ISOMORPHISMS IN SWITCHING CLASSES OF GRAPHS

DAVID HARRIES and HANS LIEBECK
(Received 16 June; revised 15 November 1977)
Communicated by W. D. Wallis

Abstract

We investigate conditions on a permutation group G sufficient to ensure that G fixes a graph in any switching class of graphs that it stabilizes. Our main result gives a necessary and sufficient condition for a dihedral group G to have this property.

Subject classification (Amer. Math. Soc. (MOS) 1970): 05 C 25.

1. Introduction

Let G be a permutation group stabilizing the switching class $\mathscr{P}(\Gamma)$ of a graph Γ. Although every element of G occurs in the automorphism group of some graph in $\mathscr{S}(\Gamma)$, the group G does not necessarily fix a graph in the class. If it does, we say that G is exposable in $\mathscr{P}(\Gamma)$. We consider the following problem: what conditions on G are sufficient to ensure that G is exposable in all switching classes that it stabilizes? It is implicit in the work of Mallows and Sloane (1975) that it is sufficient for G to be cyclic. Further known conditions are that G be of odd order, or of order $4 k+2$. Our main result is Theorem 5.10 , where we give a necessary and sufficient condition on the permutation representation of a dihedral group G such that G is exposable in all switching classes that it stabilizes.

We will present a general approach for studying isomorphisms in switching classes of graphs, which we then apply to obtain the above results.

2. Definitions and notation

We consider the collection \mathscr{G} of labelled undirected graphs on n vertices, without loops and without multiple edges. Let Γ be a graph in \mathscr{G}. We label its vertices $1,2, \ldots, n$, and call the set of labels $\Omega=\{1,2, \ldots, n\}$.

A switch on Γ with respect to the vertex labelled i is a function s_{i} mapping Γ to the graph $s_{i} \Gamma$ which is obtained from Γ by deleting all edges in Γ which are
incident to the vertex i and adding edges $\{i, k\}$, for all vertices k not adjacent to vertex i in Γ. Switching is a commutative operation: $s_{i}\left(s_{j} \Gamma\right)=s_{j}\left(s_{i} \Gamma\right)$ for all i, $i \in \Omega$. A switch s with respect to a set of vertices $\Phi=\left\{i_{1}, \ldots, i_{r}\right\}$ is defined to be the composition of functions $s=s_{i_{1}} \ldots s_{i_{r}}$. This switch transforms Γ into the graph $s \Gamma$, which is obtained from Γ by deleting all the edges in Γ that are incident to a vertex in Φ and a vertex in $\Omega \mid \Phi$, and adding edges $\{i, k\}$ for all vertices k not adjacent to i in Γ, where $i \in \Phi, k \in \Omega \mid \Phi$.

A switch s on Γ with respect to Φ is equal to a switch on Γ with respect to Φ^{\prime} if and only if either $\Phi^{\prime}=\Phi$ or $\Phi^{\prime}=\Omega \backslash \Phi$. Clearly $s(s \Gamma)=s^{2} \Gamma=\Gamma$, and we write $s^{2}=e$, where e is the switch with respect to the empty set, or equivalently with respect to Ω. The set of all switches on any graph in \mathscr{G} forms an elementary Abelian group S with respect to the natural composition of switches. Its identity is e and its order is 2^{n-1}.

Suppose that s and s^{\prime} are switches on Γ with respect to the subsets Φ and Φ^{\prime} of Ω. Then the product $s s^{\prime}$ is a switch with respect to the symmetric difference of Φ and Φ^{\prime} given by $\Phi \Delta \Phi^{\prime}=\left(\Phi \cup \Phi^{\prime}\right) \backslash\left(\Phi \cap \Phi^{\prime}\right)$. The switching class $\mathscr{S}(\Gamma)$ is the set of 2^{n-1} graphs $\{s \Gamma \mid s \in S\}$.

Given a permutation π in Σ, the symmetric group on Ω, we define $\pi \Gamma$ to be the labelled graph, such that $\{\pi(i), \pi(j)\}$ is an edge in $\pi \Gamma$ if and only if $\{i, j\}$ is an edge in Γ. The stabilizer of the switching class $\mathscr{P}(\Gamma)$ is the group $\operatorname{Stab} \mathscr{S}(\Gamma)$ of all permutations in Σ that permute the members of $\mathscr{P}(\Gamma)$ among themselves; that is,

$$
\operatorname{Stab} \mathscr{S}(\Gamma)=\left\{\pi \in \Sigma \mid \Gamma^{\prime} \in \mathscr{S}(\Gamma) \Rightarrow \pi \Gamma^{\prime} \in \mathscr{S}(\Gamma)\right\}
$$

An automorphism of a graph Γ is a permutation π in Σ such that $\pi \Gamma=\Gamma$. The set of all automorphisms of Γ is a group which we denote by Aut Γ.

