J. Austral. Math. Soc. (Series A) 26 (1978), 475-486

ISOMORPHISMS IN SWITCHING CLASSES OF GRAPHS

DAVID HARRIES and HANS LIEBECK

(Received 16 June; revised 15 November 1977)

Communicated by W. D. Wallis

Abstract

We investigate conditions on a permutation group G sufficient to ensure that G fixes a graph in any switching class of graphs that it stabilizes. Our main result gives a necessary and sufficient condition for a dihedral group G to have this property.

Subject classification (Amer. Math. Soc. (MOS) 1970): 05 C 25.

1. Introduction

Let G be a permutation group stabilizing the switching class $\mathscr{S}(\Gamma)$ of a graph Γ . Although every element of G occurs in the automorphism group of some graph in $\mathscr{S}(\Gamma)$, the group G does not necessarily fix a graph in the class. If it does, we say that G is exposable in $\mathscr{S}(\Gamma)$. We consider the following problem: what conditions on G are sufficient to ensure that G is exposable in all switching classes that it stabilizes? It is implicit in the work of Mallows and Sloane (1975) that it is sufficient for G to be cyclic. Further known conditions are that G be of odd order, or of order 4k+2. Our main result is Theorem 5.10, where we give a necessary and sufficient condition on the permutation representation of a dihedral group G such that G is exposable in all switching classes that it stabilizes.

We will present a general approach for studying isomorphisms in switching classes of graphs, which we then apply to obtain the above results.

2. Definitions and notation

We consider the collection \mathscr{G} of labelled undirected graphs on *n* vertices, without loops and without multiple edges. Let Γ be a graph in \mathscr{G} . We label its vertices 1, 2, ..., n, and call the set of labels $\Omega = \{1, 2, ..., n\}$.

A switch on Γ with respect to the vertex labelled *i* is a function s_i mapping Γ to the graph $s_i \Gamma$ which is obtained from Γ by deleting all edges in Γ which are

475

[2]

incident to the vertex *i* and adding edges $\{i, k\}$, for all vertices *k* not adjacent to vertex *i* in Γ . Switching is a commutative operation: $s_i(s_j \Gamma) = s_j(s_i \Gamma)$ for all *i*, $i \in \Omega$. A switch *s* with respect to a set of vertices $\Phi = \{i_1, ..., i_r\}$ is defined to be the composition of functions $s = s_{i_1}...s_{i_r}$. This switch transforms Γ into the graph $s\Gamma$, which is obtained from Γ by deleting all the edges in Γ that are incident to a vertex in Φ and a vertex in $\Omega \setminus \Phi$, and adding edges $\{i, k\}$ for all vertices *k* not adjacent to *i* in Γ , where $i \in \Phi$, $k \in \Omega \setminus \Phi$.

A switch s on Γ with respect to Φ is equal to a switch on Γ with respect to Φ' if and only if either $\Phi' = \Phi$ or $\Phi' = \Omega \setminus \Phi$. Clearly $s(s\Gamma) = s^2 \Gamma = \Gamma$, and we write $s^2 = e$, where e is the switch with respect to the empty set, or equivalently with respect to Ω . The set of all switches on any graph in \mathscr{G} forms an elementary Abelian group S with respect to the natural composition of switches. Its identity is e and its order is 2^{n-1} .

Suppose that s and s' are switches on Γ with respect to the subsets Φ and Φ' of Ω . Then the product ss' is a switch with respect to the symmetric difference of Φ and Φ' given by $\Phi \Delta \Phi' = (\Phi \cup \Phi') \setminus (\Phi \cap \Phi')$. The switching class $\mathscr{S}(\Gamma)$ is the set of 2^{n-1} graphs $\{s\Gamma | s \in S\}$.

Given a permutation π in Σ , the symmetric group on Ω , we define $\pi\Gamma$ to be the labelled graph, such that $\{\pi(i), \pi(j)\}$ is an edge in $\pi\Gamma$ if and only if $\{i, j\}$ is an edge in Γ . The *stabilizer* of the switching class $\mathscr{S}(\Gamma)$ is the group Stab $\mathscr{S}(\Gamma)$ of all permutations in Σ that permute the members of $\mathscr{S}(\Gamma)$ among themselves; that is,

Stab
$$\mathscr{G}(\Gamma) = \{ \pi \in \Sigma | \Gamma' \in \mathscr{G}(\Gamma) \Rightarrow \pi \Gamma' \in \mathscr{G}(\Gamma) \}.$$

An automorphism of a graph Γ is a permutation π in Σ such that $\pi\Gamma = \Gamma$. The set of all automorphisms of Γ is a group which we denote by Aut Γ .

