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Abstract

We prove the conjecture formulated in Litvak and Ejov (2009), namely, that the trace
of the fundamental matrix of a singularly perturbed Markov chain that corresponds to
a stochastic policy feasible for a given graph is minimised at policies corresponding to
Hamiltonian cycles.
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1. Introduction

Over the last two centuries, the Hamiltonian cycle problem (HCP) has attracted a lot
of attention from mathematicians and computer scientists. Given a graph, the objective of
the HCP is to determine whether there exists a cycle that goes through every vertex in the
graph exactly once. The traditional approaches to this NP-complete problem have mainly
involved tools from discrete mathematics, more specifically, graph theory and combinatorics.
In 1994, Filar and Krass [11] employed a new technique, in which they embedded the HCP in
a Markov decision process, consequently converting the discrete graph theory problem into a
continuous optimisation problem, of which the optimal value helps determine whether the graph
in consideration possesses a Hamiltonian cycle or not. This led to various new optimisation
models involving, for example, the top-left elements of the fundamental matrices of Markov
chains associated with a given graph [2], [3], [7], and, more recently, the determinants of the
inverse of the fundamental matrices [5], [9]. These novel reformulations of the Hamiltonian
cycle problem led to new and promising algorithms, detailed in [1], [6], [8], [12], and, most
recently, [14].

The new approach of embedding the HCP in a Markov decision process led to the
optimisation model described in [16]. In [16] the authors showed that instead of minimising

Received 2 October 2008; revision received 8 July 2011.
∗ Postal address: School of Mathematics and Statistics, University of SouthAustralia, Mawson Lakes campus, Mawson
Lakes SA 5095, Australia. Email address: ejovvl@gmail.com
∗∗ Postal address: Faculty of Electrical Engineering, Mathematics and Computer Science, Department of Applied
Mathematics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
Email address: n.litvak@ewi.utwente.nl
∗∗∗ Current address: Département d’informatique, Université Libre de Bruxelles, CP 212, Boulevard du Triomphe, 2,
B-1050 Bruxelles, Belgium. Email address: giang.nguyen@ulb.ac.be
∗∗∗∗ Postal address: Department of Mathematics and Statistics, University of Melbourne, ParkvilleVIC 3010,Australia.
Email address: p.taylor@ms.unimelb.edu.au

901

https://doi.org/10.1239/jap/1324046008 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046008


902 V. EJOV ET AL.

top-left elements of the fundamental matrices, one can minimise the traces of the fundamental
matrices to determine the Hamiltonicity of a given graph. While it is unclear whether the trace
function offers an algorithmic advantage over the top-left element function, the former operator
is no doubt more well studied and frequently employed. Moreover, this alternative objective
function provides new probabilistic interpretations about the link between the Hamiltonian
cycle problem and Markov chains. Apart from the choice of objective functions, there are
two other major differences between the results for the top-left element optimisation model
and those for the trace optimisation model. First, for the top-left element optimisation model,
Hamiltonian cycles are shown to be optimisers over the set of doubly stochastic Markov chains,
whereas for the trace optimisation model, this result is extended to the larger set of Markov
chains. Second, for the optimality results to hold in the model where the objective function
is the top-left element, we need a particular singular perturbation to disguise a potentially
multiergodic structure in Markov chains. This is not the case when the trace is optimised:
in [16] the authors showed that Hamiltonian cycles, if they exist, optimise the trace function
without the necessary employment of a perturbation. They conjectured that the optimality of
Hamiltonian cycles for the trace function still holds over the set of Markov chains when we
apply a singular perturbation to the Markov chains permissible on a given graph. In this paper
we prove this conjecture, consequently demonstrating the robustness of this objective function
and increasing the flexibility for future algorithms implementing this optimisation model.

We would like to remark that matrices with linear perturbations and their stationary dis-
tributions have attracted a lot of attention in the recent literature, triggered by the problem
of node ranking in complex stochastic networks. Specifically, such matrices are used in the
Google PageRank algorithm that determines the popularity of Web pages. PageRank is defined
as the stationary distribution of a Markov chain on the set of Web pages. At each step, with
probability 1 − ε, a surfer follows a randomly chosen out-going hyperlink of a current page,
and, with probability ε, the surfer is bored and picks a new page on the Web at random. After
the introduction of PageRank by Brin and Page [4], a great deal of work was carried out on
PageRank computation and analysis; see, for example, [15], [19], and the references therein.

