
Function modeling in model-based systems
engineering using flow heuristics

Unal Yildirim1,2,3 , Felician Campean3,4 and Amad Uddin5

1University of Leicester, Leicester, UK; 2School of Automotive Engineering, Hubei University of Automotive Technology,
Shiyan, China; 3University of Bradford, Bradford, West Yorkshire, UK; 4SAFI Verse Ltd., Bradford, UK and 5Jaguar Land
Rover, Coventry, UK

Abstract

Model-based systems engineering (MBSE) is increasingly used across industries for the inte-
grated modeling of complex systems to support model-based development and provide
enhanced traceability between requirements and verification and validation of the system. This
paper seeks to strengthen the function modeling methodology in MBSE by introducing an
approach based on flow heuristics guided by the System State Flow Diagram schema. This
provides integrated function architectures with an enhanced integrity inMBSE. The approach is
illustrated with a case study of an electric bicycle implemented in the MathWorks System
Composer environment.

Introduction

Background and motivation

Models serve as the primary information resource in engineering product creation, effectively
capturing the intricate interconnections across multiple disciplines – from strategy and design to
production, service, and end-of-life considerations (IDE, 2021). The growing complexity of
customer requirements, manifested through increased product variations and features, requires
more efficient development and validation methodologies across the entire product lifecycle
(Hoff and Scott, 2019; Borky and Bradley, 2019). This complexity is particularly pronounced
during early conceptual design phases, where requirements uncertainty is highest, and during
validation and verification activities where system integration challenges emerge (Campo et al.,
2023). This evolution led to the emergence of model-based systems engineering (MBSE), a
comprehensive approach that facilitates requirements identification, design, analysis, and val-
idation of complex systems (Cameron, 2018; Brusa et al., 2018; Borky and Bradley, 2019). The
widespread adoption of MBSE across industries (e.g., Ferrogalini et al., 2019; Davey, 2022) has
yielded significant advantages for organizations, particularly in enhancing productivity through
streamlined requirement traceability and improved interdisciplinary collaboration.

The evolution from traditional document-based approaches to model-centric development
reflects the increasing complexity of modern engineering systems and the need for enhanced
collaboration across multidisciplinary teams (Madni and Sievers, 2018; Estefan andWeilkiens,
2022). MBSE, coupled with simulation, multi-disciplinary analysis, and immersive visualiza-
tion environments, has the capability to harness automation and computation for simulating
dynamic system behavior, conducting multi-disciplinary analysis, visualizing, and managing
system design throughout its lifecycle. The digital representation can facilitate a collective
comprehension of the system among its stakeholders (INCOSE, 2021). This offers a great
potential for a wider adoption of the MBSE methods and tools across industries, particularly
during conceptual design and system validation phases (Davey, 2022; Zhang et al., 2022). The
potential for wider MBSE adoption is most pronounced during conceptual design phases,
where functional architectures can guide early system definition and requirements allocation,
and during validation and verification stages, where model-based approaches enable system-
atic testing and analysis (Jacobs et al., 2022; Zhang et al., 2022). Additionally, MBSE methods
show particular promise in system integration phases of complex multidisciplinary projects,
where the digital representation facilitates cross-domain collaboration and reduces integration
risks (Ferrogalini et al., 2019; Husung et al., 2021). One of the major limitations to this wider
take-up of MBSE is related to tools and language constraints with associated problems such as
complexity management (Chami and Bruel, 2018; Campo et al., 2023) to facilitate consistent
deployment across multi-disciplinary systems with complex multi-physics behaviors (Madni
and Sievers, 2018). A significant evolution of theMBSEmethods and tools is needed to promote
their use by systems design practitioners in industry. This requires a paradigm shift in the
development of the MBSE methods and tools by enhancing their integration with “design
thinking” and the array of methods and tools necessary for fulfilling product development
(PD) tasks.

Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

www.cambridge.org/aie

Research Article

Cite this article: Yildirim U, Campean F and
Uddin A (2025). Function modeling in model-
based systems engineering using flow
heuristics. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 39, e26,
1–19
https://doi.org/10.1017/S0890060425100176

Received: 15 July 2024
Revised: 15 August 2025
Accepted: 13 September 2025

Keywords:
model-based systems engineering; function
modeling; flow heuristics; system state flow
diagram; system composer

Corresponding author:
Unal Yildirim;
Email: uy10@leicester.ac.uk

© The Author(s), 2025. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0), which
permits unrestricted re-use, distribution and
reproduction, provided the original article is
properly cited.

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://orcid.org/0000-0002-4807-7133
https://orcid.org/0000-0003-4166-8077
https://doi.org/10.1017/S0890060425100176
mailto:uy10@leicester.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0890060425100176&domain=pdf
https://doi.org/10.1017/S0890060425100176


The field of design theory and methodology (DTM) has evolved
over many decades to assist designers with how to design (rather
than what to design) by introducing a rich collection of studies on
design processes and activities with a focus on their application in
different domains to ensure consistency and productivity. There-
fore, there is a great potential in enhancing the effectiveness and
applicability of MBSE methods and tools across complex multi-
disciplinary systems through key fundamental concepts underpin-
ning the methods employed in DTM, such as function modeling
frameworks for design (Pahl et al., 2007). This integration becomes
particularly valuable during functional architecture development
and requirements decomposition activities, where systematic DTM
approaches can provide structured guidance for MBSE practi-
tioners (Zhang et al., 2022). Importantly, this integration does
not rely on detailed behavioral simulation capabilities typically
associated with later design phases, but rather leverages MBSE
tools’ capacity for systematic functional modeling and architectural
representation during early conceptual design (Drave et al., 2020).
The DTM-MBSE integration focuses on structured function mod-
eling approaches that can capture design intent and functional
relationships before sufficient detail exists for behavioral simula-
tion, thereby bridging the gap between conceptual design thinking
and systematic model-based development. This approach recog-
nizes that while detailed behavioral simulation requires extensive
system definition typically available only in later design phases,
MBSE tools can effectively support conceptual design activities
through functional architecture modeling, requirements traceabil-
ity, and systematic decomposition of design problems. The inte-
gration with DTM methods specifically targets this early-phase
application of MBSE, where systematic function modeling can
guide design exploration and decision-making before transitioning
to detailed simulation-based validation.

“Function Modeling”, defined by Erden et al. (2008, p. 147) as
“the activity of developing models of devices, products, objects, and
processes based on their functionalities and the functionalities of
their subcomponents”, has a critical role in the modeling and
development of systems, as recognized by both DTM and MBSE
research communities. A plethora of function modeling methods
has been developed in the last decades in DTM research (see
Tomiyama et al., 2009 for a review) and a set of criteria has been
established for evaluating and benchmarking function models
(Summers et al., 2017). Numerous scholars have introduced guid-
ance for practitioners for the development of function models in a
structured way, enhancing the consistency of the models developed
by practitioners, e.g. Otto and Wood (2001).

Function modeling in MBSE mainly revolves around modeling
tools provided by Systems Modeling Language – SysML (OMG,
2019), namely activity diagrams, sequence diagrams, and state
machine diagrams. The consideration of functions as activities in
activity diagrams enables the capture of the physical behavior of
complex multidisciplinary systems in a broader context as com-
pared to sequence diagrams and state machine diagrams. The
extracted functions and functional requirements can directly be
associated with a use case of the system of interest, describing its
functionality in terms of the interaction of the user with the system.
The physical architecture (PA) of the system can be described
without defining a functional architecture (FA) for the system by
associating functions to design solutions (i.e. component/subsys-
tem) for the fulfillment of the functional requirements. This offers a
practical way of managing the requirements; however, it generally
impedes the use (e.g. for performance simulation) and re-use of the
developed model, e.g. for product variants. This prompted further

studies on the development of better frameworks for function
modeling in MBSE, mostly based on using SysML modeling tools
(e.g. Drave et al., 2020). These studies have mainly been focused on
the use/reuse of function modeling in support of various PD
activities, e.g. FMEA (Pearce and Friedenthal, 2013), safety analysis
(Biggs et al., 2018) and development of Digital Twins (Bickford
et al., 2020). There are alsomany good examples from academic and
industry practice on the integration of MBSE with modeling envir-
onments supporting system performance analysis and physical
behaviour simulation (e.g. Forlingieri and Weilkiens, 2022).

Research objective and methodology

While research in MBSE has advanced function modeling, the
practice of developing separate functional models for different
use cases, common in many applications, often leads to integration
challenges and engineering change in downstream product devel-
opment, and limits design flexibility and future system evolution
(Kößler and Paetzold, 2017; Yildirim et al., 2017; Meißner et al.,
2021). This raises a critical research question: “How can an inte-
grated FA of a system that effectively combines functions across
multiple use cases be systematically developed?” To address this
question, this paper introduces a novel approach to creating an
integrated FA that merges functions from different use cases into
one comprehensive model. We establish systematic guiding prin-
ciples, inspired by the well-established flow heuristics of Otto and
Wood (2001), to support the integrated development of FAs for
complex systems. This approach not only underpins physical
architecture development but also bridges DTM research with
MBSE practice, promoting more effective use of MBSE methods
and tools.

