that for all m ∈ {0, . . . , d − 1} we have

γ (Jm) = Arc
(

exp
(

iπ
2m − t

d

)
, exp

(
iπ

2m

d

))
.

Since fd inverts the orientation of the unit circle and fd(1) = λ, we have for z ∈ Arc(1, λ)

close enough to 1 that fd(z) ∈ Arc(1, λ). Furthermore, by Theorem 3.7 we cannot have
fd(λ) ∈ Arc(1, λ). This shows that one of the connected components of f −1

d (Arc(1, λ))

is of the form J = Arc(1, z′) ⊂ Arc(1, λ). This component must contain the arc I . Since
γ (1) = 1, we find that J = J0.

Now let J ′
0, . . . , J ′

d−1 denote the inverse arcs of I under the map fd in such a way that
J ′

m ⊂ Jm for all m. Then we see that J ′
0 = I . We now present a way to choose, given a

z ∈ S \ I , an integer k such that f̂k(z) ∈ S \ I .
• If z �∈ f −1

d (I ), we can choose k = d because then f̂k(z) = fd(z) �∈ I .
• If z ∈ f −1

d (I ) = J ′
0 ∪ · · · ∪ J ′

d−1 but z �∈ I = J0, we see that z ∈ Jm for some m ∈
{1, . . . , d − 1} and thus we can write

γ (z) = exp
(

iπ
2m − s

d

)
for some 0 < s < t . We find that

f̂k(z) = f1(λ · γ (z)k) = f1

(
exp

(
iπ

(
2m − s

d
· k + t

)))
.

According to Lemma 5.14, we can choose k in such a way that λ · γ (z)k ∈ Arc(−1, 1).
Since f1(Arc(−1, 1)) = Arc(λ, −λ), we conclude that f̂k(z) �∈ I .

This procedure defines the first n steps of the sequence ω and satisfies f̂ k
ω(z) ∈ S1 \ I for

all k ≤ n. By iterating this procedure for the point f̂ n
ω (z) we find a sequence ω ∈ � such

that f̂ n
ω (z) ∈ S1 \ I for all n ∈ N. By (12) we conclude that z ∈ Jω.

Let λ ∈ Arc[λ0, λ1) and z ∈ Arc[λ, 1]. Then we can modify the procedure described in
the proof above to obtain the following proposition.

PROPOSITION 5.16. Let d ≥ 2 and λ ∈ Arc[λ0, λ1). Then for every z ∈ Arc[λ, 1] there
exists ω ∈ � so that z ∈ Jω and

f̂ n
ω (z) ∈ Arc[λ, 1] for all n ∈ N

COROLLARY 5.17. For every λ ∈ Arc[λ0, λ2) we have

Ĉ \ (S1 \ I ) = FĤ , S1 \ I = JĤ .

Proof. Given z ∈ S1 \ I , choose ω ∈ � so that z ∈ Jω, which exists according to
Proposition 5.15. For every positive integer k ∈ N, by Proposition 5.13 we may find
some Nk such that

|(f̂ Nk
ω )′(z)| ≥ k,
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showing that |(f̂ Nk
ω )′(z)| → ∞ and therefore that z ∈ JĤ . The two equalities follow

from (10).

6. Zeros for the semigroup
Our goal in this section is to give a more precise description of the zeros of ZG(λ) in
Arc[λ0, λ1] for trees G that are spherically symmetric of bounded degree. We will prove
case (3) of Theorem 1.4.

THEOREM 6.1. Let d ∈ N≥2. Then there exists λ3 ∈ Arc(λ0, −1] so that the set of
zero parameters for spherically symmetric trees of degree d contains a dense subset of
Arc[λ0, λ3].

We will also prove the following weaker statement, albeit for a considerably larger
circular arc.

THEOREM 6.2. Let d ∈ N≥2. Then the closure of the set of zero parameters of spherically
symmetric trees of degree d contains Arc[λ0, λ2].

6.1. Proof of Theorem 6.1. Since we will repeatedly deal with distinct values of the
parameter λ, we will always use the subscript λ in order to specify the map fλ that we are
using.