Our definitions can be presented in terms of the (-1, 1, 0) adjacency matrix of Γ . (See, for example, Seidel (1976).) Let G be a subgroup of Stab $\mathscr{S}(\Gamma)$. Two possibilities arise: either G is a subgroup of the automorphism group of some graph in $\mathscr{S}(\Gamma)$ or there is no graph in $\mathscr{S}(\Gamma)$ fixed by G. We say that G is *exposable* in $\mathscr{S}(\Gamma)$ in the first case and that G is *hidden* in $\mathscr{S}(\Gamma)$ in the second. We say that a permutation group G is *always exposable* if it is exposable in every switching class that it stabilizes.

3. Preliminary results

As in the previous section, Γ denotes a graph on *n* vertices.

LEMMA 3.1. Given $\pi \in \Sigma$ and switch s with respect to $\Phi = \{i_1, ..., i_r\} \subseteq \Omega$, define switch πs with respect to $\Phi_{\pi} = \{\pi(i_1), ..., \pi(i_r)\}$. Then

(3.2)
$$\pi(s\Gamma) = {}_{\pi}s(\pi\Gamma).$$

PROOF. Immediate.

We observe that the graphs in \mathscr{G} are permuted by switches in S, by permutations in Σ and by compositions of these operations, which we call *switch-permutations*. Their totality forms a group W, where the law of composition of a switch and a permutation is given by (3.2). In view of our definition of left action on graphs, products of elements in W are evaluated from right to left. (Our notation ensures that g(xs) = gxs.)

We proceed to study the stabilizer of a switching class $\mathscr{S}(\Gamma)$. Our first result shows that a necessary and sufficient condition for a permutation to belong to the stabilizer of $\mathscr{S}(\Gamma)$ is that it maps any one graph in $\mathscr{S}(\Gamma)$ to a graph in this class.

```
LEMMA 3.3. Let \pi \in \Sigma. Then \pi \Gamma \in \mathscr{S}(\Gamma) if and only if \pi \in \operatorname{Stab} \mathscr{S}(\Gamma).
```

PROOF. Suppose that $\pi\Gamma \in \mathscr{S}(\Gamma)$. Then for some switch s, $\pi\Gamma = s\Gamma$. Now consider an arbitrary switch s'. Then, by Lemma 3.1,

$$\pi(s'\Gamma) = {}_{\pi}s'(\pi\Gamma) = {}_{\pi}s'(s\Gamma) = s^*\Gamma \in \mathscr{S}(\Gamma).$$

Therefore $\pi \in \operatorname{Stab} \mathscr{G}(\Gamma)$. The converse is true by definition.

EXAMPLE 3.4. Let Γ be the labelled graph illustrated in Fig. 1. The stabilizer Stab $\mathscr{S}(\Gamma)$ is a representation of degree 6 of the Alternating group A_5 . It is generated by μ and π where

$$\mu = (143)(256), \quad \pi = (23456)(1).$$

As is clear from Fig. 1, the graphs Γ and $s_3 s_5 \Gamma$ are isomorphic, and $s_3 s_5 \Gamma = \mu \Gamma$. The cyclic group $\langle \mu \rangle$ lies in Aut $(s_1 s_6 \Gamma)$. Next consider the dihedral subgroups of Stab $\mathscr{S}(\Gamma)$

$$D = \langle (26)(35)(1)(4), (23456)(1) \rangle$$
 of order 10

and

[3]

$$D' = \langle (26)(35)(1)(4), (14)(35)(2)(6) \rangle$$
 of order 4.

The group D is equal to Aut Γ ; however, the group D' does not occur in the automorphism group of any graph in $\mathscr{S}(\Gamma)$ and so D' is hidden in $\mathscr{S}(\Gamma)$. The element $s_3 s_5 \mu$ fixes Γ , and no other $s\mu$ in W has this property. In contrast, there is no graph in $\mathscr{S}(\Gamma)$ fixed by $s_1\mu$. In fact there is no graph in the class \mathscr{G} of all graphs on 6 vertices that is fixed by $s_1\mu$.

The underlying theory of Example 3.4 will be explained in Section 5. The following well-known result provides a partial answer to our problem.

THEOREM 3.5. A necessary and sufficient condition for a permutation group G to be exposable in a switching class $\mathscr{G}(\Gamma)$ is that it has an orbit on $\mathscr{G}(\Gamma)$ of odd length.