This research employs a collective case study approach (Yin,
2018) to provide methodological validation of how flow heuristics
can systematically support the development of integrated function
architectures across multiple use cases. The cases were selected to
demonstrate the methodology across varying levels of complexity,
following a structured implementation process that included use
case identification and flow heuristics application, and comparison
with traditional approaches. Detailed guidelines were developed
and validated through peer review to ensure reproducibility.

The research uses a systematic two-tier validation approach to
evaluate the proposed schemata’s effectiveness and scalability. The
first validation tier uses desktop cases of a bread toaster and a coffee
machine, as foundational studies combining basic use cases from
the relevant previous works (Kurfman et al., 2000; Eisenbart et al.,
2017) to illustrate the proposed schemata. These cases revealed
shared functions and interactions previously obscured in separate
models, while demonstrating improved consistency and complete-
ness in the integrated approach. The second validation tier is based
an electric bicycle (e-bike) case to systematically test the capability
to handle increased complexity andmulti-domain integration. This
case specifically focused on managing concurrent operational
modes with cross-domain interactions and complex dependency
chains across use cases. Through rigorous peer debriefing and
structured documentation, these validation tiers demonstrate both
the validity and scalability to complex systems. The peer debriefing
process involved systematic review sessions with the industry
co-author, examining both theoretical foundations and practical
implementation aspects with particular attention to industrial
applicability across different complexity levels.

While acknowledging the co-author’s dual role in the validation
process, structured evaluation protocols were employed to ensure

2 Unal Yildirim, Felician Campean and Amad Uddin

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


objective assessment. This included comparative analysis against
traditional separate use-case modeling approaches to benchmark
consistency, completeness, and model reusability. Specific valid-
ation criteria assessed the methodology’s ability to: (1) reveal pre-
viously obscured shared functions and interactions between use
cases, (2) demonstrate improved traceability between functional
and physical architectures, and (3) effectively manage concurrent
operational modes with cross-domain interactions. This dual
academic-industry validation perspective strengthened the metho-
dology’s credibility by combining theoretical rigor with practical
implementation considerations, particularly evident in the e-bike
case study’s complex multi-domain integration requirements.

System composer (SC), an MBSE modeling environment devel-
oped by MathWorks, was chosen for the demonstration of the
e-bike case study due to its robust integration capabilities with
other MathWorks tools, facilitating seamless multi-disciplinary
analysis and simulation, which can be used in future work (e.g.
execution of the developed functional architecture in simulation
environments).

The next section introduces a literature review, while “Flow
heuristics for function modeling” section outlines the functionmod-
eling methodology based on case studies of a bread toaster and
coffee machine. “Electric bicycle case study” section introduces the
demonstration of the methodology for function modeling inMBSE
using the flow heuristics on the e-bike case study. The “Discussion”
section introduces a discussion on the proposed methodology,
followed by “Conclusions”.

Literature review

Function modeling in engineering design

Function modeling in DTM focuses on the representation of a
device-centric view (Chandrasekaran and Josephson, 2000) of
systems by developing function chains based on operations on
flows which describe “way of achievement” capturing functional
knowledge (Kitamura and Mizoguchi, 2003). Many well-
established function modeling schemes in various engineering
disciplines, such as Otto andWood (2001) and Ulrich and Eppin-
ger (2003), are based on a flow-based function modeling meth-
odology developed by Pahl et al. (2007) which defines a system in
terms of the flows of energy, material, and signal (information),
and decomposes the system’s main function into subfunctions
with reference to these flows. Pahl et al. (2007) introduced the
concept of “main function” and “auxiliary function” in function
modeling. While the main functions are associated with the
fulfilment of the overall function of the system under consider-
ation, the auxiliary functions contribute to the fulfilment of the
main functions. Main and auxiliary functions constitute “Func-
tional Architecture (FA)”, describing functions and the relation-
ships between them. Pahl et al. (2007) also introduced a way of
developing “Physical Architecture (PA)” describing the physical
hardware or platform needed for the fulfillment of functions in
FA. They suggest finding working principles for the subfunctions
and combining these principles into a working structure, that is,
system synthesis. The concretization of the working structure
leads to the principal solution.

Stone et al. (2000) expanded on the methodology of Pahl et al.
(2007) by introducing a set of module heuristics to map FA to PA:
dominant flow, branching flow, and conversion-transmission
modules. These heuristics were introduced with the purpose of

underpinning the development of product architecture based on a
function model; however, they also shed some light on the way of
developing a function model. By following a similar logic and
approach with module heuristics of Stone et al. (2000), Yildirim
et al. (2017) introduced function modeling heuristics based on the
System State Flow Diagram (SSFD) methodology in order to
provide a guidance to the practitioners in the development of
function models for complex systems and to improve the consist-
ency of the models developed by practitioners: main flow heuris-
tic, connecting flow heuristic, branching flow heuristic and
conditional fork node heuristic. Campean et al. (2018) discussed
the use of the function modeling heuristics in the analysis of a
complex system with multiple operation modes and with multiple
levels of decomposition by introducing three types of nesting of
function models.

While some function modeling schemes adopted the method-
ology of Pahl et al. (2007), there are some other modeling schemes
introduced as variations of this methodology. For example, the
Integration DEfinition for Function modeling-IDEF0 (Buede,
2009) introduced the flows for “controls” and “mechanisms”
which complement the input/output flows of material, energy,
and information of the system. The flows of “controls” guide the
transformation process, whereas the flows of “mechanisms”
(considered as a physical architecture (PA) element) are used to
perform the function(s), and they can be associated with PA
structures where a function is considered as a functional archi-
tecture (FA) structure.

As an alternative to the flow-based function modeling, the
concept of state is used in function modeling, where a function
is represented in terms of a state transition. Harel’s (1987) state
charts provide a basis for many well-established state-basedmeth-
odologies. For example, the Contact and Channel Approach –

C&C2-A (Matthiesen and Ruckpaul, 2012) describes a function of
a system as a sequence of at least two states where PA elements are
incorporated in the introduction of the function through the
Channel Support Structure (CSS). SSFD of Yildirim et al. (2017)
integrated flow-based functional requirements reasoning with a
state-based representation to provide a systematic approach for
function modeling framework of complex multidisciplinary sys-
tems with multiple operation modes. Some approaches relate
states to the concept of “behaviour” in function modeling, e.g.
the Object–Process Methodology of Dori (2016). There are also
approaches incorporating states into the function modeling of a
system, such as the integrated function modeling approach of
Eisenbart et al. (2017) which refers to “state” as a “view” in the
function model of a system.

There are some other function modeling approaches that have
been introduced for various purposes. For example, Muller et al.
(2019) focused on the promotion of incremental product develop-
ment by introducing enhanced function-means methodology,
whileWichmann et al. (2018) proposed function integrity diagnosis
and documentation method in the diagnosis of function integrity
for risk identification and documentation purposes.

The evolution of function modeling in DTM has produced
robust methodologies, particularly in flow-based and state-based
approaches, with established heuristics for systematic model
development. While these approaches offer valuable frameworks
for functional decomposition and analysis, their integration with
modern MBSE practices remains limited. The well-structured
principles from DTM, especially the flow heuristics and system-
atic function decomposition approaches, provide a foundation

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


that could enhance MBSE practices, particularly in developing
integrated functional architectures across multiple use cases.

Function modeling in model-based systems engineering

Numerous scholars (e.g. Husung et al., 2021; Estefan andWeilkiens,
2022) have discussed the use and the benefits of MBSE method-
ologies to industry. For example, Davey (2022) discusses how
MBSE is applied to various automotive systems analysis and design.
Functions in MBSE provide a way of fulfilling engineering require-
ments that are derived frommany places, including user needs and
regulatory bodies. Requirements allocated to functions enable
product teams to understand what criteria to use when designing
specific functions which are decomposed from high-level functions
and delivered by physical components that address the require-
ments allocated to these functions. Systems from one generation to
the next will be functionally the same to some extent, and functions
of FA of a system can be reused to support multiple generations of
technology where PA of the system can be developed further with
the evolution of technology (Lamm and Weilkiens, 2010). Main-
taining a function focus throughout MBSE supports function fail-
ure mode analysis to identify the potential function failure modes
through functional requirements. Consideration of possible failures
in a design – like safety, performance, and reliability – enables
engineers to plan how to alter the development/manufacturing
process in order to avoid these failures (Siemens, 2019).

Discussion of functional approaches in the MBSE mainly
revolves around SysML (OMG, 2019) as its use in the MBSE is
ubiquitous in both academia and industry (Albers and Zingel, 2013;
Lu et al., 2018). SysML’s strength lies in high-level system archi-
tecture modeling through a set of pre-defined diagrams for various
aspects of model-based development of multidisciplinary systems.
Its behaviour diagrams (use case diagram, state machine diagram,
sequence diagram, and activity diagram) support the capture of
logical functional requirements across a system’s lifecycle, while
modeling of detailed dynamic behaviors, particularly for complex
physical interactions, can be done through complementary mod-
eling approaches. MBSE approaches function modeling from a
different perspective as compared to approaches in DTM. An
“overall function” in DTM is represented as a “Use Case (UC)”
which drives the development of functionmodeling inMBSE. Each
use case describes a functionality of a system which is achieved
through the interaction between actor(s), which can be a user or
other external entity, and the systemunder consideration. Sequence
diagrams, activity diagrams, and statemachine diagrams detail how
a use case fulfils relevant functionality of a system by providing a
function modeling methodology. A state machine diagram repre-
sents the state of a system, subsystem, or component throughout its
use case in terms of state transitions, where transitions between
states are denoted by lines. An activity diagram, similar to the use of
a traditional functional flow diagram, illustrates the behavior of a
system, subsystem, or component throughout its use case in terms
of activities that requires the flow of inputs, outputs, and control. A
sequence diagram represents a behaviour related to a use case in
terms of a sequence of message exchanges representing the inter-
actions between actors and the system. While the focus of the
sequence diagrams is the mapping of message-based information
interactions, Friedenthal et al. (2012) argue that these diagrams also
have the capability to represent the flow of material and energy.

