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Introduction. The theory developed for the study of flows in networks 
( 2 ; 3 ; 4 ; 5 ; 6 ; 7 ) sometimes provides a useful tool for dealing with certain 
kinds of combinatorial problems, as has been previously indicated in (3 ; 4; 6; 7). 
In particular, Hall-type theorems for the existence of systems of distinct 
representatives which contain a prescribed set of marginal elements (10; 11), 
or, more generally, whose intersection with each member of a given partition 
of the fundamental set has a cardinality between prescribed lower and upper 
bounds (9), can be obtained in this way (7). In this note we apply network 
flow theory to generate necessary and sufficient conditions for (a) the existence 
of a system of restricted representatives, by which we mean a system of 
representatives such that each element at of the fundamental set occurs at 
least oti times in the system, and at most /3t times, and (b) the existence of a 
common system of restricted representatives for two different collections of 
subsets of the fundamental set. While problem (b) clearly includes (a), we 
have chosen to treat the two separately. 

Section 1 describes relevant portions of flow theory. In §2 we show how 
Hall's condition for the existence of a system of distinct representatives and a 
similar condition for problem (a) may be deduced from maximal network flow 
problems. Section 3 deals with problem (b) and resolves (a) as a special case. 

We emphasize that the present approach may be used not only to yield 
existence conditions for certain kinds of systems of representatives, but may 
also be used to provide explicit algorithms for constructing such as well. 
On the other side of the ledger, it can be shown, although we do not demon
strate it in this paper, that each of the problems we have mentioned can be 
reduced, by suitably manipulating the network which represents the problem, 
to an application of Hall's theorem. 

1. Network Flow. A basic problem concerning network flows is the follow
ing. Suppose given a finite network (linear graph) N with node set {s, . . . , x, 
y, . . . , s'} and oriented arcs joining pairs of nodes, the arc from x to y being 
denoted by (x, y), and suppose each (x, y) has associated with it a capacity 
c(x,y), where c(x,y) is either a non-negative real number or plus infinity. 
Subject to the conditions (i) the flow in (x,y) is no greater than c(x,y), 
(ii) the total flow into node x (x 9e s, s') is equal to the flow out, find a maximal 
flow from s (the source) to s' (the sink). 
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Thus, letting f(x, y) be the flow in (x, y), the problem may be described as 
a linear programme: 

((a) £ U(s,y)-f(y,s)]-v = 0 
I V 

(b) S [f(x, y) - f(y, x)] = 0 (x * s, s') 

(1 ) ](c) E [/(*', j ) - / ( ; y , / ) ] + *> = o 
2/ 

(d) 0<f(x,y) <c(x,y) 
\ (e) maximize v. 

If (/; u) is a solution of the constraints (la) — (Id), / is a flow and v its value. 
There are algorithms available for solving such problems. The best known 

of these is probably G. Dantzig's simplex method (1) for solving the general 
linear programming problem of maximizing a linear function subject to linear 
equations and inequalities. However, problem (1) is a special kind of linear 
programme for which simple (and computationally more efficient) algorithms 
have been constructed (2; 4). These algorithms may be used to prove an 
intuitively plausible theorem which is basic in the study of network flow. 
To state this theorem, we require some definitions. A cut in N with respect to 
s, s' is a partition of the nodes into two complementary sets L, V with s G L, 
s' 6 I!. The value of a cut is 

X) c(x,y). 
xeL,yeL' 

MINIMAL CUT THEOREM (3; 4; 5). For any network, the maximal flow value 
is equal to the minimal cut value. 

We remark that it is obvious that flow values are bounded above by cut 
values. Thus the content of the theorem is the assertion that there is a flow 
and a cut for which equality of values holds. 

In addition to this theorem, we need one other result for the combinatorial 
applications to be presented in the sequel. 

INTEGRITY THEOREM (3; 4). If the capacity function is integral valued, there 
exists a maximal flow which is also integral valued. 

The integrity theorem can also be deduced in a variety of ways. For 
example, the algorithms for constructing maximal flows which were referred 
to previously can be shown to produce integral flows in case the arc capacities 
c(x, y) are integers. The theorem also follows from the fact that all the extreme 
points of the convex polyhedron defined by (la)-(Id) are integral. 

2. Hall's Theorem; Systems of Restricted Representatives. Let 
& = {5i, . . . , Sn) be a family of subsets of a given set A = {au . . . , am). 
A list R of (not necessarily distinct) elements 
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&il, . . . , &in 

is a system of representatives for Sf if 

atj G Sj, j = 1, . . . , n. 

