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Rotation of a fibre in simple shear flow of a dilute
polymer solution
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The motion of a freely rotating prolate spheroid in a simple shear flow of a dilute polymeric
solution is examined in the limit of large particle aspect ratio, κ . A regular perturbation
expansion in the polymer concentration, c, a generalized reciprocal theorem, and slender
body theory to represent the velocity field of a Newtonian fluid around the spheroid are
used to obtain the O(c) correction to the particle’s orientational dynamics. The resulting
dynamical system predicts a range of orientational behaviours qualitatively dependent
upon c De (De is the imposed shear rate times the polymer relaxation time) and κ and
quantitatively on c. At a small but finite c De, the particle spirals towards a limit cycle
near the vorticity axis for all initial conditions. Upon increasing κ , the limit cycle becomes
smaller. Thus, ultimately the particle undergoes a periodic motion around and at a small
angle from the vorticity axis. At moderate c De, a particle starting near the flow–gradient
plane departs it monotonically instead of spirally, as this plane (a limit cycle at smaller
c De) obtains a saddle and an unstable node. The former is close to the flow direction. Upon
further increasing c De, the saddle node changes to a stable node. Therefore, depending
upon the initial condition, a particle may either approach a periodic orbit near the vorticity
axis or obtain a stable orientation near the flow direction. Upon further increasing c De, the
limit cycle near the vorticity axis vanishes, and the particle aligns with the flow direction
for all starting orientations.

Key words: slender-body theory, particle/fluid flow, polymers

1. Introduction

A particle-filled viscoelastic polymeric fluid undergoes simple shear flow in many
industrial applications such as fibre spinning (Nakajima, Kajiwara & McIntyre 1994;
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(a) Newtonian fluid: κ = 10

Vorticity, p3

Gradient, p2

Flow, p1

(b) Newtonian fluid: κ = 50

Vorticity, p3

Gradient, p2

Flow, p1

Figure 1. Jeffery orbits or orientation trajectories in a simple shear flow of Newtonian fluid of a prolate
spheroidal particle with aspect ratio, κ = (a) 10, and (b) 50.

Breitenbach 2002; Huang et al. 2003; Chae & Kumar 2008) and roll-to-roll manufacturing
of high aspect ratio, low resistance films for flexible and transparent electronics (Yin
et al. 2010; Mutiso et al. 2013). Simple shear flow occurs in the spinneret during fibre
spinning and in the patterning channel during roll-to-roll manufacturing. The suspending
viscoelastic fluid may include large aspect ratio particles to impart strength to the final
product in fibre spinning or provide a desired anisotropy to the low resistance film. In
the simple shear flow of an inertialess Newtonian fluid, a fibre/slender particle undergoes
an initial condition-dependent periodic motion in orientational trajectories termed Jeffery
orbits (Jeffery 1922) as shown in figure 1 for particles with aspect ratio, κ = 10 and
50. However, the interaction between the polymers in a viscoelastic fluid and the fibre
breaks this degenerate periodic behaviour. Previous experiments (Gauthier, Goldsmith &
Mason 1971; Bartram, Goldsmith & Mason 1975; Johnson, Salem & Fuller 1990; Stover
& Cohen 1990; Iso, Koch & Cohen 1996b; Gunes et al. 2008) indicate that depending
on the κ , imposed shear rate and the properties of the viscoelastic fluid such as polymer
concentration and relaxation time, a particle may exhibit various orientation dynamics. A
slender particle, i.e. one with a large κ , may either spiral or monotonically drift towards the
vorticity axis, align near the flow direction or settle somewhere within the flow–vorticity
plane. Therefore, careful design and choice of flow parameters during the simple shear
regime are essential for obtaining a final product with desired particle orientation and
material strength. Theoretical studies are useful due to the many parameters required for
characterizing a viscoelastic fluid. Polymers lead to new features in a viscoelastic fluid flow
such as shear thinning or a finite first and second normal stress difference as compared with
a Newtonian fluid flow. Leal (1975) predicts that a slender particle in a slow flow will spiral
towards the vorticity axis due to the second normal stress difference in the fluid. Whereas,
operating in a double limit of small polymer concentration and large Deborah number,
De, (the product of the imposed shear rate and the polymer relaxation time) Harlen &
Koch (1993) also predict the spiralling of the particle towards the vorticity axis, but due
to first normal stress difference in the fluid. Neither of these theories captures any other
orientation behaviour observed experimentally. In this paper, using a regular perturbation
expansion in polymer concentration, c, we develop a slender body theory that spans a range
of De. It encapsulates the O(c) effect of particle–polymer interaction and qualitatively
describes the rich orientation dynamics seen in previous experiments.

Simple shear flow is ubiquitous in industrial applications as the near wall flow can
always be considered locally simple shear. Many scenarios include laminar flow between
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Fibre rotation in a sheared polymer solution

two parallel walls; in these cases, the local flow is simple shear everywhere. In many
industrial scenarios, particle concentration in the suspension is dilute, and due to negligible
particle–particle interaction, each particle can be considered to be suspended in an
unbounded fluid. In their experiments with highly elastic fluids, Iso, Cohen & Koch
(1996a) observed an isolated fibre to obtain a stable orientation close to the direction of
the imposed flow. They found that fibres in a moderate particle concentration suspension
also obtained a highly peaked orientation distribution near the flow direction for the same
parameters. Therefore, the particle–particle interaction may sometimes be ignored even
with higher particle concentrations, making the studies of an isolated particle/fibre freely
rotating in a simple shear flow of a viscoelastic fluid invaluable.

Based on their qualitative nature, the Jeffery orbits, illustrated for particles with aspect
ratio, κ = 10 and 50 in figure 1, may be classified into log-rolling, wobbling, flipping
and tumbling. Log-rolling occurs when the particle is aligned with the axis of rotation
of the imposed flow or the vorticity axis. Here the particle rotates about its major axis.
Except in the log-rolling motion, the particle’s angular velocity changes throughout its
orbit. When initially placed in the flow–gradient plane (FGP), the particle remains in the
plane. It rotates about its minor axis while tumbling from one side of the flow axis to the
other. In the tumbling and flipping orbits, a large aspect ratio particle or fibre spends only
an O(1/κ) proportion (non-dimensionalized with shear rate) of the Jefferey time-period
of 2πκ away from the flow–vorticity plane indicated by dashed red lines in the plots of
figure 1. In the flipping orbits (which are three-dimensional extensions of the tumbling
orbit when the particle is not confined to the FGP), the particle comes within O(1/κ) of
the flow direction. In these orbits, the particle’s orientation rapidly flips from being aligned
with the positive to the negative flow axis. During its rapid flipping phase, a particle in a
flipping orbit spans a large portion of the orientation space in the gradient direction. In
wobbling orbits, which are smaller in circumference than flipping orbits, the particle does
not come very close to the flow direction. In these orbits, the particle gradually wobbles in
its orbit around the vorticity axis.

Gauthier et al. (1971) conducted experiments with κ = 16.1 nylon rods in a viscoelastic
fluid made with 0.03 wt. % polyacrylamide solution in water. They conducted experiments
at a shear rate of 0.53 s−1 and found that a particle starting close to the FGP spirals towards
the vorticity axis as it is exposed to the Couette flow. Using a similar viscoelastic fluid
and a polyethylene rod of κ = 9.0 Bartram et al. (1975) also found a similar behaviour
with shear rates up to 5 s−1. Upon further increase in shear rate, they found that a κ =
9.0 rod released near the gradient direction initially moves within the FGP towards an
orientation near the flow direction. From here, introducing a disturbance made the particle
move monotonically along the flow–vorticity plane away from the flow direction. When
the particle was sufficiently close to the vorticity direction, it started to spiral towards
it. Bartram et al. (1975) observed similar behaviour with a κ = 5.6 rod. However, unlike
the κ = 9.0 rod, no disturbance was required when the particle came close to the flow
direction after being placed near the gradient direction. The time period of particle rotation
about the vorticity axis, that is already very large at large κ in Newtonian fluid (2πκ), is
further increased in experiments with viscoelastic fluids (Gauthier et al. 1971; Bartram
et al. 1975). In the experiments where the orientation of the particle centreline was found
to be spiralling towards the vorticity axis, complete alignment with the vorticity axis was
not shown.

Iso et al. (1996b) observed rotations of different high κ isolated fibres in a Boger fluid
consisting of 1000 ppm polyisobutylene (PIB) in polybutene (PB) in a simple shear flow
with different shear rates. The polymer relaxation time and concentration, c, defined as
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the polymer-to-solvent viscosity ratio, were 3s and 0.39, respectively. With a κ = 19
fibre, they found the particle to be orientated very close to the vorticity axis when
De = 1.5. Increasing κ to 34.4, or De to 3.0 or both, they found that, after initial spiralling
away from the FGP, the particle obtained a steady orientation between 5◦ and 60◦ from
the vorticity axis in the flow–vorticity plane. With κ = 34.4 and De = 3.0, they report
two additional observations with no initial spiralling in contrast to other experiments at
identical parameters. The authors attributed different initial orientations and fluid rheology
due to slight changes in room temperature as the causes of the lack of initial spiralling.

Across their two studies Iso et al. (1996a,b) also conducted experiments in a
viscoelastic liquid obtained by adding a certain amount of high molecular weight polymer
polyacrylamide (PAA) to a Newtonian solvent. The shear rate in these experiments was
0.5 s−1, and the fluid was slightly shear-thinning. They observed various behaviours as the
amount of PAA was increased from 100 ppm to 2000 ppm (although the exact value of c is
not available, it increases with PAA amount). For 100 ppm (κ = 14) and 500 ppm (κ = 24)
solutions of PAA at a shear rate of 0.5 s−1 (Iso et al. 1996a,b), fibres either end up in a
trajectory where they oscillate in a small periodic orbit close to the vorticity axis or obtain
a stable orientation in the flow–vorticity plane at a particular angle from the vorticity
axis similar to the Boger fluid (Boger 1977) experiments at a higher shear rate of 1.0 s−1

(Iso et al. 1996b). With 1000 ppm PAA, the κ = 24 fibre obtains a stable orientation at
the flow direction or 20◦ from the flow direction in the flow–vorticity plane. Irrespective
of the initial condition, a κ = 24 fibre in 2000 ppm PAA solution stably aligns with the
flow direction. Therefore, fibres become more flow aligned with increasing elasticity or
polymer concentration.

The latest available experimental results measuring the effect of viscoelasticity on the
rotation of an anisotropic particle in simple shear flow are by Gunes et al. (2008). They
considered hematite spheroidal particles with a much smaller aspect ratio, κ , between 2
and 7.5, than the previous experimental studies. In a 20 % hydroxypropylcellulose solution
in water, they found κ = 3.8 particles to be oriented close to vorticity and flow directions
at low and large shear rates or De, respectively. At moderate shear rates, particles exhibited
a bimodal orientation distribution. In a 2 % poly-(ethyleneoxide), flow alignment was
obtained at a lower shear rate for a higher κ or c. Most of the fluids they used were
shear-thinning. They reported one experiment of a non-shear-thinning Boger fluid (Boger
1977), consisting of a 0.1 % polyisobutylene in polybutadiene solution, with κ = 3.8. Here
the particles were close to the vorticity axis at all shear rates reported.

Due to the variety of non-Newtonian parameters needed to fully characterize
a viscoelastic fluid and several physical phenomena that polymers may undergo
simultaneously, it is difficult to quantitatively compare the previous experiments and
identify the source of various behaviours of particle orientation. For example, temperature
changes during an experiment may change the rheology of the fluid, subsequently
changing the polymer’s relaxation time, or multiple relaxation times may be needed to
represent the fluid fully, or adding more polymers to a solution may not only increase
the polymer concentration, but it may also change the relaxation time of polymers as
they entangle with one another. Thus, numerical and theoretical modelling of the relevant
system is an important tool in isolating and understanding different physical mechanisms
that can complement or inspire future experiments.

Recently, d’Avino et al. (2014) reported numerical simulations of a κ = 4.0 prolate
spheroidal particle in a simple shear flow of a Giesekus fluid that models polymer
melts (Bird, Armstrong & Hassager 1987), with large polymer concentration. They used
c = 10 and found spiralling towards the vorticity axis for De � 1 and alignment close
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to the flow direction for De � 3. For intermediate De, depending on De, the particle
obtained either one or two stable orientations between the flow and vorticity axis. They
mentioned similar observations in unreported simulations with κ = 8 spheroids with
the transition from vorticity-aligned to flow-aligned particle orientation occurring at a
smaller De. Therefore, the trend of the particle’s final orientation with the shear rate
or De and κ between the experiments of Gunes et al. (2008) and the numerical study
of d’Avino et al. (2014), both conducted at small κ , is similar. However, it is unclear
from the aforementioned numerical findings if the novel orientation dynamics are due to
first or second normal stress difference, shear thinning or synergistic effects of various
non-Newtonian behaviours exhibited by the Giesekus fluid. Also, at intermediate shear
rates or De, while the orientation behaviour is bimodal, i.e. either along vorticity or flow
directions, in the experiments of Gunes et al. (2008), the final orientations in numerical
results of d’Avino et al. (2014) lie between the flow and vorticity axes in the flow–vorticity
plane. The latter is instead similar to some of the experimental observations of Iso et al.
(1996a) at larger κ .

A richer orientation behaviour is illustrated in the previous experiments of Gauthier
et al. (1971), Bartram et al. (1975) and Iso et al. (1996a,b) at larger κ as compared with
the more recent studies of Gunes et al. (2008) and d’Avino et al. (2014) at smaller κ .
Numerical studies with large κ in a viscoelastic fluid are expensive due to the large
velocity and polymer conformation gradients near the particle surface. Resolving these
large gradients and accurately modelling the shape of a slender particle requires very fine
spatial resolution and hence smaller time steps to ensure numerical stability. Therefore,
theoretical studies at large κ are invaluable, and Leal (1975), Harlen & Koch (1993) and
Abtahi & Elfring (2019) are such pre-existing examples.

Using the slender body theory of Batchelor (1970), Leal (1975) predicts that a fibre
rotating in a slow, simple shear flow of a second-order fluid, will spiral towards the
vorticity axis due to the second normal stress difference, ψ2, of the fluid. Here ψ2 is
usually smaller than the first normal stress difference, ψ1, and it is zero for Boger fluids
(Boger 1977). Hence, Leal’s theory predicts that a slender particle rotating in a Boger
fluid undergoing a simple shear flow with a small shear rate rotates in the same manner as
in a Newtonian fluid. However, the low shear rate experiments of Iso et al. (1996b) with
a Boger fluid show spiralling towards vorticity. For a large Deborah number, De � 1,
small polymer concentration, c � 1 and also using the slender body theory of Batchelor
(1970), Harlen & Koch (1993) predict the fibre in an Oldroyd-B fluid to spiral towards the
vorticity axis, but, due to ψ1 (an Oldroyd-B fluid has ψ2 = 0). Shear-thinning, another
property exhibited by polymeric fluids, does not play a role in either of these theories.
Abtahi & Elfring (2019) conducted a theoretical study on an asymptotically weakly shear
thinning liquid and found that a prolate spheroid rotates in a closed periodic orbit but
with a longer time period compared with the Jeffery orbit in a Newtonian fluid. In other
words, shear thinning makes a prolate spheroid’s trajectory equivalent to that of a larger
aspect ratio particle in a Newtonian fluid but does not qualitatively alter the topology of
the trajectories.

Spiralling towards vorticity, as indicated by the two previous theories (Leal 1975; Harlen
& Koch 1993) predicting a qualitative change in particle orientation trajectory, is only one
of the many qualitative influences of viscoelasticity observed in the previous simple shear
experiments of Gauthier et al. (1971), Bartram et al. (1975) and Iso et al. (1996a,b) at
large particle aspect ratio, κ . In this paper, assuming a small polymer concentration, we
theoretically revisit the effect of viscoelasticity on a slender fibre rotating in a simple
shear flow to explain the richer qualitative behaviour of a large κ particle’s orientation
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in a polymeric fluid observed in the experiments. We use the Oldroyd-B model to isolate
the effect of elasticity from shear thinning. Also, any predicted viscoelastic effects will
exclude the impact of the second normal stress difference and re-examine the fibre rotation
in Boger fluid undergoing simple shear flow.

In the absence of fluid inertia, fluid stress at any point in the viscoelastic fluid
surrounding a suspended particle is decomposed into three components: (a) particle
motion induced solvent stress, i.e. the stress around the particle rotating in a Newtonian
fluid, (b) elastic stress or the polymer stress and (c) polymer-induced solvent stress,
i.e. the stress created by the perturbations in fluid velocity and pressure due to the
forcing by polymer stress. Therefore, the torque acting on the particle is the sum
of particle motion-induced solvent torque (MIST), elastic torque and polymer-induced
solvent torque (PIST). We consider a freely rotating or torque-free particle where the sum
of the three torque components is zero.