Many scholars explored the integration of relevant SysML
behavior diagrams with function modeling methods introduced
in DTM to enhance the practical applicability of functionmodeling

methods and their transfer to MBSE. For example, Grobshtein and
Dori (2011) introduced automatic generation of SysML views from
an OPM model, whereas Zingel et al. (2012) aimed to enhance
C&C2-A in the function modeling of technical systems through its
integration with SysML. Eisenbart et al. (2015) introduced a com-
parison between the IFM framework and SysML to provide a basis
for the implementation of the former in SysML.

Instead of using SysML directly in the improvement of the
practical applicability of function modeling, numerous scholars
focused on the improvement of SysML behaviour diagrams in
order to capture functional requirements in a more structured
way. Sequence diagrams seem to be the focal point in this respect.
For example, Zingel et al. (2012) and Zhu et al. (2019) introduced
a methodology to develop function-based models from activity
diagrams and sequence diagrams. Recently, Yildirim and Cam-
pean (2020) introduced the Enhanced Sequence Diagram by
augmenting traditional sequence diagrams with flows/exchange-
based information.

While MBSE and SysML provide comprehensive tools for sys-
tem modeling, their approach to function modeling differs signifi-
cantly from DTM methodologies. The use-case driven nature of
MBSE function modeling, while practical for requirement manage-
ment, often leads to isolated functionmodels for different use cases.
This highlights a critical gap in current MBSE practice: the lack of a
systematicmethodology for developing integrated functional archi-
tectures that can effectively combine functions across multiple use
cases while maintaining the rigor of DTM approaches.

Function modeling challenges in MBSE

Many organizations follow a reuse approach to complete initial
modeling on a particular project where a set of data is copied and
pasted from one context to another (Chami and Bruel, 2018) to
reallocate modeling resources to other projects (Purohit and
Madni, 2022). The reused sub-systems contain information about
the implementation of sub-functions, including intended input/
output parameters of these sub-functions (Husung, 2023).
Requirements can change throughout the development process,
and the change of the copied source (e.g. input parameter of a
function) can affect the implementation of the sub-function and
therefore functionality of the associated sub-system. The func-
tional architecture (FA) and the PA of the system need to be
individually maintained while remaining mutually consistent
(Madni and Sievers, 2018) which is a challenge due to increasingly
complex systems with intricate interactions between various sub-
functions and subsystems.

A function can often be fulfilled with different physical solu-
tions from one or more domains. A function-oriented develop-
ment process using MBSE methods offers a structured
methodology to the development of systems through systematic
development of functional architectures (Jacobs et al., 2022). This,
in turn, underpins the reuse of function/function architectures,
which are represented at different levels of abstraction. The adop-
tion of standardized modeling languages (e.g. SysML) and frame-
works enhances consistency and reuse of function models
throughout the engineering process. However, the way of using
the adopted language and framework in the development of a
function model can still hinder the reuse of FAs across different
stages of the engineering lifecycle. There is an ambiguity in natural
language descriptions when it comes to defining functions. Albers
and Zingel (2013) pointed out that the understanding of some
terms, such as function, differs significantly even among Systems

4 Unal Yildirim, Felician Campean and Amad Uddin

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


Engineers in academia and industry. For example, the activity
diagram of SysML, which details the functionality of a systemwith
reference to one of its use cases, does not specify how to define an
activity, and this can lead to the interpretation of activities differ-
ently by different stakeholders and can lead to misunderstandings
and potential inconsistencies in the function model. Stone et al.
(2000) attempted to address this by introducing a so-called func-
tion library, which consists of function classes, basic functions,
and synonyms, where one function is selected as the verb in the
verb-object description of a sub-function. The applicability of this
on MBSE modeling languages has not been tested systematically.
The description and integration/reuse of the sub-systems in
MBSE have been investigated by various scholars such as Husung
et al. (2022). So far, very little attention has been paid to the reuse
of functions/function architectures. Highly complex systems with
numerous interconnected functions require the representation of
functions at different levels of abstraction. MBSE modeling lan-
guages do not offer a particular methodology for the development
of a function model and the transition of the developed model
between levels of abstraction. Elements of the pre-defined dia-
grams can be used at practitioners` discretion. Function modeling
methodology of Stone et al. (2000) is limited to the creation and
the aggregation of function chains which are developed based on a
black box model where they introduced module heuristics to map
functional architecture (FA) to physical architecture (PA), e.g. the
identification of a branching flow on the function model and the
allocation of a module (sub-system) to this flow. Yildirim et al.
(2023) introduced amethodology for FA development inMBSE in
conjunction with a system use case where flows, such as branching
flows, are considered during the development of the FA instead of
when making architecture decisions. The proposed function flow
heuristics underpin the reuse of individual functions and FAs in
relation to the level of resolution of the analysis; however, this
requires further validation, and further work is needed for the
implementation of the proposed heuristics on the reuse of func-
tions and FAs. Similarly, the reuse of a use case with its FA across
new systems from an existing system needs to be investigated to
facilitate function modeling in MBSE, as no research has been
found on this to date.

These challenges in MBSE function modeling – particularly in
managing complexity, ensuring consistency across abstraction
levels, and facilitating reuse – underscore the need for a more
systematic approach to functional architecture development. The
absence of standardized methodologies for creating integrated
functional architectures that can effectively combine functions
across multiple use cases while maintaining consistency remains

a significant challenge in current practice. This requires an inte-
grated approach that combines the systematic rigor of DTMmeth-
odologies with the practical benefits of MBSE tools, particularly in
developing comprehensive functional architectures that can better
support complex system development and evolution.

Flow heuristics for function modeling

Functions as operations

As discussed in “Function modelling in model-based systems
engineering” section, function representation in MBSE models
revolves around behaviour diagrams, which are related to the
DTM approaches centred on the conceptualization of function as
operations on flows (Stone et al., 2000). In this work, we focus in
particular on the System State Flow Diagram (SSFD) methodology
(Yildirim et al., 2017), in which a function is conceptualized as state
transition model, with states defined in relation to measurable
attributes of objects, represented in a box, as shown in Figure 1a.
The SSFD function representation schema is closely associated with
Harel (1987)‘s statecharts, which underpin the MBSE State
Machine`s object-oriented programming formalism. Therefore,
SSFD is a convenient DTM function model to associate with MBSE
representations.

Like other MBSE tools, the MathWorks Systems Composer
(SC) uses blocks for the representation of various conceptual
entities, including “functions” as part of function architecture
(FA), and “component/subsystem” as part of physical architecture
(PA) (MathWorks, 2023). Function blocks are associated with
functional requirements, which describe the desired behaviour
and characteristics of a system, while component blocks corres-
pond to hardware requirements that specify the physical compo-
nents and constraints necessary for system operation. Each block
contains ports that represent the input/output flow of information,
material, or energy, described as measurable attributes of the flow.
Figure 1b and Figure 1c show a function presentation and a
component presentation, respectively, in SC. Comparing
Figure 1a and Figure 1b, shows that the SC function block has a
structure compatible with the SSFD, if the ports are assumed to be
equivalent to the representation of the inputs and the output states
as measurable attributes, in line with the SSFD. Similarly, a direct
relationship between function and component can be established in
SC by allocating functions to components through ports. As shown
in Figure 1, the same input and output states of the function block in
Figure 1b are allocated to a PA block (i.e., component/subsystem)
in Figure 1c.

(a) Function Representation in 

SSFD

(b) Function Block in System

Composer

(c) Component Block in 

System Composer

Object

Attribute (Value) Function

Object

Attribute (Value)

Input State Output State

Figure 1. Function and component block representations in SSFD and System Composer.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


The SC requirements toolbox supports comprehensive require-
ments management, including software requirements and non-
functional requirements such as quality attributes, with full trace-
ability between different requirement types. Stereotypes in SC
represent system requirements by defining the overall system
design with a common set of properties (such as mass) that can
be specified with values to fulfil both functional requirements and
stakeholder needs.

The representation of functions as operations on flows, on the
basis of a state transition/transformation paradigm, underpins the
capture of a functional requirement in a coherent way. For example,
in the case of a conversion operation, a functional requirement can
be articulated as “transform object <input state> to object <output
state>”. This functional requirement can directly be linked to a
hardware requirement by allocating the FA block to a PA block
along with ports.

Flow heuristics for the development of function architectures

This section introduces a set of function modeling heuristics in a
prescribed order, following a similar logic and approach to that of
Yildirim et al. (2017) and Stone et al. (2000), to represent the
function model of a system using the concept of a function block
introduced in Figure 1b in the formation of function chains leading
to an integrated function architecture of a system with multiple use
cases.