PROOF. Suppose that $\{\Gamma_1, ..., \Gamma_r\}$ is an orbit of G on $\mathscr{S}(\Gamma)$ where r is odd. Let $s^{(i)}$ denote a switch such that

$$s^{(i)}\Gamma_1=\Gamma_i, \quad i=1,\ldots,r$$

A permutation π in \mathscr{G} permutes the graphs $\Gamma_1, ..., \Gamma_r$. Since $\pi \in \operatorname{Stab} \mathscr{G}(\Gamma)$ there exists a switch s such that $\pi \Gamma_1 = s \Gamma_1$. Then

$$\pi s^{(i)} \Gamma_1 = \pi s^{(i)} s \Gamma_1 = s^{(j)} \Gamma_1 \text{ for some } j \in \{1, ..., r\}.$$

Put $s' = s^{(1)} \dots s^{(r)}$. Since r is odd,

$$\pi s' s' \Gamma_1 = (s)' \Gamma_1 = s \Gamma_1 = \pi \Gamma_1,$$

and hence $\pi(s' \Gamma_1) = s' \Gamma_1$. The choice of s' is independent of the choice of π in G, and so G fixes $s' \Gamma_1$, and G is exposable in $\mathscr{G}(\Gamma)$. The converse is immediate.

COROLLARY 3.6. A group G is always exposable if it has an odd orbit on Ω . In particular, a permutation group on Ω , where $|\Omega|$ is odd, is always exposable.

PROOF. Corresponding to an odd orbit $\{1, ..., r\}$ of G on Ω there is an orbit of G on $S(\Gamma)$ containing the graphs $s^{(i)} \Gamma$, i = 1, ..., r, where $s^{(i)} \Gamma$ denotes the (unique) graph in $\mathscr{S}(\Gamma)$ that has vertex *i* isolated. The number of graphs in this orbit is a divisor of *r*.

COROLLARY 3.7. Let G be a permutation group containing a subgroup H that is always exposable. If the index r of H in G is odd, then G is always exposable.

PROOF. Suppose that G stabilizes $\mathscr{S}(\Gamma)$. Then there is a graph Γ' in $\mathscr{S}(\Gamma)$ which is fixed by H. Then Γ' lies in an orbit of G on $\mathscr{S}(\Gamma)$ whose length divides r.

Towards further progress it is important to establish a criterion for the existence of a graph fixed by an element $s\pi$ of W, or more generally by a subgroup Q in W.

NOTATION. We introduce a convenient notation for the switch-permutations $w = s\pi$ of W: the permutation π is written as a product of disjoint cycles, and a bar

is placed over each symbol that occurs in the set Φ switched by s. To illustrate, in Example 3.4

$$s_3 s_5 \mu = (14\overline{3})(2\overline{5}6).$$

Since $s_3 s_5 \mu = s_1 s_2 s_6 s_6 \mu$, we observe that

$$(14\overline{3})(2\overline{5}6) = (\overline{1}\overline{4}3)(\overline{2}5\overline{6}).$$

THEOREM 3.8. A subgroup Q of W does not fix any graph Γ in G if and only if some element in Q involves either a switch-transposition (ij) or switch-1-cycles (i)(j)...

PROOF. In view of the action of permutations and switches on graphs, a necessary and sufficient condition for a switch-permutation $s\pi$ to fix a graph Γ is as follows: for all $p, q \in \Omega$, $\{p,q\}$ and $\{\pi(p), \pi(q)\}$ are both edges or both non-edges of Γ if and only if the set Φ switched by s contains both or neither of $\pi(p)$ and $\pi(q)$.

The construction of a graph fixed by Q will break down if and only if the stage is reached that an unordered pair $\{i, j\}$ represents both an edge and a non-edge. This will arise if and only if Q contains a switch-permutation $s\pi$ such that Φ contains exactly one of i and j and either (1) $\pi(i) = j$, $\pi(j) = i$, or (2) $\pi(i) = i$ and $\pi(j) = j$.

COROLLARY 3.9. Suppose a group Q of switch-permutations fixes a graph.

(i) If $s\pi$ and $s'\pi$ belong to Q then s' = s. The set of permutations $\{\pi \in \Sigma | s\pi \in Q \text{ for some switch } s \text{ (depending on } \pi)\}$ forms a group, which we call the permutation group associated with Q. Its order is |Q|.

(ii) Q fixes exactly 2^{λ} different graphs, where λ is the number of orbits of unordered pairs $\{i, j\}, i \neq j$, in $\Omega \times \Omega$ under the action of the permutation group associated with Q.

PROOF. (i) $s\pi \in Q$ and $s'\pi \in Q \Rightarrow s\pi \pi^{-1}s' = ss' \in Q$. By Theorem 3.8, ss' = e.

(ii) A graph is specified by assigning in each orbit one pair to be an edge or a nonedge.

4. Cyclic subgroups of stabilizers

THEOREM 4.1. A cyclic group is always exposable. To prove this result we require the following lemmas.