The rest of the paper is organized as follows. In § 2 we discuss different torque generating
mechanisms along with the mathematical formulation relevant to any freely rotating
(torque-free) particle in a viscoelastic fluid. For any polymer concentration, c, using
a generalized reciprocal theorem, we derive the formulation where PIST on any such
particle can be expressed in terms of the polymer stress instead of the polymer-induced
solvent stress. After § 2 we are concerned with viscoelastic fluid with a small polymer
concentration, c. Therefore, in § 3 we briefly describe the regular perturbation expansion
of the relevant flow variables in c and the procedure to obtain the O(c) correction to
the rotation of a torque-free particle in a low c viscoelastic fluid. The formulation in § 2
that expresses PIST in terms of the polymer stress allows us to circumvent the numerical
discretization of the partial differential equations to calculate the O(c) polymer-induced
solvent stress. Therefore, the O(c) PIST (and also the elastic torque) can be evaluated
using the leading order or Newtonian velocity field around the particle. In § 4, we use
the matched asymptotic/slender body theory (SBT) solution for the Newtonian flow field
around a slender prolate spheroid to calculate the torques and obtain the O(c) correction
to the Jeffery rotation (Jeffery 1922) rates for large aspect ratio prolate spheroids due to
viscoelasticity. In SBT, in the inner region close to the particle, owing to a large κ , the
velocity field is obtained by assuming the flow to vary slowly along the length of the
particle compared with its variation perpendicular to the particle surface. This solution is
taken from Cox (1970). Farther from the particle surface, in the outer region, the particle
centre line is replaced by a line of Stokeslets and doublets. The velocity disturbance
created by these are taken from Batchelor (1970) and Cox (1971), respectively. In the
SBT (Cox 1970, 1971; Batchelor 1970), the inner and the outer solution approach one
another in the matching region, i.e. in the dual limit of the radial distance from the particle
centreline written in inner and outer variables approaching infinity and zero, respectively.
In § 5 we study the dynamical system defined by these equations for different c and De
and illustrate various orientation dynamics of the spheroid predicted by this system. We
also provide a qualitative comparison of the theoretical orientation trajectories with the
previous experimental observations. Finally, we conclude our findings in § 6.

2. Mathematical formulation and different torque generating mechanisms in
viscoelastic fluids

In the absence of inertia, equations governing the conservation of mass and momentum in
the viscoelastic fluid surrounding a particle are

∇ · u = 0, ∇ · σ = 0, (2.1a,b)
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where u and σ are the fluid velocity vector and stress tensor field. We consider a particle
with its centre of mass at the origin of a simple shear flow such that it freely rotates with
an angular velocity ωp, but does not translate. Therefore, the no-slip boundary condition
on the particle surface and the far-field (as |r| → ∞) imposed flow boundary condition
are

u = ωp × r, on particle surface, and, u = r · (∇u)∞, as |r| → ∞, (2.2)

where (∇u)∞ is the velocity gradient tensor of the imposed flow. The equations are
non-dimensionalized with the particle’s maximum length and the inverse of the imposed
shear rate as length and time scales. The fluid stress,

σ = τ + Π, (2.3)

is the sum of the solvent stress, τ = −pI + ∇u + (∇u)T and the polymeric stress, Π. The
solvent viscosity is the viscosity scale in our non-dimensionalization. In the solvent stress,
p is the fluid pressure. We use the Oldroyd-B model (Bird et al. 1987) where the polymers
are modelled as dumbbells consisting of two beads attached to a linearly elastic spring.
The polymeric stress is

Π = c
De
(Λ − I), (2.4)

where c is the polymer concentration, De is a non-dimensional product of the polymer
relaxation time and imposed shear rate, Λ is the polymer conformation (defined as the
average over possible polymer conformations of the outer product of the polymer end to
end vector with itself) and I is the identity tensor. Here Λ is affected by convection due
to the fluid velocity, stretching and rotation by the velocity gradients, and relaxation of the
polymer to its equilibrium orientation, Λ = I . It is governed by

∂Λ

∂t
+ u · ∇Λ = (∇u)T · Λ + Λ · ∇u + 1

De
(I − Λ). (2.5)

Due to the absence of any nonlinear term explicitly involving the velocity and pressure
variables in the mass and momentum conservation equations, we can split (2.1a,b) and its
boundary conditions into two parts. The first part is the same as the flow around a particle
rotating with an angular velocity ωp in an imposed simple shear flow of a Newtonian fluid.
It is governed by

∇ · uM = 0, ∇ · τM = 0, (2.6a,b)

where the particle motion induced solvent stress, τM = −pMI + ∇uM + (∇uM)T, is the
sum of the pressure and rate of strain tensor in the solvent due to the particle motion in an
inertialess Newtonian fluid. These equations are subject to boundary conditions

uM = ωp × r, on particle surface, and, uM = r · (∇u)∞, as |r| → ∞. (2.7)

The second part is the balance of the divergence of the sum of the polymeric stress and
τP,

∇ · uP = 0, ∇ · τP + ∇ · Π = 0, (2.8a,b)

where the solvent stress generated due to the forcing by the polymeric stress is τP =
−pPI + ∇uP + (∇uP)T. Here pP and (∇uP + (∇uP)T)/2 are the modification of pressure
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and rate of strain tensor by the polymers. Boundary conditions for (2.8a,b) are

uP = 0, on particle surface, and, uP = 0, as |r| → ∞. (2.9)

The two parts are coupled via (2.5), i.e. the polymer constitutive equation, where

u = uM + uP, (2.10)

and the torque-free condition (2.17). In this framework, the total fluid stress,

σ = τM + τP + Π, (2.11)

and the total torque acting on the particle surface, σ ,

G(σ ) =
∫

rp

dS r × (σ · n), (2.12)

G(σ ) = G(τM)+ G(τP)+ G(Π) = GMIST + GPIST + GElastic (2.13)

are decomposed into three underlying mechanisms, where

GMIST = G(τM) =
∫

rp

dS r × τM · n, (2.14)

GPIST = G(τP) =
∫

rp

dS r × τP · n (2.15)

and

GElastic = G(Π) =
∫

rp

dS r × Π · n (2.16)

are the particle motion induced solvent, the polymer-induced solvent, and the elastic or
polymeric torques, respectively. The angular velocity, ωp, of a freely rotating particle, is
determined by the torque-free condition

ωp = {ωp : G = GMIST + GPIST + GElastic = 0}. (2.17)

We consider the motion of a freely rotating particle in a viscoelastic fluid. Our main
motivation is to study the behaviour of a prolate spheroid in simple shear flow. Due
to symmetry, this particle has zero net hydrodynamic force if it moves with the local
velocity of the imposed flow. Its physically motivated decomposed components ( particle
motion induced solvent, polymer-induced solvent and elastic forces) are individually zero
by symmetry. However, the force balance can be considered similar to the torque balance
discussed above for determining the motion of a freely translating particle (of any shape) in
a general linear flow or a particle sedimenting under gravity (where the net hydrodynamic
force must balance the force due to gravity).

2.1. Using a generalized reciprocal theorem to obtain GPIST in terms of Π

In its original form, GPIST = ∫
rp

dS r × τP · n is a function of τP which in turn is driven
by Π through (2.8a,b). In this section, using the balance of the divergence of the polymeric
stress (Π) and τP from (2.8a,b) and using a generalized reciprocal theorem we derive an
expression to obtain GPIST directly from Π without the need to compute τP.
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The auxiliary or comparison problem in a generalized reciprocal theorem must be
chosen based on the surface integral one is interested in evaluating. The effect of the
torque is to rotate the particle. Hence, we consider the Stokes flow around a particle
rotating in a quiescent Newtonian fluid. We define the following auxiliary Stokes problem
for a ‘velocity’ field consisting of a rank-two pseudotensor b, a ‘pressure’ field that is a
pseudovector, q, and a ‘fluid stress’ field that is a rank-three pseudotensor B,

∂Bijk

∂ri
= 0,

∂bij

∂ri
= 0, Bijk = −δijqk + ∂bjk

∂ri
+ ∂bik

∂rj
, (2.18a–c)

with boundary condition

bij = εijkrk, on particle surface, and, bij = 0, as |r| → ∞, (2.19)

where εijk is the permutation tensor. Here b · ωauxiliary is the velocity field around a particle
rotating with an angular velocity ωauxiliary in a quiescent Newtonian fluid. Using the
definitions of τP and B in terms of the respective velocities, uP and b, incompressibility
of the velocities in (2.8a,b) and (2.18a–c), ∇ · B = 0 from (2.18a–c) and the symmetry of
Blki and τP

lk about the l and k indices we obtain

τP
lk
∂bki

∂rl
= ∂BlkiuP

k
∂rl

. (2.20)

Using the balance of the divergence of Π and τP from (2.8a,b), the volume integral of
(2.20) in a region bounded by the particle surface, rp, and a far-field spherical surface at
|r| → ∞ is ∫

Fluid
dV

∂

∂rl
[τP

lkbki − BlkiuP
k ] = −

∫
Fluid

dV bki
∂Πlk

∂rl
. (2.21)

Using the divergence theorem, the left-hand side of the above equation can be written as∫
Fluid

dV
∂

∂rl
[τP

lkbki − BlkiuP
k ] =

∫
|r|→∞

dS nl[τP
lkbki − BlkiuP

k ]

−
∫

rp

dS nl[τP
lkbki − BlkiuP

k ], (2.22)

where the surface normal nl points into the fluid (away from particle region) on the particle
surface. The fluid velocity due to a particle that exerts a force (force dipole) on the fluid
decays as 1/r (1/r2) in the far field. Hence, the velocities uP and b scale as 1/r and 1/r2,
respectively, and the stresses τP and B scale as 1/r2 and 1/r3. Therefore, the first surface
integral in (2.22) vanishes. Using the boundary conditions for uP and b from (2.9) and
(2.19) in the second surface integral in (2.22) we obtain∫

Fluid
dV

∂

∂rl
(τP

lkbki − BlkiuP
k ) =

∫
rp

dS nlτ
P
lkεkimrm = −GPIST

i . (2.23)

Therefore, from (2.21) and (2.23), for a particle of any shape,

GPIST =
∫

Fluid
dV(∇ · Π) · b. (2.24)

This completes the derivation expressing GPIST in terms of the polymer stress Π and a
quasisteady two-tensor field b that is dependent on the particle shape and is a solution of
the auxiliary Stokes problem defined by (2.18a–c) and (2.19).
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In a linear imposed flow such as a simple shear, the undisturbed polymer stress, ΠU ,
i.e. the polymer stress without the particle, is spatially constant. Hence,

GPIST =
∫

Fluid
dV(∇ · (Π − ΠU)) · b. (2.25)

Using the chain rule and divergence theorem,

GPIST
i =

∫
|r|→∞

dS(Πlk −ΠU
lk )bkinl −

∫
rp

dS(Πlk −ΠU
lk )bkinl

−
∫

Fluid
dV(Πlk −ΠU

lk )
∂bki

∂rl
. (2.26)

The disturbance of the polymer stress created by the particle, Πlk −ΠU
lk , also decays as

1/r2 in the far-field since it is forced by the disturbance to the far-field velocity gradients.
In the case of Oldroyd-B fluids or other dumbbell models such as FENE-P and Giesekus
(Bird et al. 1987), this far-field scaling of Πlk −ΠU

lk is ascertained by linearizing the
polymer constitutive equation (for example (2.4) and (2.5) for the Oldroyd-B model)
about the far-field velocity and polymer conformation to obtain a governing equation for
Πlk −ΠU

lk . Therefore, the first surface integral in the above equation vanishes, and using
the surface boundary condition of (2.19) leads to

GPIST
i = −

∫
rp

dS(Πlk −ΠU
lk )εkif rf nl −

∫
Fluid

dV(Πlk −ΠU
lk )
∂bki

∂rl
, (2.27)

and using GElastic
i = ∫

rp
dSΠlkεkif rf nl,

GPIST
i + GElastic

i =
∫

rp

dSΠU
lk εkif rf nl −

∫
Fluid

dV(Πlk −ΠU
lk )
∂bki

∂rl
. (2.28)

The first term on the right-hand side is the torque on a particle about its centre of mass due
to (constant) undisturbed polymer stress acting on its surface. It is zero by symmetry for a
constant density fore-and-aft and axisymmetric particle such as a slender prolate spheroid,
and hence for such a particle,

GPIST + GElastic = −
∫

Fluid
dV(Π − ΠU) : ∇b (2.29)

and

GElastic = −
∫

Fluid
dV ∇ · ((Π − ΠU) · b). (2.30)

Equation (2.28) (or (2.29) for a fore-and-aft and axisymmetric particle) represents the
total torque acting on the particle due to the presence of the polymers (including effects
from both the polymeric stress and the polymer-induced solvent stress), as a function of
polymer stress, Π, and its undisturbed value, ΠU . For the Oldroyd-B fluid in a simple shear
flow with 1, 2 and 3 as flow, gradient and vorticity directions, respectively, in Cartesian
coordinates, ΠU

ij = c(2Deδi1δj1 + (δi2δj1 + δi1δj2)).
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Fibre rotation in a sheared polymer solution

3. Regular perturbation expansion for small polymer concentration

The leading-order solution in a regular perturbation expansion for c � 1 corresponds to a
freely rotating particle in simple shear flow of a Newtonian fluid. At this order the stresses
and hence the respective torques arising due to the polymers, i.e. GPIST and GElastic are
zero and the particle rotates with an angular velocity that satisfies GMIST = 0 (2.17). This
is simply the Jeffery rotation. At the leading order the polymer configuration is driven
by the leading-order velocity field (2.5) and this leads to an O(c) polymer stress (2.4).
Therefore, the torques GPIST and GElastic are O(c) ((2.25), (2.14), (2.15), (2.16)). Hence,
the particle rotation must be modified at O(c) such that the sum of all three torques GMIST ,
GPIST and GElastic is zero at O(c). The regular perturbation expansion of the relevant flow
variables is

uM = uM(0) + cuM(1) + O(c2), (3.1)

pM = pM(0) + cpM(1) + O(c2), (3.2)

τM = τM(0) + cτM(1) + O(c2), (3.3)

uP = cuP(1) + O(c2), (3.4)

pP = cpP(1) + O(c2), (3.5)

τP = cτP(1) + O(c2), (3.6)

Λ = Λ(0) + cΛ(1) + O(c2), (3.7)

Π = cΠ(1) + O(c2), (3.8)

ωp = ω(0)p + cω(1)p + O(c2), (3.9)

GMIST = cGMIST (1) + O(c2), (3.10)

GPIST = cGPIST (1) + O(c2), (3.11)

GElastic = cGElastic(1) + O(c2). (3.12)

In an inertialess Newtonian fluid undergoing simple shear, a particle rotating at

an angular velocity ω
(0)
p generates the velocity field uM(0). As mentioned earlier, the

leading-order angular velocity, ω
(0)
p , is the Jeffery rotation. It allows the leading-order

torque-free condition,
∫

rp
dS r × τM(0) · n = 0 to be satisfied. The leading-order polymer

constitutive equation is

∂Λ(0)

∂t
+ uM(0) · ∇Λ(0) = (∇uM(0))T · Λ(0) + Λ(0) · ∇uM(0) + 1

De
(I − Λ(0)). (3.13)

Solving this equation, one obtains the O(c) polymer stress,

Π(1) = 1
De
(Λ(0) − I), (3.14)
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and hence the O(c) polymer-induced solvent and elastic torques,

GPIST (1) =
∫

Fluid
dV ∇ · (Π(1) − ΠU/c) · b, (3.15)

GElastic(1) =
∫

rp

dS r × Π(1) · n. (3.16)

The O(c) angular velocity, ω
(1)
p is the one that allows the O(c) torque-free condition to be

satisfied,

GMIST (1) =
∫

rp

dS r × τM(1) · n = −GPIST (1) − GElastic(1), (3.17)

where τM(1) = −pM(1)I + ∇uM(1) + (∇uM(1))T is obtained from the O(c) equations,

∇ · uM(1) = 0, ∇ · τM(1) = 0, (3.18a,b)

subject to the velocity boundary conditions

uM(1) = ω(1)p × r, on particle surface, and, uM(1) = 0, as |r| → ∞. (3.19)

Equations (3.18a,b) and (3.19) represent the rotation of the particle in a quiescent
Newtonian fluid, i.e. a Stokes flow. Due to the linearity of the Stokes flow, GMIST (1) is
a linear function of ω

(1)
p . The latter can be viewed as the additional angular velocity of

the particle that generates a large enough viscous torque, GMIST (1), to balance the sum of
polymer-induced solvent and elastic torque.

The formulation in this section is valid for any polymer constitutive model and particle
shape. By using the formulation of GPIST in (2.25) to express its O(c) value in (3.16),
we have avoided dealing with the O(c) equation for the balance of the divergence of the
polymer stress and the polymer induced solvent stress (obtained by regularly expanding
(2.8a,b) in c). Otherwise, obtaining GPIST would have required a numerical solution via
discretization of the governing partial differential equations.

4. Rotation of a fibre due to simple shear flow in viscoelastic fluid with small polymer
concentration, c

In this section, we calculate torques from the various physical mechanisms discussed in
§ 2 on a large aspect ratio prolate spheroid (considered a slender fibre) freely rotating in a
simple shear flow of a viscoelastic fluid with a small polymer concentration, c, using the
procedure indicated in § 3. These torques are then balanced to obtain the O(c) correction
to the particle’s rotation rate due to the presence of the polymers. The Jeffery orbit period
of a slender fibre with aspect ratio κ is 2πκ and the proportion of time spent outside
|p2| > O(1/κ) is only O(1/κ), where p2 = 0 defines the flow–vorticity plane. Therefore,
a slender fibre suspended in a Newtonian fluid spends most of its Jeffery orbit close
to the flow–vorticity plane, where the particle rotation rate is very small. Hence, most
of the elasticity influence arises when the particle is in this orientation, and polymer
conformation when the fibre is close to the flow–vorticity plane is quasisteady. Thus, the
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Fibre rotation in a sheared polymer solution

polymer constitutive equation (3.13) is simplified to

∂Λ(0)

∂t
≈ 0 → uM(0) · ∇Λ(0) ≈ (∇uM(0))T · Λ(0) + Λ(0) · ∇uM(0) + 1

De
(I − Λ(0)).