Main flow heuristic
Complex multidisciplinary systems generally have multiple modes
of operation, corresponding to different use cases. Each operation
mode can be independently described by a function chain. This
heuristic provides a basis for the development of such a chain by
identifying a linear function chain in relation to the fulfillment of
the main function of the system, which is represented as a use case
(UC) in a use case diagram. Figure 2a illustrates a generic schematic
representation of the main flow heuristic for three use cases of a
system. Figure 2b exemplifies this by representing three use cases of
a generic bread toaster, showing the linear function chains as linked
function blocks for three use cases identified as “load bread” (UC1),
“actuate toaster” (UC2), and “remove crumbs” (UC3). In Figure 2b,
the representation of the function chains is based on the Stone and

Wood (2000)`s function blocks and the functional basis taxonomy
for function representation, without explicit reference to the SSFD
states (illustrated in Figure 1b). In this example, use cases UC1 and
UC3 relate to transfer operations on a material flow (bread),
whereas UC2 is associated with energy flow operations.

Connecting flow heuristic
The representation of the way of achievement of a UC as a linear
(non-branching) function chain through the main flow heuristics
captures the first-level system decomposition associated with the
UC. Systems with a complex functionality require the aggregation
of function chains corresponding to different main flows related to
use cases/sub use cases of the system, leading to the synthesis of a
system function model which reflects its multiple operation modes.
The connecting flow heuristic underpins the aggregation of func-
tion chains of use cases of the same system developed through the
main flow heuristic by connecting or concatenating function
chains. Herein, we consider this in terms of connecting and con-
catenating two function chains.

Connection of function chains: A function chain of a use case
can be connected to the function chain of another case in three
distinct cases. a-c.1 in Figure 3 illustrates this schematically based
on UC1 and UC3 in Figure 2a. A function chain may require
additional resources for the fulfillment of a function, and this can
be provided by a function chain of another use case of the same
system. This link can be established by connecting the output flow
of a function chain to the relevant intermediate or the exit function
of another function chain, as shown in a.1 of Figure 3. In some
cases, as shown by b.1 of Figure 3, a function can be reused between
two function chains, meaning it serves as both an output in one
chain and an input in another chain, and these function chains can
be connected to each other on this basis. Function chains of two use
cases can also be combined based on a function of the respective use
case, which is associated with bringing two or more energies or
materials together. This requires using this function in the aggre-
gation of the inputs of function chains of these use cases, as shown
in Figure 3c.1.

Figure 3a-c.2 shows examples for the representation of connec-
tion of two function chains in three distinct cases based on their
schematic representation in a-c.1 of the same figure. Use cases are
differentiated from each other with the colour of function boxes, as

Figure 2. (a) schematic representation of function chains for the main flow heuristic (“F” denotes “Function”) (b) three use cases of a bread toaster as an example.

6 Unal Yildirim, Felician Campean and Amad Uddin

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


illustrated in Figure 2a. Figure 3a.2 shows function chains for two
use cases of a bread toaster: “Load Bread” and “Actuate Toaster”.
The output of “Transfer TE” is connected to the input of “Secure
Bread”. Figure 3b.2 illustrates the function chains for use cases of
“Store Fresh Powder” and “Store Packet Powder” of a coffee
machine. These use cases relate to each other based on the reuse
of “Store Powder” function block indicated with a dotted frame in
b.2. In upper chain flow of b2, function “store powder” (counted as
the fourth function)” is the last function with input and output
states being powder. In the lower chain of b2, “store powder” is the
last function (but counted as the third function) with input and
output states being powder. In both upper and lower chains, “store
powder” is the same common reusable function even though it is at
the fourth place in the sequence of functions in “Store Fresh
Powder” use case, whilst it is at the third place in “Store Packet
Powder” use case. c.2 shows the combination of function chains for
“Supply Hot Water” and “Supply (Coffee) Powder” use cases of a
coffee machine based on the last function (“Mix Powder”) of the
function chain of “Supply (Coffee) Powder” use case.

Concatenation of function chains: Function chains can also be
connected to each other through concatenation, that is, a linear
function chain can be formed by connecting input/output functions
of function chains to each other. There are two distinct cases in the
concatenation of two function chains: i) there may be no overlap
when there is no reusage of functions between function chains of

UCs, ii) there is partial overlap if there is a reusage of at least one
function between function chains of UCs. a.1 and b.1 in Figure 4
show schematic representations for (i) and (ii), respectively based
on UC1 and UC2 in Figure 2a.

Figure 4a.1,b.1 illustrate two kinds of concatenation of two
function chains; a.1 shows that the output of a chain can be linked
to the input of another chain, and vice versa; a.2 exemplifies this
based on two use cases of a bread toaster: “Load Bread” and
“Remove Bread.” Function chains can be connected to each other
based on the reused function. An example of this is shown in b.2 on
the basis of “Store Fresh Powder” and “Extract Powder” use cases of
a coffee machine. The “Store Powder” function from the “Store
Fresh Powder” use case serves as both an output function and an
input function when connected to “Export Powder” in the “Extract
Powder” use case. This function reuse pattern demonstrates how a
well-designed function model can optimize system integration by
maintaining consistent behaviour across different use cases, ensur-
ing traceability between related operations, and reducing model
complexity through strategic function sharing.

Branching flow heuristic
The fulfilment of some functions on a function chain cannot always
be achieved without loss, and this loss(es) need to be mapped and
accounted for, because the loss can cause problems elsewhere in the
system or at the interface with other systems. Addressing this loss

Figure 3. Schematic representation of connection of two function chains in three distinct cases (a-c.1) and respective examples based on use cases of a bread toaster (a.2) and
coffee machine (b-c.2).

Figure 4. Schematic representation of concatenation of two function chains in two distinct cases (a-b.1) and respective examples based on use cases of a bread toaster (a.2) and
coffee machine (b.2)

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


can be associated with a use case of the same system. Similarly,
unlike connecting and concatenating function chains, the linear
flow of function chain of a use case may need to be branched out
and linked with the function chain of another use case of the same
system in order to add a new functionality to the system. Branching
flow heuristic enables the representation of these two distinct cases
by creating parallel function chains for more than one use case
through bifurcating a flow(s) from a function chain of a use case.
Figure 5a.1,b.1 represent this schematically based on UC1 and UC3
shown in Figure 2a.

Figure 5a.2 represents a branching flow from the function chain
of “Load Bread” use case of a bread toaster and the allocation of this
flow as an input to the function chain of its “Remove Crumbs” use
case. Figure 5b.2 shows a branching flow from the function chain of
“Supply Hot Water” use case of a coffee machine to its “Store Hot
Water” use case based on the reuse of “BoilWater” function, shown
in a dotted frame.

The main flow, the connecting flow, and the branching flow
heuristics can be used incrementally to compose a complete func-
tion architecture of a system detailing the way of achieving its use
cases.

Abstraction of functional architecture developed through flow
heuristics

The allocation of requirements (including functional requirements
derived from system functions and operational activities) to phys-
ical architecture (PA) blocks (e.g. Figure 1c) is common practice in
MBSE, enabling traceability between system behaviour and phys-
ical implementation. More than one requirement is commonly
allocated to the same PA block. The practitioners tend to conduct
the design analysis based on the PA only without developing a
structured function architecture (FA). The systemdecomposition is
carried out based on the decomposition of each PA block to look at
how all requirements can be delivered by sub-PA blocks.While this
provides a strong traceability, this contradicts the basic principle
that the FA should always be considered first for a better PD
practice, as stated by numerous scholars (e.g. Lamm andWeilkiens,

2010; Dori, 2016; Zhang et al., 2022). The developed MBSE model
will simply present how a selected PA delivers requirements. Not
basing the development of the system model on a function archi-
tecture will create problems related to the integration between
systems modeling tools and other tools in order to carry out some
PD activities, such as using the generated MBSE model for simu-
lation, FMEA, and safety analysis.

As in the MBSE practice, it is not straightforward to decompose
a function model through different levels of abstraction in DTM
research. The DSM approach can be used for developing modules,
but this requires the consideration of PA first. Furthermore, sig-
nificant effort is needed for the analysis of a wide range of possible
design choices. The module heuristics of Stone et al. (2000) map
functional structures to physical structures; however, the relation
between the development of functional structures and the use of
module heuristics is not well established. The proposed flow heur-
istics in this paper provides a basis for a much structured and
simpler approach in the abstraction of functional architecture of
a system across multiple levels supporting the progressive develop-
ment of the physical architecture by following a similar logic of
Yildirim et al. (2017) and Stone et al. (2000). Figure 6 shows
abstraction of functions that are part of a function chain into a
higher-level function for function chains developed through main
flow heuristic (a), connecting flow heuristic (b-c), and branching
flow heuristic (d) based on respective examples from the bread
toaster and the coffee machine case studies presented in the previ-
ous section.

The series of sequence of operations on the main flow can be
abstracted either in a single function block or in multiple function
blocks (in particular for longer sequences) representing Functional
Architecture (FA) at a higher level. Figure 6a illustrates this for the
function chain of “load bread” use case of the bread toaster. Higher-
level functions are deliberately named to directly correspond with
their respective use cases to ensure clear traceability between
requirements and implementation. While the names are identical,
they serve distinct roles: the use case describes the user requirement,
while the high-level function provides the actual implementation of
that requirement. The same principle applies to function chains

Figure 5. Schematic representation of branching flow for two distinct cases (a-b.1) and respective examples based on use cases of a bread toaster (a.2) and coffee machine (b.2).