LEMMA 4.2. Consider the r-cycle $\sigma = (1 \ 2 \ ... r)$ and the switch s with respect to $\Phi \subseteq \{1, 2, ..., r\}$. Then

$$(s\sigma)^{\mathbf{r}} = \begin{cases} (1)(2)\dots(r), & \text{if } |\Phi| \text{ is even,} \\ \\ (\overline{1})(\overline{2})\dots(\overline{r}), & \text{if } |\Phi| \text{ is odd.} \end{cases}$$

Moreover, if r = 2k, then $(s\sigma)^k$ involves a switch-transposition (ij) if and only if $|\Phi|$ is odd.

PROOF. Apply the formula

 $(s\sigma)^m = s(\sigma s) (\sigma^2 s) \dots (\sigma^{m-1} s) \sigma^m.$

DEFINITION 4.3. Let π be a permutation in Σ , and let $\Phi \subseteq \Omega$. We say that Φ is *compatible* with π if each cycle of π involves an even number of symbols of Φ , where π is expressed as the product of disjoint cycles (including 1-cycles).

LEMMA 4.4. Let s be a switch with respect to $\Phi \subseteq \Omega$, and let $\pi \in \Sigma$. Then the switch permutation $s\pi$ fixes some graph if and only if either Φ or $\Omega \setminus \Phi$ is compatible with π .

PROOF. This follows by applying Lemma 4.2 to Theorem 3.5.

LEMMA 4.5. Let s be a switch with respect to $\Phi \subseteq \Omega$, and let $\pi \in \Sigma$. Then there exists a switch s' such that $s\pi = s' \pi s'$ if and only if either Φ or $\Omega \setminus \Phi$ is compatible with π .

PROOF. If $s\pi = s' \pi s'$ then $s = s' \pi s'$ and clearly Φ or $\Omega \setminus \Phi$ is compatible with π .

Conversely, suppose that Φ or $\Omega \setminus \Phi$ is compatible with π . We suppose without loss of generality that Φ involves an even number of symbols from each cycle of π . Consider a particular cycle of π , which we write $\sigma = (1 \ 2 \ ... \ r)$. If $\Phi \cap \operatorname{supp} \sigma$ is not empty then it is expressible in the form

 $\Phi \cap \operatorname{supp} \sigma = \{i_1, \ldots, i_{2k}\},\$

where $1 \leq i_1 < \ldots < i_{2k} \leq r$. Define the set

$$\Phi^* = \{i | i_{2q-1} \leq i < i_{2q}, q = 1, \dots, k\}.$$

Then

$$(\Phi^*)_{\pi} = \{i | i_{2q-1} < i \le i_{2q}, q = 1, \dots, k\}$$

and, forming the symmetric difference, we obtain

$$(\Phi^*) \Delta (\Phi^*)_{\pi} = \{i_1, \dots, i_{2k}\} = \Phi \cap \operatorname{supp} \sigma.$$

We define s' to be the switch with respect to the set Φ' which is the union of the sets Φ^* constructed in the above manner and corresponding to all the cycles of π having common symbols with Φ . Then $s'_{\pi}s' = s$, and $s\pi = s' \pi s'$. This completes the proof.

PROOF OF THEOREM 4.1. Suppose a cyclic group G stabilizes $\mathscr{G}(\Gamma)$. If $G = \langle \pi \rangle$, then there is a switch s with respect to a set $\Phi \subseteq \Omega$ such that $s\pi$ fixes Γ . By Lemma 4.4, either Φ or $\Omega \setminus \Phi$ is compatible with π . By Lemma 4.5 there exists a switch s' such that s' $\pi s'$ is equal to $s\pi$. But then s' $\pi s' \Gamma = \Gamma$, and hence $\pi(s' \Gamma) = s' \Gamma$. Thus π fixes the graph $\Gamma' = s' \Gamma$, and G is exposable in $\mathscr{G}(\Gamma)$.

As an immediate application of Theorem 4.1 and Corollary 3.7 we have the following result.

THEOREM 4.6. A group with cyclic Sylow 2-subgroup is always exposable. In particular, all groups of order 4k + 2 are always exposable.

5. Dihedral subgroups of stabilizers

Our aim in this section is to classify the dihedral subgroups in Σ which are always exposable. We see from Example 3.4 that not all dihedral groups are always exposable.

Now let D be an arbitrary dihedral subgroup of Σ . Then D is generated by two involutions, α and β . The following lemma applies to dihedral groups as a special case.

