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1. Introduction

One of the simplest three part boundary value problems is the electrostatic
problem for the circular annulus and, at present, there seems to be no method
available for obtaining the solution in a closed form. It has recently been
shown by the author (1) and Cooke (2) that this problem can be reduced to the
solution of a Fredholm integral equation of the second kind. The equation
obtained in (1, 2) is fairly simple and is suitable for obtaining a numerical
solution but, unfortunately, it cannot be solved iteratively to give a simple
form of solution valid for small values of the ratio (inner radius/outer radius).

An alternative approach to the annulus problem has been developed by
Gubenko and Mossakovskii (3). These authors treat the axi-symmetric problem
and show that it can be reduced to the solution of a pair of simultaneous
Fredholm integral equations. These equations have the advantage that they
can be solved iteratively to yield an expansion for the solution in powers of
(inner radius/outer radius). The method adopted in (3) is to split the original
problem into two separate ones and then use suitable integral representations
to reduce these problems to ones in two dimensional potential theory. These
latter problems are then reduced in an ingenious fashion to the solution of a
pair of coupled Fredholm integral equations.

Collins (4) in considering the axi-symmetric electrostatic problem for an
annular cap has used the approach of (3) to reduce this problem to the solution
of a pair of integral equations. Collins formulates the problem as the solution
of a set of triple series equations involving Legendre functions. The author in
a recent paper (5) discussing the relationship between certain dual and triple
series equations and dual and triple integral equations has shown that the
equations derived by Collins may be obtained by a direct change of variable
from those of Gubenko and Mossakovskii. Collins also considers a more
general set of triple series equations which he shows can be reduced to the
solution of four simultaneous integral equations.

It is possible by using an analysis similar to that of Collins to adapt the
technique of (3) to solve three part boundary value problems of the type which
can be reduced to triple integral equations involving Bessel Functions. There
are, however, certain boundary value problems for the annulus which cannot be
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easily formulated in this way. One example of such a problem is the electro-
static one for the annulus in a cylinder.

In solving the corresponding type of problem for a circular disc an integral
equation formulation has proved fruitful (6) and it therefore seems worthwhile
to consider an integral equation formulation of some three part boundary value
problems and this is the object of the present paper.

In Section 2 the electrostatic problem for the annulus is formulated as a
Fredholm integral equation of the first kind and the approach of Gubenko
and Mossakovskii is then adapted to reduce this integral equation to the
solution of a pair of coupled Fredholm equations of the second kind. For the
case of axial symmetry the equations obtained may be identified with those of
(3).

In Section 3 the results of Section 2, together with the approach used in (6),
are employed to reduce more general boundary value problems to the solution
of four simultaneous integral equations. The problems treated in Section 3
include those which can be reduced to triple integral equations and also others,
such as the problem of the annulus in a cylinder, which cannot be formulated
in this fashion.

2. The electrostatic problem for the circular annulus
The general non-axially symmetric electrostatic problem for a circular

annulus of inner radius b and outer radius a reduces to solving an integral
equation of the form

{"f(t)K(p, i)dt=<Kp), b<p<a, (1)

where
„ , .. C2* c o s n<pd<t> . .
K(p, i) = — — y T-——-, n an integer.

Jo (p2 + t2-2pt cos 0)*
Following Gubenko and Mossakovskii (3) we shall assume <j>(p) has the ex-
pansion

t anp"
n = — GO

and we shall write

4>I(P)= £ anP", <j>2{p) = f anp\
n = 0 n = —1

The integral equation (1) is thus equivalent to the pair of equations

, Qdt=<f>x(p), 0<p<a, (2)f
Jof

Jo

Mt)K(p, i)dt = faip), p>b (3)
Jo

where/(p) =/i(p)+/2(p), b<p<a and
/ 1 + / 2 = 0, 0<p<b, p>a (4)
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It can be shown (7, 8) that
'min(p,0 W

2ndw

.f°° w-2ndw

and it follows from equation (5) that equations (2) and (3) become
w2n

(w2-p2)*Jo (w2-«2)*
Inversion of equations (6) and (7) gives

Two new functions A1(p), ^2(P) a r e n o w defined by the equations

It now follows from equations (4) and (10) that

, —T-T = ~h1(p), p>a.
0 P * )

Inversion of equations (8) and (12) gives

and from equations (11) and (13) it now follows that

^ ¥ L 1 (w2-^ + ^ l ( w 2 - ^ J >

0<p<fc (14)
We have that

' *2" d f* wgi(w)dwdt

" Jo ( P ^ ¥ L ( « 2 - ^ J. (w2-^J ' ( }
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and

t2n+1 [ag\(W)dwdt _ ["V["

p2-'2)*J, ( w 2 - ^ JoLL
=rr

UoJ
+ r

o

(*a r/*min(p,W) t2n+ldt 1
= 0iOv) 2

 f 7 2 \dw (16)
Jo LJo (p2-/2)*(w2-/2)*J

From equations (Al), (A2), (15) and (16) it follows that equation (14) may
be re-written as