The structure of the paper is as follows. In Section 2 we introduce the notation, recall
relevant theorems, and present our main result that Hamiltonian cycles are optimisers for the
trace function of fundamental matrices of singularly perturbed Markov chains. In Section 3 we
provide a proof of this main result that requires several lemmas. We employ an analytic approach
that involves eigenvalues and eigenvectors to establish important optimality properties of the
trace. In order to obtain the exact expressions for the trace, we apply probabilistic arguments
that relate the value of the trace to the occupancy measures of Markov processes with geometric
stopping times.

2. Optimality of Hamiltonian cycles

Consider a given connected graph � of N vertices. Let P be an N ×N transition probability
matrix corresponding to a feasible policy on �, that is, pij = 0 whenever (i, j) is not an edge
on �. Furthermore, let J be an N × N matrix, every element of which is unity. As every row
of P sums to 1, P is said to be stochastic. If every column of P also sums up to 1, P is said
to be doubly stochastic. A policy is considered deterministic if P contains only 1s and 0s, and
randomised otherwise. We denote the sets of stochastic policies and doubly stochastic policies
on � respectively by S(�) and DS(�), and a policy corresponding to a Hamiltonian cycle on
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the graph as PHC. Define P (ε) := P ε to be the following linear symmetric perturbation of P :

P ε := (1 − ε)P + ε

N
J .

Let �∗(P , ε) be the stationary distribution matrix of the Markov chain specified by P ε, i.e.

�∗(P , ε) := lim
t→∞(P ε)t ,

and let G(P , ε) to be the corresponding fundamental matrix:

G(P , ε) := (I − P ε + �∗(P , ε))−1.

For notational convenience, we write

A∗(P , ε) := I − P ε + �∗(P , ε)

and

A(P , ε) := I − P ε + 1

N
J .

The notation tr[A] and det A denote the trace and the determinant of a matrix A, respectively.
We recall here some relevant results connecting the fundamental matrix G(P , ε) and the matrix
A(P , ε) to the Hamiltonicity of a given graph.

Theorem 1. ([5], [9].) For a Hamiltonian graph � and any ε ∈ [0, 1),

max
P∈S(�)

det A(P , ε) = det A(PHC, ε).

In particular, for any Hamiltonian policy PHC permissible on the graph,

det A(PHC, ε) =
⎧⎨
⎩

N if ε = 0,

1 − (1 − ε)N

ε
if ε ∈ (0, 1).

In [16] the authors proved that, for ε ∈ [0, 1), the minimisers of tr[G(P , ε)] over the set of
doubly stochastic policies DS(�) correspond to Hamiltonian cycles. They also showed that
this result holds over the set of stochastic policies for ε = 0, that is, without any perturbation.

Theorem 2. ([16].) For a given Hamiltonian graph �,

min
P∈S(�)

tr[G(P , 0)] = tr[G(PHC, 0)]

for any PHC corresponding to a Hamiltonian cycle on the graph.

In [16] the authors also included a conjecture extending this result to ε ∈ [0, 1).

Conjecture 1. (Hamiltonicity-trace conjecture [16].) For a given Hamiltonian graph � and
any ε ∈ [0, 1),

min
P∈S(�)

tr[G(P , ε)] = tr[G(PHC, ε)]

for any PHC corresponding to a Hamiltonian cycle.
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The main result of this paper is as follows.

Theorem 3. For a given Hamiltonian graph � and any ε ∈ (0, 1),

min
P∈S(�)

tr[G(P , ε)] = tr[G(PHC, ε)] = 1 + εN − (1 − (1 − ε)N)

ε(1 − (1 − ε)N)

for any PHC corresponding to a Hamiltonian cycle.

The proof of Theorem 3 is presented in the next section. It has the following structure. First,
in Lemma 1 below, we establish the relationships between eigenvalues and eigenvectors of the
matrix P and a particular matrix function of P . Unless stated otherwise, the terms eigenvectors
refer to right eigenvectors. The result of Lemma 1 gives rise to alternative formulae for the trace
function, which we enunciate in Corollary 1 below. Furthermore, in Lemma 2 below, we prove
that the trace of the fundamental matrix G(P , ε) when ε ∈ (0, 1) for any randomised policy is
bounded above by that of some deterministic policy, and bounded below by that of some other
deterministic policy. This enables us to reduce our proof from the set of all stochastic policies
to the set of all deterministic policies only. We derive the exact formulae for four exhaustive,
mutually exclusive types of deterministic policy in Lemmas 3–6 below. Finally, we show that
among these, Hamiltonian cycles are minimisers for the objective function.

