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ON ALMOST PRIMITIVE ELEMENTS OF FREE GROUPS 
WITH AN APPLICATION TO FUCHSIAN GROUPS 

A. M. BRUNNER, R. G. BURNS AND SHEILA OATES-WILLIAMS 

ABSTRACT. An element of a free group F is called almost primitive in F, if it is 
primitive in every proper subgroup containing it, though not in F itself. Several exam­
ples of almost primitive elements (APEs) are exhibited. The main results concern the 
behaviour of proper powers wl of certain APEs w in a free group F (and, more gen­
erally, in free products of cycles) with respect to any subgroup H containing such a 
power "minimally": these assert, in essence, that either such powers of w behave in H 
as do powers of primitives of F, or, if not, then they "almost" do so and furthermore H 
must then have finite index in F precisely determined by the smallest positive powers of 
conjugates of w lying in H. Finally, these results are applied to show that the groups of 
a certain class (potentially larger than that of finitely generated Fuchsian groups) have 
the property that all their subgroups of infinité index are free products of cyclic groups. 

1. Introduction. The concept of "primitivity" of an element w of a free group F 
is well-known: w is primitive in F, if it can be included in some free basis for F. It is 
natural then to define an element of a free group F to be an almost primitive element of 
F (briefly, APE) if it is primitive in every proper subgroup containing it, though not in 
the whole group F. Here are some examples of inequivalent (i.e. not transformable one 
into another by means of an automorphism) "irreducible" APEs. 

1.1 EXAMPLES OF ALMOST PRIMITIVE ELEMENTS, (i) x?, p prime, in the infinité cyclic 
group F(x)', 

(ii) the commutator [JC, y](:= x~ly~lxy) in the free group F(x, v) of rank 2; 
(iii) JC|J,X], xyjc2^3 in F(x,y). 
(Here (i) is easy. We indicate briefly a proof of (ii): Let [x,y] G H < F(x,y). If 

x tf: H, then there is a right Schreier transversal for H in F containing x~x, and then 
the Schreier rewrite of x~ly~lxy will yield a word of length < 3 in the corresponding 
Schreier free generators of//. As squares or cubes of such generators are easily ruled out, 
it follows that [x, _y] is primitive in //. On the other hand if x G //, then y $ //, and the 
preceding argument applies to [y,x] = [x,y]~l with the roles of JC and y interchanged. 
That the elements in (iii) are primitive in every proper subgroup containing them can 
be established along similar lines. That they are not primitive is an easy consequence 
of J. Nielsen's result that the natural epimorphism AutF(x,y) —• AutA2, where A^ is 
the abelianization of F(x,y), has kernel Inn F(x,y). That they are inequivalent follows by 
applying Whitehead's algorithm (see e.g. [4], p. 166).) 
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The notion of "primitivity", and so also "almost primitivity", may be extended to 
arbitrary groups: We shall say that an element g of an arbitrary group G is primitive 
in G if g generates an infinite cyclic free factor of G, i.e. if g has infinite order, and 
G = (g) * G\ for some G\ < G. An element of G is then almost primitive in G if, as 
before, it is primitive in every proper subgroup containing it, but not in the whole group 
G. An example germane to the application we have in view is that of a finite cyclic group 
Cn: any generator is (vacuously) an APE in Cn. 

The following simple result (proved in §2) furnishes a method of obtaining new APEs 
from known "irreducible" ones. 

PROPOSITION 1.2. Let A, B be arbitrary groups containing APEs a, b respectively. 
Then the product ab is either primitive or an APE in the free product A * B. 

(It is highly likely that in fact ab is an APE in A * B if and only if a, b are APEs in 
A, B respectively; this may be provable for instance by modifying part of the proof of the 
Grushko-Neumann theorem in [5]. As this stronger result will not be needed, we shall 
not pursue the matter further here.) 

Of the resulting examples we single out two particular types for attention. 