8 Unal Yildirim, Felician Campean and Amad Uddin

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


developed through connecting and branching flow heuristics.
Function chains that connect, concatenate, or branch from one
use case to another within the same system can be abstracted into
either a single function block or multiple function blocks, repre-
senting higher-level functional architecture. Figure 6b,c represents
the abstraction of function chains developed through connection
and concatenation into higher-level functions, respectively, based
on function chains of two use cases of the coffee maker. Figure 6d
introduces an example for the abstraction of function chains devel-
oped through branching flow heuristics based on two use cases of
the bread toaster.

Each function block representing a high-level function of FA
can be allocated to a component/subsystem block denoting a main
element of the associated Physical Architecture (PA), see Figure 1b,c.
In practice, function blocks of function chains developed through
connecting and branching flow heuristics can be associated with the
PA blocks of function chains developed through the main flow
heuristic, depending on the architecture choice. However, it is
recommended that both functional and physical coupling elements
are kept as separate functions and physical elements where possible
in line with the principles of Axiomatic Design (Suh, 1998). Each
high-level PA block can be decomposed into sub-PA blocks address-
ing the fulfillment of functions in the developed FA.

Integrated MBSE function modeling methodology

Figure 7 illustrates the proposed MBSE function modeling meth-
odology based on the flow heuristics, alongwith themethodological
steps indicated on the diagram.

Step 1 –Use Case (UC) Analysis: The first step is to carry out a
use case analysis of the system by developing its use case diagram.

Step 2 – Development of Functional Architecture (FA) using
Flow Heuristics: The second step starts by developing an inde-
pendent function model (as an FA) for each UC based on the main
flow heuristic (sub-step 2.1). This follows the aggregation of the
developed FAs into a unified FA by using the connecting and
branching flow heuristics incrementally (sub-step 2.2). This
requires focusing on how to join function chains by using the
heuristics introduced above for relevant cases based on the com-
plementarity of function blocks with their ports. For example,
function chains of two use cases can be joined together through
connection (e.g. b.1 of Figure 3 in the case of a reused function
between function chains) and concatenation (e.g. a.1 of Figure 4).

Step 3 – Synthesis/Abstraction of Function Architectures:
Once a unified FA has been developed by using the connecting
and branching flow heuristics, this FA is abstracted into a FA
consisting of higher-level functions by defining FA modules based
on the principles outlined in “Abstraction of functional architecture
developed through flow heuristics” section.

Step 4 – Allocation of FA to Physical Architecture (PA): The
last step of the proposed framework starts with allocating a PA to
the FA developed in the previous step by representing a PA based
on the complementarity with function blocks of the FA, along with
their ports (see Figure 1b,c). More than one function block of the
FA can be allocated to a PA block depending on the choice of
technology/architecture (sub-step 4.1). The allocation editor of SC
enables the practitioner to map the FA blocks to the PA blocks in a
matrix presentation (sub-step 4.2). This provides a basis for the

Figure 6. abstraction of function chains – developed through main flow heuristic (a), connecting flow heuristic (b-c), and branching flow heuristic (d) – into higher-level functions
based on respective examples from the bread toaster (a-d) and the coffee machine (b-c).

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


decomposition of the developed PA into sub-PAs representing the
inner structure of the PA blocks (sub-step 4.3) with reference to
function chains developed through the flow heuristics in Step 2.

Electric bicycle case study

In this section, we validate the proposed methodology presented
in Figure 7 through its practical application to an electric bicycle

(e-bike) case study using the MathWorks System Composer
(SC).

Step 1 – Use Case (UC) Analysis: The set of e-bike use cases
considered in this case study for the purpose of representing the
application of the methodology is shown in Figure 8 as a use case
diagram. From the user perspective, the rider is associated with five
main use cases: Pedal e-bike (UC1) where the e-bike is used like a
normal push-bike; Pedal e-bike with power assistance (UC2) where

Figure 8. UC diagram of an e-bike, including the set of use cases considered in this paper.

Figure 7. MBSE function modeling framework, along with the methodological steps.

10 Unal Yildirim, Felician Campean and Amad Uddin

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


the e-bike provides the rider with power assistance if requested;
Charge e-bike (UC3); Coasting Down (UC4) which refers to the act
of riding a bike downhill without actively pedaling and Power
e-bike accessories (UC5). UC2 includes two sub-use cases: supply
power assistance (UC2.1) associated with the supply of power assist
for propulsion by the e-bike system and Control e-bike (UC2.2), as
the rider controls of the feature where the rider requests power
assistance (PA) for additional propulsion. UC2.2 and UC3 include
sub-use cases Display PA level (UC2.2.1) and Display State of
Charge-SoC (UC3.1), respectively.

Use cases are related to one another by inclusion and exten-
sion relationships, as shown in Figure 8. An inclusion relation-
ship means that a base use case can incorporate the functionality
of another use case, known as the included use case. Whenever
the base use case is executed, the included use case functionality is
also invariably executed (Friedenthal et al., 2012). For example,
Pedal e-bike (UC1) takes place whenever Pedal e-bike with power
assistance (UC2) is executed. Similarly, Display PA level
(UC2.2.1) is always performed along with the Control e-bike
(UC2.2). An extension relationship represents a functionality
that is not included in the standard base use case functionality.

In contrast to an included use case, the base use case is not reliant
on the extended use case. However, an extended use case might be
influenced by the events occurring in its base use case
(Friedenthal et al., 2012). For example, charge e-bike (UC3) is
shown as an extension to Coasting Down (UC4). This means that
the e-bike does not always charge its battery (UC3) when it is
coasted down (UC4). The relevant parameter of the bike (e.g,
velocity) and the environment (e.g., slope) affects the charging
operation.

Step 2 – Development of FA using flow heuristics: This step
starts with the development of an FA for each UC of the e-bike via
the main flow heuristic, showing the “way of achievement” of these
UCs in terms of the decomposition of activities as function flows.
Figure 9 represents FA for each UC of the e-bike shown in Figure 8.

Figure 9 shows the FA of eachUC in terms of SC function blocks
introduced in Figure 1b where a function is articulated in verb-
noun format and represented with its input ports and output ports.
This follows the development of a unified FA using the connecting
and branching flow heuristics. Figure 10 represents the implemen-
tation of the connection flow heuristics on the “connection” of FAs
of relevant e-bike UCs.

Figure 9. FA for each UC of the e-bike.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


The analysis of the states involved in the definition of function
blocks facilitates the implementation of connecting and branching
flow heuristics. For example, the final function blocks of UC3 and
UC4 refer to the same energy flow, shown in a dotted frame in
Figure 10a. This provides a basis for the connection of FAs of these
UCs, around the same function block “Store Energy (DC)”. It
should be noted that this connection is established based on the
value of attributes on the ports of the function blocks, to ensure that
the combined FA is mathematically correct. The function block
“Store Energy (DC)” generates the output “DC_out” based on the
inputs “DC_in” and “DC_out_2” from UC3 and UC4 respectively.
Similarly, the function block “Convert AC to Torque” of FA of
UC2.1 incorporates the output of the function block “Supply Con-
trol Signal (CS)” of UC2.2 in Figure 10b. The function block
“Combine Torque” is associated with FA of UC 2.1 and this
function block combines the flow from the function block ““Con-
vert AC to Torque” of the same FA with the flow from the function
block “Convert Force toWheel Torque” of FA ofUC1 in Figure 10c.

FAs of UCs can also be connected to each other via “concatenation”
to form a linear function chain as discussed above. Figure 11
illustrates the implementation of the connection flow heuristics
on “concatenation” of FAs of relevant e-bike UCs.

Use cases are differentiated from each other with dotted frames
in Figure 11. The output of FA of UC3 is the input of FA of UC3.1,
leading to the development of a linear function chain in Figure 11a.
FA ofUC4 is connected to FA ofUC2.1 through the reused function
block “Store Energy (DC)”, as shown in Figure 11b. Connection
flow heuristics in Figures 10 and 11 represent how FAs of relevant
e-bike use cases are “connected” to each other. Figure 12 shows how
FA of an e-bike use case branches out of the FA of its another use
cases.

The output of “Convert User Input to Control Signal” function
block of UC2.2. is shown as the input of the FA of UC2.2.1 in
Figure 12a. FA of UC5 branches out of FA of UC2.1 based on the
reused function block “Store Energy (DC)”, highlighted with a
dotted frame in Figure 12b. Figure 10–12 represent how to connect

Figure 10. Connection flow heuristics on “connection” of FAs of relevant e-bike UCs.

12 Unal Yildirim, Felician Campean and Amad Uddin

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


relevant FAs of e-bike UCs, shown via the main flow heuristic in
Figure 9, through connecting and branching flow heuristics.
Finally, in order to deliver all e-bike UCs through a single FA, we
need to combine all FAs introduced in Figure 10–12 based on the
complementarity of function blocks with their ports, as shown in
Figure 13. The input and the output function blocks of the system
are aligned to the left and the right, respectively. The consideration
of the connecting and branching flow heuristics to perform the

connecting and the branching of these FAs in Figure 10–12 facili-
tates this step.