Our definitions can be presented in terms of the ($-1,1,0$) adjacency matrix of Γ. (See, for example, Seidel (1976).) Let G be a subgroup of $\operatorname{Stab} \mathscr{S}(\Gamma)$. Two possibilities arise: either G is a subgroup of the automorphism group of some graph in $\mathscr{S}(\Gamma)$ or there is no graph in $\mathscr{P}(\Gamma)$ fixed by G. We say that G is exposable in $\mathscr{S}(\Gamma)$ in the first case and that G is hidden in $\mathscr{S}(\Gamma)$ in the second. We say that a permutation group G is always exposable if it is exposable in every switching class that it stabilizes.

3. Preliminary results

As in the previous section, Γ denotes a graph on n vertices.
Lemma 3.1. Given $\pi \in \Sigma$ and switch s with respect to $\Phi=\left\{i_{1}, \ldots, i_{r}\right\} \subseteq \Omega$, define switch ${ }_{\pi} s$ with respect to $\Phi_{\pi}=\left\{\pi\left(i_{1}\right), \ldots, \pi\left(i_{r}\right)\right\}$. Then

$$
\begin{equation*}
\pi(s \Gamma)={ }_{\pi} s(\pi \Gamma) \tag{3.2}
\end{equation*}
$$

Proof. Immediate.

We observe that the graphs in \mathscr{G} are permuted by switches in S, by permutations in Σ and by compositions of these operations, which we call switch-permutations. Their totality forms a group W, where the law of composition of a switch and a permutation is given by (3.2). In view of our definition of left action on graphs, products of elements in W are evaluated from right to left. (Our notation ensures that ${ }_{\sigma}\left({ }_{n} s\right)={ }_{\sigma \pi} s$.)

We proceed to study the stabilizer of a switching class $\mathscr{P}(\Gamma)$. Our first result shows that a necessary and sufficient condition for a permutation to belong to the stabilizer of $\mathscr{P}(\Gamma)$ is that it maps any one graph in $\mathscr{S}(\Gamma)$ to a graph in this class.

Lemma 3.3. Let $\pi \in \Sigma$. Then $\pi \Gamma \in \mathscr{S}(\Gamma)$ if and only if $\pi \in \operatorname{Stab} \mathscr{P}(\Gamma)$.
Proof. Suppose that $\pi \Gamma \in \mathscr{S}(\Gamma)$. Then for some switch $s, \pi \Gamma=s \Gamma$. Now consider an arbitrary switch s^{\prime}. Then, by Lemma 3.1,

$$
\pi\left(s^{\prime} \Gamma\right)={ }_{\pi} s^{\prime}(\pi \Gamma)={ }_{\pi} s^{\prime}(s \Gamma)=s^{*} \Gamma \in \mathscr{S}(\Gamma)
$$

Therefore $\pi \in \operatorname{Stab} \mathscr{P}(\Gamma)$. The converse is true by definition.

Fig. 1.
Example 3.4. Let Γ be the labelled graph illustrated in Fig. 1. The stabilizer Stab $\mathscr{S}(\Gamma)$ is a representation of degree 6 of the Alternating group A_{5}. It is generated by μ and π where

$$
\mu=(143)(256), \quad \pi=(23456)(1) .
$$

As is clear from Fig. 1, the graphs Γ and $s_{3} s_{5} \Gamma$ are isomorphic, and $s_{3} s_{5} \Gamma=\mu \Gamma$. The cyclic group $\langle\mu\rangle$ lies in Aut $\left(s_{1} s_{6} \Gamma\right)$. Next consider the dihedral subgroups of Stab $\mathscr{S}(\Gamma)$

$$
D=\langle(26)(35)(1)(4),(23456)(1)\rangle \quad \text { of order } 10
$$

and

$$
D^{\prime}=\langle(26)(35)(1)(4),(14)(35)(2)(6)\rangle \quad \text { of order } 4 .
$$

The group D is equal to Aut Γ; however, the group D^{\prime} does not occur in the automorphism group of any graph in $\mathscr{S}(\Gamma)$ and so D^{\prime} is hidden in $\mathscr{S}(\Gamma)$. The element $s_{3} s_{5} \mu$ fixes Γ, and no other $s \mu$ in W has this property. In contrast, there is no graph in $\mathscr{S}(\Gamma)$ fixed by $s_{1} \mu$. In fact there is no graph in the class \mathscr{G} of all graphs on 6 vertices that is fixed by $s_{1} \mu$.

The underlying theory of Example 3.4 will be explained in Section 5. The following well-known result provides a partial answer to our problem.

Theorem 3.5. A necessary and sufficient condition for a permutation group G to be exposable in a switching class $\mathscr{S}(\Gamma)$ is that it has an orbit on $\mathscr{S}(\Gamma)$ of odd length.