(4.1)

The Stokes flow solution of a Newtonian fluid around a large aspect ratio or a slender
prolate spheroid is analytically solvable via a matched asymptotic expansion in 1/κ
called SBT. In SBT, the fluid velocity close to the particle or in the inner region is
considered quasi-two-dimensional. It is solved by ignoring the end effects and treating the
slender particle as an infinite cylinder. In terms of the radial distance from the centreline
(non-dimensionalized with the major radius of the particle) ρ, the inner region is defined
by ρ � 1. Away from the particle in the outer region, defined by ρ � 1/κ (1/κ is the
minor radius), the particle is assumed to be a line of point forces (Batchelor 1970; Cox
1970) and force doublets (Cox 1971). These singularity solutions are used to represent
the velocity and pressure fields. For a large enough κ (which is required for SBT to be
valid), an intermediate or matching region exists which is defined by 1/κ � ρ � 1. In
this region, the ρ → ∞ asymptote of the flow in the inner region and ρ → 0 asymptote
of the flow in the outer region are matched. See previous SBT calculations in Cox
(1970, 1971) and Batchelor (1970) for more details. In the rest of this section, we will
use these SBT results to obtain the effect of viscoelasticity on the rotation of a slender
prolate spheroid. In contrast to a fibre with blunt ends, such as a cylinder, a slender
prolate spheroid is more convenient for analysis due to the absence of localized forces at
the ends.

4.1. Flow of Newtonian fluid around a slender fibre and particle rotation rates
Due to the relative velocity between the particle’s centreline and the imposed flow, the
flow disturbance at O(1/ log(κ)) and higher orders in 1/ log(κ) can be considered to be
generated by a line of point forces or force Stokeslets located at the particle centreline. This
flow is considered by the general SBT of Cox (1970) up to O(1/ log(κ)2). An equivalent
theory by Batchelor (1970) is valid at all orders in 1/ log(κ) for a prolate spheroid. For
quantitative accuracy, it is advantageous to use the Stokeslet distribution, defined as h(0)

below, from the SBT of Batchelor (1970) instead of Cox (1970). For a prolate spheroidal
particle fixed in the flow–vorticity plane of a simple shear flow or rotating about its
centreline in a quiescent fluid, the force Stokeslet from these two theories is zero. The
flow driven by the local velocity gradients, which acts at O(1/κ2), is dominant in these
cases. Considering the velocity gradients in the far-field relative to the particle, Cox (1971)
provides the solution for this flow. It is a combination of flows driven by O(1/κ2) force
Stokeslets ( f (0)) and doublets (G(0)).

The Newtonian or the leading-order (in c) outer flow generated by a fibre freely rotating
with an angular velocity ω

(0)
p in an imposed shear flow of Newtonian fluid with 1, 2 and 3

as the flow, gradient and vorticity directions, when in orientation p,

p = [
p1 p2 p3

]T
, (4.2)

close to the flow–vorticity plane is obtained by superposition of flows from Batchelor
(1970), and Cox (1971) with the assumption p2 � 1 and κ � 1. The outer flow in the
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presence of the fibre is

uM(0)
out (r;ω(0)p , p) = r · (∇u)∞ + uM(0)

out
′
(r;ω(0)p , p). (4.3)

The disturbance velocity field,

uM(0)
out

′
(r; ω(0)p , p) = 1

8π

∫ 1

−1
dλ

{
h(0)(λ; ω

(0)
p , p)

log(2κ)− 1.5
+ f (0)(λ; p)

κ2

}

·
{

I
|r − λp| + (r − λp)(r − λp)

|r − λp|3
}

+ 1
8π

∫ 1

−1
dλ

1
κ2 G(0)(λ; ω(0)p , p) : ∇

{
I

|r − λp| + (r − λp)(r − λp)
|r − λp|3

}
,

(4.4)

is the sum of flows due to the point forces distributions h(0) and f (0), and the force doublet
distribution G(0) discussed above. The different source distributions are

h(0)(λ;ω(0)p , p) = −4πλ[p · (∇u)∞ − ω(0)p × p] ·
(

1
2

pp + (I − pp)
log(2κ)− 1.5
log(2κ)− 0.5

)
,

f (0)(λ; p) = −4πλ
[
0 p1 0

]T
(

1 − 1
log(2κ)− 0.5

)
+ O( p2),

G(0)(λ;ω(0)p , p) = 2π(1 − λ2)

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 + p2

3
2

0

p2
3

2
0 −1

2
p1p3

0 −1
2

p1p3 0

⎤⎥⎥⎥⎥⎥⎥⎦ + (ω(0)p · p)ε · p

⎞⎟⎟⎟⎟⎟⎟⎠ + O( p2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.5)

A torque-free spheroid with aspect ratio, κ rotating in a simple shear flow has the exact
result for the temporal evolution of the orientation vector (Jeffery 1922; Kim & Karrila
2013),

ṗ(0) = ω(0)p × p = ω∞ × p + κ2 + 1
κ2 − 1

(E∞ · p) · (I − pp), (4.6)

where ω∞ and E∞ are the vorticity vector and strain rate tensor of the imposed simple
shear,

ω∞ = −1
2 [0 0 1]T , E∞ = 1

2

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦ . (4.7a,b)

For a slender spheroid close to the flow–vorticity plane,

ω(0)p · p = −p3

2
+ O( p2). (4.8)

Using p3 = 1 in the above equation, we obtain the log-rolling velocity (when the particle
is oriented with the vorticity axis)of the particle in a Newtonian fluid and find that in this
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Fibre rotation in a sheared polymer solution

orientation, a slender particle rotates at the angular velocity of the fluid, i.e. half of the
shear rate. ω

(0)
p · p from (4.8) and ω

(0)
p × p from (4.6) are used to obtain G(0) and h(0),

respectively, in (4.5).
The flow due to h(0) is taken from Batchelor (1970). It is obtained by an expansion

in 1/ log(κ) for a slender particle. But for a slender prolate spheroid, this expansion
terminates such that the flow due to h(0) captures the disturbance created by the prolate
spheroid at all orders in 1/ log(κ) when expressed as in (4.4) and (4.6). The flow generated
at the next order in κ arises at O(κ−2) and is generated by f (0) and G(0). It is taken from
Cox (1971) where only the O(κ−2) flow is available. Thus, the disturbance velocity in the
outer region given by (4.4) has an overall error of O(κ−3). If only h(0) is considered, the
error is of O(κ−2). The flow generated by h(0) is proportional to p2 and therefore, no flow is
produced by h(0) when the particle is aligned in the flow–vorticity plane. In this plane f (0)

and G(0) capture the (highest) O(κ−2) disturbance created by the particle. Accounting for
the flow generated by f (0) and G(0) allows us to consider the influence of elasticity within
the flow–vorticity plane.

As mentioned just before (4.1) we expect most of the changes in the particle’s rotation
rate due to elasticity to arise when the particle is near the flow–vorticity plane, i.e. when
|p2| ≤ O(1/κ). Therefore, in h(0) we only consider the flow at O( p2), i.e. a flow of
O( p2/ log(κ)) with an error of O( p2

2/ log(κ)). Since the primary purpose of using the
f (0) and G(0) flow is to capture the finite effect of elasticity when the particle is in the
flow–vorticity plane, we use f (0) and G(0) with p2 = 0 (as expressed in (4.5)) which leads
to a flow of O(1/κ2)with an error of O( p2/κ

2). When |p2|/ log(κ) is more than 1/κ2, h(0)

driven flow dominates. In the |p2| ≤ O(1/κ) regime considered, the errors in h(0) driven
flow, i.e. O( p2

2/ log(κ)), are always smaller than the flow generated by f (0) and G(0),
i.e. O(1/κ2). As p2 approaches zero, the h(0) driven flow and the associated errors fall
rapidly to zero making f (0) and G(0) driven flow at O(1/κ2) the dominating one. Hence,
the error terms arising from either of the h(0) or f (0) and G(0) driven flow are always lower
than the actual flow when |p2| ≤ O(1/κ). For |p2| > O(1/κ), the Newtonian rotation rate
of the fibre dominates over the changes due to elasticity, and we consider the exact Jeffery
rotation to account for it.

We have considered spheroidal particles in our theory. However, in experiments with
slender particles (Gauthier et al. 1971; Bartram et al. 1975; Iso et al. 1996a,b) it is
convenient to fabricate cylindrical particles. The forces generated by the blunt ends of
a slender cylinder lead to an additional torque of O(1/κ2) (Cox 1971) rendering the
O(1/κ2) flow generated by f (0) and G(0) inaccurate. Instead of being valid at all orders
in 1/ log(κ), the h(0) generated flow may be considered up to order 1/ log(κ)3 (Batchelor
1970). Taking the O( p2) terms with this velocity field can still allow us to consider the
flow accurately up to O( p2/ log(κ)). Thus, the upcoming theoretical development for the
orientation dynamics of a slender prolate spheroid leading up to (4.46) can still be used
for a slender cylinder while ignoring the f (0) and G(0) flow and using only the appropriate
terms up to 1/ log(κ)3 instead of the factor 1/(2 log(2κ)− 3) appearing in the following
text. Most of the features described in § 5 while analysing the theoretical prediction of the
influence of viscoelasticity on the orientation of a slender spheroid will be qualitatively
valid for a slender cylinder or a general slender particle.
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The Newtonian flow at O(c) is due to a fibre rotating with the perturbed angular velocity,
ω
(1)
p , in a quiescent fluid, i.e. (3.18a,b)–(3.19). In the outer region, the fluid velocity is

uM
out
(1)
(r; ω(1)p , p) = 1

8π

∫ 1

−1
dλ

h(1)(λ; ω
(1)
p , p)

log(2κ)− 0.5
·
{

I
|r − λp| + (r − λp)(r − λp)

|r − λp|3
}

+ 1
8π

∫ 1

−1
dλ

1
κ2 G(1)(λ; ω(1)p , p) : ∇

{
I

|r − λp| + (r − λp)(r − λp)
|r − λp|3

}
,

(4.9)

where

h(1)(λ;ω(1)p , p) = 4πλω(1)p × p, G(1)(λ;ω(1)p , p) = −2π(1 − λ2)(ω(1)p · p)ε · p.
(4.10a,b)

The torque generated by this flow is

GMIST (1)(ω(1)p , p)

=
∫ 1

−1
dλ

(
1
κ2 ε : G(1) − λp × h(1)

log(2κ)− 0.5

)
= 8π

3

(
(ω
(1)
p · p)p
κ2 − ω

(1)
p · (I − pp)

log(2κ)− 0.5

)
.

(4.11)

Taking the cross product of this equation with orientation vector p leads to the O(c)
rotation rate

ṗ(1) = ω(1)p × p = − 3
8π
(log(2κ)− 0.5)(GMIST (1)(ω(1)p , p)× p). (4.12)

Using the torque balance at O(c) from (3.17) we obtain

ṗ(1) = ṗ(1)PIST + ṗ(1)Elastic, (4.13)

where

ṗ(1)PIST = 3
8π
(log(2κ)− 0.5)(GPIST (1) × p) (4.14)

is the effect of polymer-induced solvent stresses on the particle rotation rate, and

ṗ(1)Elastic = 3
8π
(log(2κ)− 0.5)(GElastic(1) × p) (4.15)

is the effect of the elastic stress on the particle rotation rate.

4.2. Rotation due to polymer-induced solvent stress
From (2.4), (3.14), (3.16) and (4.14), the rotation rate due to the polymer-induced solvent
stress is

ṗ(1)PIST = − 3
8πDe

(log(2κ)− 0.5)p ×
∫

Fluid
dV(∇ · (Λ(0) − ΛU)) · b. (4.16)

We remind the reader that here b is the auxiliary ‘velocity’ field used in the reciprocal
theorem for deriving the polymer-induced solvent torque ((2.24) or (3.16)). Here b · ω
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Fibre rotation in a sheared polymer solution

corresponds to the fluid velocity around a fibre rotating with an angular velocity ω in a
quiescent fluid. Therefore,

b = ∇
ω
(1)
p

uM(1), (4.17)

where uM(1) is the solution to (3.18a,b) and (3.19). The volume integral in (4.16) is
approximated from the outer region of slender body theory, where the particle is replaced
with a line of point forces and doublets. We find the integral from the outer region to
converge, and the contribution from the inner region is expected to be small due to the
smaller volume of that region. Therefore,

ṗ(1)PIST ≈ − 3
8πDe

(log(2κ)− 0.5)p ×
∫

d3r ∇ · (Λ(0)
out − ΛU) · bout, (4.18)

where the volume integral is taken over the entire space, Λ(0)
out is the polymer conformation

in the outer region and from (4.9), (4.10a,b) and (4.17),

bout = 1
8π

∫ 1

−1
dλ

4πλp · ε

log(2κ)− 0.5
·
(

I
|r − λp| + (r − λp)(r − λp)

|r − λp|3
)

+ O(κ−2). (4.19)

It is straightforward to show

ṗ(1)PIST ≈ 3
2(I − pp) ·

∫ 1

−1
dλ λupolymer

out (λp), (4.20)

where

upolymer
out (λp) = 1

8π

∫
d3r

1
De

∇ · (Λ(0)
out − ΛU) ·

(
I

|r − λp| + (r − λp)(r − λp)
|r − λp|3

)
(4.21)

is the velocity field evaluated on the particle centreline that is produced by polymeric force,
(1/De)∇ · (Λ(0)

out − ΛU), acting in the outer region. This form of the rotation rate, (4.20)
and (4.21), was considered by Harlen & Koch (1993). However, they did not account for
all the relevant terms in calculating Λ

(0)
out as we show below.

As discussed in § 3 and shown by (3.13) and (4.1), the polymer conformation, Λ(0)

depends on the leading-order Newtonian velocity. In the outer region, the velocity
disturbance created by the particle is O(max[ p2/ log(κ), 1/κ2]) smaller than the velocity
of the imposed simple shear ((4.3), (4.4) and (4.5)). Thus, we linearize (4.1) in the outer
region about the imposed flow field, r · (∇u)∞, and obtain the governing equation for the
disturbance in the polymer conformation from its undisturbed value,

Λ
(0)
out

′ = Λ
(0)
out − ΛU

out, (4.22)

to be (
r · (∇u)∞ · ∇ + 1

De

)
Λ
(0)
out

′ − (∇u)T∞ · Λ
(0)
out

′ − Λ
(0)
out

′ · (∇u)∞

= (∇uM(0)
out

′
)T · ΛU + ΛU · ∇uM(0)

out
′
. (4.23)

976 A9-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.823


A. Sharma and D.L. Koch

It is more convenient to solve (4.23) in Fourier space,(
−k1

∂

∂k2
+ 1

De

)
Λ̂
(0)
out

′ − (∇u)T∞ · Λ̂
(0)
out

′ − Λ̂
(0)
out

′ · (∇u)∞

= i(ûM
out
(0)′

k · ΛU + ΛU · kûM
out
(0)′
), (4.24)

where Λ̂
(0)
out

′ = F(Λ(0)
out

′
) and ûM

out
(0)′ = F(uM

out
(0)′
) are the Fourier transforms of the

disturbance of polymer conformation and fluid velocity in the outer region. The rotation
rate in (4.20) is expressed as

ṗ(1)PIST ≈ 3
2 (I − pp) ·

∫ 1

−1
dλ

∫
d3k λ exp(2πiλk · p)ûpolymer

out , (4.25)

where from the convolution theorem,

ûpolymer
out = i

1
De

k · Λ̂
(0)
out

′
(k; p) · Ĵ (k), with Ĵ (k) = F

(
1

8π

(
I
r

− rr
r3

))
= 1

k2

(
I − kk

k2

)
.

(4.26)

We solve the polymer constitutive equation (4.24) in Fourier space using the
method of characteristics to obtain Λ̂

(0)
out

′
. The characteristics are the streamlines of

the imposed shear flow (in the Fourier space) and so only integration along the k2
direction is needed. The limits of the integral are ∞sgn(k1) and k2 and the boundary
condition is Λ̂

(0)
out

′
(∞sgn(k1)) = 0. We use computer algebra for this calculation. Here

Λ̂
(0)
out

′
, hence obtained, allows us to evaluate the integral in (4.25). The expression

used for the disturbance in the Newtonian velocity field, uM(0)
out

′
, has errors of

O(max[ p2
2/ log(κ), p2/κ

2, 1/κ3]). Due to the linearization of the constitutive equation,
the error in evaluation of rotation rate is O(εṗ), where

εṗ = max

[
p2

2
log(κ)

,
p2

κ2 ,
1
κ3

]
. (4.27)

Due to fortuitous cancelling of terms, a simple expression for the second (gradient
direction) component of the rotation rate is obtained,

ṗ(1)2,PIST = − Dep2
1p2

2 log(2κ)− 3
+ O(εṗ), (4.28)

valid at all De. Equivalently, from the outer region integral of (3.16), i.e.