Step 3 – Synthesis/abstraction of function architectures: The
unified e-bike FA in Figure 13 introduces a detailed analysis of the
flows from FAs of its use cases, resulting in a complex function
structure. Higher-level function blocks can be defined based on this
FA by abstracting relevant function chains as higher-level func-
tions, based on the principles outlined in the previous section.

Figure 12. Branching flow heuristics on FAs of relevant e-bike UCs.

Figure 11. Connection flow heuristics on “concatenation” of FAs of relevant e-bike UCs.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 13

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


Function blocks that are part of a linear function chain can be
conveniently abstracted into a higher-level function block, as
shown in Figure 14.

Figure 14 illustrates the allocation of function blocks of UC1
(Pedal e-bike) to “Convert Rider Input to Torque at Rear Wheel”
function block by taking the input of the first function block as the
input and the output of the last function block as the output, as
shown in the Figure. Figure 15 represents the abstraction of the
unified e-bike FA in Figure 13 as higher-level function blocks.

The function block Store Energy (DC) is reused among many
UCs, as shown in Figures 10a, 11b and 12b. This is represented as a
separate entity in Figure 15 for this reason, and linked to higher-
level function blocks through the flows.

Step 4 –Allocation of functional architecture (FA) to physical
architecture (PA): A PA can be allocated to the e-bike FA,
abstracted as higher-level function blocks in Figure 15. While more
than one function block of an FA can be allocated to a PA block
depending on the choice of technology/architecture, it is recom-
mended to allocate one function block to one physical block where

possible, coherent with the principles of Axiomatic Design. More
than one function block in an FA can be abstracted as a higher-level
function block if necessary, and then a physical block can be
allocated to this function block by following the same principles.
Figure 16 illustrates a PA based on the allocation of a physical block
to each function block in Figure 15.

The allocation editor of SC enables to establishment of a directed
relationship between FA elements and PA elements (including
components and ports). Figure 17 shows an excerpt from the
allocation of FA elements of the e-bike shown in Figure 15 to its
PA elements shown in Figure 16 using the allocation editor.

Figure 17 shows the allocation of high-level function blocks
defined in Figure 15 to conceptually defined physical elements in
Figure 16. For example, “Convert Rider Input to Torque at Rear
Wheel” high-level function block is allocated to “Pedal Drive
System (PDS)” high-level physical block. The allocation editor
encompasses the whole FA and PA elements (including compo-
nents and ports). This enables the allocation of sub-elements of
high-level function blocks to sub-elements of high-level physical

Figure 13. A unified ebike FA delivering its UCs in Figure 8.

Figure 14. Abstraction of a function chain as a higher-level function block.

14 Unal Yildirim, Felician Campean and Amad Uddin

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


Figure 15. Abstraction of the unified e-bike FA as higher-level function blocks.

Figure 16. PA for the unified e-bike FA.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


blocks by following the same methodology described above. This
provides a basis for the decomposition of the developed PA into
sub-PAs representing the inner structure of the PA blocks with
reference to function chains developed through the flow heuristics.
For example, the PDS, as a high-level PA element, can be decom-
posed into sub-PA elements based on the FA of UC 1, as shown in
Figure 18.

The allocation editor also promotes the consideration of differ-
ent architecture solutions to the subfunction blocks (preserved as
separate function blocks) associated with combinations of flows by
creating scenarios where each scenario contains a set of allocations
between the FA and PA models. For example, the PDS is named
based on the architecture decision taken for “Accept User Input”:
“Pedal”. Different architecture solutions can be considered, for

Figure 17. Allocation of e-bike FA elements to its PA elements.

Figure 18. Allocation of FA sub-elements to PA sub-elements.

16 Unal Yildirim, Felician Campean and Amad Uddin

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100176


example, by abstracting “Accept User Input” and “Convert Torque
to Force” as a higher-level function block and allocating a PA block
to this function block as part of a scenario.

Discussion

The implementation of the proposed methodology in system com-
poser (SC) addresses key challenges in both DTM and MBSE
approaches to function modeling. While DTM approaches like
Pahl et al. (2007) and Stone et al. (2000) provide structured meth-
odologies, they do lack integration with modern MBSE practices.
Conversely, MBSE approaches using SysML, while comprehensive,
require numerous elements to develop functionmodels (Andersson
et al., 2010; Cloutier, 2015) and can lead to ambiguous interpret-
ations due to flexible semantics (Madni and Sievers, 2018). The
methodology proposed in this paper bridges this gap by providing a
streamlined approach that maintains model clarity while integrat-
ing DTM principles into MBSE practice.

The key theoretical contribution in this paper is the systematic
methodology for developing integrated Functional Architectures,
enabled by flow heuristics within an MBSE environment. This
addresses a fundamental limitation in existing MBSE approaches
where function modeling lacks systematic guidance for integrating
functions across multiple use cases into coherent system architec-
tures – an integration capability that traditional DTM approaches
like Pahl et al. (2007) do not provide withinMBSE contexts, and that
current MBSE practices using SysML struggle to achieve without
ambiguous interpretations (Madni and Sievers, 2018). This also
addresses a more general problem in functional modeling where
analysis often results in isolated function chains (Stone et al., 2000),
which our connecting and branching flow heuristics specifically
overcome by providing structured methods for cross-use case func-
tion integration that Stone et al.’s module-focused approach cannot
systematically handle. The flowheuristics provide prescriptiveMBSE
practitioner guidelines for developing functionmodels, starting with
the main flow heuristic used to capture the main purpose of the new
feature or system being developed within each of the relevant use
cases under consideration. The branching and connecting flow
heuristics can then be used to both complete the function model
for a use case, where connecting resource flows or bifurcating func-
tion flows is necessary, and to join function models developed from
the perspective of independent use cases, to ensure the consistency
and integrity of the whole system architecturemodel. This provides a
structured approach to combine individual functional models devel-
oped for different use cases into a coherent FA, incorporating flow
considerations during the initial development process rather than as
a later step during architecture decisions.

The methodology particularly lends itself to systems with mul-
tiple operation modes and clear flow-based interactions, as dem-
onstrated through our case studies. The bread toaster and coffee
machine examples validated the basic application of flow heuristics,
while the e-bike case study demonstrated its effectiveness in hand-
ling more complex scenarios with multiple interacting subsystems.
The approach is particularly suitable for mechatronic systems
where energy, material, and information flows need to be clearly
tracked and managed across different operational states. However,
the methodology may have limitations for systems where flows are
not the primary consideration or for systems with highly abstract or
cognitive functions.

The implementation in SC enables precise specification of func-
tional requirements through defined inputs/outputs of function

blocks and supports sophisticated use case decomposition and
FA aggregation techniques. The e-bike example demonstrates
how the approach manages multiple interacting subsystems
through structured integration of function models. The methodol-
ogy’s support for nested decomposition of FA and PA into sub-
functions and subsystems, while maintaining clear traceability of
requirements, addresses a key limitation in current practice where
such decomposition often leads to fragmented models and loss of
consistency between different functional views.

Conclusions

This paper has introduced flow heuristics and a systematic meth-
odology for developing an integrated functional architecture
(FA) in conjunction with use-case analysis, implemented within
the MathWorks System Composer environment. The proposed
methodology integrates well-founded approaches from Design
Theory and Methodology function modeling practice into the
Model-Based Systems Engineering process flow.

The methodology’s effectiveness has been demonstrated
through three case studies of increasing complexity, culminating
in an e-bike system model. The approach underpins the mathem-
atical correctness of the developed FA through complete represen-
tation of function blocks with defined inputs and outputs,
supporting model execution in simulation environments. This
can also support the development of executable system models by
mapping requirements to physical architecture through FA,
improving model use and reuse compared to direct requirement-
to-PA mapping.

Future workwill focus onmultiple directions. Further validation
of the proposedmethodology is needed through analysis of existing
functional models in the literature. We will explore whether add-
itional heuristics, such as the conditional fork node heuristic, are
needed for a complete set of flow heuristics. Furthermore, an
investigation is required to understand how architecture choices
at lower resolution levels affect FA invariance and how to effectively
implement conditional FAs within complete system models. The
primary focus will be on demonstrating the integration of the
proposed MBSE methodology with simulation modeling for
robustness-focused verification and validation. This will include
leveraging the e-bike model in System Composer for simulating
system dynamic behaviour with real-world operating conditions,
supporting virtual testing across different system levels. Addition-
ally, we can explore the implementation of flow heuristics in other
leading MBSE support software solutions, such as PTC’sWindchill
Modeler and Dassault Systèmes’ Cameo, to enhance the methodol-
ogy’s broader applicability and adoption across different platforms.

Acknowledgements. The research presented in this paper was partly sup-
ported by the Doctoral Research Start-up Fund of Hubei University of Auto-
motive Technology, grant number BK202204. Their support is gratefully
acknowledged.

References

Albers A and Zingel C (2013) Challenges of model-based systems engineering:
A study towards unified term understanding and the state of usage of SysML.
In: Proceedings of Smart Product Engineering: The 23th CIRP Design Confer-
ence, Bochum, pp. 83–92. https://doi.org/10.1007/978-3-642-30817-8_9

Andersson H, Herzog E, Johansson G, Johansson O. (2010) Experience from
introducing unified modeling language/systems modeling language at Saab
aerosystems. Systems Engineering 13 (4), 369–380.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1007/978-3-642-30817-8_9
https://doi.org/10.1017/S0890060425100176


Bickford J, Van Bossuyt DL, Beery P, Pollman A. (2020) Operationalizing
digital twins through model-based systems engineering methods. Systems
Engineering 23, 724–750. https://doi.org/10.1002/sys.21559

Biggs G, Juknevicius T, Armonas A and Post K (2018) Integrating safety and
reliability analysis intoMBSE: Overview of the new proposedOMG standard.
INCOSE International Symposium 28, 1322–1336. https://doi.org/10.1002/
j.2334-5837.2018.00551.x.