Choose a parameter value λ′ ∈ Arc(λ0, λ2). By Proposition 5.13 there exists a positive
integer N so that for every λ ∈ Arc[λ0, λ′], any ω ∈ � and any z ∈ Jω,λ we have

|(f̂ N
ω,λ)′(z)| > 3. (13)

Having fixed N , it follows from the compactness of S1 that there exists a constant C > 0
so that for any z ∈ S1 and any ω ∈ � we have

|f̂ N
ω,λ(z) − f̂ N

ω,μ(z)| ≤ C|λ − μ| for all λ, μ ∈ S1.

LEMMA 6.3. There exist λ3 ∈ Arc[λ0, λ′] and a positive integer M so that for every λ ∈
Arc[λ0, λ3] and 1 ≤ m ≤ M we have

f m
d,λ(1) ∈ Arc[λ, 1] and |∂λ f M

d,λ(1)| > 2C + 1. (14)

Proof. The point 1 is a repelling periodic point of order 2 for the map fd,λ0 , meaning that
|(f 2

d,λ0
)′(1)| > 1. Writing γ (z) = (z + b)/(bz + 1), we obtain

(∂λ f 2m
d,λ(1))|λ=λ0 = (∂λ f 2

d,λ(1))|λ=λ0(1 + (f 2
d,λ0

)′(1) + · · · + (f 2
d,λ0

)′(1)m−1)

= (γ (λ0)
d + f ′

d,λ0
(1))

(f 2
d,λ0

)′(1)m − 1

(f 2
d,λ0

)′(1) − 1
.
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Observing that γ (λ0)
d + f ′

d,λ0
(1) �= 0, it follows that when M = 2m for m sufficiently

large,

|(∂λ f M
d,λ(1))|λ=λ0 | > 2C + 1.

By continuity there exists λ3 ∈ Arc[λ0, λ′] so that

|∂λ f M
d,λ(1)| > 2C + 1 for all λ ∈ Arc[λ0, λ3].

Given λ ∈ Arc(λ1, λ1), we write zλ, wλ for the two boundary points of Iλ. These
boundary points form a repelling 2-cycle, hence by the implicit function theorem they
vary holomorphically in an open neighbourhood of Arc(λ1, λ1). By exchanging the order
of zλ and wλ if necessary, we may assume that zλ0 = 1. By Theorem 3.7, for every
λ ∈ Arc(λ0, λ1) we have zλ ∈ Arc(1, λ).

The point fd,λ(1) = λ clearly belongs to Arc[λ, 1]. Recall that the map f 2
d,λ preserves

the orientation of the unit circle. Since zλ is a repelling fixed point, by replacing λ3

with a parameter in Arc(λ0, λ2) sufficiently close to λ0 so that the point zλ remains
close to 1 for every λ ∈ Arc[λ0, λ3], we may assume that f 2

d,λ(1) ∈ Arc[λ, 1]. Up to
replacing at each step λ3 with a parameter closer to λ0, we may therefore assume that
also f 3

d,λ(1), . . . , f M
d,λ(1) ∈ Arc[λ, 1], concluding the proof of the lemma.

By Proposition 4.2 we know that zero parameters λ ∈ ZCd+1 ∩ S1 accumulate on λ0.
From now until the end of the proof of Theorem 6.1 we will fix the value of the parameter
λ ∈ Arc(λ0, λ3].

By Theorem 3.7 we know that Iλ � Arc(1, λ). This fact together with (14) and (13)
implies the existence of the following constant.

Definition 6.4. (Choice of the constant ε > 0) There exists a sufficiently small constant
ε > 0 so that the following three conditions are satisfied.
(a) The distance between the attracting interval Iλ and Arc[λ, 1] is at least ε,

inf
z∈Iλ

w∈Arc[λ,1]

|z − w| > ε.

(b) For any μ ∈ B(λ, ε) we have

|f M
d,λ(1) − f M

d,μ(1)| > 2C|λ − μ|.
(c) For any ω ∈ �, any z ∈ Jω,λ and any w ∈ B(z, ε) we have

|f̂ N
ω,λ(z) − f̂ N

ω,λ(w)| > 2|z − w|.
Definition 6.5. (Choice of the sequence σ ∈ �) We define a sequence of the form

σ = (d, . . . , d︸ ︷︷ ︸
M

, σM+1, σM+2, . . .︸ ︷︷ ︸
σ 0

),

where σ 0 ∈ � is chosen such that f̂ n
σ ,λ(1) ∈ Arc[λ, 1] for all n ∈ N. The existence of such

a sequence is guaranteed by Proposition 5.16, and we have 1 ∈ Jσ ,λ.
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LEMMA 6.6. For every μ ∈ S1 \ {λ} there exists a positive integer nμ so that

|f̂ nμ

σ ,λ(1) − f̂
nμ
σ ,μ(1)| ≥ ε.