3. Proof of the main result

Let Q and W be arbitrary but fixed N × N rank-one stochastic matrices, that is, Q := eq

and W := ew for some vectors q and w such that q, w ≥ 0, qe = 1, and we = 1, where e =
(1, . . . , 1)�. Define two matricesPQ(ε) := (1−ε)P+εQ andAW (PQ(ε)) := I−PQ(ε)+W .
For i = 1, . . . , N , we denote the eigenvalues of P by λi , the eigenvalues of PQ(ε) by ηi , and
the stationary vector of AW (PQ(ε)) by s, that is, sAW (PQ(ε)) = s and se = 1. Thus,
sP = (1 − ε)−1(w − εq).

The relationship between the λi and the ηi was given in Theorem 2.3 of [18]. Specifically,

ηi =
{

(1 − ε)λi for i = 1, . . . , N − 1,

λN = 1 for i = N.
(3.1)

The following lemma gives the relationship between the eigenvalues and eigenvectors of PQ(ε)

and the eigenvalues and eigenvectors of AW (PQ(ε)).

Lemma 1. For ε ∈ (0, 1) and any stochastic matrix P , every eigenvector vi of PQ(ε) corre-
sponding to the eigenvalue ηi < 1 gives an eigenvector (I−es)vi of AW (PQ(ε)) corresponding
to the eigenvalue 1 − ηi . The eigenvector e of PQ(ε) corresponding to the eigenvalue 1 is an
eigenvector of AW (PQ(ε)) corresponding to the eigenvalue 1.

Proof. Because PQ(ε) is irreducible, the Perron–Frobenius theorem (see, for example, [17])
guarantees that its maximal eigenvalue 1 is simple and we can write its Jordan canonical form
L as

L =
[
U

π

]
PQ(ε)[V , e],

where Ue = 0, πPQ(ε) = π , πe = 1, πV = 0, UV = IN−1, and V U = IN − eπ . Then, it
follows in a straightforward way that

L =
[
UPQ(ε)V 0

0 1

]
.
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Let C be a Jordan canonical block with the same structure as that of L, with eigenvalues 1 − ηi

for i = 1, . . . , N − 1 and the last eigenvalue being 1. We now show that C is the Jordan
canonical form of AW (PQ(ε)), that is,

C =
[
U

s

]
AW (PQ(ε))[V − esV , e]. (3.2)

Expanding the right-hand side of (3.2) gives[
U

s

]
(I − PQ(ε) + W )[V − esV , e]

=
[
U(I − PQ(ε) + W )V 0

s(V − esV ) 1

]

=
[

I − UPQ(ε)V 0
s(I − PQ(ε) + W )(V − esV ) 1

]
.

Focusing on the bottom-left entry of the above right-hand side, we have

s(I − PQ(ε) + W )(V − esV ) = s(V − (1 − ε)PV − εeqV + ewV − esV )

= sV − (w − εq)V − εqV + wV − sV

= 0,

which proves the lemma.

Let t and r be the respective stationary vectors of A(P , ε) and A∗(P , ε), that is, tA(P , ε) =
t , rA∗(P , ε) = r , and te = re = 1. We now easily obtain the eigenvalues and eigenvectors
of the matrices A(P , ε), A∗(P , ε), and G(P , ε).

Corollary 1. For ε ∈ (0, 1) and any stochastic matrix P , the following statements hold.

(i) For i = 1, . . . , N −1, every eigenvector vi of P ε corresponding to the eigenvalue ηi < 1
gives an eigenvector (I −et)vi or (I −er)vi of A(P , ε) or A∗(P , ε), respectively, corre-
sponding to the eigenvalue 1−ηi . The eigenvector e := (1, . . . , 1)� of P corresponding
to the unique eigenvalue 1 is an eigenvector of A(P , ε) or A∗(P , ε) corresponding to
the eigenvalue 1.

(ii) For i = 1, . . . , N − 1, the eigenvalues of G(P , ε) are 1 and 1/(1 − (1 − ε)λi).