Proof. Suppose that $\left\{\Gamma_{1}, \ldots, \Gamma_{r}\right\}$ is an orbit of G on $\mathscr{S}(\Gamma)$ where r is odd. Let $s^{(i)}$ denote a switch such that

$$
s^{(i)} \Gamma_{1}=\Gamma_{i}, \quad i=1, \ldots, r .
$$

A permutation π in \mathscr{G} permutes the graphs $\Gamma_{1}, \ldots, \Gamma_{r}$. Since $\pi \in \operatorname{Stab} \mathscr{S}(\Gamma)$ there exists a switch s such that $\pi \Gamma_{1}=s \Gamma_{1}$. Then

$$
\pi s^{(i)} \Gamma_{1}={ }_{\pi} s^{(i)} s \Gamma_{1}=s^{(j)} \Gamma_{1} \quad \text { for some } j \in\{1, \ldots, r\} .
$$

Put $s^{\prime}=s^{(1)} \ldots s^{(r)}$. Since r is odd,

$$
{ }_{\pi}^{s^{\prime}} s^{\prime} \Gamma_{1}=(s)^{r} \Gamma_{1}=s \Gamma_{1}=\pi \Gamma_{1}
$$

and hence $\pi\left(s^{\prime} \Gamma_{1}\right)=s^{\prime} \Gamma_{1}$. The choice of s^{\prime} is independent of the choice of π in G, and so G fixes $s^{\prime} \Gamma_{1}$, and G is exposable in $\mathscr{S}(\Gamma)$. The converse is immediate.

Corollary 3.6. A group G is always exposable if it has an odd orbit on Ω. In particular, a permutation group on Ω, where $|\Omega|$ is odd, is always exposable.

Proof. Corresponding to an odd orbit $\{1, \ldots, r\}$ of G on Ω there is an orbit of G on $S(\Gamma)$ containing the graphs $s^{(i)} \Gamma, i=1, \ldots, r$, where $s^{(i)} \Gamma$ denotes the (unique) graph in $\mathscr{S}(\Gamma)$ that has vertex i isolated. The number of graphs in this orbit is a divisor of r.

Corollary 3.7. Let G be a permutation group containing a subgroup H that is always exposable. If the index r of H in G is odd, then G is always exposable.

Proof. Suppose that G stabilizes $\mathscr{S}(\Gamma)$. Then there is a graph Γ^{\prime} in $\mathscr{S}(\Gamma)$ which is fixed by H. Then Γ^{\prime} lies in an orbit of G on $\mathscr{S}(\Gamma)$ whose length divides r.

Towards further progress it is important to establish a criterion for the existence of a graph fixed by an element $s \pi$ of W, or more generally by a subgroup Q in W.

Notation. We introduce a convenient notation for the switch-permutations $w=s \pi$ of W : the permutation π is written as a product of disjoint cycles, and a bar
is placed over each symbol that occurs in the set Φ switched by s. To illustrate, in Example 3.4

$$
s_{3} s_{5} \mu=(14 \overline{3})(25 \overline{6})
$$

Since $s_{3} s_{5} \mu=s_{1} s_{2} s_{6} s_{6} \mu$, we observe that

$$
(14 \overline{3})(2 \overline{5} 6)=(\overline{1} \overline{4} 3)(\overline{2} 5 \overline{6})
$$

Theorem 3.8. A subgroup Q of W does not fix any graph Γ in G if and only if some element in Q involves either a switch-transposition (ij) or switch-1-cycles (i)(j) ...

Proof. In view of the action of permutations and switches on graphs, a necessary and sufficient condition for a switch-permutation $s \pi$ to fix a graph Γ is as follows: for all $p, q \in \Omega,\{p, q\}$ and $\{\pi(p), \pi(q)\}$ are both edges or both non-edges of Γ if and only if the set Φ switched by s contains both or neither of $\pi(p)$ and $\pi(q)$.

The construction of a graph fixed by Q will break down if and only if the stage is reached that an unordered pair $\{i, j\}$ represents both an edge and a non-edge. This will arise if and only if Q contains a switch-permutation $s \pi$ such that Φ contains exactly one of i and j and either (1) $\pi(i)=j, \pi(j)=i$, or (2) $\pi(i)=i$ and $\pi(j)=j$.

Corollary 3.9. Suppose a group Q of switch-permutations fixes a graph.
(i) If $s \pi$ and $s^{\prime} \pi$ belong to Q then $s^{\prime}=s$. The set of permutations $\{\pi \in \Sigma \mid s \pi \in Q$ for some switch s (depending on π)\} forms a group, which we call the permutation group associated with Q. Its order is $|Q|$.
(ii) Q fixes exactly 2^{λ} different graphs, where λ is the number of orbits of unordered pairs $\{i, j\}, i \neq j$, in $\Omega \times \Omega$ under the action of the permutation group associated with Q.

Proof. (i) $s \pi \in Q$ and $s^{\prime} \pi \in Q \Rightarrow s \pi \pi^{-1} s^{\prime}=s s^{\prime} \in Q$. By Theorem 3.8, $s s^{\prime}=e$.
(ii) A graph is specified by assigning in each orbit one pair to be an edge or a nonedge.