1.3 EXAMPLES OF REDUCIBLE APES. (i) (cf. [7, Theorem 2.2]). In the free group 
F = F(xj,yi, Zj',1 < i < m, 1 < j < n) of rank 2m + n the element 

(1) [x\9yi]'"[xm9ym]^'"zrn\ 

(where the pi are not necessarily distinct primes) is an almost primitive element of F. 
(ii) Let c\,..., ck be generators of finite cyclic groups d , , . . . , Cnk. In the group 

(2) K = Cn] * • • • * Cnk * F(xhyr, 1 < * < m), 

the free product of the k finite cycles and 2m infinite cycles, the element 

(3) c\ • • -ck[xuy\] • • -[xm,ym] 

is almost primitive. 
The example (ii) is of interest (see also below) since setting the element (3) equal to 1 

in K yields the general presentation of the finitely generated Fuchsian groups (other than 
those that are free products of cyclic groups). 

Our main results concern what might be termed the "primitive" behaviour of powers 
of APEs in subgroups containing such powers minimally. If x is primitive in a group G, 
and x11 is the smallest positive power of x in a subgroup H, then it is not difficult to show 
that xJl is primitive in H. In fact much more is true: there is a full set of representatives 
gi, i G /, for the double cosets Hg(x), with the property that the smallest positive powers 
giX^gJ^ in H (for those / for which gi(x)gjx H H ^ {1}) form a "coprimitive" subset of 
H, i.e. freely generate a free factor ofH. (This can be established easily using the Kurosh 
subgroup theorem.) The situation for an almost primitive element is more complex, al­
though, at least in some cases, still tractable. For the APE [x,y] in F(x,y) we have the 
following result. 
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THEOREM 1.4. Let H be any subgroup ofF(x,y), and let {at \ i G /} be a full set of 
representatives (including 1) of the double cosets Hg([x, y]), g G F. Let J Ç I consist of 
those indices j for which 

aj([x,yViajx fMi ± {\}, 

and for each such j denote by ntj the least positive integer such that aj[x,y\mj ajx G H. 
Then the elements cij[x9y]mjayl are all distinct, and the ai, i G I, may be so chosen that 
either: 

(i) the dj[x,y]mJafl, j G J, are coprimitive in H; or 
(ii) they form a finite, non-empty, minimally non-coprimitive set in H (in the sense 

that every proper subset, but not the whole set, is coprimitive—one might use the 
term "almost coprimitive "), and furthermore 

\F:H\ = X>; (<oo), 
jej 

(so that in fact J — I). 

Motivated by this result, we make the following definition. 

DEFINITION 1.5. Let w be an APE in an arbitrary group G. For any subgroup H < G, 
let {gi | / G /} be a full set of representatives, including 1, of the double cosets Hg(w), 
let {gj | j G J Ç /} be the subset of those representatives for which 

gj(w)g]-lnH?{i}, 

and for each7 G J denote by lj the least positive integer such that gjwjgy1 G H. We shall 
say that the APE w is tame in G if the representatives gi, i G /, can always (i.e. for every 
Ft < G) be chosen so that the gjW^gJ1, j G J, are all distinct, and either: 

(i) are coprimitive in //, or 
(ii) form a non-empty, finite, minimally non-coprimitive subset of //, which further­

more has finite index in G, given by 

\G:H\=J2tj « 0 0 ) , 
jeJ 

(whence, in particular, J = I). 
Thus by Theorem 1.4, the commutator [x,_y] is a tame APE in F(x,y), and our object 

is to identify as many more tame APEs as possible. It is easy to verify that a generator of 
a finite cyclic group is (vacuously) tame. However JĈ , p prime, is not tame in F(x) and, 
as we shall see below, neither is xPyq (p, q primes) in F(x, y). However the "free product" 
of tame APEs is again tame. 

THEOREM 1.6. If a and b are tame APEs in groups A and B respectively, then their 
product ab is tame in A* B. 

COROLLARY 1.7. In the group (2), namely 

K = Cnx * • • • * Cnk * F(xi,yr, 1 < / < m), 
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the element c\ • • • Ck[x\,y\] • • • [xm,ym] is a tame APE. 

COROLLARY 1.8 (cf. ROSENBERGER [6]). Ifw is a tame APE in a group G (e.g. as in 

the preceding corollary) and H < G contains wx, A > 0, but no smaller positive power 

ofw, then either 

(i) wx is primitive in H, or 

(ii) wx is an APE ofH, and H has index À in G (so that {1, w , . . . , wA~ l} is a complete 

left or right coset representative system for H in G). 