Proof. Suppose for the sake of contradiction that there exists μ ∈ S1 \ {λ} so that
|f̂ n

ω,λ(1) − f̂ n
ω,μ(1)| < ε for every n ∈ N. Since f̂σ ,μ(1) = μ, it follows in particular that

|λ − μ| < ε. Therefore after the first M steps we obtain that

|f̂ M
σ ,λ(1) − f̂ M

σ ,μ(1)| > 2C|λ − μ|.
Write T : � → � for the left shift map, and define σ j = T M+jN (σ ) and zj ,μ =

f̂
M+jN
σ ,μ (1) ∈ S1. Thanks to the choice of the sequence σ 0, it follows that zj ,λ ∈ Arc[λ, 1]

and that

zj ,λ ∈ Jσj ,λ.

We claim that for every j ∈ N we have |zj ,λ − zj ,μ| > αnC|λ − μ|, where α0 = 2 and
αn+1 = 2αn − 1. The claim certainly holds for j = 0. We will now assume it holds for
j ∈ N and prove that it holds for j + 1.

By the assumption on μ we know that |zj ,λ − zj ,μ| < ε for every j ∈ N. Therefore,
thanks to the choice of the constants ε and C, we conclude that

|zj+1,λ − zj+1,μ| = |f̂ M+(j+1)N
σ ,λ (1) − f̂ M+(j+1)N

σ ,μ (1)|
> |f̂ N

σj ,λ(zj ,λ) − f̂ N
σj ,λ(zj ,μ)| − |f̂ N

σj ,λ(zj ,μ) − f̂ N
σj ,μ(zj ,μ)|

> 2|zj ,λ − zj ,μ| − C|λ − μ|
> (2αn − 1)C|λ − μ|.

It then follows that for every n we must have αnC|λ − μ| < ε, which is possible only if
λ = μ, giving a contradiction.

LEMMA 6.7. There exists a positive integer n0 so that every point in S1 \ Iλ lies at distance
at most ε/4 from the set

� :=
⋃
ω∈�

0≤n≤n0

f̂ −n
ω,λ({−1}).

Proof. By Corollary 5.17 we have S1 \ Iλ ⊂ JĤλ
. The semigroup Ĥλ has no exceptional

points, therefore the collection of all preimages of a given point in Ĉ accumulates on the
whole Julia set, and therefore on S1 \ Iλ.

Writing V = ⋃
g∈Ĥλ

g−1({−1}), we therefore conclude that

S1 \ Iλ ⊂ V ⊂
⋃
z∈K

B(z, ε/4).

By compactness of S1 \ Iλ we may find w1, . . . , wν ∈ V so that B(w1, ε/4) ∪ · · · ∪
B(wn, ε/4) still covers the set S1 \ Iλ. Every wj is the preimage of some element gj ∈ Ĥλ

of length nj < ∞, meaning that there exists ωj ∈ � so that

f̂
nj

ωj ,λ(zj ) = −1.
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By taking n0 = max ni we obtain

{z1, . . . , zn} ⊂
⋃
ω∈�

0≤n≤n0

f̂ −n
ω,λ({−1}),

concluding the proof of the lemma.

Write � = {w1, . . . , wν}. For every wj ∈ � there exist ωj ∈ � and 0 ≤ nj ≤ n0 so
that

f̂
νj

ωj ,λ(wj ) = −1.

No element in the semigroup Ĥλ can have critical points on the unit circle. Therefore
by the implicit function theorem there exists a holomorphic map μ �→ wj ,μ defined in a
neighbourhood of λ so that

f̂ n
ω,μ(wj ,μ) = −1, wj ,λ = wj .

By taking δ0 > 0 sufficiently small we may assume that for every j = 1, . . . , ν the map
wj ,μ is defined on B(λ, δ0) and that

|wj ,μ − wj ,λ| < ε/4 for all μ ∈ B(λ, δ0), for all j = 1, . . . , ν.