(iii) tr[G(P , ε)] = 1 + ∑N−1
i=1 1/(1 − (1 − ε)λi) = tr[(I − (1 − ε)P )−1] − (1 − ε)/ε.

Proof. Part (i) follows from Lemma 1 by setting Q = 1/NJ and W = 1/NJ or, respec-
tively, W = �∗(P , ε). We obtain (ii) and (iii) by (3.1), and the well-known properties that the
eigenvalues of an invertible matrix are the reciprocals of the eigenvalues of its inverse and that
the trace of a matrix is the sum of its eigenvalues. In the last equality of (iii), we note that the
eigenvalues of (I − (1 − ε)P ) are ε and, for i = 1, . . . , N − 1, 1 − (1 − ε)λi .

Remark 1. It is easy to check that Corollary 1 holds for general rank-one stochastic matrices
Q and W . For the proof of a generalised version of Corollary 1(iii), see the preprint version
of this paper [10].

Lemma 1 implies that the eigenvalues of AW (PQ(ε)) do not depend on W and Q. For
this fact, the preprint version of this paper [10] offers a simple probabilistic interpretation,
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which is related to the properties of the fundamental matrix of a positive recurrent Markov
chain [13, p. 459]. This observation is crucial for our further discussion because instead of
tr[G(P , ε)] = tr[A−1∗ (P , ε)] we may consider tr[A−1(P , ε)], which is beneficial because the
elements of the matrix A(P , ε) depend linearly on the elements of P . This allows us to take
the next step in the proof of Theorem 3, by stating that the trace of the fundamental matrix can
be maximised or minimised only at Markov chains associated with deterministic policies. This
is formalised in the following lemma.

Lemma 2. For any ε ∈ (0, 1) and every randomised policy P , there exist some deterministic
policies D1 and D2 such that

tr[G(D1, ε)] ≤ tr[G(P , ε)] ≤ tr[G(D2, ε)]. (3.3)

Proof. Let P be a randomised policy, and consider the randomisation at each row i of P

separately. Suppose that a particular row i has the structure[· · · a · · · b · · · c · · ·] ,

where a, b ∈ (0, 1) and a + b + c = 1. Note that the subsequent arguments are easily
generalizable to the case with more than three nonzero entries of the row in consideration.
Consider a policy Pγ that coincides with P in all rows except row i, where it is replaced by[

· · · γ · · · (1 − γ )

1 − a
b · · · (1 − γ )

1 − a
c · · ·

]
, γ ∈ [0, 1].

Note that, for γ = a, the matrix Pγ reduces to P . By Corollary 1 and writing the inverse in
terms of the adjoint,

tr[G(Pγ , ε)] = tr[A−1(Pγ , ε)] =
N∑

i=1

det Aii (Pγ , ε)

det A(Pγ , ε)
,

where A(Pγ , ε) = I −P ε
γ + 1/NJ and Aii (Pγ , ε) is the matrix A(Pγ , ε) with its ith row and

ith column removed. As both det A(Pγ , ε) and det Aii (Pγ , ε) are linear functions of γ for all
i = 1, . . . , N , we have

tr[G(Pγ , ε)] = C1(det A(Pγ , ε)) + C2

det A(Pγ , ε)
= C1 + C2

det A(Pγ , ε)

for some constants C1 and C2, C1 �= 0. Differentiating the objective function with respect to
γ gives

∂

∂γ
tr[G(Pγ , ε)] = − C3

(det A(Pγ , ε))2 ,

which is either 0 for all γ ∈ (0, 1) if C3 = 0, or never 0 for all γ ∈ (0, 1) if C3 �= 0. In both
cases, this implies that tr[G(Pγ , ε)] is a monotone function over γ ∈ [0, 1], and is maximised
or minimised at either extreme of the interval. As the ith row in Pγ=0 or Pγ=1 has at least one
more 0 than the ith row in P , Pγ=0 or Pγ=1 has at least one more 0 than P , and either

1. tr[G(Pγ=0, ε)] or tr[G(Pγ=1, ε)] ≥ tr[G(P , ε)], or

2. tr[G(Pγ=1, ε)] or tr[G(Pγ=0, ε)] ≤ tr[G(P , ε)],
respectively.
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Applying this process of increasing the number of 0s and consequently reducing the number
of randomisations, we can find two deterministic policies D1 and D2 that satisfy the inequalities
in (3.3).