(This is immediate from the definition of "tame APE", except for the assertion in (ii) 

that wx is an APE inH. To see this, supposeH\ < His such that wx G H\. Then H\ does 

not satisfy (ii) since the index is wrong, so that (i) must hold for this subgroup H\, i.e. 

wx must be primitive in H\.) 

We note that the example on p. 172 of [7] shows that the alternative (ii) can arise. 

COROLLARY 1.9 (HOARE, KARRASS, SOLITAR [ 1 ]). In a finitely generated Fuchsian 

group, the subgroups of infinite index are free products of cyclic groups. 

PROOF. If the Fuchsian group is a free product of cycles, then by the Kurosh sub­

group theorem so is every subgroup. Hence we may suppose that the Fuchsian group is 

isomorphic to 

(4) 
K:=K/(w)K 

= (c\,...,ck',x\,yx,...,xm,ym | c"] = • • • = cn
k
h = c\ • • -ck[x\9y\] • • • [xm,ym] = 1), 

where K is as in (2) and w as in (3). Write Af for the normal closure in K of the word w. 

Let H be any subgroup of infinite index in K — K/N (the group (4)); its complete inverse 

image, H say, under the natural epimorphism K —> K/N, is then a subgroup of infinite 

index in K, containing N. Since H > N, we have gwg~l G H for all g G K, so that by 

Corollary 1.7 there is a full set {gi | / G / } of representative of double cosets Hg(w) in 

K such that the elements 

hi :=giWgTl, i^1* 

are coprimitive in H. Let H\ < H be such that 

H= (ht | / G / ) * / / i . 

Now each g G G has the form g — hgtw
q for some h G / / , / G 7, q G Z (all depending 

on g), whence 

gwg~] = hgiWgylh~l = hhih~x. 

From this it is clear that N is the normal closure in H of the set {hi | / G / } , so that 

H/N = H\, which has the requisite structure (by the Kurosh subgroup theorem—see 

below). • 

REMARKS. 1. This argument applies (potentially) more generally: If any tame APE 

in a free product of cycles is set equal to 1, then in the resulting group all subgroups of 

infinite index will be free products of cycles. 
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2. We may conclude from this proof that xpyq is not a tame APE, since the group 
(x,y | xpyq — 1) has infinite-index subgroups that are free abelian of rank 2. 

The proofs of our main results (Theorems 1.4 and 1.6), though lengthy, are elementary 
(given some familiarity with the Schreier and Kurosh subgroup theorems), and so provide 
a possible alternative approach to the exploration of structure of a natural class of groups 
potentially wider than that of the finitely generated Fuchsian groups. 

The following questions naturally suggest themselves. 
1. Are there tame APEs other than those of the form (3) (and their automorphic im­

ages)? Are, for instance, [x,y]zp, xpyqzr (p, q, r prime) tame APEs in F{x, y, z)? 
2. Is it possible to classify all irreducible APEs, at least of F(x,y)l 

2. Preliminaries to the proof of Theorem 1.6: The Kurosh subgroup theorem. 
Let A, B be groups. It is well-known that each element g of their free product A * B has a 
unique normal (or reduced) form as an "alternating" product g = d\ • • -dn, where n > 0 
and the d{ belong t o A \ { l } o r # \ { l } with adjacent d[ from different factors. For n > 1 
we call the d\d^ • • -d(, i > 0, initial segments of g, and d\ the beginning of g\ terminal 
segments, and the ending of g are defined analogously. 

For a precise formulation of the Kurosh subgroup theorem for A * B, the concept of 
a "Kurosh system", analogous to that of a Schreier transversal for a subgroup of a free 
group, is useful. 

DEFINITION 2.1. Let H < A * B. A Kurosh system for H in A * #, is a pair (7^, TB) 
of right transversals for H in A * #, both containing 1, with the following properties: 

(i) each of the sets TA, TB is closed under taking initial segments; 
(ii) if t G TAUTB ends in an element of A, then t G TA (and, similarly, if the ending 

of t is in B, then t G TB)\ 
(iii) for each fixed s £ TA such that either s = 1 or s ends in an element of B \ {1}, the 

set of elements a G A such that sa G ^ , forms a right transversal for s~lHs H A 
in A (and analogously with A replaced by B throughout). 