4. Cyclic subgroups of stabilizers

Theorem 4.1. A cyclic group is always exposable.
To prove this result we require the following lemmas.
Lemma 4.2. Consider the r-cycle $\sigma=\left(\begin{array}{l}1 \\ 2\end{array} . r\right)$ and the switch s with respect to $\Phi \subseteq\{1,2, \ldots, r\}$. Then

$$
(s \sigma)^{r}= \begin{cases}(1)(2) \ldots(r), & \text { if }|\Phi| \text { is even } \\ (\overline{1})(\overline{2}) \ldots(\bar{r}), & \text { if }|\Phi| \text { is odd }\end{cases}
$$

Moreover, if $r=2 k$, then $(s \sigma)^{k}$ involves a switch-transposition (ij) if and only if $|\Phi|$ is odd.

Proof. Apply the formula

$$
(s \sigma)^{m}=s\left({ }_{\sigma} s\right)\left({ }_{\sigma^{2}} S\right) \ldots\left({ }_{\sigma^{m-1}} S\right) \sigma^{m}
$$

Definition 4.3. Let π be a permutation in Σ, and let $\Phi \subseteq \Omega$. We say that Φ is compatible with π if each cycle of π involves an even number of symbols of Φ, where π is expressed as the product of disjoint cycles (including 1-cycles).

Lemma 4.4. Let s be a switch with respect to $\Phi \subseteq \Omega$, and let $\pi \in \Sigma$. Then the switch permutation $s \pi$ fixes some graph if and only if either Φ or $\Omega \backslash \Phi$ is compatible with π.

Proof. This follows by applying Lemma 4.2 to Theorem 3.5.
Lemma 4.5. Let s be a switch with respect to $\Phi \subseteq \Omega$, and let $\pi \in \Sigma$. Then there exists a switch s^{\prime} such that $s \pi=s^{\prime} \pi s^{\prime}$ if and only if either Φ or $\Omega \backslash \Phi$ is compatible with π.

Proof. If $s \pi=s^{\prime} \pi s^{\prime}$ then $s=s^{\prime}{ }_{\pi} s^{\prime}$ and clearly Φ or $\Omega \backslash \Phi$ is compatible with π.
Conversely, suppose that Φ or $\Omega \backslash \Phi$ is compatible with π. We suppose without loss of generality that Φ involves an even number of symbols from each cycle of π. Consider a particular cycle of π, which we write $\sigma=(12 \ldots r)$. If $\Phi \cap \operatorname{supp} \sigma$ is not empty then it is expressible in the form

$$
\Phi \cap \operatorname{supp} \sigma=\left\{i_{1}, \ldots, i_{2 k}\right\}
$$

where $1 \leqslant i_{1}<\ldots<i_{2 k} \leqslant r$. Define the set

$$
\Phi^{*}=\left\{i \mid i_{2 q-1} \leqslant i<i_{2 q}, q=1, \ldots, k\right\}
$$

Then

$$
\left(\Phi^{*}\right)_{\pi}=\left\{i \mid i_{2 q-1}<i \leqslant i_{2 q}, q=1, \ldots, k\right\}
$$

and, forming the symmetric difference, we obtain

$$
\left(\Phi^{*}\right) \Delta\left(\Phi^{*}\right)_{\pi}=\left\{i_{1}, \ldots, i_{2 k}\right\}=\Phi \cap \operatorname{supp} \sigma
$$

We define s^{\prime} to be the switch with respect to the set Φ^{\prime} which is the union of the sets Φ^{*} constructed in the above manner and corresponding to all the cycles of π having common symbols with Φ. Then $s^{\prime}{ }_{\pi} s^{\prime}=s$, and $s \pi=s^{\prime} \pi s^{\prime}$. This completes the proof.

Proof of Theorem 4.1. Suppose a cyclic group G stabilizes $\mathscr{S}(\Gamma)$. If $G=\langle\pi\rangle$, then there is a switch s with respect to a set $\Phi \subseteq \Omega$ such that $s \pi$ fixes Γ. By Lemma 4.4, either Φ or $\Omega \backslash \Phi$ is compatible with π. By Lemma 4.5 there exists a switch s^{\prime} such that $s^{\prime} \pi s^{\prime}$ is equal to $s \pi$. But then $s^{\prime} \pi s^{\prime} \Gamma=\Gamma$, and hence $\pi\left(s^{\prime} \Gamma\right)=s^{\prime} \Gamma$. Thus π fixes the graph $\Gamma^{\prime}=s^{\prime} \Gamma$, and G is exposable in $\mathscr{P}(\Gamma)$.

As an immediate application of Theorem 4.1 and Corollary 3.7 we have the following result.

Theorem 4.6. A group with cyclic Sylow 2-subgroup is always exposable. In particular, all groups of order $4 k+2$ are always exposable.

5. Dihedral subgroups of stabilizers

Our aim in this section is to classify the dihedral subgroups in Σ which are always exposable. We see from Example 3.4 that not all dihedral groups are always exposable.

Now let D be an arbitrary dihedral subgroup of Σ. Then D is generated by two involutions, α and β. The following lemma applies to dihedral groups as a special case.

Lemma 5.1. Suppose a subgroup G of Σ is generated by two permutations π and μ. If G stabilizes a switching class $\mathscr{S}(\Gamma)$ then G is associated with a group Q fixing a graph in $\mathscr{S}(\Gamma)$, such that Q is generated by switch-permutations $s \pi$ and $s \mu$ for some switch s.