Borky JM and Bradley TH (2019) Effective Model-Based Systems Engineering.
Switzerland: Springer

Brusa E, Calà A and Ferretto D (2018) Systems Engineering and Its Application
to Industrial Product Development. Switzerland: Springer. https://doi.
org/10.1007/978-3-319-71837-8

Buede DM (2009) The Engineering Design of Systems: Models andMethods, 2nd
Edn. Wiley Series in Systems Engineering and Management. Hoboken: John
Wiley & Sons. https://doi.org/10.1002/9780470413791.

Cameron B (2018) MBSE: The Next Revolution of Systems Engineering. MIT,
presentation.

Campean F, Yildirim U and Henshall E (2018) Synthesis of functional models
from use cases using the system state flow diagram: A nested systems
approach. In Paper Presented at the 15th International Design Conference,
Dubrovnik, Croatia 21–24 May 2018 pp. 2833–2844. https://doi.org/10.21
278/idc.2018.0543.

CampoKX,Teper T, Eaton CE, ShipmanAM,Bhatia G andMesmer B (2023)
Model-based systems engineering: Evaluating perceived value, metrics, and
evidence through literature. Systems Engineering. 26, 104–129. https://doi.
org/10.1002/sys.21644.

Chami M and Bruel J-M (2018) A survey on MBSE adoption challenges. In
INCOSE EMEA Sector Systems Engineering Conference (INCOSE EMEASEC
2018), 5 November 2018- – 7 November 2018 (Berlin, Germany).

Chandrasekaran B and Josephson JR (2000) Function in device representation.
Engineering with Computers 16, 162–177. https://doi.org/10.1007/s00366
0070003.

Cloutier R (2015) Current Modeling trends in systems engineering. Insight 18,
10–13. https://doi.org/10.1002/inst.12013.

Davey C (2022) Ford’s connected-agile, model based systems engineering and
simulation journey….so far. In 32nd Annual INCOSE International Sympo-
sium, Detroit, MI, USA, June 25–30.

Dori D (2016) Model-Based Systems Engineering with OPM and SysML.
New York: Springer. https://doi.org/10.1007/978-1-4939-3295-5

Drave I, et al. (2020)Modelingmechanical functional architectures in SysML. In
Proceedings of the 23rd ACM/IEEE International Conference MODELS ’20,
pp. 79–89. https://doi.org/10.1145/3365438.3410938.

Eisenbart B, Mandel C, Gericke K and Blessing L (2015) Integrated function
modelling: Comparing the IFM framework with SysML. In Proceedings of the
20th ICED15. Milan, 27–30 July.

Eisenbart B, Gericke K, Blessing LTM, et al. (2017) A DSM-based framework
for integrated function modelling: Concept, application and evaluation.
Research in Engineering Design 28, 25–51. https://doi.org/10.1007/s00163-
016-0228-1.

Erden M, Komoto H, Van Beek T,D’Amelio V, Echavarria E and Tomiyama
T (2008) A review of function modeling: Approaches and applications. AI
EDAM 22 (2), 147–169. https://doi.org/10.1017/S0890060408000103.

Estefan JA and Weilkiens T (2022) MBSE methodologies. In Madni AM,
Augustine N and Sievers M (eds), Handbook of Model-Based Systems Engin-
eering. Springer. https://doi.org/10.1007/978-3-030-27486-3_12-1

Ferrogalini M, Linke T and Schweiger U (2019) How to boost the extended
enterprise approach in engineering using MBSE—A case study from the
railway business. In Bonjour E, Krob D, Palladino L and Stephan F (eds.),
Complex Systems Design & Management. CSD&M 2018. Cham: Springer.
https://doi.org/10.1007/978-3-030-04209-7_7

Forlingieri M and Weilkiens T (2022) Two variant modeling methods for
MBPLE at Airbus. INCOSE International Symposium 32, 1097–1113. https://
doi.org/10.1002/iis2.12984.

Friedenthal S,Moore A and Steiner R (2012) A Practical Guide to SysML: The
Systems Modeling Language, 2nd Edn. Morgan Kaufmann.

Grobshtein Y and Dori D (2011) Generating SysML views from an OPM
model: Design and evaluation. Systems Engineering 14, 327–340. https://
doi.org/10.1002/sys.20181.

Harel D (1987) Statecharts: A visual formalism for complex systems. Science of
Computer Programming 8 (3), 231–274. https://doi.org/10.1016/0167-6423
(87)90035-9.

Hoff U and Scott D (2019) Automotive Trends Create New Challenges for
Wiring Harness Development. Siemens Digital Industries Software. Retrieved
from https://siemens.com/electrical-systems.

Husung S (2023) Model Based Systems Engineering for Efficient Reuse of Sub-
systems During Development. https://www.tu-ilmenau.de/aktuelles/model-
based-system-engineering-for-efficient-reuse-of-sub-systems-during-devel
opment (accessed on 11th Dec 2023).

Husung S,Weber C,Mahboob A, Kleiner S (2021) Using model-based systems
engineering for need-based and consistent support of the design process. In
Proceedings of the International Conference on Engineering Design (ICED21),
Gothenburg, Sweden, 16–20August 2021. https://doi.org/10.1017/pds.2021.598

Husung S,Weber C and Mahboob A (2022) Model-based system engineering:
A new way for function-driven product development. In Krause D and
Heyden E (eds.), Design Methodology for Future Products. Cham: Springer.
https://doi.org/10.1007/978-3-030-78368-6_12

IDE-Institute of Digital Engineering (2021) Digitalisation Roadmap. https://
roadmap.ide.uk/ (accessed on 17th Jan 2023).

INCOSE (2021) Systems Engineering Vision 2035. https://www.incose.org/pub
lications/se-vision-2035 (accessed on 17th Jan 2023)

Jacobs G, Konrad C, Berroth J, Zerwas T, Höpfner G and Spütz K (2022)
Function-oriented model-based product development. In Krause D and
Heyden E (eds.), Design Methodology for Future Products. Cham: Springer.
https://doi.org/10.1007/978-3-030-78368-6_13

Kitamura Y andMizoguchi R (2003) Ontology-based description of functional
design knowledge and its use in a functional way server. Expert Systems with
Applications 24 (2), 153–166. https://doi.org/10.1016/S0957-4174(02)
00138-0.

Kößler J and Paetzold K (2017) Integration ofMBSE into existing development
processes – Expectations and challenges. In: Proceedings of the 21st Inter-
national Conference on Engineering Design (ICED17), Vol. 3: Product, Ser-
vices and Systems Design, Vancouver, Canada, 21-25.08.2017.

Kurfman MA, Stone RB, Van Wie M, Wood KL and Otto KN (2000)
Theoretical underpinnings of functional Modeling: Preliminary experimen-
tal studies. In Proceedings of the ASME 2000 International Design Engineering
Technical Conferences and Computers and Information in Engineering Con-
ference. Volume 4: 12th International Conference on Design Theory and
Methodology, Baltimore, Maryland, USA. September 10–13, 2000. ASME,
pp. 203–216. https://doi.org/10.1115/DETC2000/DTM-14563

Lamm JG and Weilkiens T (2010) Funktionale Architekturen in SysML. In
Maurer M and Schulze S-O (eds.), Tag des Systems Engineering. München:
Carl Hanser Verlag, pp. 109–118; English translation by J. Lamm.

Lu J, Wen Y, Liu Q, Gürdür D and Törngren M (2018) MBSE applicability
analysis in Chinese industry. INCOSE International Symposium 28,
1037–1051. https://doi.org/10.1002/j.2334-5837.2018.00532.x.

Madni AM and Sievers M (2018) Model-based systems engineering: Motiv-
ation, current status and research opportunities. Systems Engineering 21,
172–190. https://doi.org/10.1002/sys.21438.

MathWorks (2023) System Composer, User Guide (R2023a). https://
uk.mathworks.com/help/pdf_doc/systemcomposer/index.html.

Matthiesen S, Ruckpaul A (2012) New insights on the contact&channel-
approach –Modelling of systems with several logical states. In International
Design Conference. pp. 1019–1028.

Meißner M, Jacobs G, Jagla P and Sprehe J (2021) Model based systems
engineering as enabler for rapid engineering change management. Procedia
CIRP 100, 61–66. https://doi.org/10.1016/j.procir.2021.05.010.

Müller JR, Isaksson O, Landahl J, Raja V, Panarotto M, Levandowski C and
Raudberget D (2019) Enhanced function-means modeling supporting
design space exploration. In Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 1–15. https://doi.org/10.1017/S0890060419
000271

OMG (2019) OMG systems modeling language (OMG SysML™). Specifica-
tion Version 1 (6). https://sysml.org/.res/docs/specs/OMGSysML-v1.6-
19-11-01.pdf.