We shall also need the notation SA for the subset of TA containing 1 and those elements 
of TA whose ending is from B \ {1} (and SB analogously). 

THEOREM 2.2 (THE KUROSH SUBGROUP THEOREM). Let H < A * B. There exists a 
Kurosh system for H in A* B, and for any such system the following assertions are valid: 

(i) the set 

(5) * : = { ^ W ] _ 1 \t£TA\TB}, 

where ^P'.TA —> TB is the bijection defined by Ht = H(p(t), is a free basis for the subgroup 
F, say, it generates; 

(ii) the subgroup H is generated by the subgroup F together with the subgroups 
SAASÂ1 HH, SA G SA, and SBBS^X HH, SB G SB, as the free product of these subgroups: 

(6) H = F * [ [ J * (SAASÂ1 H H)] * n * (*BBSB
1 H H). 

sAeSA sBesB 
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This theorem may be deduced from a "rigidity" or "non-cancellation" property of 
the generators of H given by (ii). As we shall be exploiting this property, we shall now 
describe it in some detail. We shall call the non-trivial elements of the groups sAAs^l OH, 
s A G SA, of the SBBS^1 D H, SB G SB, and the elements of O Kurosh generators of 
H (relative to a given Kurosh system (7^, iTg)). We define the "significant", i.e. non-
cancelling, syllables of a Kurosh generator as follows: Taking any t = t\a\ G TA\TB, 

and writing ip(t) = r\b\ G 7# \ 7^ (SO that a\, b\ are the endings of t, <p(t) respectively), 
we have 

tW(t)VX = tiaibïlrïl 

as the reduced form of a typical element of O; the significant symbols of this element are 
then defined to be the symbols a\ and b\x. For a Kurosh generator of the form SAOCS^1, 

a G A \ {1}, on the other hand, we define the significant symbol to be a, the central one, 
and make the analogous definition for Kurosh generators of the form sBf3s^ \f3eB\{\}. 
The well-known non-cancellation property of the significant symbols is as follows. 

LEMMA 2.3. (i) O n O 1 = 0. 

(ii) Let h\ • • -hn be a product of n > 1 Kurosh generators of H < A * B or their 
inverses, where adjacent hi are not mutually inverse elements 6>/OUO_i, nor in the same 
subgroup SAAS^1 HH or sBBs^x OH. (In other words h\ • • -hn is, potentially or formally, 
the normal form of a non-trivial element of the free product on the right-hand side of (6).) 
Then in reducing h\ • • -hnto its normal form as an element of the free product A* B, the 
significant symbol(s) of each hi remain uncancelled, although they may be consolidated 
(i.e. merge without cancelling, with symbols from the same free factor A or B). 

For our proof of Theorem 1.6 to follow, we shall be needing a rather special Kurosh 
system (TA,TB) for H in A * Z?, defined in terms of the given elements a G A, b e B, 
by modifying the usual construction. In that construction, one first chooses the identity 
element 1 as representative of each of the double cosets //A, HB, and then, assuming 
inductively that A- and ^-representatives have been chosen (i.e. to go into TA and TB) 
for the right cosets of H containing elements of length < k (where k > 1), one chooses 
double-coset representatives of the (//, A)-double cosets of length k by choosing from 
each such double coset HgA an element t of smallest length k, say t = t\b\ in reduced 
form, where b\ G B \ { 1 } and then replacing t\ by its A-representative ^ say, already 
chosen (by the inductive hypothesis), obtaining thereby t — t^b\ as the new member of 
TA (and 7fl). The A-representatives of the cosets Hg\ Ç HgA — HtA are then obtained, 
according to the usual procedure, by arbitrarily choosing a right transversal {a}, con­
taining 1, for t~lHt HA in A, and including in TA all multiples of t on the right by the 
members of this transversal, i.e. all ta (cf. the defining condition 2.1(iii)). The procedure 
for constructing TB is analogous. 

Relative to prescribed elements a G A, b G B (ultimately to be APEs in the groups 
A, B respectively), the inductive step in the foregoing construction may be modified as 
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follows: Rather than choose the transversal {a} arbitrarily, we first choose representa­
tives ai, i G if (some index set) of the (t~xHtnA, (a))-double cosets in A, choosing 1 
to represent (rxHt HA)(a), and then augment these to the desired full transversal for 
t~xHt H A in A given by adjoining the elements 

(7) aid\ 0 <ji < nuit) if arlrlHtat H (a) = (amM), rm(t) > 0, 

ata
m, m G Z if arlrlHta( H (a) = {1}. 