Given δ < δ0, we choose μ′ ∈ S1 ∩ B(λ, δ)∗ in such a way that Arc[λ, μ′] ⊂ B(λ, δ).
We note that this last condition is not necessary, but simplifies the proof.

By Lemma 6.6 we may choose n′ = nμ′ so that |f̂ n′
σ ,λ(1) − f̂ n′

σ ,μ(1)| ≥ ε. Given μ ∈
Arc[λ, μ′], write zμ = f̂ n′

σ ,μ(1).

PROPOSITION 6.8. There exist j ∈ {1, . . . , ν} and μ ∈ Arc[λ, μ′] so that zμ = wj ,μ.

Proof. By the definition of σ we have that zλ ∈ Arc[λ, 1], and by the choice of the
constant ε we know that d(Iλ, zλ) > ε. Therefore, by replacing μ′ with another parameter
closer to λ in such a way that the value of n′ does not change, we may further assume that
zμ ∈ S1 \ Iλ for every μ ∈ Arc[λ, μ′].

The image of the map Arc[λ, μ′] � μ �→ zμ contains either Arc[zλ, zμ′] or Arc[zμ′ , zλ]
(notice that one of the two possibilities occurs, since the image does not intersect Iλ). We
will prove the proposition assuming that the first case occurs; a similar proof works in the
other case.

Choose a point ζ ∈ Arc[zλ, zμ] so that the distance of the point from both the extrema
of the arc is greater than or equal to ε/2, which is possible since |zλ − zμ| ≥ ε. Let j ∈
{1, . . . , ν} so that |wjλ − ζ | < ε/4. It then follows that wj ,λ ∈ Arc[zλ, zμ′] and that

|wj ,λ − zλ| > ε/4, |wj ,λ − zμ′ | > ε/4,

and thanks to the fact that δ < δ0 we conclude that

wj ,μ ∈ Arc[zλ, zμ′] for all μ ∈ Arc[λ, μ′],

and therefore that there exists μ ∈ Arc[λ, μ′] so that wj ,μ = zμ.
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Let μ ∈ S1 ∩ B(λ, δ) and j as in the previous lemma, and let ωj ∈ � and nj ∈ N so
that f̂

nj
ωj ,μ(wj ,μ) = −1. We conclude that

f̂
nj
ωj ,μ(f̂ n′

σ ,μ(1)) = f̂
nj
ωj ,μ(zμ)

= f̂
nj
ωj ,μ(wj ,μ)

= −1,

concluding the proof of Theorem 6.1.

6.2. Proof of Theorem 6.2. Let λ′ ∈ Arc[λ0, λ2). By Proposition 5.13 there exists a
positive integer N ≥ 0 so that for any λ ∈ Arc[λ0, λ′] any ω ∈ � and any z ∈ Jω,λ we
have

|(f̂ N
ω,λ)′(z)| > 3.

Once N is fixed we have the following lemma.

LEMMA 6.9. There exist constants ε, δ > 0 so that for any λ ∈ Arc[λ0, λ′], any ω ∈ �,
and any z ∈ Jω,λ, there exists a holomorphic map Fz,ω,λ : B(λ, δ) → B(z, ε) with
Fz,ω,λ(λ) = z, satisfying the following properties.
(1) |f̂ kN

ω,λ(z) − f̂ kN
ω,μ(Fz,ω,λ(μ))| < ε, for all μ ∈ B(λ, δ), for all k ≥ 0.

(2) Given any μ ∈ B(λ, δ) and any w ∈ B(z, ε) \ {Fz,ω,λ(μ)} there exists a positive
integer k so that

|f̂ kN
ω,μ(Fz,ω,λ(μ)) − f̂ kN

ω,μ(w)| ≥ 3ε.

Proof. Note that the second derivative of f̂ N
ω,λ is bounded in a neighbourhood of S1.

It follows that for ε > 0 and δ > 0 sufficiently small, the maps f̂ N
ω,λ are uniformly

expanding in a given neighbourhood of Jω,λ. The existence of the point Fz,ω,λ(μ) follows
immediately. The fact that Fz,ω,λ can be given as the limit of a sequence of contracting
inverse branches implies the holomorphic dependency on μ.