LEMMA 5.1. Suppose a subgroup G of Σ is generated by two permutations π and μ . If G stabilizes a switching class $\mathscr{S}(\Gamma)$ then G is associated with a group Q fixing a graph in $\mathscr{S}(\Gamma)$, such that Q is generated by switch-permutations $s\pi$ and $s\mu$ for some switch s.

PROOF. By Theorem 4.1, there is a graph Γ' in $\mathscr{S}(\Gamma)$ which is fixed by $\mu^{-1}\pi$. So there is a switch s such that

$$\pi\Gamma'=\mu\Gamma'=s\Gamma',$$

and the switch-permutations $s\pi$ and $s\mu$ fix Γ' .

According to Lemma 5.1, in order to study the action of the dihedral group D on a switching class which it stabilizes, we can equivalently study subgroups Q of W that fix a graph, where Q is generated by switch permutations $s\alpha$ and $s\beta$. We next establish a criterion depending on s, α and β for the existence of a graph fixed by $Q = \langle s\alpha, s\beta \rangle$.

LEMMA 5.2. Let α and β by involutions in Σ , and let s be a switch with respect to $\Phi \subseteq \Omega$. There exists a graph fixed by $Q = \langle s\alpha, s\beta \rangle$ if and only if either Φ or $\Omega \setminus \Phi$ is compatible with α , and either Φ or $\Omega \setminus \Phi$ is compatible with β .

PROOF. If Q fixes a graph then the condition of Lemma 5.2 is satisfied, by Lemma 4.4. Conversely, suppose that the condition of Lemma 5.2 is satisfied. Then, since α and β are involutions,

$$(5.3) \qquad \qquad _{\alpha}s = {}_{\beta}s = s.$$

We will show the existence of a graph fixed by Q by an application of Theorem 3.8. The elements of Q are of the form

$$(s\alpha)^k(s\beta s\alpha)^l = (s\alpha)^k(\beta\alpha)^l,$$

where k = 0, 1 and l = 0, 1, 2, ..., the last expression being obtained on applying

(5.3). We must show that the conditions in Theorem 3.8 for the non-existence of a graph do not arise. This is clear when k = 0. Consider next an element $w = s\alpha(\beta\alpha)^l$ of Q. If the permutation $\alpha(\beta\alpha)^l$ transposes two symbols then by (5.3) either Φ or $\Omega \setminus \Phi$ contains both these symbols. Finally, suppose that $\alpha(\beta\alpha)^l$ fixes two symbols *i* and *j*. If l = 2m, put

$$(\beta \alpha)^m(i) = p, \quad (\beta \alpha)^m(j) = q.$$

Then $\alpha(p) = \alpha(\beta\alpha)^m(i) = (\beta\alpha)^m(i) = p$ and similarly $\alpha(q) = q$. By our hypothesis, either Φ or $\Omega \setminus \Phi$ contains both of p and q and hence also both of $i = (\alpha\beta)^m(p)$ and $j = (\alpha\beta)^m(q)$. If l = 2m+1, a similar argument applies to the elements $\alpha(\beta\alpha)^m(i)$ and $\alpha(\beta\alpha)^m(j)$ which are fixed by β , using the hypothesis that either Φ or $\Omega \setminus \Phi$ is compatible with β .

LEMMA 5.4. Let s be a switch with respect to $\Phi \subseteq \Omega$, where Φ is compatible with both the involutions α and β in Σ . Then there is a switch s' such that

(5.5)
$$s\alpha = s' \alpha s' \quad and \quad s\beta = s' \beta s'.$$

PROOF. By our hypothesis on s, the set Φ is a union of orbits $\Phi_1, ..., \Phi_t$ of $D = \langle \alpha, \beta \rangle$ on Ω . Choose from each orbit Φ_r a symbol i_r , r = 1, ..., t. Then the switch s' is defined with respect to the set Φ' , where

$$\Phi' = \{ (\beta \alpha)^m (i_r), r = 1, ..., t, m = 0, 1, 2, ... \}.$$

We will show that s' satisfies relations (5.5), in other words, that $s = s'_{\alpha}s' = s'_{\beta}s'$. This follows from the observation that Φ' consists of precisely one symbol from each transposition in α and in β whose symbols lie in Φ . For if this is not the case then for some i_r in Φ' and some integer m,

$$(\beta \alpha)^m(i_r) = \alpha(i_r) \text{ or } \beta(i_r).$$

In either case this leads to the conclusion (by a method used in the proof of Lemma 5.2) that either α or β fixes a symbol in Φ_r . This contradicts that Φ is compatible with both α and β , and the proof is complete.