(The fi-endings to be attached to s G SB (S assumed already constructed) are chosen 
analogously using (b) in place of (a).) 

We end this section with the 

PROOF OF PROPOSITION 1.2. Let H < A * B be such that ab G H. Suppose first 
that a G H (whence also b G H). By the Kurosh subgroup Theorem (2.2) H can be 
decomposed as a free product of the form 

H = ( A n / / ) * ( # n # ) * # i . 

If A n H < A, then a is primitive in A D //, and therefore, in view of the above free 
decomposition of //, is also primitive in H. If on the other hand A Pi// = A, then we must 
have BHH < B, and we infer in the same way that b is primitive in H. In either case it 
follows that ab is primitive in H. 

If now a $ //, then also b $ H, and we may choose a Kurosh system (TA, TB) for H in 
A * B with a G TA, b~x G T# (by the usual procedure for constructing a Kurosh system 
described above). This done, we shall have a(b~ ! ) _ 1 as an element of the set O (see (5)), 
so that ab is primitive in H. m 

3. Proof of Theorem 1.6: The free product of tame APEs is a tame APE. As in 
that theorem, let a, b be tame APEs in the groups A, B respectively, and let H < A * B. We 
construct a "minimal" Kurosh system for H as above (see in particular (7)), but now being 
more particular in our choice, at the inductive step, of the double-coset representatives 
ai to be attached as A-endings to an element t already constructed in SA (and likewise 
in our choice of the 5-endings b\ to be attached to the s G S#). The choice of these <z,-, 
/ G if, is made as follows: By hypothesis, Definition 1.5 applies to the APE a of A, in 
particular with respect to the subgroup t~lHt n A. Choose at, iElf, to form a full set of 
representatives of double cosets (t~lHtP\A)a(a), a G A, for which one of the conditions 
(i) or (ii) of Definition 1.5 is satisfied. Thus if the subset {aj \ j G Jf Qlf} consists 
of those representatives for which taj(a)ajxt~x Pi H ^ {1}, and for each j G Jf, rrij(t) 
denotes the least positive integer for which ta^a™^ajxt~x G //, then, as well as being 
distinct, 

(i) the elements 

(8) tajamj{t)aj xrx, j ejf, are coprimiti ve in H n tAi~x, or 
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(ii) these elements form a finite minimally non-coprimitive set in H n tAt , and 

(9) \tACx :HHtArl\ = YJ rrij(t) « oo). 
j£Jf 

Similarly, in the inductive step in the construction of 7# (carried out in step with the 

construction of TA), we choose (s~xHs D B, (Z?))-double coset representatives b[, i G if 

(s assumed already constructed in Sg) to be attached as Z?-endings to s, such that Defi­

nition 1.5 is satisfied for these bt with respect to the subgroup s~xHs HB < B and the 

APE& in B; i.e. if {bj \ j G Jf Ç if} is the subset of those representatives among the 

bt, i G If, for which sbj(b)bjx s~x H H ^ {1} and tij(s) denotes the least positive integer 

such that sbjbn^s)bjxs~x G H, then one of the analogues of (i), (ii) above occurs. 

Having thus carefully chosen the (minimal) special Kurosh system (7^, TB) for H, 

let {gi | / G / } be a full set of (//, (a/?))-double coset representatives of least length 

subject to being in TA. Let {gj \ j G J Ç / } be the subset of these representatives for 

which gj(ab)gjx H H ^ {1}, and for each y G / denote by lj the least positive integer 

satisfying gj(ab)ljgjx G H. We shall show that the defining conditions for a tame APE 

hold for ab G A * B with respect to H < A * B and this choice of gi, i G /, that is that the 

gj{ab)lJgJx are distinct, and: 

(10) (i) they are coprimitive in H, or 

(11) (ii) they form a finite, minimally non-coprimitive set in H, and 

\F:H\=Y,h (<oo)-

We shall henceforth assume that (i) does not occur and deduce from this that (ii) must 

occur. 