Otto K andWood K (2001) Product Design: Techniques in Reverse Engineering
and New Product Development. New Jersey: Prentice Hall

18 Unal Yildirim, Felician Campean and Amad Uddin

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1002/sys.21559
https://doi.org/10.1002/j.2334-5837.2018.00551.x
https://doi.org/10.1002/j.2334-5837.2018.00551.x
https://doi.org/10.1007/978-3-319-71837-8
https://doi.org/10.1007/978-3-319-71837-8
https://doi.org/10.1002/9780470413791
https://doi.org/10.21278/idc.2018.0543
https://doi.org/10.21278/idc.2018.0543
https://doi.org/10.1002/sys.21644
https://doi.org/10.1002/sys.21644
https://doi.org/10.1007/s003660070003
https://doi.org/10.1007/s003660070003
https://doi.org/10.1002/inst.12013
https://doi.org/10.1007/978-1-4939-3295-5
https://doi.org/10.1145/3365438.3410938
https://doi.org/10.1007/s00163-016-0228-1
https://doi.org/10.1007/s00163-016-0228-1
https://doi.org/10.1017/S0890060408000103
https://doi.org/10.1007/978-3-030-27486-3_12-1
https://doi.org/10.1007/978-3-030-04209-7_7
https://doi.org/10.1002/iis2.12984
https://doi.org/10.1002/iis2.12984
https://doi.org/10.1002/sys.20181
https://doi.org/10.1002/sys.20181
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://siemens.com/electrical-systems
https://www.tu-ilmenau.de/aktuelles/model-based-system-engineering-for-efficient-reuse-of-sub-systems-during-development
https://www.tu-ilmenau.de/aktuelles/model-based-system-engineering-for-efficient-reuse-of-sub-systems-during-development
https://www.tu-ilmenau.de/aktuelles/model-based-system-engineering-for-efficient-reuse-of-sub-systems-during-development
https://doi.org/10.1017/pds.2021.598
https://doi.org/10.1007/978-3-030-78368-6_12
https://roadmap.ide.uk/
https://roadmap.ide.uk/
https://www.incose.org/publications/se-vision-2035
https://www.incose.org/publications/se-vision-2035
https://doi.org/10.1007/978-3-030-78368-6_13
https://doi.org/10.1016/S0957-4174(02)00138-0
https://doi.org/10.1016/S0957-4174(02)00138-0
https://doi.org/10.1115/DETC2000/DTM-14563
https://doi.org/10.1002/j.2334-5837.2018.00532.x
https://doi.org/10.1002/sys.21438
https://uk.mathworks.com/help/pdf_doc/systemcomposer/index.html
https://uk.mathworks.com/help/pdf_doc/systemcomposer/index.html
https://doi.org/10.1016/j.procir.2021.05.010
https://doi.org/10.1017/S0890060419000271
https://doi.org/10.1017/S0890060419000271
https://sysml.org/.res/docs/specs/OMGSysML-v1.6-19-11-01.pdf
https://sysml.org/.res/docs/specs/OMGSysML-v1.6-19-11-01.pdf
https://doi.org/10.1017/S0890060425100176


Pahl G, Beitz W, Feldhusen J and Grote KH (2007) Engineering Design: A
Systematic Approach, 3rd Edn. London: Springer. https://doi.org/10.1007/
978-1-84628-319-2.

Pearce P and Friedenthal S (2013) A practical approach for modelling sub-
marine subsystem architecture in SysML. In Submarine Institute of Australia
Science, Technology & Engineering Conference. pp. 347–360.

Purohit S and Madni AM (2022) Employing digital twins within MBSE:
Preliminary results and findings. InMadni AM, BoehmB, ErwinD,Moghad-
dam M, Sievers M and Wheaton M (eds.), Recent Trends and Advances in
Model Based Systems Engineering. Cham: Springer. https://doi.org/10.1007/
978-3-030-82083-1_4

Siemens (2019) Model-Based Systems Engineering: Integrated MBSE in Auto-
motive. White Paper.https://www.plm.automation.siemens.com/media/glo
bal/en/Siemens%20SW%20Model%20Based%20Systems%20Engineering%
20wp_tcm27-70391.pdf (accessed on 07th Dec 2023).

Stone RB and Wood KL (2000) Development of a functional basis for design.
Journal ofMechanical Design 122, 359–370. https://doi.org/10.1115/1.1289637

Stone RB, Wood KL and Crawford RH (2000) A heuristic method for iden-
tifyingmodules for product architectures.Design Studies 21 (1), 5–31. https://
doi.org/10.1016/S0142-694X(99)00003-4.

Suh N (1998) Axiomatic design theory for systems. Research in Engineering
Design 10, 189–209. https://doi.org/10.1007/s001639870001.

Summers JD, Eckert C and Goel AK (2017) Function in engineering: Bench-
marking representations and models. AIEDAM 31, 401–412. https://doi.
org/10.1017/S0890060417000476.

Tomiyama T, Gu P, Jin Y, Lutters D, Kind C and Kimura F (2009) Design
methodologies: Industrial and educational applications. CIRP Annals 58,
543–565. https://doi.org/10.1016/j.cirp.2009.09.003.

Ulrich KT and Eppinger SD (2003) Product Design and Development, 3rd Edn.
New York: McGraw-Hill/Irwin.

Wichmann RL, Gericke K, Eisenbart B and Moser H (2018) A method for
function integrity diagnosis and documentation: FIDD. In Proceedings of the
Design Society: DESIGN Conference, pp. 1429–1440. https://doi.org/10.21
278/idc.2018.0211

Yildirim U and Campean F (2020) Functional modelling of complex multi-
disciplinary systems using the enhanced sequence diagram. Research in Engin-
eering Design 31, 429–448. https://doi.org/10.1007/s00163-020-00343-8.

Yildirim U, Campean F and Williams H (2017) Function modeling using the
system state flow diagram. AI-EDAM 31 (4), 413–435. https://doi.org/10.1017/
S0890060417000294.

YildirimU,Campean F,Korsunovs A andDoikin A (2023) Flow heuristics for
functional modelling in model-based systems engineering. Proceedings of the
Design Society; 3:1895–1904. https://doi.org/10.1017/pds.2023.

Yin RK (2018) Case Study Research and Applications, 6th Edn. SAGE
Zhang Y, Roeder J, Jacobs G, Berroth J and Hoepfner G (2022) Virtual testing

workflows based on the function-oriented system architecture in SysML: A
case study in wind turbine systems.Wind 2, 599–616. https://doi.org/10.3390/
wind2030032.

Zhu S, Tang J, Gauthier J-M and Faudou R (2019) A formal approach
using SysML for capturing functional requirements in avionics domain.
Chinese Journal Aero 32 (12), 2717–2726. https://doi.org/10.1016/j.
cja.2019.03.037.

Zingel C, Albers A, Matthiesen M and Maletz M (2012) Experiences and
advancements from one year of explorative application of an integrated
modelbased development technique using C&C2-A in SysML. International
Journal of Computer Science (IJSC) 39 (2), 165–181.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 19

https://doi.org/10.1017/S0890060425100176 Published online by Cambridge University Press

https://doi.org/10.1007/978-1-84628-319-2
https://doi.org/10.1007/978-1-84628-319-2
https://doi.org/10.1007/978-3-030-82083-1_4
https://doi.org/10.1007/978-3-030-82083-1_4
https://www.plm.automation.siemens.com/media/global/en/Siemens%20SW%20Model%20Based%20Systems%20Engineering%20wp_tcm27-70391.pdf
https://www.plm.automation.siemens.com/media/global/en/Siemens%20SW%20Model%20Based%20Systems%20Engineering%20wp_tcm27-70391.pdf
https://www.plm.automation.siemens.com/media/global/en/Siemens%20SW%20Model%20Based%20Systems%20Engineering%20wp_tcm27-70391.pdf
https://doi.org/10.1115/1.1289637
https://doi.org/10.1016/S0142-694X(99)00003-4
https://doi.org/10.1016/S0142-694X(99)00003-4
https://doi.org/10.1007/s001639870001
https://doi.org/10.1017/S0890060417000476
https://doi.org/10.1017/S0890060417000476
https://doi.org/10.1016/j.cirp.2009.09.003
https://doi.org/10.21278/idc.2018.0211
https://doi.org/10.21278/idc.2018.0211
https://doi.org/10.1007/s00163-020-00343-8
https://doi.org/10.1017/S0890060417000294
https://doi.org/10.1017/S0890060417000294
https://doi.org/10.1017/pds.2023
https://doi.org/10.3390/wind2030032
https://doi.org/10.3390/wind2030032
https://doi.org/10.1016/j.cja.2019.03.037
https://doi.org/10.1016/j.cja.2019.03.037
https://doi.org/10.1017/S0890060425100176

	Function modeling in model-based systems engineering using flow heuristics
	Introduction
	Background and motivation
	Research objective and methodology

	Literature review
	Function modeling in engineering design
	Function modeling in model-based systems engineering
	Function modeling challenges in MBSE

	Flow heuristics for function modeling
	Functions as operations
	Flow heuristics for the development of function architectures
	Main flow heuristic
	Connecting flow heuristic
	Branching flow heuristic

	Abstraction of functional architecture developed through flow heuristics
	Integrated MBSE function modeling methodology

	Electric bicycle case study
	Discussion
	Conclusions
	Acknowledgements
	References