Proof. By Theorem 4.1, there is a graph Γ^{\prime} in $\mathscr{S}(\Gamma)$ which is fixed by $\mu^{-1} \pi$. So there is a switch s such that

$$
\pi \Gamma^{\prime}=\mu \Gamma^{\prime}=s \Gamma^{\prime}
$$

and the switch-permutations $s \pi$ and $s \mu$ fix Γ^{\prime}.
According to Lemma 5.1, in order to study the action of the dihedral group D on a switching class which it stabilizes, we can equivalently study subgroups Q of W that fix a graph, where Q is generated by switch permutations $s \alpha$ and $s \beta$. We next establish a criterion depending on s, α and β for the existence of a graph fixed by $Q=\langle s \alpha, s \beta\rangle$.

Lemma 5.2. Let α and β by involutions in Σ, and let s be a switch with respect to $\Phi \subseteq \Omega$. There exists a graph fixed by $Q=\langle s \alpha, s \beta\rangle$ if and only if either Φ or $\Omega \backslash \Phi$ is compatible with α, and either Φ or $\Omega \backslash \Phi$ is compatible with β.

Proof. If Q fixes a graph then the condition of Lemma 5.2 is satisfied, by Lemma 4.4. Conversely, suppose that the condition of Lemma 5.2 is satisfied. Then, since α and β are involutions,

$$
\begin{equation*}
{ }_{\alpha} s={ }_{\beta} s=s . \tag{5.3}
\end{equation*}
$$

We will show the existence of a graph fixed by Q by an application of Theorem 3.8. The elements of Q are of the form

$$
(s \alpha)^{k}(s \beta s \alpha)^{l}=(s \alpha)^{k}(\beta \alpha)^{l}
$$

where $k=0,1$ and $l=0,1,2, \ldots$, the last expression being obtained on applying
(5.3). We must show that the conditions in Theorem 3.8 for the non-existence of a graph do not arise. This is clear when $k=0$. Consider next an element $w=s \alpha(\beta x)^{l}$ of Q. If the permutation $\alpha(\beta \alpha)^{l}$ transposes two symbols then by (5.3) either Φ or $\Omega \backslash \Phi$ contains both these symbols. Finally, suppose that $\alpha(\beta \alpha)^{l}$ fixes two symbols i and j. If $l=2 m$, put

$$
(\beta \alpha)^{m}(i)=p, \quad(\beta \alpha)^{m}(j)=q .
$$

Then $\alpha(p)=\alpha(\beta \alpha)^{m}(i)=(\beta \alpha)^{m}(i)=p$ and similarly $\alpha(q)=q$. By our hypothesis, either Φ or $\Omega \backslash \Phi$ contains both of p and q and hence also both of $i=(\alpha \beta)^{m}(p)$ and $j=(\alpha \beta)^{m}(q)$. If $l=2 m+1$, a similar argument applies to the elements $\alpha(\beta \alpha)^{m}(i)$ and $\alpha(\beta \alpha)^{m}(j)$ which are fixed by β, using the hypothesis that either Φ or $\Omega \backslash \Phi$ is compatible with β.

Lemma 5.4. Let s be a switch with respect to $\Phi \subseteq \Omega$, where Φ is compatible with both the involutions α and β in Σ. Then there is a switch s^{\prime} such that

$$
\begin{equation*}
s \alpha=s^{\prime} \alpha s^{\prime} \quad \text { and } \quad s \beta=s^{\prime} \beta s^{\prime} \tag{5.5}
\end{equation*}
$$

Proof. By our hypothesis on s, the set Φ is a union of orbits $\Phi_{1}, \ldots, \Phi_{t}$ of $D=\langle\alpha, \beta\rangle$ on Ω. Choose from each orbit Φ_{r} a symbol $i_{r}, r=1, \ldots, t$. Then the switch s^{\prime} is defined with respect to the set Φ^{\prime}, where

$$
\Phi^{\prime}=\left\{(\beta \alpha)^{m}\left(i_{r}\right), r=1, \ldots, t, m=0,1,2, \ldots\right\} .
$$

We will show that s^{\prime} satisfies relations (5.5), in other words, that $s=s^{\prime}{ }_{\alpha} s^{\prime}=s^{\prime}{ }_{\beta} s^{\prime}$. This follows from the observation that Φ^{\prime} consists of precisely one symbol from each transposition in α and in β whose symbols lie in Φ. For if this is not the case then for some i_{r} in Φ^{\prime} and some integer m,

$$
(\beta \alpha)^{m}\left(i_{r}\right)=\alpha\left(i_{r}\right) \quad \text { or } \quad \beta\left(i_{r}\right) .
$$

In either case this leads to the conclusion (by a method used in the proof of Lemma 5.2) that either α or β fixes a symbol in Φ_{r}. This contradicts that Φ is compatible with both α and β, and the proof is complete.