GPIST (1) ≈ 1
De

∫
d3r ∇ · (Λ(0)

out − ΛU) · bout, (4.29)

we obtain the first and third components of the polymer-induced solvent torque,

GPIST
1

(1)

p3
= −GPIST

3
(1)

p1
= 4De2p2

1p2

3(log(2κ)− 0.5)(log(2κ)− 1.5)
+ O

(
εṗ

log(κ)

)
. (4.30)

Since, ṗ(1)PIST = 3/(8π)(log(2κ)− 0.5)(GPIST (1) × p) (4.14) we may obtain ṗ(1)2,PIST =
−Dep2

1p2/(2 log(2κ)− 3). However, the equations for determining the torque component
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Fibre rotation in a sheared polymer solution

in the gradient direction, GPIST
2

(1) or rotation rates in flow and vorticity direction, ṗ(1)1,PIST

and ṗ(3)1,PIST are not tractable for a general De. Therefore, to obtain these components we
consider small and large De limits separately in §§ 4.2.1 and 4.2.2.

We find the particle rotation rate due to polymer-induced solvent stress in gradient
direction, ṗ(1)2,PIST to be dependent on the first normal stress difference of the Oldroyd-B

fluid. This is because ṗ(1)PIST in (4.25) is directly proportional to Λ̂
(0)
out

′
that is in turn

dependent on ΛU via (4.24). This first normal stress difference dependence is further
confirmed by repeating the above calculation by artificially setting ΛU

ij = De2δi1δj1, such
that the only non-zero non-Newtonian property of the fluid is a finite first normal stress
difference equivalent to that of an Oldroyd-B fluid. Similarly, we find the two remaining
rotation rate components in the limit of large De calculation of § 4.2.1 to arise from the first
normal stress difference of the Oldroyd-B fluid. The rotation rate for a second-order fluid
(O(De) rotation rate in the small De calculation of § 4.2.2) is also due to the first normal
stress difference. An Oldroyd-B fluid has no second normal stress difference. In addition
to its appropriate modelling of the simple shear flow of a dilute polymeric liquid, the
Oldroyd-B model the advantages over other models such as FENE-P or Giesekus (Bird
et al. 1987) of simplicity and hence better analytical tractability. As mentioned in § 1,
the second normal stress difference for most polymeric fluids is much smaller than the
first normal stress difference. Hence, the effect of the first normal stress difference as
ascertained from the Oldroyd-B model is likely to be the most important contribution in
determining the influence of polymers on the orientational dynamics of a prolate spheroid
in simple shear flow.

4.2.1. Large De
In the large De regime, the relaxation of the disturbance in polymer conformation in the
outer region is much slower than its convection and stretching by the imposed velocity
field. Therefore, when De � 1, (4.24) simplifies to

−k1
∂

∂k2
Λ̂
(0)
out

′ − (∇u)T∞ · Λ̂
(0)
out

′ − Λ̂
(0)
out

′ · (∇u)∞ = i(ûM
out
(0)′

k · ΛU + ΛU · kûM
out
(0)′
).

(4.31)

This equation is solved in a similar way as (4.24) described earlier. Using Λ̂
(0)
out

′
obtained

from this equation we find the particle rotation rate due to polymer-induced solvent stresses
at large De to be

lim
De�1

ṗ(1)PIST = De

⎡⎢⎢⎢⎣
−p1p2

3αDe�1

− p2
1p2

2 log(2κ)− 3
p2

1p3αDe�1

⎤⎥⎥⎥⎦ , with αDe�1 = −4
κ2 + 3π

4 log(2κ)− 6
p2 tan−1 p1

|p3| . (4.32)

The large De approximation can be viewed as the leading O(De) term in an expansion
in powers of 1/De. Thus, the error due to the expansion in 1/De is O(1) in the first
and third components of limDe�1 ṗ(1)PIST . There is no error due to expansion in 1/De for
ṗ(1)2,PIST as same value is obtained via De � 1 approximation as that for a general De in

(4.28). As mentioned earlier, ṗ(1)2,PIST has an error of O(εṗ) (4.27). Here ṗ(1)1,PIST and ṗ(1)3,PIST
have an error of O(Deεṗ). To the best of our knowledge, the only previous theoretical
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study concerning the rotation of a slender particle in a viscoelastic fluid at high De was
conducted by Harlen & Koch (1993). However, they did not account for the stretching of

the conformation disturbance, Λ̂
(0)
out

′
, by the mean velocity gradients, i.e. they omitted the

(∇u)T∞ · Λ̂
(0)
out

′ + Λ̂
(0)
out

′ · (∇u)∞ term in (4.31).

4.2.2. Small De
When De � 1, a solution of (4.23) or (4.24) is obtained via a regular perturbation
expansion of Λ̂

(0)
out

′
in the powers of De

Λ̂
(0)
out

′ = Σ∞
n=0DenΛ̂

(0)
out

′(n)
. (4.33)

The first two terms in this expansion are

Λ̂
(0)
out

′(0) = 0,

Λ̂
(0)
out

′(1) = i(kûM(0) + ûM(0)k).

⎫⎬⎭ (4.34)

The polymer conformation at higher order in De is obtained from the following equations:

Λ̂
(0′)
out

(2) = (∇u)T∞ · Λ̂
(0′)
out

(1) + Λ̂
(0′)
out

(1) · (∇u)∞

+ i(ûM(0)k · ΛU(1) + ΛU(1) · kûM(0))+ k1
∂

∂k2
Λ̂
(0′)
out

(1)
,

Λ̂
(0′)
out

(3) = (∇u)T∞ · Λ̂
(0′)
out

(2) + Λ̂
(0′)
out

(2) · (∇u)∞

+ i(ûM(0)k · ΛU(2) + ΛU(2) · kûM(0))+ k1
∂

∂k2
Λ̂
(0′)
out

(2)
,

Λ̂
(0′)
out

(n) = (∇u)T∞ · Λ̂
(0′)
out

(n−1) + Λ̂
(0′)
out

(n−1) · (∇u)∞ + k1
∂

∂k2
Λ̂
(0′)
out

(n−1)
, n ≥ 4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.35)

Therefore, in the limit of low De, ṗ(1)PIST can be obtained up to arbitrary order in De,

lim
De�1

ṗ(1)PIST = − 3
8π
(log(2κ)− 0.5)p ×Σ∞

n=1Den−1
∫

Fluid
dV(∇ · (Λ(0)

out
′(n)
)) · b. (4.36)

We will discuss the contribution of the n = 1 term, i.e. O(1) term in De expansion of
ṗ(1)PIST in the above equation in § 4.4, along with the similar term in the expansion of ṗ(1)Elastic.
Higher-order contributions to ṗ(1)PIST can be evaluated in Fourier space. From (4.33)–(4.35),

using the expansion of Λ
(0)
out

′
up to O(De8) (even higher orders can be easily evaluated),

we obtain

lim
De�1

ṗ(1)PIST = − 3
8π
(log(2κ)− 0.5)p ×

∫
Fluid

dV(∇ · (Λ(0)
out

′(1)
)) · b

+ De

⎡⎢⎢⎢⎣
−p1p2

3αDe�1

− p2
1p2

2 log(2κ)− 3
p2

1p3αDe�1

⎤⎥⎥⎥⎦ , (4.37)
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Fibre rotation in a sheared polymer solution

where

αDe�1 = − 4
κ2 + p1p2

8 log(2κ)− 12

(
5De − 3

2
(2 + p2

3)De3 + 13
10
(8 + p2

3(4 + 3p2
3))De5

)
.

(4.38)

As expected, we obtain the same expression for ṗ(1)2,PIST from this perturbation expansion
in De valid at small De as was obtained directly for a general De in (4.28). The error in the
rotation rate in (4.37) is O(Deεṗ) for all the components (εṗ is given in (4.27)).

4.3. Rotation due to elastic stress

The elastic torque, GElastic(1), is due to the polymer stress on the particle surface ((3.14) and
(3.16)). This is evaluated through the polymer constitutive equations on the particle surface
written in the frame of reference moving with the particle surface. Due to the absence
of polymer convection relative to the particle on the latter’s surface, the quasisteady
constitutive equation (4.1) simplifies to a set of coupled algebraic equations,

(∇uM
in
(0)
(rp;ω(0)p , p))T · Λ(0)

p + Λ(0)
p · ∇uM

in
(0)
(rp;ω(0)p , p)+ 1

De
(I − Λ(0)

p ) = 0, (4.39)

at each point on the surface. Here rp is the position vector of a point on the surface.
∇uM

in
(0)
(rp;ω

(0)
p , p) and Λ(0)

p represent the surface velocity gradient of the inner velocity
field and the surface polymer conformation, respectively, at rp. The inner velocity field
is obtained from Cox (1970, 1971). These velocity fields include the effects of point
force Stokeslets and doublets that correspond to the outer velocity field accurate up to
O( p2/ log(κ)2) and O(1/κ2). Solving (4.39) via an asymptotic expansion in 1/κ and
ignoring higher-order terms leads to the elastic torque

G(1)
Elastic = 8πc

3κ2

⎡⎣p1p3
0

−p2
1

⎤⎦ + O(max[ p2κ
−2, κ−3]), (4.40)

and the corresponding rotation rate

ṗ(1)Elastic = − 3
8π
(log(2κ)− 0.5)p ×

∫
dS

(
r × 1

De
(Λ(0)

p − I) · n
)

= log(2κ)− 0.5
κ2 p1

⎡⎣0
1
0

⎤⎦ + O(log(κ)max[ p2κ
−2, κ−3]). (4.41)

Therefore, for all De, in limits of large κ and small p2, the O(c) elastic torque is
independent of the polymer relaxation time, De.

4.4. Net rotation due to the polymers
Combining the results of the previous two sections, we obtain the net change in the fibre’s
rotation rate due to polymers.

For De � 1, we can obtain the O(1) term in the De expansion of ṗ(1)PIST and ṗ(1)Elastic for all
particle orientations, without resorting to the outer region approximation for the former.
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The first two terms in the polymer configuration, everywhere (inner and outer region) is
similar to that mentioned earlier in (4.34), i.e.

Λ(0) = I + De(∇uM(0) + (∇uM(0))T)+ O(De2). (4.42)

From the combined effect of polymers from (3.16), (4.13), (4.14) and (4.15), along with
using the value of Λ(0) from (4.42), divergence theorem, the leading-order momentum

equation (i.e. ∇pP(0) = ∇ · [∇uP(1) + (∇uP(1))T]) and the auxiliary Stokes problem
((2.18a–c) and (2.19)), we obtain

lim
De�1

ṗ(1)Elastic + ṗ(1)PIST

=
∫

rp

dS r × [(∇uM(0) + (∇uM(0))T − pM(0)I) · n] + O(De)

=
∫

rp

dS r × τM(0) + O(De) · n = O(De). (4.43)

The O(1) term in this sum is equivalent to the rotation due to the leading-order torque (in c)
acting on the particle. This is the torque on a freely rotating particle in a Newtonian fluid
and is hence zero. Thus, for a freely rotating particle for De � 1, the O(1) rotation rates (in
the De expansion) due to the torque generated by the elastic and polymer induced solvent
stress cancel each other and lead to no change in the net particle rotation. The change
in the particle rotation due to the polymers arises at O(De). Close to the flow–vorticity
plane, the rotation rate due to the elastic torque was shown to be independent of De for
all De in (4.41), which we have just shown balances the equivalent rotation rate due
to polymer-induced solvent torque for De � 1. Thus, the O(De) and higher effect of
polymers on the particle’s rotation rate arises entirely due to the polymer-induced solvent
torque (4.37) and is given by

lim
De�1

(ṗ(1)Elastic + ṗ(1)PIST) = De

⎡⎢⎢⎢⎣
−p1p2

3αDe�1

− p2
1p2

2 log(2κ)− 3
p2

1p3αDe�1

⎤⎥⎥⎥⎦ , (4.44)

where αDe�1 is given in (4.38) and the errors are O(Deεṗ) for all the components (where
εṗ is given in (4.27)).

For De � 1, the total effect of viscoelasticity on the particle rotation also arises mainly
from the polymer-induced solvent stress. But, unlike the De � 1 regime, here the reason
is that the effect of the elastic stress is O(De) smaller. The net rotation rate due to the
polymers is

lim
De�1

(ṗ(1)Elastic + ṗ(1)PIST) = De

⎡⎢⎢⎢⎣
−p1p2

3αDe�1

− p2
1p2

2 log(2κ)− 3
p2

1p3αDe�1

⎤⎥⎥⎥⎦ , (4.45)

where αDe�1 is given by (4.32). The error in ṗ(1)1,PIST and ṗ(1)3,PIST is of O(Deεṗ) (4.27).
Neglecting the elastic torque leads to an additional error of O(log(κ)/κ2) in the second
component and O(log(κ)max[ p2κ

−2, κ−3]) in the first and third component of the net
rotation rate due to the polymers (4.41).
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4.5. Equations of motion of a freely rotating fibre in low c viscoelastic fluid at all De
Equations (4.44) and (4.45) encompass our main result for the effect of viscoelasticity on
the rotation of a particle suspended in simple shear flow at large and small De, respectively.
In the limit of large De and for a second-order fluid (O(De) rotation rate in small De
limit), the effect of viscoelasticity is due to the first normal stress difference of the fluid
as discussed in § 4.2. The governing equation for the orientation dynamics of a slender
prolate spheroid that includes the viscoelastic effects near the flow–vorticity plane is

ṗ = dp
dt

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p2

2
+ κ2 − 1
κ2 + 1

(p2

2
− p2

1p2

)
− c Dep1p2

3α

−p1

2
+ κ2 − 1
κ2 + 1

(p1

2
− p1p2

2

)
− c De

p2
1p2

2 log(2κ)− 3

−κ
2 − 1
κ2 + 1

p1p2p3 + c Dep2
1p3α

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.46)

where in the large De limit α is αDe�1 (4.32). In the small De limit we consider αDe�1
(4.38) up to O(De) and interpolating between these two limits of De, we obtain the
following uniformly valid approximation for α at all De:

α = − 4
κ2 + p2

4 log(2κ)− 6
2.5p1De

1 + 2.5p1De
/(

3π tan−1 p1

|p3|
) . (4.47)

Equation (4.46) introduces no errors in the Newtonian rotation rate of a prolate spheroidal
particle. The slender body theory provides a good approximation for the Newtonian
velocity field for κ � 10. The errors in these equations due to the viscoelastic terms are of
O(c Deεṗ) for all the components (εṗ is given in (4.27)) in the De � 1 limit. For De � 1,
the errors are of O(c Deεṗ) in the first and third component and O(c max[log(κ)/κ2, εṗ]) in
the second component. Before analysing the influence of polymers on particle orientation
as suggested by this equation we compare our theory at low De with that of Leal (1975).

4.6. Comparison of second-order fluid result with Leal (1975)
Leal (1975) considered the motion of a fibre in a second-order fluid and found

ṗLeal
2 = −p1p2( p2 + Vp1(1 − 2p2

2)) (4.48)

ṗLeal
3 = −p1p2p3(1 − 2Vp1p3), (4.49)

where V = −(3λγ /16 log(κ))M1(1 + 2ε1), λ = Φ3U/μl is the polymer relaxation time
(μ is the zero-shear-rate viscosity, l the particle half-length and U a characteristic velocity
scale) and ε1 = Φ2/Φ3,

Φ2 = − lim
γ→0

σ11 − σ22

2γ 2 and Φ3 = lim
γ→0

σ11 − σ33

γ 2 , (4.50a,b)

where σ11, σ22, σ33 and γ are the first, second and third normal stresses and the shear rate.
and M1 is a positive number depending upon the shape of the particle. In non-dimensional
terms λ = 2De, V = (−3De/8 log(κ))M1(1 + 2ε1). Here (1 + 2ε1), and hence V in
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Leal’s theory, is proportional to the second normal stress difference. Up to O(Dep2) Leal’s
results are, therefore,

ṗLeal
2 = −p1p2

2 + 3De
8 log(κ)

M1(1 + 2ε1)p2
1p2 + O(De2, p2

2De), (4.51)

ṗLeal
3 = −p1p2p3 + O(De2, p2

2De). (4.52)

By taking only up to O(De) terms from (4.46), our results up to this order for a prolate
spheroidal particle in a second-order fluid are

ṗ2 = −p1p2
2 − c De

2 log(2κ)− 3
p2

1p2 + O(c De2, cp2
2De), (4.53)

ṗ3 = −p1p2p3 + O(c De2, cp2
2De). (4.54)

Hence, our theory’s first viscoelastic effects at low De have the same functional
dependence of rotation rates on the particle orientation as that of Leal’s second-order
fluid theory. However, our theory predicts these effects to arise from the first normal stress
difference. In contrast, Leal’s theory predicts these to emerge from the second normal
stress difference. According to our theory, a prolate spheroid rotating in a simple shear
flow of a Boger fluid that has zero second normal stress difference (Magda et al. 1991),
will exhibit a different rotational motion at a finite but small c De as compared with c = 0
(Newtonian fluid). Specifically, a particle spirals towards the stable limit cycle close to the
vorticity, as discussed in the next section. However, Leal’s theory predicts Jeffery rotations
or no effect of viscoelasticity. Brunn (1977) considered the motion of rigid particles in
second-order fluid. While Brunn (1977) does not calculate the rotation rates for a rod-like
particle such as prolate spheroid, for a dumbbell representing two spheres joined by a thin,
rigid rod, he also obtains the same functional dependence of rotations rates on the particle
orientation. However, instead of the factor M1(1 + 2ε1), Brunn (1977) obtains (1 + 4ε1)
so that the rotation rate of a dumbbell in a second-order fluid with zero second normal
stress difference is finite.