It follows from Lemma 2 that in order to prove Theorem 3, it is sufficient to compare
tr[G(PHC, ε)] to the values of tr[G(P , ε)], where P induces a deterministic policy. To this
end, in Lemma 3 below we derive the expression for tr[G(PHC, ε)] and then, in Lemmas 4–6
below, we derive the expression for tr[G(P , ε)] corresponding to three other exhaustive mutu-
ally exclusive classes of deterministic policies.

Lemma 3. For any ε ∈ (0, 1) and any PHC that corresponds to a Hamiltonian cycle, that is,
a policy with a single ergodic class and no transient states,

tr[G(PHC, ε)] = 1 + εN − (1 − (1 − ε)N)

ε(1 − (1 − ε)N)
.

Proof. Consider a random walk that starts at i and is governed by P . The random walk
governed by the strictly substochastic matrix (1 − ε)P is a ‘stopped version’ of this random
walk in which at each time step there is a probability ε of termination. The termination time
T (ε) is geometrically distributed with parameter ε. For i = 1, . . . , N , the (i, i)th entry of
[I − (1 − ε)P ]−1 is equal to the expected number of visits to i on [0, T (ε)] given that the
random walk starts in state i. Now assume that P = PHC. Then the random walk proceeds in
cycles of length N , and, thus, starting from any state i, the probability that it ever returns to i

is (1 − ε)N , implying that the expected number of returns is (1 − (1 − ε)N)−1. Hence, from
Corollary 1(iii) we obtain

tr[G(PHC, ε)] = N

1 − (1 − ε)N
− 1 − ε

ε
= 1 + εN − (1 − (1 − ε)N)

ε(1 − (1 − ε)N)
.

Lemma 4. For ε ∈ (0, 1) and any P that corresponds to a deterministic policy with � > 1
ergodic classes and no transient states,

tr[G(P , ε)] = 1 + � − 1

ε
+

�∑
i=1

[
miε − (1 − (1 − ε)mi )

ε(1 − (1 − ε)mi )

]
,

where mi is the size of the ith ergodic class in P .

Proof. Consider again a diagonal element of [I −(1−ε)P ]−1. If there are � ergodic classes
then the Markov chain given by P splits into separate cycles of lengths m1, . . . , m�. For each
of the cycles, we can apply the argument from the proof of Lemma 3. Then a diagonal element
that corresponds to a state in ergodic class i equals 1/(1 − (1 − ε)mi ). Summing over all
diagonal elements and using Corollary 1(iii), we derive

tr[G(PHC, ε)] =
�∑

i=1

mi

1 − (1 − ε)mi
− 1 − ε

ε
= 1 + � − 1

ε
+

�∑
i=1

[
miε − (1 − (1 − ε)mi )

ε(1 − (1 − ε)mi )

]
.

To obtain the last equation, it is sufficient to subtract and add (� − 1)(1 − ε)/ε in the second
expression and then use the result of Lemma 3.
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Lemma 5. For any ε ∈ (0, 1) and any P that corresponds to a policy with a single ergodic
class and one or more transient states,

tr[G(P , ε)] = N − m + 1 + mε − (1 − (1 − ε)m)

ε(1 − (1 − ε)m)
,

where m < N is the size of the single ergodic class.

Proof. Let i be a transient state of the Markov chain with transition matrix (1 − ε)P . Since
P is deterministic, a Markov random walk with transition started in i can never return to i.
Recalling that the (i, i)th element of [I − (1 − ε)P ]−1 is the average number of visits to i

on [0, T (ε)] starting from i, we conclude that each transient state contributes precisely one
to tr[[I − (1 − ε)P ]−1]. On the other hand, ergodic states form a cycle of length m, and
we can compute the contribution of these states by applying the argument as in the proof of
Lemma 3 with N = m. Summing the contributions of transient and ergodic states and applying
Corollary 1(iii) we obtain the result of the lemma.

Lemma 6. For any ε ∈ (0, 1) and any P corresponding to a policy with multiple ergodic
classes and one or more transient states,

tr[G(P , ε)] = N −
�∑

i=1

mi + 1 + � − 1

ε
+

�∑
i=1

[
miε − (1 − (1 − ε)mi )

ε(1 − (1 − ε)mi )

]
,

where mi is the size of the ith ergodic class in P .