COROLLARY 5.6. Suppose that the graph Γ is fixed by $Q = \langle s\alpha, s\beta \rangle$, where α and β are involutions. If the set Φ switched by s is compatible with both α and β then there is a graph Γ' in $\mathcal{S}(\Gamma)$ which is fixed by the dihedral group $D = \langle \alpha, \beta \rangle$.

PROOF. Apply Lemma 5.4, putting $\Gamma' = s' \Gamma$.

We must now consider the case of a switch s with respect to Φ , where Φ is compatible with α , and $\Omega \setminus \Phi$ is compatible with β (so that by Lemma 5.2 there exists a graph fixed by $s\alpha$ and $s\beta$), but neither Φ nor $\Omega \setminus \Phi$ is compatible with both

 α and β . The following examples motivate our next lemma. The second of these examples provides a further illustration of a dihedral group stabilizing a class but fixing no graph in it.

EXAMPLES 5.7

(i) Consider the switch involutions

$$s\alpha = (1)(2)(\bar{3}\,\bar{4})(\bar{5}\,\bar{6})(\bar{7}\,\bar{8}),$$

$$s\beta = (\bar{1}\,\bar{2})(35)(46)(7)(8).$$

Here $\Phi = \{3, 4, 5, 6, 7, 8\}$, and this is compatible with α and not with β , whereas $\Omega \setminus \Phi = \{1, 2\}$ is compatible with β and not with α . There exists a switch s' such that $s\alpha = s' \alpha s'$ and $s\beta = s' \beta s'$. (Choose for example $\Phi' = \{1, 3, 5, 7\}$ or $\{2, 4, 6, 7\}$.) By Lemma 5.2 there exists a graph Γ fixed by $s\alpha$ and by $s\beta$. Let s' be the switch with respect to Φ' . The graph $s' \Gamma$ is fixed by $D = \langle \alpha, \beta \rangle$.

(ii) Put

$$s\alpha = (\overline{1}\ \overline{2})(\overline{3}\ \overline{4})(\overline{5}\ \overline{6})(\overline{7}\ \overline{8})(\overline{9}\ \overline{10})(11)(12),$$

$$s\beta = (1)(3)(24)(5\ 10)(67)(89)(\overline{11}\ \overline{12}).$$

Here Φ is compatible with α and not β , and $\Omega \setminus \Phi$ is compatible with β and not α . There is no switch s' such that $s\alpha = s' \alpha s'$ and $s\beta = s' \beta s'$. Again by Lemma 5.2, there exists a graph Γ fixed by $s\alpha$ and by $s\beta$, but in this case there is no graph in $\mathscr{S}(\Gamma)$ fixed by $D = \langle \alpha, \beta \rangle$.

The essential difference between Examples 5.7(i) and (ii) lies in the length of the orbits of D on Ω , none of whose symbols is fixed by α or by β . In Example (i) the only such orbit is $\{3, 4, 5, 6\}$, and in Example (ii) the only such orbit is $\{5, 6, 7, 8, 9, 10\}$. As the next lemma shows, the length of these orbits is crucial to our analysis.

LEMMA 5.8. Let D be the dihedral group generated by involutions α and β , and let s be a switch with respect to Φ . Suppose that Φ is compatible with α and not with β , and that $\Omega \setminus \Phi$ is compatible with β and not with α . Then there is a switch s' such that $s\alpha = s' \alpha s'$ and $s\beta = s' \beta s'$ if and only if every orbit of D on Ω , none of whose symbols is fixed by α or by β , has length divisible by four.

PROOF. We partition the orbits of D on Ω into three classes:

- (i) orbits containing a symbol fixed by α ;
- (ii) orbits containing a symbol fixed by β ;
- (iii) orbits none of whose symbols is fixed by α or by β .

The classes are disjoint, for suppose an orbit Θ is common to class (i) and class (ii). Then it contains a symbol fixed by α and a symbol fixed by β , and it follows from our hypothesis on Φ that this cannot happen.

[10]

First we note that Φ is a union of orbits of *D*. For if $i \in \Phi$ then $\alpha(i) \in \Phi$, since Φ is compatible with α , and $\beta(i) \in \Phi$ since $\Omega \setminus \Phi$ is compatible with β . It follows from this that if Θ is an orbit in class (i) then $\Theta \subseteq \Omega \setminus \Phi$ and that if Θ is an orbit in class (ii) then $\Theta \subseteq \Phi$.

Suppose now that every orbit of D in class (iii) has length divisible by four. We will construct a switch s' with respect to a set $\Phi' \subseteq \Omega$ such that $s\alpha = s' \alpha s'$ and $s\beta = s' \beta s'$, or equivalently $s = s' \alpha s' = s' \beta s'$. The set Φ' will be a union of subsets Φ^* constructed as follows.