5. Analysis of particle orientation dynamics

Before a more detailed analytical and numerical treatment of (4.46), we qualitatively
describe the changes in orientation dynamics introduced by viscoelasticity as given by
this equation. We obtain three primary regions in c De − κ space where viscoelasticity
leads to different final fibre orientation behaviours. These regions, Rvort = R(1)vort ∪ R(2)vort,
Rflow = R(1)flow ∪ R(2)flow and Rflow−vort = R(1)flow−vort ∪ R(2)flow−vort ∪ R(3)flow−vort, separated by the
curves λ−2,flow = 0 and c De = c De|Limit

cut−off are shown in figure 2 for c = 0.005. In Rvort,
i.e. the region to the left of the curve λ−2,flow = 0 in figure 2, irrespective of the initial
orientation, the particle is attracted towards a stable limit cycle near the vorticity axis
where the particle revolves in a small periodic orbit around the vorticity axis. In Rflow, i.e.
the region to the right of the curve c De = c De|Limit

cut−off in figure 2, a particle aligns close
to the flow direction for all initial orientations as a stable fixed point at this location is
the only stable attractor in the orientation space. This flow alignment behaviour is similar
to the particle trajectories observed by Iso et al. (1996a) at large elasticity (large c). In
Rflow−vort, defined as the region between λ−2,flow = 0 and c De = c De|Limit

cut−off in figure 2,
depending upon the initial orientation, the particle can either obtain a final orientation
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Rvort
(2)
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(2)
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(3)

Rflow–vort
(1)

Rvort
(1)

Rf low
(1)

Rf low
(2)

λ2 , f low = 0– –

c De
Figure 2. The κ–c De parameter space, for c = 0.005, divided into regions with different qualitative behaviour
of a particle’s orientation dynamics. Here b2 and ζ are given in (5.4) and (5.12a,b), respectively; λ0−

2,flow and

λ0−−
2,flow are in (5.14). The procedure for numerically obtaining c De|Limit

cut-off is described in § 5.4.1.

within the FGP (it may either obtain a stable orientation or rotate within the plane) or
rotate in a small periodic orbit around the vorticity axis.

There are subdivisions of the regions Rvort, Rflow−vort and Rflow based on the behaviour
of the particle’s orientation trajectory near the FGP and the vorticity axis. In R(1)vort
(figure 2), a particle starting near the FGP spirals away from the plane and towards the
limit cycle near the vorticity axis. In contrast, in R(2)vort (figure 2), once a particle comes
close to the flow direction, it drifts along the flow–vorticity plane in a monotonic fashion.
R(1)vort trajectories are reminiscent of the observations of Gauthier et al. (1971) at low shear
rates (low De) and also some of the particle trajectories of Iso et al. (1996a,b) at low
to medium elasticity (small to medium c). The trajectories in R(2)vort, on the other hand, are
similar to that observed by Bartram et al. (1975) at larger shear rates or De (than the earlier
low shear rate experiments with the same fluid reported by the same laboratory in Gauthier
et al. (1971)). Within the region Rflow shown in figure 2, trajectories in R(1)flow and R(2)flow have
different behaviour near the vorticity axis. In the former, to the left of the curve κ = c De
in figure 2, the vorticity axis is an unstable spiral. Thus, the particle leaves the region
close to the vorticity axis in a spiral motion. In the latter, the vorticity axis is an unstable
node, and the particle leaves the vicinity of the vorticity axis in a monotonic fashion. The
trajectories near the vorticity axis in also in Rvort and Rflow−vort are similar to those in
R(1)flow. As mentioned above, in the region of multiple final particle orientations, Rflow−vort,
in addition to a stable limit cycle/periodic orbit close to the vorticity axis, a stable attractor
exists in the FGP. Rflow−vort can be further subdivided into three subregions. In R(1)flow−vort
(figure 2), the particle spirals towards the FGP and then tumbles within the plane. In this
case, the particle slows down close to the flow direction before speeding up again as it
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departs from this orientation. In R(2)flow−vort and R(3)flow−vort (figure 2), there is a stable fixed
point very close to the flow direction. Hence a particle starting close to the FGP ends up
being flow-aligned. In R(2)flow−vort, there is an unstable node within the FGP (farther away

from the flow direction than the stable fixed point). In contrast, in R(3)flow−vort, the unstable
node is replaced with a saddle point with its stable manifold perpendicular to the FGP.
Therefore, the basin of attraction of the stable fixed point (with the stable limit cycle being
the other stable attractor) is larger for R(3)flow−vort than for R(2)flow−vort.

The above is a qualitative description of all the different behaviours exhibited by the
dynamical system of (4.46). However, the predictions for regions of large c De (such as
R(2)flow) are speculative. This is because the first normal stress difference in the polymer
stress is proportional to c De and our regular perturbation theory is based on the polymer
stress being smaller than the Newtonian stress. We nevertheless include these regions here
to provide a complete description of the dynamical system and later numerical studies
of the original governing equations described in § 2 may be useful in determining the
quantitative and qualitative validation of the theory considered here.

In the rest of this section we will derive the boundaries that determine the
aforementioned divisions of c De − κ space and provide a more detailed analytical and
numerical treatment of (4.46). The b2 = 0 and κ = 2c De boundaries shown in figure 2
will be determined in §§ 5.1 and 5.2, respectively. The λ0−

2,flow = 0, λ0−−
2,flow = 0 and ζ = 0

boundaries are derived in § 5.3. Here c De|Limit
cut-off , is numerically obtained (the other

boundaries of figure 2 are analytical) in § 5.4.1. To numerically integrate the orientation
trajectory we transform equation (4.46) into θ − φ coordinates, where

p =
⎡⎣p1

p2
p3

⎤⎦ =
⎡⎣sin(θ) sin(φ)

sin(θ) cos(φ)
cos(θ)

⎤⎦ →
dθ
dt

= − 1
sin(θ)

∂p3

∂t
,

dφ
dt

= 1

sin2(θ)

(
∂p2

∂t
cos(φ)− ∂p1

∂t
sin(φ)

) . (5.1)

Integrating this θ − φ system instead of the equivalent equation (4.46) directly for p
numerically preserves ||p||2 = 1 constraint.

The boundaries in the c De − κ space shown in figure 2 are obtained for c = 0.005.
The primary c dependence of the various boundaries is in the form of c De and similar
partitioning of the c De − κ space is found with different values of c, albeit with small
quantitative changes. The boundaries associated with b2 = 0 (5.4) and κ = 2c De only
depend on c De for a given κ . We find (§ 5.4.1) the c De|Limit

cut-off boundary to be insensitive

to changes in c at constant c De for c � 0.1. However, increasing c moves the λ0−
2,flow = 0,

λ0−−
2,flow = 0 and ζ = 0 boundaries in the c De − κ kappa space to the right or larger c De

(not shown) even at small c. The λ0−−
2,flow = 0 curve moves more than λ0−

2,flow = 0 upon

increasing c. Thus, in the c De − κ space, upon increasing c, R(1)vort, R(1)flow and R(2)flow are

unchanged, R(2)vort and R(2)flow−vort are enlarged, and, R(1)flow−vort and R(3)flow−vort are reduced in
size.

5.1. Low dimensional orbits: log-rolling and tumbling
We begin our analysis with two convenient orientational states: (a) log-rolling with
the particle aligned with the vorticity axis, and, (b) tumbling in the FGP (p3 = 0).
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Fibre rotation in a sheared polymer solution

Due to symmetry, and as suggested by (4.46), viscoelasticity does not change the particle’s
orientation from the log-rolling state. Also, in the log-rolling state the theory predicts that
the polymer-induced solvent and elastic torques due to viscoelasticity, i.e. GPIST

3
(1) from

(4.30) and GElastic
3

(1) from (4.40), are both zero. Thus, the polymers do not change the
log-rolling angular velocity of the particle at O(c).

In the FGP, close to the flow direction p1 ≈ 1, the equation governing the particle
orientation is

ṗ2 ≈ −p2
2 − 1

κ2 − c De
p2

2 log(2κ)− 3
. (5.2)

Therefore, we notice that viscoelasticity (c De > 0) reduces the rotation rate of the particle
as compared with the Newtonian value (c De = 0). This equation has an analytical solution

p2 = −b tan((t − t0)b)
c De

4 log(2κ)− 6
, (5.3)

where

b2 = 1
κ2 −

(
c De

4 log(2κ)− 6

)2

. (5.4)

At small values of c De when b2 > 0, the solution is periodic with a time-period 2π/b.
Upon increasing c De, b = 0 when c Decrit = (4 log(2κ)− 6)/κ and an infinite period
bifurcation occurs. Further increasing c De lead to b2 < 0 and two fixed points appear
at [ p0−

2,flow, 0] and [ p0−−
2,flow, 0] within the FGP, where

p0−
2,flow = − c De

4 log(2κ)− 6
+
√

−b2, p0−−
2,flow = − c De

4 log(2κ)− 6
−
√

−b2. (5.5a,b)

There are two additional fixed points at −p0−
2,flow and −p0−−

2,flow that can be mathematically
obtained by repeating the above analysis near p1 = −1. In the sense of Jeffery orbits, the
fixed points are downstream of the flow–vorticity plane and very close to the flow direction
when κ is large, and c De is small; p0−−

2,flow is farther downstream. Within the FGP, particle

trajectories approach ±p0−
2,flow, while they depart ±p0−−

2,flow. Therefore, in the b2 < 0 regime,

a particle placed in the FGP approaches a steady state orientation p2 = ±p0−
2,flow. We will

later observe in § 5.3 that in the orientation space near the flow-direction off the FGP,
i.e. for a finite 0 < p3 � 1, the trajectories may either approach or leave these two fixed
points along the vorticity direction.

5.1.1. More accurate location of fixed points on FGP in b2 < 0 regime
Above, we analysed the equations near the flow direction under the assumption p1 ≈ 1
and found two fixed points in the b2 < 0 regime at orientations given by (5.5a,b). These
expressions are only valid when the fixed points are near the flow direction. However,
as c De is increased at a given κ , the fixed points separate from each other in the flow
gradient plane. The fixed point at p−

2,flow moves closer to the flow direction, while p−−
2,flow

moves away from the flow direction. To better estimate the latter’s location we relax the
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Figure 3. Variation of the fixed points’ location on the FGP with c De for various κ in the b̃2 ≈ b2 < 0

regime.

assumption of p1 ≈ 1 in the expression for dp2/dt and obtain the improved expressions

p̃0−
2,flow = −

√
−f 2/κ2 + c2De2/2 − fc De

√
−b̃2

c2De2 + f 2 ,

p̃0−−
2,flow = −

√
−f 2/κ2 + c2De2/2 + fc De

√
−b̃2

c2De2 + f 2 ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5.6)

where b̃2 = (1 + κ2)/κ4 − (c De/(2f ))2 ≈ b2 and f = 2 log(2κ)− 3. From figure 3, as
c De or κ are varied, we observe the qualitative behaviours of p̃0−

2,flow and p̃0−−
2,flow are the

same as those of p0−
2,flow and p0−−

2,flow mentioned above. Here p̃0−
2,flow is shown with dashed

lines and p̃0−−
2,flow with solid lines in the region b̃2 ≈ b2 < 0. At the beginning of the dashed

and solid lines, b̃2 ≈ b2 = 0, for a given κ , p̃0−
2,flow = p̃0−−

2,flow, because these fixed points
arise out of an infinite period bifurcation (Strogatz 2018), as mentioned earlier.

Therefore, while polymers have no influence on the log-rolling motion, they slow down
or stop the tumbling motion of a prolate spheroidal particle within the FGP. We now
move on to consider three-dimensional orbits by first observing the particle’s orientation
trajectories close to the vorticity axis in § 5.2 and then the trajectories near the FGP in
§ 5.3.

5.2. Effect of viscoelasticity near the vorticity direction, p3 ≈ 1
Equation (4.46) has a fixed point on the vorticity axis,

p0
vort = [0 0 1] . (5.7)

Due to the constraint ||p||2 = 1, we consider the linear stability of the p1 − p2 dynamical

system using p3 =
√

1 − p2
1 − p2

2. In the p1 − p2 coordinate system, at the fixed point [0 0],

976 A9-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.823


Fibre rotation in a sheared polymer solution
V

o
rt

ic
it

y
, 
p 3

Flo
w, p 1

Flo
w, p 1

1.0

(a) (b)

0.5

0
5

(×10–4) 0

–5
–0.02

–0.01

0.01
0.02

c De = 5

c De = 6

c De = 24

c De = 26

0

V
o
rt

ic
it

y
, 

p 3

Gradient, p
2

Gradient, p
2

1.0

0.5

0
0.01

0

–0.01 –1.0

–0.5

0.5

1.0

c De = 5

c De = 6

c De = 24

c De = 26

0

Figure 4. Various orientation behaviours near the vorticity axis: trajectories of particle orientation starting
very close to the vorticity axis at different c De in R(1)flow (c De = 6, 24), R(2)flow (c De = 26) and R(3)flow−vort (c De =
5) at κ = 50. All trajectories start at the same point. Panel (a) is the same as panel (b) (showing complete
particle trajectory) but zoomed near the vorticity axis (p3 = 1). The grey surface is the unit sphere, i.e. the
orientation space.

the eigenvalues are

λ1,vort = 2c De/κ2 − 1/κ
√

4c2De2/κ2 − 1, λ2,vort = 2c De/κ2 + 1/κ
√

4c2De2/κ2 − 1,
(5.8a,b)

with the corresponding eigenvectors

v1,vort = [λ1,vort 1], v2,vort = [1 λ2,vort]. (5.9a,b)

The fixed point at the vorticity axis undergoes a Hopf bifurcation at c De = 0 and is
unstable for all finite c De. The vorticity axis is a centre (imaginary eigenvalues) when
c De = 0. In the presence of viscoelasticity, c De /= 0, it becomes a hyperbolic fixed point
(eigenvalues with non-zero real part). Therefore, the linear stability analysis provides
qualitative insight into the effect of viscoelasticity on the behaviour of fibre orientation
governed by the full nonlinear equation (4.46) near the vorticity axis when c De /= 0. This
follows from the Hartman–Grobman theorem (see Guckenheimer & Holmes 2013), which
guarantees the homeomorphism between the linearized and full nonlinear system near
hyperbolic fixed points, while also preserving the time parametrization. The instability
of the vorticity axis arises from the polymer conformation driven by the force doublet
and O(1/κ2) Stokeslet discussed in § 4.1. When 0 < c De < κ/2 a small perturbation
leads to a particle departing the vorticity axis in a spiral fashion (as the vorticity fixed
point is an unstable spiral). However, for c De > κ/2 a particle departs the vorticity axis
monotonically (as the vorticity fixed point is an unstable fixed point).

The linear stability analysis is confirmed by the full numerical integration of (4.46) for
κ = 50 at c De = 24 (also for c De = 5 and 6) versus c De = 26 in figure 4(a) zoomed near
the vorticity axis. At κ = 50, c De = 26 is a point in R(2)flow, c De = 24 and 6 are points in

R(1)flow and c De = 5 is a point in R(3)flow−vort. In R(2)flow, the particle drifts out of the vorticity
axis monotonically, and in the rest, it spirals out. We will discuss the dynamical system’s
features of figure 4(b) in more detail later in § 5.4.1 where we will find the unstable spiral
at the vorticity axes to be surrounded by a stable limit cycle up to a cut-off c De. Hence,
the Hopf bifurcation occurring at c De = 0 at the vorticity axis is supercritical (Strogatz
2018). In R(3)flow−vort (c De = 5), the particle starting very close to the vorticity axis spirals
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outwards into the stable limit cycle, where it then moves periodically around the vorticity
axis. The limit cycle does not exist in R(1)flow and R(2)flow, so that, after the particle either
spirals or monotonically drifts out of the vorticity axis, it ends up in the flow aligned state
as it approaches the stable fixed point (±p̃0−

2,flow) near the flow direction in the FGP for
c De = 6, 24 and 25.

The identification of the stable limit cycle near the vorticity axis is made possible by
including the flow generated by force dipoles per unit length (flow from Cox (1971)) along
the fibre in addition to the flow generated by the force per unit length (flow from Batchelor
(1970)). If this dipole-generated flow is neglected from our theory the stable limit cycle
will not be predicted and instead when the theory predicts particle to be repelled from the
FGP it will approach the vorticity axis. A previous slender body theory for a second-order
fluid by Férec et al. (2021), relying on only the flow generated by the force per unit
length, predicts the fibre to align with the vorticity axis. When the axis of symmetry
of an axisymmetric slender fibre is aligned in the flow–vorticity plane of the imposed
flow no force per unit length is exerted by the fluid (Newtonian or polymeric). This is
because in the flow–vorticity-aligned state the imposed flow has no variation along the
fibre axis. However, according to (29) and (35) of Férec et al. (2021) when a fibre is in the
flow–vorticity plane, the force per unit length is non-zero and proportional to the polymer
relaxation time. This implies an error in the expression for the tension force in (29) of
Férec et al. (2021).