Proof. The result follows by combining the proofs of Lemmas 4 and 5.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We need to show that, for any ε ∈ (0, 1) and any stochastic policy P

feasible on a given Hamiltonian graph, Hamiltonian cycles are indeed the minimisers.
As the result of Lemma 2 enables us to reduce the proof for the set of stochastic policies to

the proof for the set of deterministic policies, by Lemmas 3, 4, 5, and 6, all we need to show
now is that, for � > 1 and m, mi < N with

∑�
i=1 mi ≤ N ,

1 + εN − (1 − (1 − ε)N)

ε(1 − (1 − ε)N)
≤ 1 + � − 1

ε
+

�∑
i=1

[
miε − (1 − (1 − ε)mi )

ε(1 − (1 − ε)mi )

]
, (3.4)

1 + εN − (1 − (1 − ε)N)

ε(1 − (1 − ε)N)
≤ N − m + 1 + mε − (1 − (1 − ε)m)

ε(1 − (1 − ε)m)
, (3.5)

1 + εN − (1 − (1 − ε)N)

ε(1 − (1 − ε)N)
≤ N −

�∑
i=1

mi + 1 + � − 1

ε

+
�∑

i=1

[
miε − (1 − (1 − ε)mi )

ε(1 − (1 − ε)mi )

]
. (3.6)

Note that, for mi such that
∑�

i=1 mi = N , inequality (3.6) reduces to inequality (3.4). There-
fore, we need to only focus on the last two inequalities, (3.5) and (3.6). Let us begin with the
former. In order to prove (3.5), it is sufficient to show that

N

1 − (1 − ε)N
≤ N − m + m

1 − (1 − ε)m
. (3.7)
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Let t = 1 − ε, so that t ∈ (0, 1). Writing both sides over a common denominator, inequality
(3.7) is equivalent to

NtN

1 − tN
≤ mtm

1 − tm
. (3.8)

Define the function g(x) := xtx/(1 − tx) for x ≥ 0. Differentiating g(x) gives

d

dx
g(x) = tx(1 − tx + x ln t)

(1 − tx)2 .

It is straightforward to show that the denominator (1 − tx)2 > 0 for all x > 0. Also, tx > 0 for
all x ≥ 0. Define the function h(x) := 1 − tx +x ln t for x ≥ 0, and observe that h(0) = 0 and

d

dx
h(x) = −tx ln t + ln t = ln t (1 − tx) < 0,

as ln t < 0 and 1− tx > 0 for all x > 0. Therefore, h(x) is a decreasing function and h(x) < 0
for x > 0. This implies that dg(x)/dx < 0 for x > 0 and, consequently, g(x) is a decreasing
function. As N > m, we obtain (3.8) and subsequently (3.5).

Now let us consider inequality (3.6). In order to prove (3.6), it is sufficient to show that

N

1 − (1 − ε)N
≤ N −

�∑
i=1

mi + � − 1

ε
+

�∑
i=1

[
mi

1 − (1 − ε)mi
− 1

ε

]
,

which is equivalent to

N(1 − ε)N

1 − (1 − ε)N
+ 1

ε
≤ m1(1 − ε)m1

1 − (1 − ε)m1
+

�∑
i=2

[
mi(1 − ε)mi

1 − (1 − ε)mi

]
. (3.9)

As we have proved that g(x) is a decreasing function for x > 0,

N(1 − ε)N

1 − (1 − ε)N
≤ m1(1 − ε)m1

1 − (1 − ε)m1
.

In order to obtain (3.9), we only need

1

ε
≤ mi(1 − ε)mi

1 − (1 − ε)mi
,

or, equivalently,

0 ≤ εmi(1 − ε)mi − (1 − (1 − ε)mi ) = (1 + εmi)(1 − ε)mi − 1 (3.10)

for any i = 2, . . . , �. Define fi(x) := (1 + xmi)(1 − x)mi − 1 for i = 1, . . . , � and x ∈ [0, 1).
We observe that fi(0) = 0, and differentiating fi(x) gives

d

dx
f (x) = mi(1 − x)mi − mi(1 + xmi)(1 − x)mi−1

= mi(1 − x)mi−1[(1 − x) − (1 + xmi)]
= xmi(1 − x)mi−1(mi − 1)

> 0,

as 2 ≤ mi ≤ N − 2 for all x ∈ (0, 1). This implies that fi(x) is an increasing function, and
fi(x) > 0 for x ∈ (0, 1). This gives (3.10) and subsequently (3.6).
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