Corollary 5.6. Suppose that the graph Γ is fixed by $Q=\langle s \alpha, s \beta\rangle$, where α and β are involutions. If the set Φ switched by sis compatible with both α and β then there is a graph Γ^{\prime} in $\mathscr{S}(\Gamma)$ which is fixed by the dihedral group $D=\langle\alpha, \beta\rangle$.

Proof. Apply Lemma 5.4, putting $\Gamma^{\prime}=s^{\prime} \Gamma$.
We must now consider the case of a switch s with respect to Φ, where Φ is compatible with α, and $\Omega \backslash \Phi$ is compatible with β (so that by Lemma 5.2 there exists a graph fixed by $s \alpha$ and $s \beta$), but neither Φ nor $\Omega \backslash \Phi$ is compatible with both
α and β. The following examples motivate our next lemma. The second of these examples provides a further illustration of a dihedral group stabilizing a class but fixing no graph in it.

Examples 5.7

(i) Consider the switch involutions

$$
\begin{aligned}
& s \alpha=(1)(2)(\overline{3} \overline{4})(\overline{5} \overline{6})(\overline{7} \overline{8}), \\
& s \beta=(\overline{1} \overline{2})(35)(46)(7)(8) .
\end{aligned}
$$

Here $\Phi=\{3,4,5,6,7,8\}$, and this is compatible with α and not with β, whereas $\boldsymbol{\Omega} \backslash \boldsymbol{\Phi}=\{1,2\}$ is compatible with β and not with α. There exists a switch s^{\prime} such that $s \alpha=s^{\prime} \alpha s^{\prime}$ and $s \beta=s^{\prime} \beta s^{\prime}$. (Choose for example $\Phi^{\prime}=\{1,3,5,7\}$ or $\{2,4,6,7\}$.) By Lemma 5.2 there exists a graph Γ fixed by $s \alpha$ and by $s \beta$. Let s^{\prime} be the switch with respect to Φ^{\prime}. The graph $s^{\prime} \Gamma$ is fixed by $D=\langle\alpha, \beta\rangle$.
(ii) Put

$$
\begin{aligned}
& s \alpha=(\overline{1} \overline{2})(\overline{3} \overline{4})(\overline{5} \overline{6})(\overline{7} \overline{8})(\overline{9} \overline{10})(11)(12), \\
& s \beta=(1)(3)(24)(510)(67)(89)(\overline{11} \overline{12}) .
\end{aligned}
$$

Here Φ is compatible with α and not β, and $\Omega \backslash \Phi$ is compatible with β and not α. There is no switch s^{\prime} such that $s \alpha=s^{\prime} \alpha s^{\prime}$ and $s \beta=s^{\prime} \beta s^{\prime}$. Again by Lemma 5.2, there exists a graph Γ fixed by $s \alpha$ and by $s \beta$, but in this case there is no graph in $\mathscr{P}(\Gamma)$ fixed by $D=\langle\alpha, \beta\rangle$.

The essential difference between Examples 5.7(i) and (ii) lies in the length of the orbits of D on Ω, none of whose symbols is fixed by α or by β. In Example (i) the only such orbit is $\{3,4,5,6\}$, and in Example (ii) the only such orbit is $\{5,6,7,8,9,10\}$. As the next lemma shows, the length of these orbits is crucial to our analysis.

Lemma 5.8. Let D be the dihedral group generated by involutions α and β, and let s be a switch with respect to Φ. Suppose that Φ is compatible with α and not with β, and that $\Omega \backslash \Phi$ is compatible with β and not with α. Then there is a switch s^{\prime} such that $s \alpha=s^{\prime} \alpha s^{\prime}$ and $s \beta=s^{\prime} \beta s^{\prime}$ if and only if every orbit of D on Ω, none of whose symbols is fixed by α or by β, has length divisible by four.

Proof. We partition the orbits of D on Ω into three classes:
(i) orbits containing a symbol fixed by α;
(ii) orbits containing a symbol fixed by β;
(iii) orbits none of whose symbols is fixed by α or by β.

The classes are disjoint, for suppose an orbit Θ is common to class (i) and class (ii). Then it contains a symbol fixed by α and a symbol fixed by β, and it follows from our hypothesis on Φ that this cannot happen.

First we note that Φ is a union of orbits of D. For if $i \in \Phi$ then $\alpha(i) \in \Phi$, since Φ is compatible with α, and $\beta(i) \in \Phi$ since $\Omega \backslash \Phi$ is compatible with β. It follows from this that if Θ is an orbit in class (i) then $\Theta \subseteq \Omega \backslash \Phi$ and that if Θ is an orbit in class (ii) then $\Theta \subseteq \Phi$.

Suppose now that every orbit of D in class (iii) has length divisible by four. We will construct a switch s^{\prime} with respect to a set $\Phi^{\prime} \subseteq \Omega$ such that $s \alpha=s^{\prime} \alpha s^{\prime}$ and $s \beta=s^{\prime} \beta s^{\prime}$, or equivalently $s=s^{\prime}{ }_{\alpha} s^{\prime}=s^{\prime}{ }_{\beta} s^{\prime}$. The set Φ^{\prime} will be a union of subsets Φ^{*} constructed as follows.