4
g l (a) (pa) + 1 n\ fn + 1 n 4p2

V « ( 2 + 2 ) 2 n + l r ( + f ) ^ 2 ' 2 ' " + f ' ( 2
2 ' 2

a2 \

a
2)V

Equation (17) may be simplified to give

nip I fti(vv) / p
h2iP) = . T-5—Vx ^ *' " ' " + *' ~2

^/7tr(rt+i) | _ j a (w4—p^) \ w
_ d_ Ca w2nff1(w) Ffn+1 a. +i n_\

dp Jo (p2 + w2)n+1 \ 2 ' 2
4p2w2w2

and hence, from equations (9), (10), (19),

It follows after slight manipulation that

r 2 " d [' wg2(W)dwdt _ d f f r 2 - 1 C Wg2(w)dWdt]

0<p<b (18)
It follows from equations (4) and (11) that

l ^
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and by an analysis similar to that of equation (16) it can be shown that

" CT2'-1wg2(w)dwdt f » , . f f - C2"-ldtfJP

From equations (A3), (A4), (21) and (22) it is seen that equation (20) can
be re-written

—, 2 , F\\, n, n + \, — dw

O(P2-W2) v P V

(23)
For n = 0 equations (18) and (23) may be identified with those obtained by

Gubenko and Mossakovskii (3) for the electrostatic problem.

3. A more general class of boundary value problem
We now consider the more general type of integral equation

f
Jb

f(t)[K(p, O + Ktip, t)}dt = < (̂p), b<p<a (24)

Integral equations of the general form of equation (24) occur in boundary
value problems which can in some sense be regarded as perturbations on the
electrostatic problem for the annulus. Examples of such problems are the
diffraction of an acoustic wave by a soft annulus and the electrostatic problem
for an annulus in a circular cylinder.

In the notation of Section 2 equation (24) is equivalent to

fi(t)K(p, i)dt= 4>x(p)- fiiOKiip, t)dt, 0<p<a, (25)
Jo Jo

f2{i)K{p, t)dt = 4>2{p)- \ f2(t)Ki(P, Odt, p>b (26)
Jo Jo

It now follows immediately from equation (5) and the analysis of (6) that
equations (25) and (26) can be reduced to

Jo
= 0i(p)-i SMMiip, t)dt, 0<p<a, (27)

Jo
p~2S2(p) = g2{p)-i S2{i)M2{p, t)dt, p>b, (28)

Jo

where Sy and S2 are defined by the extreme left hand sides of equation (8) and
(9), respectively. The functions M1 and M2 are defined by the relationships

Ki(p, i) =
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It follows from equations (4), (10), (11) that equations (27) and (28) are
equivalent to

pt-S^p) = gi(p)-i f* S^M^p, t)dt + i f°° h^M.ip, t)dt, 0<p<a, (31)
Jo Ja

p-2nS2<J>) = 92<J>) + i f* h2{t)M2{p, t)dt-i f°° S2(t)M2(p, t)dt, p>b. ...(32)
: Jo Js

The analysis of Section 2 shows that h^ and A2 will still satisfy equations (23)
and (18) provided that gy and g2 in these equations are now replaced by St

and £2 respectively. These two equations together with equations (31) and (32)
thus give a set of four Fredholm integral equations for the functions ht, h2,
S» S2.

In most boundary value problems where equation (24) occurs the function
^i(P» 0 will generally involve only terms of the form Jn(Xp)Jn(fo) and it follows
from Sonine's finite and infinite integral formulae that, for Kt of this form,

M,(u, v) = -
it

n

Appendix
Expressions for various definite integrals are required in the analysis of

Section 2 and for convenience the relevant formulae have been collected together
in this Appendix.

The required formulae are

t2n+1dt

(Al)

'min(p, w) «2n+lJi

(n + 1 n
\ 2 '2

ao * 1 — 2 ntl-2ndt
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J- 0,_^»-,
Equation (Al) follows immediately from Euler's integral for the hyper-

geometric function and (A2) is a direct consequence of Euler's integral and
Kummer's quadratic transformation formula. A derivation has been given by
the author (9). Equations (A3), (A4) follow from equations (Al), (A2) by
an obvious change of variable.

For small values of the integer n the hypergeometric functions on the right
hand sides of the equations (Al, A4) can be expressed as fairly simple forms
involving elementary functions.
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