If we further stipulate that each element at £ A occurs in R at least at times 
and at most #* times, where 0 < at < £*, we call i£ a system of restricted repre
sentatives (abbreviated SRR). In case at = 0, f$t — 1 for a\\ i, then i£ is a 
system of distinct representatives (abbreviated SDR). A well-known theorem 
of P. Hall (8) states that a necessary and sufficient condition for the existence 
of an SDR is that, for each k = 1,. . . , n, every union of k sets of ^ c o n t a i n s 
at least k elements. The necessity of the condition is of course obvious. 

As an exercise, let us construct a network maximal flow problem which 
represents the problem of finding an SDR and deduce Hall's condition from 
it. To this end, let 

s, /Si, . . . , Sn, ai, . . . , âm, s 

be the nodes of N, and define arcs and capacities as follows: 

(s, Sj) with capacity 1, j = 1, . . . , n, 
(Sj, ai) with capacity co f ifj 3 at 6 Sj, 
(ai, sf) with capacity 1, i = 1, . . . , m. 

We assert that an SDR exists for <? if and only if the maximal flow value in 
N is n. For, given an SDR, we can construct an integral flow of value n as 
follows. Let 

/(*, &,) = 1 
./Yô - \ / l if a^ occurs in the SDR, 
f(Sj, au = | Q o t h e r w i s e 

j.f_ ,x ___ ( l if at occurs in the SDR, 

nat,s) - j 0 o t h e r w i s e 
This is clearly a flow in N of value n ; it is certainly maximal since the cut value 

n 

Z) c{st Sj) 
J=l 

is also n. Conversely, if the maximal flow value is n, we may select (by the 
integrity theorem) an integral flow of value n, and let a^ represent Sj if and 
only if f(Sj, ai) = 1. Then all sets Sj are represented (since the flow has value 
n and c(s, Sj) = 1) and no a^ occurs more than once in the representation 
(since c(au s') = 1). Thus an SDR exists for Sf if and only if the maximal 
flow value (that is, minimal cut value) for the associated network is n. 

To discover Hall's condition, we simply examine all candidates for minimal 
cuts, and insist that their values exceed n. First let us introduce some notation. 
Given two disjoint subsets X, Y of the nodes of a network N, let (X, Y) de
note the set of arcs from any node of X to any node of F, and let 

c(X,Y)= Z c(x,y). 
(T,y € X,Y) 
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Also, for any set X of nodes, let J(X) be the set of nodes of N which are 
joined to some node of X by an arc. Finally, let \X\ denote the cardinality of 
set X. 

Suppose now that (L, V) is a cut in a representing network N for the SDR 
problem. Let S = {Si, . . . , Sn}, Â = {ai, . . . , dm}, and define subsets of the 
nodes of N as follows: 

X = Lr\S;X' = V r\S; Y = L H i ; Y' = V C\ I . 

Then the condition which is equivalent to the existence of a flow of value n is 

(2) c(L, Lf) = c(s, Xf) + c(X, Y') + c(Y, s') > n 

for all cuts (L, V), or equivalently, for all X C S, Y Q Â. 
Now (2) holds automatically unless (X, Y') is vacuous, and (X, Y') empty 

implies J(X) O À C Y. Thus the set of inequalities (2) is equivalent to the 
set 
(3) \X'\ + \Y\ >n 
for all X C S, all Y D J(X) H I , and hence to 

(4) |X'| + \J(X)nA\ >n 

for all X CS. Replacing \X'\ by n - \X\ in (4) yields 

(5) \X\ < \J(X) r\Â\, all X C 8. 

All that remains is to restate (5) in the language of sets: for any subset X of 
the indices {1, . . . , «}, 
(6) \X\ < \I(X)\, 

where I(X) C {1, • • . » w} is the index set of U Sj(J 6 X). 
With this as background, let us next turn to the question of the existence 

of an SRR. For this problem, let 

sj Si, . . . , Sn, ai, . . . , âmi t, s 

be the nodes of N; the arcs and capacities are 

(s, Sj) with capacity 1, j = 1, . . . , n, 
(Sj, âj) with capacity » , i, j 3 at ^ Sj, 
(âi} t) with capacity £* — au i = 1, . . . , m, 
(âu s') with capacity a<, i = 1, . . . , m, 

m 

(t, s') with capacity n — /.\ ai. 