First consider an orbit Θ in class (i). Then the symbols of Θ are involved in, say, k transpositions of β where $|\Theta|=2 k$, and α fixes at least two symbols of Θ. We claim that $\alpha \beta$ acts on Θ as a $2 k$-cycle. To prove this, consider a symbol i in Θ fixed by α. Every element of D is expressible in the form $(\alpha \beta)^{r}$ or $(\alpha \beta)^{r} \alpha$ for some integer r. If $\alpha \beta$ were not a $2 k$-cycle then, since $(\alpha \beta)^{r} \alpha(i)=(\alpha \beta)^{r}(i)$, the group D would not act transitively on Θ. Let the subset Φ^{*} of Θ consist of the k alternate symbols from the cycle $\alpha \beta$, so chosen as to include the symbol i. We calculate

$$
\alpha(\alpha \beta)^{r}(i)=\alpha(\alpha \beta)^{r} \alpha(i)=(\beta \alpha)^{r}(i)=(\alpha \beta)^{2 k-r}(i)
$$

and

$$
\beta(\alpha \beta)^{r}(i)=\beta(\alpha \beta)^{r} \alpha(i)=(\beta \alpha)^{r+1}(i)=(\alpha \beta)^{2 k-r-1}(i) .
$$

From this we see that α fixes Φ^{*} setwise, and β maps Φ^{*} onto $\Theta \backslash \Phi^{*}$. Hence $\Phi^{*} \Delta \Phi_{\alpha}^{*}$ is empty and $\Phi^{*} \Delta \Phi_{\beta}^{*}=\Theta$. By reversing the roles of α and β or an orbit Θ in class (ii) we obtain similarly a set Φ^{*} such that $\Phi^{*} \Delta \Phi_{\alpha}^{*}=\Theta$ and $\Phi^{*} \Delta \Phi_{\beta}^{*}$ is empty.

Finally consider an orbit Θ in class (iii). Then either $\Theta \subseteq \Phi$ or $\Theta \subseteq \Omega \backslash \Phi$. In either case $|\Theta|$ is even, $|\Theta|=2 k$, say. Choose an arbitrary symbol i in Θ. We will show that the sets

$$
\left\{(\alpha \beta)^{r}(i), r=1, \ldots, k\right\} \quad \text { and } \quad\left\{(\alpha \beta)^{r} \alpha(i), r=1, \ldots, k\right\}
$$

are disjoint. For if not, then there are integers b and c such that

$$
(\alpha \beta)^{b}(i)=(\alpha \beta)^{c} \alpha(i), \quad \text { giving } \alpha(\beta \alpha)^{c-b}(i)=i
$$

This implies, as in the proof of Lemma 5.2 , that α or β fixes a symbol in Θ, depending on the parity of $c-b$.

Since $|\Theta|=2 k$, it now follows that $\alpha \beta$ acts on Θ as the product of two k-cycles. In the case that $\Theta \subseteq \Phi$ we choose Φ^{*} as the subset of Θ consisting of (a) alternate symbols including i in the cycle of $\alpha \beta$ that contains i, and (b) alternate symbols in the other cycle of $\alpha \beta$ not including the symbol $\alpha(i)$. (It is at this stage that we require k to be even and hence $|\Theta|$ to be a multiple of four.) It can be shown by a method similar to that used for class (i) orbits that $\Phi^{*} \Delta \Phi_{\alpha}^{*}=\Theta$ and that $\Phi^{*} \Delta \Phi_{\beta}^{*}$ is empty. In the case that $\Theta \subseteq \Omega \backslash \Phi$ we choose Φ^{*} as above but with the roles of α and β reversed. Then $\Phi^{*} \Delta \Phi_{\alpha}^{*}$ is empty and $\Phi^{*} \Delta \Phi_{\beta}^{*}=\Theta$.

We now define s^{\prime} to be the switch with respect to the set Φ^{\prime}, where Φ^{\prime} is the union of the sets Φ^{*} constructed in the above manner, one for each orbit. Then $\Phi^{\prime} \Delta \Phi_{\alpha}^{\prime}=\Phi$ and $\Phi^{\prime} \Delta \Phi_{\beta}^{\prime}=\Omega \backslash \Phi$, and so $s=s^{\prime}{ }_{\alpha} s^{\prime}=s^{\prime}{ }_{\beta} s^{\prime}$.

Conversely, suppose that there is a switch s^{\prime} with respect to a set Φ^{\prime} such that $s \alpha=s^{\prime} \alpha s^{\prime}$ and $s \beta=s^{\prime} \beta s^{\prime}$, or equivalently $s=s^{\prime}{ }_{\alpha} s^{\prime}=s^{\prime}{ }_{\beta} s^{\prime}$. Since $\Omega \backslash \Phi$ is not compatible with $\alpha, \Phi=\Phi^{\prime} \Delta \Phi_{\alpha}^{\prime}$, and since Φ is not compatible with β, $\boldsymbol{\Omega} \backslash \boldsymbol{\Phi}=\boldsymbol{\Phi}^{\prime} \Delta \boldsymbol{\Phi}_{\boldsymbol{\beta}}^{\prime}$.