Figure 3(a) of Wang, Yu & Lin (2019) clearly shows that a κ = 4.0 spheroid started away
from the vorticity axis in a plane Couette flow at De = 0.1 reaches a closed orbit around
the vorticity axis, instead of approaching the axis. Figures 2(a) and 2(b) of d’Avino et al.
(2014) at De = 1.0 and 2.0, respectively, for a κ = 4.0 spheroid in an unbounded simple
shear flow show drift towards the vorticity axis, but do not show the particle approaching
the axis. Although these studies were conducted at high polymer concentration, c, and
small κ , outside the formal range of validity of our theory, they indicate the possibility
of a stable limit cycle around the vorticity axis. Furthermore, in the second-order fluid
regime with De = 0.1, careful observation of figure 8(a) of the theoretical investigation of
Wang, Tai & Narsimhan (2020) shows a κ = 3.0 spheroid approaching a stable limit cycle,
instead of reaching the vorticity axis of an unbounded parabolic slit flow (u = 1 − y2).
Lastly, while the boundary element formulation aided study of Phan-Thien & Fan (2002)
in an Oldroyd-B fluid shows the κ = 2.0 particle drifting towards the vorticity axis, the
simulation (see figures 7 and 8 of their paper) stops before we can conclude if it will
approach the axis or a stable limit cycle.

5.3. Effect of viscoelasticity near the FGP and flow direction
We described the effect of viscoelasticity on the particle’s motion near the flow direction
within the FGP in § 5.1. Here, we consider the particle motion near (but not exactly on)
the FGP. The analysis of § 5.1 for the p2 (gradient) direction is valid even outside the FGP.
Near the flow direction, p1 ≈ 1, the orientation dynamics and solution in the p2 direction
are given by (5.2) and (5.3). The orientation dynamics in the p3 (vorticity) direction for
p1 ≈ 1 is governed by the simplified equation (from (4.46))

ṗ3 ≈ −p2p3 + c Dep3

(
− 4
κ2 + p2

8 log(2κ)− 12
15π2De

3π2 + 5De

)
+ O( p2

3). (5.10)
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p3

p2

(1)Rvort: b
2 > 0, ζ > 0

p3

p2

(1)Rflow–vort: b
2 > 0, ζ < 0

(a) (b)

Figure 5. Phase portraits of (5.2) and (5.10) in the b2 > 0 regime in the gradient (p2)–vorticity (p3) plane with
ζ > 0 (a) and ζ < 0 (b). When b2 > 0 and ζ > 0, i.e. in (a) representing R(1)vort close to the flow gradient plane
(p3 = 0), the p3 component of the phase velocity changes sign from negative to positive along with an increase
in magnitude downstream of the p2 = 0 plane indicating a departure of a particle from the flow gradient plane
at a rate higher than it approaches the plane. However, when b2 > 0 and ζ < 0, i.e. in (b) representing R(1)flow−vort
the p3 component of the phase velocity is negative for all p2 indicating an approach towards the flow gradient
plane. Since p2 never approaches zero on the flow gradient plane for b2 > 0 it is an unstable and stable limit
cycle for R(1)vort (ζ > 0, a) and R(1)flow−vort (ζ < 0, b), respectively.

Its closed form solution is

p3 = C exp(c Deζ(t − t0)) cos((t − t0)b)−1+c Deγ /(8 log(2κ)−12) (5.11)

where b2 is given in (5.4), and

γ = 15π2De
3π2 + 5De

, ζ = 1
4 log(2κ)− 6

− c De
γ

2(4 log(2κ)− 6)2
− 4
κ2 . (5.12a,b)

When b is real-valued, i.e. b2 > 0 (5.4), there are no fixed points on the FGP. Thus,
the particle undergoes periodic motion in the FGP, as discussed in § 5.1. For a particle
perturbed slightly away from the FGP, from (5.11) we note that the sign of ζ determines
whether the particle will be attracted to or repelled from the FGP (p3 = 0). Here ζ > 0
represents the region R(1)vort where the particle spirals away from the FGP and ζ < 0
represents the region R(1)flow−vort where the particle spirals into the FGP and continues
tumbling within the plane (albeit with a larger orbit period 2π/b than in Newtonian case).
In the b2 > 0 regime, the phase portrait of the dynamical system of (4.46) (through the
simplified equations (5.2) and (5.10)) projected in the p2–p3 plane near p1 = 1 is shown in
figure 5 for ζ > 0 and ζ < 0. The phase flow in the p2–p3 plane in the case of a Newtonian
fluid (c De = 0) is similar to that in the region R(1)vort (figure 5a), but it is symmetric about
p2 = 0 (not shown). Therefore, a particle in a Newtonian fluid continues in a particular
( periodic) Jeffery orbit before and after p2 = 0. At small but finite c De, i.e. in the region
R(1)vort, represented figure 5(a), this symmetry about p2 = 0 is broken and a particle comes
out of the p2 = 0 plane with a larger ṗ3 velocity than it enters the plane. This explains
the drift towards the vorticity axis (greater p3). In the region R(1)flow−vort represented by
figure 5(b) we can observe that the phase flow points towards p3 = 0, indicating migration
of a particle towards the FGP. The FGP is a stable limit cycle in R(1)flow−vort and an unstable

limit cycle in R(1)vort.
The numerically integrated trajectories for parameters chosen in R(1)vort and R(1)flow−vort for

c = 0.005 are shown in figures 6 and 7, respectively. The prediction of the spiral exit of
the orientation trajectories from the FGP in R(1)vort and the spiral approach towards it in
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Figure 6. In R(1)vort (shown here for c = 0.005, κ = 50, c De = 0.01), trajectories starting near the FGP
(exemplified here with the blue trajectory) spiral out of the plane. Globally they approach the same stable
limit cycle as the trajectories starting near the vorticity axis (exemplified here with the orange trajectory). The
blue trajectory starting near the flow direction spans a larger portion of phase space in p2, but we show the
region close to the flow–vorticity plane to highlight the limit cycle.
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Figure 7. In R(1)flow−vort (shown here for c = 0.005, κ = 10, c De = 0.48), trajectories of particle orientation
starting near the FGP (blue) spiral into the plane. Globally they emanate from an unstable limit cycle – the
boundary between blue and green trajectories (that are started very close to each other in this numerical
integration). There is a stable limit cycle above this unstable limit cycle at the boundary between green and
orange trajectories.

R(1)flow−vort mentioned above is confirmed from these figures. The spiralling rate in R(1)vort
increases with c De and κ (not shown).

As b2 is reduced by increasing c De or κ , the time period, 2π/b, increases. The
effect of viscoelasticity (increasing c De) to increase the time period is consistent with
the experimental observations of Gauthier et al. (1971) and Bartram et al. (1975).
As mentioned earlier in § 5.1, when b2 = 0, due to an infinite period bifurcation
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(Strogatz 2018) two fixed points emerge on the FGP, and we discuss the trajectories off
the FGP in the b2 < 0 regime next.

5.3.1. Monotonic behaviour near FGP: b2 < 0
Equation (5.2) has two fixed points at p0−

2,flow and p0−−
2,flow from (5.5a,b) (or their more

accurate values in (5.6)). For the dynamical system in the p2–p3 plane near the flow
direction, defined by the system of (5.2) and (5.10), these fixed points are [ p0−

2,flow, 0] and

[ p0−−
2,flow, 0]. The eigenvectors at each of the fixed points are the same, i.e.

v1,flow = [1 0] , v2,flow = [0 1] . (5.13a,b)

The corresponding eigenvalues at [ p0−
2,flow, 0] and [ p0−−

2,flow, 0] are λ0−
i,flow and λ0−−

i,flow, where
i ∈ [1, 2],

λ0−
1,flow = −2

√
−b2, λ0−

2,flow = ζc De − (ζ + 4/κ2)(4 log(2κ)− 6)
√

−b2,

λ0−−
1,flow = 2

√
−b2, λ0−−

2,flow = ζc De + (ζ + 4/κ2)(4 log(2κ)− 6)
√

−b2.

⎫⎬⎭ (5.14)

Both the fixed points are hyperbolic in the b2 < 0 regime. Thus, similar to the fixed
point at the vorticity axis using the Hartman–Grobman theorem, the linear stability of the
fixed points allows qualitative insight into the complete nonlinear behaviour of particle
orientation. Both eigenvalues of both the fixed points are real in the b2 < 0 regime. The
first eigenvalues (λ0−

1,flow and λ0−−
1,flow) of both the fixed points do not change sign in the

b2 < 0 regime, i.e. λ0−
1,flow < 0 and λ0−−

1,flow > 0. But, the second eigenvalues (λ0−
1,flow and

λ0−−
1,flow), that are initially positive in the b2 < 0 regime, become negative at different

parameter (c, De and κ) values. Here λ0−
2,flow becomes negative first. λ0−

2,flow = 0 is the

bifurcation boundary where [ p0−
2,flow, 0] changes from a saddle point (stable manifold along

gradient direction and unstable along vorticity) to a stable fixed point. Here λ0−−
2,flow = 0 is

the bifurcation boundary where [ p0−−
2,flow, 0] changes from an unstable node to a saddle

point (stable manifold along vorticity direction and unstable along gradient). Therefore,
three new regimes arise within the b2 < 0 region that are labelled in figure 2 as (1)
R(2)vort (λ0−

1,flow > 0 and λ0−−
1,flow > 0), (2) R(2)flow−vort (λ0−

1,flow < 0 and λ0−−
1,flow > 0) and (3)

R(3)flow−vort + Rflow (λ0−
1,flow < 0 and λ0−−

1,flow < 0). The phase flow close to the fixed points
in the gradient–vorticity plane for these three cases is shown in figure 8. We can observe
the phase flow approaching [ p0−

2,flow, 0] and leaving [ p0−−
2,flow, 0] along the gradient direction

(p2) for all three cases. This implies that a particle with an initial orientation close to
the FGP will approach the flow direction (specifically the fixed point [ p0−

2,flow, 0]) while

slowing down. For the parameters within R(2)vort, the particle will then monotonically drift
away from the FGP. This is similar to the experimental observation of Bartram et al. (1975)
discussed in § 1. For a given κ and c, at larger c De than R(2)vort, within the regions R(2)flow−vort

and R(3)flow−vort, the particle starting near the FGP (and for all starting orientations in Rflow)
achieves a stable orientation near the flow direction, similar to the experiments of Iso et al.
(1996a).
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p2p2

p2

p3

p3 p3

(a)

(b) (c)

(2)Rvort: λ
–
2, f low > 0, λ 2, f low > 0– –

(2)Rflow–vort: λ
–
2, f low < 0, λ 2, f low > 0– – (3)Rflow–vort + Rflow: λ–

2, flow < 0, λ 2, flow < 0– –

Figure 8. Phase portraits of the system of (5.2) and (5.10) in the b2 < 0 regime. In this regime, two fixed points
exist on the FGP (p3 = 0) close to the flow direction. Both the fixed points are downstream of the flow–vorticity
plane (p2 = 0). An unstable (red marker) and a saddle (green marker) node with its unstable manifold along
the p3 axis in (a) (R(2)vort) indicates a monotonic drift of the particle away from the flow gradient plane. A stable
fixed point (blue marker) near the flow direction (p2 ≈ 0, p3 = 0) in (b) (R(2)flow−vort) and (c) (R(3)flow−vort) panels
indicate that particles with starting orientation near the FGP may align near the flow direction. The presence
of an unstable point in R(2)flow−vort (b) instead of a saddle point with its stable manifold perpendicular to the flow

gradient plane in R(2)flow−vort (c) in addition to the stable point in these cases indicates a lower proportion of

trajectories leading to flow alignment in R(2)flow−vort than in R(3)flow−vort.

The locations of fixed points corresponding to p̃0−
2,flow and p̃0−−

2,flow in the orientation space

are
[
±
√

1 − (p̃0−
2,flow)

2 ± p̃0−
2,flow 0

]
and

[
±
√

1 − (p̃0−−
2,flow)

2 ± p̃0−−
2,flow 0

]
. These locations

match the corresponding fixed points in the numerically integrated trajectories in R(2)vort,
R(2)flow−vort, and, R(3)flow−vort + Rflow shown in the plots of figures 9, 10 and 11, respectively.
We mark the analytical locations of these fixed points with two different coloured
markers on the FGP (p3 = 0) in figures 9, 10 and 11 and show the nearby trajectories
to approach/leave these locations in the fashion described by the linear stability theory
discussed above.

Numerical integration of the governing equation shown in figure 9 confirms the
existence of the stable fixed point and unstable node predicted by linear stability analysis.
In agreement with the p2 − p3 phase plane analysis above, the particle starting near the
flow gradient plane in R(2)vort approaches the flow direction. It then monotonically departs
the FGP along the flow–vorticity plane. The primary difference between R(1)vort and R(2)vort
is that the particle leaves the FGP spirally in the former (figure 6) and monotonically
in the latter (figure 9). As mentioned earlier, these trajectories are reminiscent of that
in the experimental observations of Bartram et al. (1975). We can only make qualitative
comparisons with Bartram et al. (1975) due to unknown non-Newtonian properties of their
viscoelastic fluid. Furthermore, the velocity field around the κ = 9.1 particles used in their
experiments is likely to have a quantitative difference from the SBT approximations used
in our theory.

In R(2)flow−vort, the numerically integrated trajectories shown in figure 10 reveal the
presence of stable and unstable nodes in the FGP at the locations predicted by the linear
stability analysis. Similarly, the existence of a stable node close to the flow direction and a
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Figure 9. In R(2)vort (shown here for c = 0.005, κ = 50, c De = 0.3), a particle’s orientation trajectories
approach the stable limit cycle around and near the vorticity axis. In contrast to R(1)vort (figure 6) where the
trajectories spiral away from the FGP, here they leave the FGP monotonically. We show the region close to
the flow–vorticity plane as this is where the different attractors lie. The grey surface is the unit sphere, i.e. the
orientation space.
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Figure 10. In R(2)flow−vort (shown here for c = 0.005, κ = 100 and c De = 0.9) a particle’s orientation
trajectories that start close to the FGP (solid lines) approach the flow direction either on the same or the
opposite side of the gradient–vorticity plane. Trajectories farther away from the FGP (dashed lines) approach
the stable limit cycle near the vorticity axis. Due to a saddle and stable node close to each other on the FGP
and a stable limit cycle near the vorticity axis, another saddle node emerges on the faster eigendirection of the
stable node. The grey surface is the unit sphere, i.e. the orientation space.

saddle point farther away on the FGP is confirmed from the numerical integration shown in
figure 11 for the parameters chosen in R(3)flow−vort. In R(2)flow−vort and R(3)flow−vort the trajectories
starting close to the FGP approach a stable orientation near the flow direction (stable fixed
point at p̃0−

2,flow).
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Figure 11. In R(3)flow−vort (shown here for c = 0.005, κ = 100 and c De = 1.2) the behaviour of a particle’s

orientation trajectories is similar to that in R(2)flow−vort shown in figure 10. The primary difference between

R(2)flow−vort and R(3)flow−vort is that, in the former, the fixed point on the FGP farther from the flow direction
is an unstable fixed point (figure 10), while it is a saddle node in the latter (shown here). Additionally, in
R(3)flow−vort, there is an unstable node at the intersection of the stable manifold of the saddle points in FGP and
flow–vorticity plane. Trajectories with solid lines end up at one of the fixed points near the flow direction, and
those with dashed lines end in the stable limit cycle near the vorticity axis.

5.4. Global particle orientation dynamics
In § 5.1 we analysed the equations for the rotational motion of a particle at the vorticity
axis and within the FGP. We found that viscoelasticity does not lead to a non-zero ṗ at
the vorticity axis and it does not change the log-rolling rotational velocity. In the FGP,
we observed that a small amount of viscoelasticity (small c De) leads to a larger orbit
time period. Further increasing c De leads to an infinite period bifurcation and birth of
two fixed points, thereby leading to particle migration towards the flow direction when in
the FGP. In § 5.2, by linearizing the governing equation at the vorticity axis, we showed
that the vorticity axis is an unstable spiral for c De < κ . For c De > κ , it is an unstable
node. Therefore, a small perturbation of the particle orientation from the vorticity axis
leads to departure from the axis. This was corroborated by the orientation trajectories
obtained by numerical integration of the system of governing equations. By analysing
the system and its fixed points (when they exist) near the flow direction in the FGP and
performing numerical integration of the trajectories starting near but not on the FGP in
§ 5.3, we determined the orientational dynamics in the region nearby the flow gradient
plane. The particle either spirals away from or towards the FGP when there are no fixed
points in FGP. When the fixed points in FGP arise, the one closer to the flow direction
is either a saddle point (with its stable manifold in the FGP) or a stable node. Therefore,
the particle first migrates towards the flow direction nearly parallel to the FGP. Then it
may either settle near the flow direction or monotonically drift away from the FGP along
the flow–vorticity plane. The boundaries in the c De − κ space separating these different
qualitative behaviours were shown in figure 2 for c = 0.005. The qualitative nature of these
boundaries is not sensitive to the exact value of c. As we observed in figures 6, 7, 9, 10 and
11, there are other invariant features (stable limit cycle, unstable limit cycle, saddle point,
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and unstable node) that arise in the orientation space off the FGP and the vorticity axis.
These features may be viewed as a result of the orientation space being restricted to a unit
sphere.