First consider an orbit Θ in class (i). Then the symbols of Θ are involved in, say, k transpositions of β where $|\Theta| = 2k$, and α fixes at least two symbols of Θ . We claim that $\alpha\beta$ acts on Θ as a 2k-cycle. To prove this, consider a symbol *i* in Θ fixed by α . Every element of D is expressible in the form $(\alpha\beta)^r$ or $(\alpha\beta)^r\alpha$ for some integer r. If $\alpha\beta$ were not a 2k-cycle then, since $(\alpha\beta)^r\alpha(i) = (\alpha\beta)^r(i)$, the group D would not act transitively on Θ . Let the subset Φ^* of Θ consist of the k alternate symbols from the cycle $\alpha\beta$, so chosen as to include the symbol *i*. We calculate

$$\alpha(\alpha\beta)^{r}(i) = \alpha(\alpha\beta)^{r} \alpha(i) = (\beta\alpha)^{r}(i) = (\alpha\beta)^{2k-r}(i)$$

and

$$\beta(\alpha\beta)^{r}(i) = \beta(\alpha\beta)^{r} \alpha(i) = (\beta\alpha)^{r+1}(i) = (\alpha\beta)^{2k-r-1}(i).$$

From this we see that α fixes Φ^* setwise, and β maps Φ^* onto $\Theta \setminus \Phi^*$. Hence $\Phi^* \Delta \Phi^*_{\alpha}$ is empty and $\Phi^* \Delta \Phi^*_{\beta} = \Theta$. By reversing the roles of α and β or an orbit Θ in class (ii) we obtain similarly a set Φ^* such that $\Phi^* \Delta \Phi^*_{\alpha} = \Theta$ and $\Phi^* \Delta \Phi^*_{\beta}$ is empty.

Finally consider an orbit Θ in class (iii). Then either $\Theta \subseteq \Phi$ or $\Theta \subseteq \Omega \setminus \Phi$. In either case $|\Theta|$ is even, $|\Theta| = 2k$, say. Choose an arbitrary symbol *i* in Θ . We will show that the sets

$$\{(\alpha\beta)^r(i), r = 1, ..., k\}$$
 and $\{(\alpha\beta)^r \alpha(i), r = 1, ..., k\}$

are disjoint. For if not, then there are integers b and c such that

$$(\alpha\beta)^{b}(i) = (\alpha\beta)^{c} \alpha(i), \text{ giving } \alpha(\beta\alpha)^{c-b}(i) = i.$$

This implies, as in the proof of Lemma 5.2, that α or β fixes a symbol in Θ , depending on the parity of c-b.

Since $|\Theta| = 2k$, it now follows that $\alpha\beta$ acts on Θ as the product of two k-cycles. In the case that $\Theta \subseteq \Phi$ we choose Φ^* as the subset of Θ consisting of (a) alternate symbols including *i* in the cycle of $\alpha\beta$ that contains *i*, and (b) alternate symbols in the other cycle of $\alpha\beta$ not including the symbol $\alpha(i)$. (It is at this stage that we require *k* to be even and hence $|\Theta|$ to be a multiple of four.) It can be shown by a method similar to that used for class (i) orbits that $\Phi^* \Delta \Phi^*_{\alpha} = \Theta$ and that $\Phi^* \Delta \Phi^*_{\beta}$ is empty. In the case that $\Theta \subseteq \Omega \setminus \Phi$ we choose Φ^* as above but with the roles of α and β reversed. Then $\Phi^* \Delta \Phi^*_{\alpha}$ is empty and $\Phi^* \Delta \Phi^*_{\beta} = \Theta$.

485

We now define s' to be the switch with respect to the set Φ' , where Φ' is the union of the sets Φ^* constructed in the above manner, one for each orbit. Then $\Phi' \Delta \Phi'_a = \Phi$ and $\Phi' \Delta \Phi'_b = \Omega \setminus \Phi$, and so $s = s'_a s' = s'_b s'$.

Conversely, suppose that there is a switch s' with respect to a set Φ' such that $s\alpha = s' \alpha s'$ and $s\beta = s' \beta s'$, or equivalently $s = s' \alpha s' = s' \beta s'$. Since $\Omega \setminus \Phi$ is not compatible with α , $\Phi = \Phi' \Delta \Phi'_{\alpha}$, and since Φ is not compatible with β , $\Omega \setminus \Phi = \Phi' \Delta \Phi'_{\beta}$.