Let Θ be an orbit of class (iii), and assume by way of contradiction that $|\Theta|=2+4 k$ for some integer k. Then α and β each contain the symbols of Θ in $1+2 k$ transpositions. Now either $\Theta \subseteq \Phi$ or $\Theta \subseteq \Omega \backslash \Phi$. In the first case Φ^{\prime} must contain exactly one symbol from each of these transpositions that occur in α, which is $1+2 k$ symbols in all from Θ. But also, $(\Omega \backslash \Phi) \cap \Theta$ is empty and $\Omega \backslash \Phi=\Phi^{\prime} \Delta \Phi_{\beta}^{\prime}$, and this means that Φ^{\prime} contains either both or neither of the symbols in each transposition in β that involves Θ. So Φ^{\prime} contains an even number of symbols from Θ, which is a contradiction. The case $\Theta \subseteq \Omega \backslash \Phi$ is treated similarly. Hence $|\Theta|=4 k$ for some integer k, and the proof is complete.

Corollary 5.9. Let s be a switch with respect to $\Phi \subseteq \Omega$ and let α and β be involutions in Σ. Suppose that the graph Γ is fixed by $\langle s \alpha, s \beta\rangle$. If Φ is compatible with α but not with β and $\Omega \backslash \Phi$ is compatible with β but not with α then the dihedral group $D=\langle\alpha, \beta\rangle$ is exposable in $\mathscr{S}(\Gamma)$ if and only if every orbit of D on Ω containing no symbol fixed by α or by β has length divisible by four.

It is clear that a dihedral group $D=\langle\alpha, \beta\rangle$ can stabilize many switching classes. Provided that a switch s is chosen to satisfy the conditions of Lemma 5.2, a switching class $\mathscr{S}(\Gamma)$ stabilized by D can be constructed by applying Theorem 3.8 to the group Q generated by the switch-permutations $s \alpha$ and $s \beta$. Our next result gives a necessary and sufficient condition on a dihedral group D in a permutation representation to be always exposable.

Theorem 5.10. A dihedral group D, represented as a permutation group on Ω, and generated by involutions α and β, is always exposable if and only if at least one of the following three conditions is satisfied.
(1) At least one of α and β fixes no symbol in Ω.
(2) Some orbit of D contains a symbol fixed by α and a symbol fixed by β.
(3) (i) α and β both fix symbols. (ii) The orbits containing symbols fixed by α contain no symbols fixed by β. (iii) Every orbit of D, none of whose symbols is fixed by α or by β has length divisible by four.

Proof. Suppose D satisfies at least one of conditions (1), (2) and (3), and stabilizes a switching class $\mathscr{S}(\Gamma)$. Then by Lemma 5.1 there is a switch s with respect
to a set Φ such that $Q=\langle s \alpha, s \beta\rangle$ fixes a graph in $\mathscr{S}(\Gamma)$. By Lemma 5.2 we may suppose that either Φ is compatible with both α and β or Φ is compatible with α and not with β and $\Omega \backslash \Phi$ is compatible with β and not with α. If D satisfies conditions (1) or (2) then the first case arises and, by Corollary $5.6, D$ fixes a graph in $\mathscr{S}(\Gamma)$. If D satisfies condition (3) either case may arise, the first being dealt with by Corollary 5.6 and the second by Corollary 5.9. Hence D is always exposable.

Conversely, if D does not satisfy any of conditions (1), (2) and (3), then (i) α and β both fix symbols; (ii) the orbits containing symbols fixed by α contain no symbols fixed by β; (iii) there is an orbit of D none of whose symbols is fixed by α or by β and whose length is of the form $2+4 k$. Let Φ be the union of the orbits containing symbols fixed by β. Then Φ is compatible with α and not β and $\Omega \backslash \Phi$ is compatible with β and not α. Let s be the switch with respect to Φ. By Lemma 5.2, $Q=\langle s \alpha, s \beta\rangle$ fixes some graph, Γ say. By Corollary $5.9, D$ is not exposable in $\mathscr{S}(\Gamma)$. This completes the proof.

Corollary 5.11. A dihedral group D is always exposable if D on Ω has fewer than three orbits. In particular, all transitive dihedral groups are always exposable.

Proof. If D is transitive on Ω then condition (1) or (2) of Theorem 5.10 must hold. If D on Ω has two orbits and if conditions (1) and (2) do not hold then α fixes symbols in the first but not the second orbit and β fixes symbols in the second but not the first orbit. Then condition (3) holds, for (3)(iii) is vacuously satisfied.

References

C. L. Mallows and N. J. A. Sloane (1975), 'Two-graphs, switching classes and Euler graphs are equal in number', SIAM J. Appl. Math. 28, 87-880.
J. J. Seidel (1976), 'A survey of two-graphs', Proc. Intern. Coll. Teorie Combinatorie, Accad. Naz. Lincei, Roma, pp. 480-511.

Department of Mathematics
University of Keele
Keele, Staffs. ST5 5BG
England