In R(1)vort (figure 2), which extends to arbitrarily small (but finite) viscoelasticity (small
c De), the vorticity axis is a spiral source, and the FGP is an unstable limit cycle. Therefore,
at least one stable attractor must exist between these two regions on the unit sphere. In the
case of a Newtonian fluid, the particle follows an initial-condition-dependent Jeffery orbit,
i.e. one of a concatenation of neutrally stable periodic orbits centred at the vorticity axis.
Therefore, at small (but finite) c De the simplest change in phase-plane dynamics leads to
a stable limit cycle around and near one of these limit cycles, as shown in figure 6. As
shown by linear stability analysis at the vorticity direction in § 5.2 the rate of deviation of
trajectories away from the vorticity axis is driven by the O(1/κ2) flow generated by the
force doublet and O(1/κ2) Stokeslet. Thus, a slender particle starting at any orientation
between the vorticity axis and the FGP leads to a final orientation behaviour where the
particle undergoes periodic motion very close to and around the vorticity axis.

In R(1)flow−vort (figure 2), the FGP changes from being an unstable to a stable limit cycle.
Therefore, an unstable invariant object or a repeller in the form of an unstable limit cycle
exists between the stable limit cycle near the vorticity direction and the FGP, as shown
in figure 7. Thus, in R(1)flow−vort, a particle with an initial orientation between the unstable
limit cycle and FGP spirals to the FGP, where it undergoes a tumbling motion. A particle
with an initial orientation between the unstable limit cycle above the FGP and the stable
limit cycle near the vorticity axis spirals towards the stable limit cycle near the vorticity
axis. A particle released at an arbitrarily small (but finite) angle from the vorticity axis
spirals outwards. In both these cases, eventually, the particle undergoes perpetual periodic
motion on the stable limit cycle close to the vorticity axis.

In R(2)vort (figure 2), the FGP contains two fixed points as shown in figure 9. One is an
unstable node, and the other is a saddle point with its unstable manifold perpendicular
to the FGP. Thus, no other invariant feature (attractor or repeller) is needed between the
FGP and the stable limit cycle near the vorticity axis, which is the only stable invariant
object on the orientation space. Hence a particle starting at an arbitrarily small angle from
the vorticity axis or the FGP ends up in a periodic motion very close to the vorticity
axis.

Similar to R(1)vort, R(2)vort and R(1)flow−vort discussed above, there is a stable limit cycle

around the vorticity axis in R(2)flow−vort and R(3)flow−vort. Therefore, a particle with an initial
orientation arbitrarily close to the vorticity direction (but not on the vorticity axis)
eventually undergoes a periodic motion around the vorticity axis. This stable limit cycle
exists for all regions except for R(1)flow and R(2)flow and it will be further analysed in § 5.4.1.

In R(2)flow−vort (figure 2) the fixed point in the FGP closest to the flow direction is a stable
node and the other fixed point in the FGP is an unstable node as shown in figure 10.
Hence, a saddle node exists near the flow–vorticity plane to repel the particle orientation
trajectories towards the stable limit cycle near the vorticity axis on one side and the
stable fixed point near the flow direction on the FGP on the other. This saddle point
receives trajectories emanating from the unstable point on the FGP. Thus, depending
upon the initial orientation of the particle, it may eventually either obtain a stable
orientation near the flow direction or undergo a periodic motion close to the vorticity
axis.

976 A9-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.823


A. Sharma and D.L. Koch

The dynamics in R(3)flow−vort (figure 2) are similar to those in R(2)flow−vort, but the unstable

fixed point in the FGP in R(2)flow−vort changes to a saddle node in R(3)flow−vort with no

qualitative change to the other invariant objects present in R(2)flow−vort. Therefore, to allow
smooth and continuous phase flow, an unstable node occurs at the intersection of the saddle
points in the FGP and near the flow–vorticity plane, as shown in figure 11. At a given κ ,
the value of c De in R(3)flow−vort is larger than that in R(2)flow−vort (figure 2) and the separation
between two fixed points increases with increasing c De as shown by figure 3. Due to this
increased separation and the unstable node above the flow gradient plane, more of the
phase flow is directed towards the FGP in R(3)flow−vort than in R(2)flow−vort. Thus, the basin

of attraction for the stable fixed point near the flow direction is larger in R(3)flow−vort as

compared with R(2)flow−vort. In other words, more of the initial particle orientations lead

to a stable final orientation near the flow direction in the R(3)flow−vort than in R(2)flow−vort
as observed by comparing the proportion of solid lines in figures 10 and 11. When the
stable limit cycle near the vorticity axis exists, the saddle point on the flow–vorticity
plane is important in determining the proportions of initial orientations leading to the
flow alignment and towards the periodic motion around the vorticity axis. Its location will
be further analysed in § 5.4.2.

The c De|Limit
cut-off boundary in figure 2, beyond which the stable limit cycle near the

vorticity direction does not exist, may be viewed as arising due to the interaction between
the saddle node near the flow–vorticity plane and the stable limit cycle near the vorticity
direction as these move in the orientation space upon increasing c De. We will discuss this
in § 5.4.3.

5.4.1. Stable limit cycle around the vorticity axis
The previous study of Leal (1975) concerning a slender particle in simple shear flow of
a second-order fluid predicts that viscoelasticity (although incorrect in attributing it to
the second instead of the first normal stress difference) drives the particle orientation
towards the vorticity axis. Leal (1975) only considered the Stokeslet fluid flow (of order
O(1/ log(κ)) and O(1/ log(κ)2)) from the slender body theory. This velocity field is
proportional to p2 and hence has no effect when the particle is in the flow–vorticity plane.
However, our study shows that a stable limit cycle exists around the vorticity axis due
to the competition between polymer-driven torque arising from the doublet flow causing
the particle to spiral away from the vorticity axis and that from the Stokeslet flow at
O(1/ log(κ)) causing it move towards the region around vorticity.

The real part of the eigenvalues of the fixed point at the vorticity axis in R(1)vort is 2c De/κ2

(5.8a,b), and the rate at which trajectories leave the FGP is c Deζ (5.11). Figure 12 shows
the variation of 2c De/κ2 and c Deζ with κ for a few values of c De at c = 0.005. From this
figure, we conclude that for κ � 15, trajectories leave the flow gradient plane much faster
than the outward spiralling rate from the vorticity axis. Hence, the stable limit cycle shifts
closer to the vorticity axis as κ increases. Furthermore, as κ increases beyond κ ≈ 20,
c Deζ remains almost constant while the rate of spiralling from the vorticity axis, κ−2,
decreases. Therefore, the stable limit cycle approaches the vorticity axes at larger κ .

We quantify the location of the limit cycle observed in the numerical integration of
(4.46). For this purpose we transform this equation into the C − τ coordinate system (Leal
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101

10–4

Increasing c De ε [0.1, 0.3] c Deζ

2c De/κ2

10–2

102

κ

Figure 12. The variation with κ of the rate of deviation of orientation trajectories away from the vorticity axis,
2c De/κ2 (orange), and the flow gradient plane, c Deζ (black), in R(1)vort (b2 > 0) for a few values of c De at
c = 0.005. On each curve, b2 > 0 is to the left of the solid markers. An increasing gap between orange and
black curves, with almost horizontal black curves, with κ indicates a larger increase in the departure rate of the
orientation trajectories from the flow gradient plane than that from the vorticity axis, implying a shift of the
stable limit cycle closer to the vorticity axis.

& Hinch 1971), using

C =
√

p2
2 + p2

1/κ
2

p3
, τ = p1

p2
, (5.15a,b)

to obtain

dC
dt

= c Deτ 2
(

4(1 + C2)

Cκ4 − C
(4 log(2κ)− 3)(κ2 + τ 2)

)
p2

2 + c DeO( p4
2), (5.16)

dτ
dt

= 1 + c Deτp2
2

(
τ 2

4 log(2κ)− 3
+ 4

κ2 + τ 2

C2κ4

)
+ O(c De). (5.17)

In the Newtonian limit, dC/dt = 0 and the particle trajectory is determined by its initial
condition C(t) = C(0) = CN . Each CN = [0,∞] represents a different Jeffery orbit. Here
C = 0 represents the log-rolling motion, i.e. the particle rotating about its major axis which
is aligned with the vorticity axis, and C = ∞ represents the major axis rotating within the
FGP. Here τ = t represents the phase on the Jeffery orbit. A periodic orbit can thus be
ascertained using a single parameter C that repeats periodically. In the range, 10 ≤ κ ≤
200, for c De ≥ 0.01 we evolve the system of equations for an initial condition starting near
the vorticity direction, at C = 10−7. We evolve the equations for each choice of c De and
κ until the change in the period-averaged C across 100 successive Jeffery periods is less
than 10−5. Finally, we define C̄numerical

Limit as the average C over the last 100 Jeffery periods.
The C̄numerical

Limit versus c De for a few values of κ ∈ [10, 200] is shown in figure 13(a).
Now, C̄numerical

Limit is smaller than 0.1 for κ > 10, decreases with κ and varies slightly with
c De at each κ . For κ > 50 C̄numerical

Limit is less than 0.01 for a range of c De. Therefore, the
limit cycle is close to the vorticity axis. Beyond a certain value of c De = c De|Limit

cut-off , the

limit cycle does not exist. This marks the boundary between R(2)flow−vort and R(1)flow for a given
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Figure 13. (a) The location of the stable limit cycle at different c De and κ at c = 0.005 (nearly identical
curves are obtained for other polymer concentrations in the range 0.01 ≤ c ≤ 0.2) indicated by the average

C =
√

p2
2 + p2

1/κ
2/p3, C̄numerical

Limit on the limit cycle. Here C = 0 is the vorticity axis and C = ∞ is the FGP.

(b) The C̄numerical
Limit on the limit cycle versus κ at low c De.

κ , as shown in figure 2. Now, c De|Limit
cut-off increases with κ and for 10 ≤ κ ≤ 200 we find

c De|Limit
cut-off ≈ 0.1056κ − 0.5183. (5.18)

At larger κ , the stable limit cycle is closer to the vorticity axes and exists for a larger range
of c De. Hence, marked as R(1)flow−vort and R(2)flow−vort in figure 2, there is a significant range
of c De at large κ where two possible types of orientation dynamics are possible: a steady
state orientation close to the flow direction and a periodic orbit near the vorticity direction.
For κ � 20, increasing c De from very small values does not affect the position of the
limit cycle much. However, as c De approaches c De|Limit

cut-off , the limit cycle moves away
from the vorticity axis. For κ � 20, the limit cycle moves towards the vorticity axis upon
increasing c De from very small values. However, beyond a given c De, up to c De|Limit

cut-off
the limit cycle’s angular position is not influenced by c De. These features are reflected
by the trends in C̄numerical

Limit in figure 13(a). At low c De, the limit cycle is very close to
one of the degenerate Jeffery orbits of the Newtonian case, i.e. C does not change much
on the limit cycle. The variation of C̄numerical

Limit with κ at low c De = 0.01, 0.02 and 0.03 is
shown in figure 13(b), where we can observe C̄numerical

Limit to scale as κ−1.5 log(2κ − 3) for
10 ≤ κ ≤ 100 and approximately κ−1 for larger κ .

We find the particle orientation trajectories approaching this stable limit cycle close to
the vorticity axis instead of spiralling towards the vorticity axis as concluded from the
experiments of Gauthier et al. (1971) and Iso et al. (1996b). Gauthier et al. (1971) claim
the approach towards the vorticity axis by extrapolating the observed data. In some of
the experimental observations of Iso et al. (1996b) at small elasticity after undergoing
initial spiralling, the particle oscillates around the vorticity axis without settling at a
steady orientation. This may indicate the limit cycle discussed above. The theoretical
rate of spiralling away from the vorticity axis (2c De/κ2) is small (figure 12), and small
imperfections from the Couette cell might have led to secondary flows in the experiments.
Thus, the existence and size of the stable limit cycle around the vorticity axis must be
further tested in future experiments and numerical simulations.
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5.4.2. Saddle node near the flow–vorticity plane in R(2)flow−vort, R(3)flow−vort, R(1)flow and R(2)flow

From the trajectories of particle orientation in R(2)flow−vort and R(3)flow−vort shown in figures 10
and 11 we find the stable limit cycle around the vorticity axis and the stable node on
the flow gradient plane near the flow axis to be separated by a saddle point. The saddle
point arises on the boundary between R(2)vort and R(2)flow−vort when the saddle point near
the flow direction on the FGP changes into a stable node. It also arises on the boundary
between R(3)flow−vort and R(1)flow−vort when the unstable limit cycle in the FGP vanishes. The

saddle point persists in the region R(3)flow−vort when approaching it by increasing c De from

R(2)flow−vort. In the regions R(2)flow−vort and R(3)flow−vort, the unstable direction of the saddle
point leads to the limit cycle on one side, and the stable node on the other. Based
on numerical evidence from figures 10 and 11 we assume the saddle point, psaddle =
[p1,saddle p2,saddle p3,saddle], to approximately lie at the same p2 coordinate as the stable
node in the flow gradient plane:

p2,saddle = p0−
2,flow + p′

2,saddle, p′
2,saddle � p0−

2,flow (5.19a,b)

where p0−
2,flow is given by (5.5a,b). From ṗ2,saddle = 0, we obtain

p2,saddle =
√−b2c De + (4 log(2κ)− 6)b2

c De(1 − p1,saddle)− √−b2(4 log(2κ)− 6)
. (5.20)

From (4.46), ṗ1,saddle = ṗ3,saddle = 0 is equivalent to

p1,saddleα|p1=p1,saddle,p3=p3,saddle = p2,saddle/(c De). (5.21)

A general solution to the above equation is intractable, but we can solve it in the limit
of small p1,saddle or small p3,saddle. We denote the value of p1,saddle in the limit of small
p1,saddle as p̃1,saddle and the value of p3,saddle in the limit of small p3,saddle as p̃3,saddle. We
obtain

p̃1,saddle =

−8(c De)2f 2 + 16c Def 3
√−b2

−

√√√√√√√√
4c Def

(
−(c De)2κ2 + 2(c De)fκ2

√−b2 + 4f 2
)

4
(
−3π(c De)2κ2 + 2c Def

(
8f + 3πκ2

√−b2
)

+ 12πf 2
)

+ 128c Def 3
(
(c De)− 2f

√−b2
)2

(c De)
(

3π(c De)2κ2 − 2(c De)f
(

8f + 3πκ2
√−b2

)
− 12πf 2

) , (5.22)
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Figure 14. The p3 coordinate of the saddle point in the flow–vorticity plane in R(2)flow−vort and R(3)flow−vort.

(a) Solid lines (the graph of
√

1 − p̃2
1,saddle − p2

2,saddle from (5.22) and (5.20)) provide the more accurate
p3 location of the saddle point when it is closer to the vorticity axis (p3,saddle ≈ 1) and dashed lines (the
graph of (5.23)) represent the more accurate p3 location of the saddle point when it is closer to the flow axis
(p3,saddle ≈ 0). (b) Most accurate location of the saddle point constructed from (a) using the crossover point
between the solid and dashed lines for each κ , i.e. using (5.24).

and

p̃3,saddle = −

3π(c De)
(
(c De)2κ2 − 2c Defκ2

√
−b2 − 4f 2

)

+

√√√√√√√√√√√√√√

9π2(c De)2
(
−(c De)2κ2 + 2c Defκ2

√
−b2 + 4f 2

)2

+1
2
(c De)3κ2

(
3π2c De − 2f

(
3π2

√
−b2 + 2

))
+1

2
c Def 2

(
f
(

16 − 64c De
√

−b2
)

+ c De
(

8κ2
√

−b2 − 12π2
))

(
3π2(c De)2κ2 − 2c Def

(
16f + 3π2κ2

√
−b2

)
− 4f 2

(
16f

√
−b2 + 3π2

))
2
(

3
4
π2c De

(
(c De)2κ2 − 2c Defκ2

√
−b2 − 4f 2

)
− 8c Def 2

(
(c De)+ 2f

√
−b2

)) ,

(5.23)

where f = 2 log(2κ)− 3 and
√−b2 is in (5.12a,b). The variation of p̃3,saddle and√

1 − p̃2
1,saddle − p2

2,saddle with c De for a few κ is shown in figure 14(a). From either of
these approximations, we find that the saddle point moves closer to the vorticity axis as
c De is increased or κ is reduced. Both approximations yield a similar location for the
saddle point. The best approximation for the location of the saddle point for any c De and
κ , is psaddle = [p1,saddle p2,saddle p3,saddle], where

p1,saddle = p̃1,saddle, p3,saddle =
√

1 − p̃2
1,saddle − p2

2,saddle, if |p̃1,saddle| ≤ |p̃3,saddle|

p1,saddle =
√

1 − p2
2,saddle − p̃2

3,saddle, p3,saddle = p̃3,saddle, if |p̃1,saddle| > |p̃3,saddle|
,

⎫⎪⎬⎪⎭
(5.24)

and p2 is from (5.20). We show this saddle point’s more accurate location of p3 in
figure 14(b). The location of this analytically predicted saddle point, shown with a green
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Figure 15. Trajectories at large c De for κ = 20 in R(3)flow−vort, R(1)flow and R(2)flow zoomed near the flow–vorticity

plane. At very large c De (corresponding to regions R(1)flow and R(2)flow), the stable limit cycle does not exist around
the vorticity axis and a particle starting anywhere apart from vorticity axis ends up being nearly flow aligned.

marker in figures 10, 11 and 15, agrees well with that inferred from the of numerically
integrated trajectories.