(Notice that we are tacitly assuming n > X) «*» obviously a necessary con
dition for the existence of an SRR.) 

It is not difficult to see that an SRR exists if and only if the maximal flow 
through N has value n. Define X, Y, X', Y' as before, and suppose first that 
t Ç L. Then the relevant condition is 

(7) c(s, X') + c(X, F') + c(Y, s') + c(t, s') > n 
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for all X C S, Y C. Â. Proceeding as before, (7) leads to 
m 

(8) \X'\+ £ at + n - £ at>n 
Y i= l 

for all X C S, all YD J(X) H I , and thus to 
m 

(9) \X\< n - Z af + £ «« 

for all X C iS. 
In a similar manner, if t 6 Z/, one obtains the condition 

(10) |X| < Z /?* 

for all I C S . Thus we may state (since (9) includes the condition 
m 

n — X «< > 0): 

THEOREM 1. An SRR existe /or j ^ 7 = {5i, . . . , Sn} if and only if, for every 
subset X of the indices {1, . . . , n\ 

m 

(11) \X\ < min {n - £ at + Z ««, E /3«) 
*=1 7(X) I(X) 

where I(X) C {1, • . . , w} w /Ae iwdex 5^ 0/ U S^(j £ X). 

Observe that (11) reduces to Hall's condition in case at = 0, 0* = 1 for all 
i. Also, if at — 1, for i = 1, . . . , q, and at — 0 for i = g + 1, . . . , m, all 
£* = 1, (11) yields the Hoffman-Kuhn condition (10) for the existence of an 
SDR containing a prescribed set of marginal elements #i, . . . , afl. 

3. Existence of Common SRR. Since the only ingenuity required in 
solving problems of the kind we have discussed lies in finding a representing 
network (if one exists), we shall merely give a description of such a network 
for the common SRR problem and a statement of the conditions, leaving the 
proof to the reader. 

Let Sf = {Su . . . , Sn}, 2T •=• {Ti, . . . , Tn) be the two families of subsets 
of A = {ai, . . . , am). Define a network N consisting of nodes 

and arcs 
(s, Sj) with capacity 1, j = 1, . . . , n, 
(s, a*) with capacity au i = 1, . . . , m, 
(Sy, âO with capacity œ, i,j 3 at £ Sj} 

(ai, ai) with capacity Pi — ai} i = 1, . . . , m, 
(at, s') with capacity ai} i = 1, . . . , m, 
(aÎ, T ;) with capacity œ , i,j 3 at £ Tjt 

(Tj} s') with capacity 1, j = 1, . . . , n. 
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As a common SRR exists for $ ST if and only if there is a flow from s to s' 
of value 

m 

n + £) au 

similar procedures lead to the following theorem. 

THEOREM 2. A common SRR exists for $f = \SU . . . , Sn}, $~ = {7\, . . . , Tn) 
if and only if, for every X, F C ( l , . . . , w ( , 

m  

(12) \X\ + | F | < « - E « i + E «< + E 0* 
i= l 7(X)U7(F) 7(X)fl7(F) 

w/zere / ( X ) C {1, • • • , w} is the index set of KJ Sj (j G X) , and 
I(Y) C. {I, . . . , m] is ^ index se£ of U / ^ ( j G F). 

Notice that, for any given X, taking F empty yields 

m 

\X\< n - E a, + E «< 
*=1 7(X) 

and taking F the full set yields 

m 

| x | < - E « * + E «<+ E i8<<Ei8* 
i= l I(X)[)I(.Y) I(X)f\I(Y) I(X) 

which combine to give (11). Conversely, if Si = 7 \ for all i, and if (11) holds 
for all X, then (12) holds for all X, F. To see this,1 suppose given any two 
sets X, Y C {1, • • • , n) and apply (11) to the sets I U F, X C\ F, obtaining 
in particular 

m m 

\X U Y\< n - E «* + E «i = «I- E «i + E «i 
1=1 i (xu r ) z=i j(x)U/(r) 

\xn F | < E /3i< E /s,. 
/(xnr) /(x)n/(r) 

Adding these two inequalities gives (12). 
By taking on = 0, fit = 1 in (12), one obtains conditions for the existence 

of a common SDR. 

COROLLARY. A common SDR exists for ^ and 2T'if and only if 

(13) \X\ + \Y\<n+\I(X)ni(Y)l 

where / (X) , / ( F ) are as defined in Theorem 2. 

H^his short proof is due to O. Gross. 
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