Let Θ be an orbit of class (iii), and assume by way of contradiction that $|\Theta| = 2 + 4k$ for some integer k. Then α and β each contain the symbols of Θ in 1 + 2k transpositions. Now either $\Theta \subseteq \Phi$ or $\Theta \subseteq \Omega \setminus \Phi$. In the first case Φ' must contain exactly one symbol from each of these transpositions that occur in α , which is 1 + 2k symbols in all from Θ . But also, $(\Omega \setminus \Phi) \cap \Theta$ is empty and $\Omega \setminus \Phi = \Phi' \Delta \Phi'_{\beta}$, and this means that Φ' contains either both or neither of the symbols in each transposition in β that involves Θ . So Φ' contains an even number of symbols from Θ , which is a contradiction. The case $\Theta \subseteq \Omega \setminus \Phi$ is treated similarly. Hence $|\Theta| = 4k$ for some integer k, and the proof is complete.

COROLLARY 5.9. Let s be a switch with respect to $\Phi \subseteq \Omega$ and let α and β be involutions in Σ . Suppose that the graph Γ is fixed by $\langle s\alpha, s\beta \rangle$. If Φ is compatible with α but not with β and $\Omega \setminus \Phi$ is compatible with β but not with α then the dihedral group $D = \langle \alpha, \beta \rangle$ is exposable in $\mathscr{S}(\Gamma)$ if and only if every orbit of D on Ω containing no symbol fixed by α or by β has length divisible by four.

It is clear that a dihedral group $D = \langle \alpha, \beta \rangle$ can stabilize many switching classes. Provided that a switch s is chosen to satisfy the conditions of Lemma 5.2, a switching class $\mathscr{S}(\Gamma)$ stabilized by D can be constructed by applying Theorem 3.8 to the group Q generated by the switch-permutations $s\alpha$ and $s\beta$. Our next result gives a necessary and sufficient condition on a dihedral group D in a permutation representation to be always exposable.

THEOREM 5.10. A dihedral group D, represented as a permutation group on Ω , and generated by involutions α and β , is always exposable if and only if at least one of the following three conditions is satisfied.

(1) At least one of α and β fixes no symbol in Ω .

(2) Some orbit of D contains a symbol fixed by α and a symbol fixed by β .

(3) (i) α and β both fix symbols. (ii) The orbits containing symbols fixed by α contain no symbols fixed by β . (iii) Every orbit of D, none of whose symbols is fixed by α or by β has length divisible by four.

PROOF. Suppose D satisfies at least one of conditions (1), (2) and (3), and stabilizes a switching class $\mathscr{S}(\Gamma)$. Then by Lemma 5.1 there is a switch s with respect

[12]

to a set Φ such that $Q = \langle s\alpha, s\beta \rangle$ fixes a graph in $\mathscr{S}(\Gamma)$. By Lemma 5.2 we may suppose that either Φ is compatible with both α and β or Φ is compatible with α and not with β and $\Omega \setminus \Phi$ is compatible with β and not with α . If D satisfies conditions (1) or (2) then the first case arises and, by Corollary 5.6, D fixes a graph in $\mathscr{S}(\Gamma)$. If D satisfies condition (3) either case may arise, the first being dealt with by Corollary 5.6 and the second by Corollary 5.9. Hence D is always exposable.

Conversely, if D does not satisfy any of conditions (1), (2) and (3), then (i) α and β both fix symbols; (ii) the orbits containing symbols fixed by α contain no symbols fixed by β ; (iii) there is an orbit of D none of whose symbols is fixed by α or by β and whose length is of the form 2+4k. Let Φ be the union of the orbits containing symbols fixed by β . Then Φ is compatible with α and not β and $\Omega \setminus \Phi$ is compatible with β and not α . Let s be the switch with respect to Φ . By Lemma 5.2, $Q = \langle s\alpha, s\beta \rangle$ fixes some graph, Γ say. By Corollary 5.9, D is not exposable in $\mathscr{S}(\Gamma)$. This completes the proof.

COROLLARY 5.11. A dihedral group D is always exposable if D on Ω has fewer than three orbits. In particular, all transitive dihedral groups are always exposable.

PROOF. If D is transitive on Ω then condition (1) or (2) of Theorem 5.10 must hold. If D on Ω has two orbits and if conditions (1) and (2) do not hold then α fixes symbols in the first but not the second orbit and β fixes symbols in the second but not the first orbit. Then condition (3) holds, for (3)(iii) is vacuously satisfied.

References

J. J. Seidel (1976), 'A survey of two-graphs', Proc. Intern. Coll. Teorie Combinatorie, Accad. Naz. Lincei, Roma, pp. 480-511.

Department of Mathematics University of Keele Keele, Staffs. ST5 5BG England

486

C. L. Mallows and N. J. A. Sloane (1975), 'Two-graphs, switching classes and Euler graphs are equal in number', SIAM J. Appl. Math. 28, 87-880.