PROPOSITION 6.10. Let λ′ ∈ Arc[λ0, λ2). Then the family of maps

A := {λ �→ gλ(1) | gλ ∈ Ĥλ}
is not normal near λ′.

Proof. Let ε, δ > 0 as in the previous lemma. By Lemma 5.7 the map λ �→ Kλ is upper
semicontinuous in Arc[λ0, λ2), and λ �→ Iλ is continuous. Therefore by compactness of
Arc[λ0, λ′], and by taking smaller ε, δ if necessary, we may assume that

inf
z∈Kλ2

w∈S1\Iλ1

|z − w| > 2ε.

Now assume for the purpose of contradiction that the family of holomorphic functions
A = {λ �→ gλ(1) | gλ ∈ Ĥλ} is normal near λ′. By the Arzelá–Ascoli theorem it follows
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that there exists δ′ < δ so that for every μ ∈ B(λ′, δ′) we have

|f̂ n
ω,λ′(1) − f̂ n

ω,μ(1)| < ε for all ω ∈ �, for all n ∈ N.

By Proposition 5.16 we can fix ω ∈ � so that 1 ∈ Jω,λ and f̂ n
ω (1) ∈ Arc[λ, 1] for every

positive integer n. It follows that |f̂ kN
ω,λ′(1) − f̂ kN

ω,μ(1)| < ε on the ball B(λ′, δ′). By the
identity principle it follows that F1,ω,λ′(μ) = 1 on the bigger ball B(λ′, δ), where F1,ω,λ′
is the map defined in the previous lemma.

Now notice that, given λ′′ ∈ B(λ′, δ) ∩ Arc[λ0, λ′], we have 1 ∈ Jω,λ′′ . If this were not
the case then by (10) we could find a positive integer n so that f̂ω,λ′′(1) ∈ Iλ′′ ⊂ FĜ , and
by Proposition 5.8 we conclude that f̂ n

ω,λ′′(1) → K ′′
λ . In particular, when k is sufficiently

large the point f̂ kN
ω,λ′′(1) lies at distance strictly less than ε from the set Kλ′′ . Since instead

the point f̂ kN
ω,λ′(1) lies in S1 \ Iλ′ and the two sets S1 \ Iλ′ and Kλ′′ have distance greater

than 2ε, we conclude that for k sufficiently large,

|f̂ kN
ω,λ′(1) − f̂ kN

ω,λ′′(1)| ≥ ε,

contradicting the fact that F1,ω,λ′(λ′′) = 1.
On the intersection U = B(λ′, δ) ∩ B(λ′′, δ) the maps F1 = F1,ω,λ′ and F2 = F1,ω,λ′′

are well defined. For every μ ∈ U and every positive integer k we have F1(μ) = 1 and

|f̂ kN
ω,λ′(1) − f̂ kN

ω,μ(1)| < ε,

|f̂ kN
ω,λ′(1) − f̂ kN

ω,λ′′(1)| < ε,

|f̂ kN
ω,λ′′(1) − f̂ kN

ω,μ(F2(μ))| < ε,

which implies that

|f̂ kN
ω,μ(1) − f̂ kN

ω,μ(F2(μ))| < 3ε for all k ∈ N,

and thus that F2(μ) = 1 on the open set U . By the identity principle it follows that
F1,ω,λ′′(μ) = 1 on B(λ′′, δ). By iterating this procedure we conclude that for every λ ∈
Arc[λ0, λ′] we have 1 ∈ Jω,λ and F1,ω,λ(μ) = 1 on the all ball B(λ, δ). It follows that
1 ∈ Jω,λ0 .

Recall that by Theorem 3.7 we have Iλ0 = Arc(1, λ0), therefore by Lemma 5.5 we have
1 ∈ Jω,λ0 if and only if ω = (d, d , d , . . .). Hence for every λ ∈ Arc[λ0, λ′] we must have

f n
d,λ(1) ∈ S1 \ Iλ,

which implies that 1 ∈ Jd,λ for all λ ∈ Arc[λ0, λ′], which contradicts Lemma 3.9. This
concludes the proof of the proposition.

Theorem 6.2 now follows from Montel’s theorem as in Lemma 2.7.
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