In R(2)flow−vort and R(3)flow−vort, the unstable manifold of this saddle point leads to two stable
attractors, i.e. either a limit cycle near the vorticity axis or a stable node near the flow
direction. Therefore, the location of the saddle point partially dictates the relative sizes of
the basins of attraction of these stable attractors. As c De increases, due to the changing
location of the saddle point, psaddle, the particle is more likely to attain a final orientation
towards the flow axis as compared with approaching the limit cycle around the vorticity
axis (see figure 14 and compare the proportion of the solid lines in 10 and 11). The saddle
point also persists in the large c De regions R(1)flow and R(2)flow as shown in the different plots
in figure 15.

5.4.3. The R(1)flow and R(2)flow: very large c De guarantees flow alignment
In § 5.4.1, we found that for κ � 20, the stable limit cycle moves closer to the vorticity axis
upon increasing c De. The saddle point near the flow–vorticity plane that exists in regions
shown in figure 2 with c De equal and larger than that in R(2)flow−vort also moves towards the
vorticity axis upon increasing c De as discussed in § 5.4.2. The saddle point moves towards
the vorticity axis faster than the limit cycle. Beyond a κ-dependent value of c De, when
the saddle point is too close to the limit cycle, the latter ceases to exist, making the stable
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fixed point near the flow direction the only stable attractor. This boundary is marked as
c De|Limit

cut-off in figure 2. This implies that a particle with any initial orientation other than
the vorticity axis ends up being aligned near the flow direction. Plots corresponding to
c De = 1.2 and 1.8 for κ = 20 in figure 15 show the vanishing of the stable limit cycle
near the vorticity axis upon going from R(3)flow−vort to R(1)flow. For c De = 1.2 (R(3)flow−vort) the

saddle point is just outside the limit cycle, whereas for c De = 1.8 (R(1)flow), corresponding

to a location close to the R(3)flow−vort − R(1)flow boundary, the limit cycle does not exist and
instead the stable manifolds of the saddle point originate from the unstable spiral at the
vorticity axis. The unstable manifold of the saddle point leads to the stable node near the
flow direction. The saddle point persists for larger c De in R(1)flow and also R(2)flow as show
by the c De = 4 and 12 plots at κ = 20, respectively, in figure 15. As also discussed in
§ 5.2 (figure 4a) in R(2)flow, a particle leaving the vorticity axis changes from spiralling
to monotonic trajectories as the vorticity axis changes from an unstable spiral to an
unstable node when going from R(1)flow to R(2)flow. From figure 15(c) (c De = 4 at κ = 20)
and figure 15(d) (c De = 12 at κ = 20), the proximity of the saddle point to the vorticity
axis can also explain the breakdown of spiral motion near the vorticity axis in R(2)flow.

6. Conclusion

Using a regular perturbation expansion in polymer concentration, c, the balance of torques
on the particle surface at each order in c, and the velocity field generated by a slender
prolate spheroid (obtained from the slender body theories of Batchelor (1970) and Cox
(1971)), we develop a theory to characterize the orientation dynamics of a freely rotating
(torque-free) particle in simple shear flow of a viscoelastic fluid with small polymer
concentration, c, and an arbitrary polymer relaxation time in the absence of inertia. This
theory predicts a wide variety of orientation behaviours that are qualitatively similar to
previous experimental observations of Gauthier et al. (1971), Bartram et al. (1975), and
Iso et al. (1996a,b).

In the absence of inertia, for a viscoelastic fluid, where the fluid stress is a sum of
the solvent and the polymer or non-Newtonian stress, the momentum equation can be
decomposed into a Newtonian and a non-Newtonian part. The Newtonian part comprises
the particle’s motion in a Newtonian fluid undergoing the imposed flow and leads to
the Newtonian stress field. The non-Newtonian part has zero velocity at the boundaries
and comprises the balance of the divergence of the polymer-induced solvent stress and
the divergence of the polymer stress. Thus, three physically distinct stress mechanisms
impacting the particle surface are the elastic or polymer stress, the polymer-induced
solvent stress, and the Newtonian stress. The decomposition of torques in this way can
be useful in obtaining further insights into the particle motion in a viscoelastic or a
non-Newtonian fluid where the fluid stress can be decomposed into a Newtonian and
a non-Newtonian part. In addition to the non-Newtonian momentum equation, different
stress components are coupled with the torque-free boundary condition and the polymer
constitutive equation. The balance of torques generated by the three stresses leads to the
appropriate angular velocity to allow torque-free particle motion. The boundary conditions
for the motion of the particle and the imposed flow are contained in the Newtonian
part of the momentum equation. Hence, the torque generated from the corresponding
stress is termed the MIST. The polymer constitutive equation is driven by the sum
of the velocity field from the Newtonian and non-Newtonian momentum components.
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The elastic torque is a function of the polymer stress on the particle surface. By definition,
the PIST is the antisymmetric first moment of the polymer-induced solvent stress over the
particle surface. However, using a generalized reciprocal theorem and the non-Newtonian
momentum equation, we can express the PIST directly as a volume integral of the polymer
stress.

Using a regular perturbation in the polymer concentration, c, we obtain the equations
for particle’s orientation dynamics in a small c viscoelastic fluid subjected to a simple
shear flow. At O(1), the elastic and the polymer-induced solvent stress are zero. Thus, the
particle orientation dynamics are the same as that in the simple shear flow of a Newtonian
fluid, i.e. the particle undergoes Jeffery rotations. At O(c), all three mechanisms mentioned
above lead to a finite torque. The O(c) Newtonian stress is that on a particle rotating (at
O(c) velocity) in a quiescent Newtonian fluid. Therefore, the O(c) rotation rate is the one
that generates enough O(c)MIST to balance the PIST and the elastic torque. The total O(c)
rotation rate may be decomposed as the sum of ṗ(1)Elastic and ṗ(1)PIST , i.e. the O(c) elastic and
PIST generated rotation rates. The leading-order velocity field is taken from the slender
body theory of Batchelor (1970) and Cox (1971), and this drives the O(c) polymer stress.
As both the elastic torque and the PIST can be expressed as a function of the polymer
stress, the O(c) rotation rate of the particle is obtained from the analytical velocity field
from the slender body theory.

The polymer relaxation time (λ) is non-dimensionalized with the shear rate (γ̇ ) to yield
Deborah number, De(= λγ̇ ) (c = 0 or De = 0 implies a Newtonian fluid). We find ṗ(1)Elastic,
to be independent of De and initially consider ṗ(1)PIST , separately in the low and high De
limits. In the low De limit, ṗ(1)Elastic and O(De0) ṗ(1)PIST are the rotation rates due to the
additional torque from the rate of strain and fluid pressure, respectively, of the Newtonian
fluid with an additional viscosity c. Therefore, in the low De limit, the sum of ṗ(1)Elastic and
the O(De0) contribution to ṗ(1)PIST is identical to the rotation due to the Newtonian torque.
Since the Newtonian torque is already balanced to be zero at the leading order in c, the
first viscoelastic effect on the rotation rate for De � 1 arises at O(c De) and is entirely
from the polymer-induced solvent stress. In the high De limit, ṗ(1)PIST ∼ O(De) and is hence
O(De) larger than ṗ(1)Elastic. Therefore, the particle-induced polymer stress is the primary
agent changing the particle dynamics in both the low and high De limits. By interpolating
the rotation rate in De between the large and small (up to O(De)) De limits, we obtain
a uniformly valid equation for the particle orientation. We analyse the effect of particle
aspect ratio, κ and viscoelastic fluid parameters, polymer concentration (c), and relaxation
rate (De) on this equation valid for any De.

Depending upon c De and particle aspect ratio (κ), several qualitatively different
particle orientation behaviours are possible. At constant c De, c affects the behaviour
only quantitatively. In a Newtonian fluid (c De = 0), a particle undergoes periodic motion
on an initial-condition-dependent Jeffery orbit around the vorticity axis. As expected
from symmetry, the vorticity axis and the FGP remain invariant within the orientational
space (unit sphere). Viscoelasticity (for all c De and κ) does not affect the rotation rate
of the log-rolling state on the vorticity axis. In the FGP, even very small c De creates
a bottleneck near the flow direction where the particle slows down in proportion to
c De. Thus, viscoelasticity increases the period of tumbling motion within the FGP.
At c De = c Decrit = (4 log(2κ)− 6)/κ , an infinite period bifurcation occurs, and two
fixed points arise in the FGP near the flow direction. Therefore, for c De > c Decrit, the

976 A9-45

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.823


A. Sharma and D.L. Koch

tumbling motion within the FGP does not exist, and a particle initially oriented within
FGP ultimately aligns near the flow direction.

In a Newtonian fluid, the phase flow of the dynamical system of the particle’s
orientational drift is of equal and opposite magnitude in the vorticity direction about
the flow–vorticity plane. Thus the Jeffery orbits, in that case, are symmetric about
the flow–vorticity plane. For 0 < c De < c Decrit and κ > κFV1, the phase flow remains
qualitatively similar, but the magnitude of the phase velocity in the vorticity direction is
larger on the downstream side of the phase-flow. Thus, a particle starting close to (but not
in) the FGP spirals towards the vorticity direction. κFV1 � 17 for c = 0.005 and slightly
reduces with c. For κ < κFV1, spiralling away from the FGP occurs for a c De up to a
value slightly less than c Decrit indicated by the ζ = 0 curve in figure 2. R(1)vort in figure 2 is
the region where the particle spirals away from the FGP. It continues to spiral towards the
vorticity axis as it moves away from the FGP until it comes close to the axis. A particle with
an initial orientation arbitrarily close to, but not on, the vorticity axis spirals away from the
vorticity axis. Thus, in R(1)vort, a particle ultimately undergoes a periodic motion in a limit
cycle near the vorticity axis. The spiralling towards the vorticity axis due to viscoelasticity
is observed in the experiments of Gauthier et al. (1971) and Iso et al. (1996a,b).

For κ < κFV1 and between c De corresponding to ζ = 0 and c De = c Decrit, marked
as R(1)flow−vort in figure 2, the phase velocity in the vorticity direction downstream of the

flow–vorticity plane and close to the FGP changes direction as compared with the R(1)vort
region discussed above or the case for a Newtonian fluid. Thus, a particle with an initial
orientation close to the FGP spirals into the FGP, where it ultimately undergoes tumbling
motion (albeit with a larger period than in Newtonian fluid). A particle starting farther
away from the FGP or near the vorticity axis spirals towards the periodic orbit (similar to
R(1)vort) near the vorticity axis.

The phase space for the dynamical system of a particle in a Newtonian fluid consists
of a concatenation of neutral centres. The periodic orbit at small angles away from the
vorticity axis for the case of a viscoelastic fluid (c De > 0) is a stable limit cycle. It is
the only stable attractor in the phase space in R(1)vort. As c De increases at large κ � 50 in
the small c De regime, the limit cycle shrinks as it goes towards the vorticity axis. The
size of the limit cycle is not affected by c De in the small c De regime for κ � 20. The
previous studies by Leal (1975) using the slender body theory at low De have considered
only the O(1/(2 log(2κ)− 3)) velocity disturbance and found viscoelasticity to cause a
slender particle to spiral towards the vorticity axis. However, the polymeric torque due
to the force doublet and O(1/κ2) Stokeslet, O(1/κ2) velocity disturbance from slender
body theory of Cox (1971) that accounts for the fluid velocity disturbance the particle
makes when in the flow–vorticity plane (p2 = 0), makes the vorticity axis an unstable
spiral. Thus, a stable limit cycle occurs from the competition of polymeric torques from the
disturbance at O(1/κ2) and the Stokeslet flow at order O( p2/(2 log(2κ)− 3)). Unlike Leal
(1975) who attributes it to second normal stress difference, our theory predicts the effect
of viscoelasticity in a second-order fluid to arise from the first normal stress difference of
the fluid. In R(1)vort, the FGP is an unstable limit cycle and, in R(1)flow−vort, it is a stable limit

cycle. In both cases, the stable limit cycle exists near the vorticity axis. Thus, in R(1)flow−vort,
there is an unstable limit cycle between the two stable ones, and there are two possible
final orientation behaviours, tumbling within the FGP and periodic motion close to the
vorticity axis.
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For c De > c Decrit = (4 log(2κ)− 6)/κ , the fixed points in the FGP leads to monotonic
particle drift towards or away from the FGP instead of spiralling motion. For κ > κFV1
when the fixed points first appear at c Decrit the one closer to the flow direction is a
saddle node, and the other is an unstable node. Thus, a particle starting close to the FGP
migrates along the stable manifold of the saddle point up towards the flow direction and
then monotonically drifts along the flow–vorticity plane towards the periodic orbit close
to the vorticity axis. The region where this qualitative behaviour occurs is marked as R(2)vort
in figure 2 and the orientation trajectories are similar to the experimental observations of
Bartram et al. (1975). Also, for κ > κFV1, upon increasing c De beyond a certain value
indicated by the λ0−

2,flow = 0 boundary in figure 2, the saddle point changes into a stable
node and hence a particle with an initial orientation close to FGP ultimately becomes
stably flow aligned. This is marked as R(2)flow−vort in figure 2. In this region, depending
upon the initial orientation, a particle finally obtains either a stable orientation close to the
flow direction or undergoes periodic motion close to the vorticity axis. For c De beyond
the λ0−−

2,flow = 0 boundary of figure 2 for κ > κFV1, or for c De > c Decrit when κ < κFV1,
the fixed point in the FGP away from the flow direction is a saddle node with its stable
manifold perpendicular to the FGP. In the part of this region marked as R(3)flow−vort in

figure 2, the final particle behaviour is similar to that in R(2)flow−vort discussed above. But,
due to a saddle node instead of an unstable fixed point farther from the flow direction
in the FGP, a greater proportion of the initial orientations in R(3)flow−vort than in R(2)flow−vort
lead the particle towards a flow aligned state. Upon increasing c De beyond c De|Limit

cut−off , in

the regions marked as R(1)flow and R(2)flow, the particle at all initial orientations apart from the
log-rolling state at the vorticity axis leads to a flow-aligned state. This is because the limit
cycle close to the vorticity axis does not exist and the vorticity axis is an unstable spiral
(R(1)flow) or node (R(2)flow). The flow-alignment of the particle was observed in the experiments
of Iso et al. (1996a) at larger elasticity (c).

We are able to obtain qualitative agreement with the low shear rate experiments of
Gauthier et al. (1971) and Iso et al. (1996b) which correspond to low c De regime (R(1)vort
in figure 2). In these experiments, the particle spirals towards the vorticity axis, and our
theory predicts spiralling towards the stable limit cycle near the vorticity axis. While the
authors Gauthier et al. (1971) and Iso et al. (1996b) state that the particle approaches
the vorticity axis, this behaviour is not shown. Moreover, in the time series plot of angle
with the vorticity axis in the results of Iso et al. (1996b) a deviation from zero and a
small oscillatory behaviour can be observed, indicating the possibility of the existence
of a stable limit cycle near the vorticity axis in their experiments. The high shear rate
experiments of Bartram et al. (1975) were performed by releasing a κ = 9.1 rod close to
the gradient axis. The particle initially travels nearly parallel to the FGP and approaches
the flow direction. Upon perturbing, it moves out of the FGP along the flow–vorticity plane
in a monotonic fashion before it starts spiralling near the vorticity axis. This is qualitatively
similar to the orientation dynamics in the R(2)vort region shown in figure 2 where a saddle
point exists near the flow direction (stable manifold in the FGP) and a stable limit cycle
is near vorticity axis. Our theory is, however, unable to fully explain the high shear rate
experiments of Iso et al. (1996b) performed for κ = 34.4, De = 3 and c = 0.39. Iso et al.
(1996b) observe the particle to remain at an angle between 5◦ to 60◦ from the vorticity
axis near the flow–vorticity plane after spiralling or moving monotonically away from
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the FGP. The regions R(2)flow−vort, R(3)flow−vort, R(1)flow and R(2)flow (shown in figure 2) do have an
attractor near the flow–vorticity plane, but it is a saddle point. From (5.24) p3,saddle = 0.7
for c De = 1.17 and κ = 34.4, i.e. the saddle point is at an angle of 25.2◦ from vorticity
axis. In our theory, the absence of a stable fixed point in the flow–vorticity plane between
the vorticity and flow directions may be due to neglecting shear thinning, finite c effects,
finite polymer length and polymer entanglement. We use an Oldroyd-B equation to model
the polymer stress. Finite polymer length may be captured by the FENE-P model and
polymer entanglement likely at larger c by the Giesekus model Bird et al. (1987). Future
numerical investigations may be used to test our theory and further clarify the previous
experimental findings.

Our findings have a major implication in using dilute (low c) polymeric liquids to
achieve desired properties such as strength and anisotropy of products manufactured from
dilute fibre-filled suspensions mentioned in the introduction. At very low c De, all the
fibres will eventually have orientations close to the vorticity axis. Therefore, adding a small
polymer concentration to the fluid in roll-to-roll manufacturing can lead to low resistance
films with higher anisotropy and hence better quality. Since the limit cycle in the low c De
regime becomes closer to the vorticity axis as c De increases, the anisotropy can be tuned
by changing the shear rate or polymer relaxation time (De is the product of shear rate and
polymer relaxation time). Even higher anisotropy can be obtained if very large De can be
achieved since at a large c De, the fibres with all initial orientations ultimately align near
the flow direction. For moderate values of c De, the flow field that precedes a period of
simple shear may preorient the fibres somewhat closer to the FGP or the vorticity axis.
This will determine whether the fibres lie in the basin of attraction of attractor near the
flow direction or the attractor near the vorticity axis. The polymer stresses in the simple
shear flow can then drive the particles to a single final orientation leading to highly aligned
fibres.
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