We separate out portions of the proof as lemmas (the first of which uses only the 

assumption that the appropriate conjugates are distinct). 

LEMMA 3.1. Let H < A * B and let (TA, TB) be a special Kurosh system chosen as 

above relative to the APEs a G A, b G #. The following assertions are valid, 

(i) In the reduced rewritten expressions 

(12) gj(ab)l'g]-l=hji--'hjrj, j e J, 

for the gj(ab)lJgJx (see above) in terms of the Kurosh generators determined by the spe­

cial Kurosh system (TB, TB), any Kurosh generator hjk of "conjugate form", e.g. from 

some subgroup tAt~x OH, t G SA, has the form taioT1^ ajx t~x for some representative 

ai G A (chosen as above) of a (t~~xHtP\A, (a))-double coset. Moreover each such Kurosh 

generator occurs at most once in the totality of the right-hand-side expressions in (12). 

(The analogous assertion is valid with B, b in place of A, a.) 

(ii) Any Kurosh generator from O (see (5)) appearing in a rewritten expression in 

(12), occurs at most twice in the totality of such expressions, and if twice then once to 

each of the exponents ± 1 . 
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PROOF. Applying to gj(ab)jgj the left-to-right "Kurosh rewriting process" for sys­
tematically expressing an element of H in terms of our Kurosh generators (see [4, 
p. 230]), one obtains generators of the following forms: 

of conjugate form (or trivial) ( ^ ^ ^ ( f ^ J ^ 

(13) 

from <D UflT' (if nontrivial) ( ^ ^ 

where 0 < kj < lj, and (fA: A *B —> 7^, (pB:A*B —> 7^, are the right-coset representative 
functions for H in A * B. 

In view of our special choice of Kurosh system, each element (pA [gj(ab)kJ] must have 
the form taid for some t G SA, specially chosen (rxHt HA, (a))-double coset repre­
sentative ai in A, and integer / satisfying 0 < / < mt(t) if mt(t) is defined, otherwise 
arbitrary (i.e. if tai(a)aj~xrx D H = {1}), and the same is true of <pA[gj(ab)kJa] (with 
the same t and at for the same kj). It follows that for an expression of the first type in 
(13) to represent a non-trivial generator we must have <pA[gj(ab)kJ] — tata"1^1 (for 
some t, at as before), and (fA[gj(ab)kJa] = tat (and then that generator will have the form 
tciiami<yt)aYxrx). (Analogously, a non-trivial generator of the second type in (13) must 
have the corresponding form sbibni<yS)blxs~x.) Thus a generator of the first type can arise 
twice in the course of applying the Kurosh rewriting process to the gj(ab)ljgjx, if and 
only if there exist./, / G J such that 

(14) VAlgMbfy = <pA[gi(abfy (= tata
mM-x\ 

for some appropriate kj, £/. However then Hgj(ab) = Hgi(ab), so that we must in fact 
have j = /; but then by (14) again, withy = /, we have 

&•(**)!*>-V e H, 

and kj T̂  kj would entail 0 < \kj — kj\ < lj, contradicting the minimality of lj. Hence 
kj = kj, and we see that in fact no such generator can arise twice during the rewriting of 
the totality of the gj(ab)lJgJx. (Clearly the same argument establishes that a generator of 
the form sbibni{s)bjxs~x can likewise arise at most once.) 

It is on the face of it, however, conceivable that two non-trivial distinct generators 

(15) taicrMailt~\ taka
mk(t)a,;xrx (same/) 

might emerge as adjacent in the course of the rewriting process, in which case the rewrit­
ten expression would not be reduced in the Kurosh generators. We now show that this 
cannot happen. Suppose that (as above) 

<pA[gj(ab)ki] - tata
mM-x, <pA[gj(ab)kJa] = tah 
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and that the next non-tri vial generator arising (to the right of this one) is of this form for 
the same t, so that for some / > 0, 0 < kj + / < //, 

(16) <PA[gj(ab)kf*1] = taka
m^-\ ^A[gj(ab)k^la] = tak. 

The triviality of the intervening expressions (13) would then mean that 

VB[gj{abt+l] = <pA[gj(ab)kj*1] = ^A[gj(ab)kJa]b{ab)l~x = taib{abj-\ 

which is incompatible with (16). (The same argument shows that, analogously, non-
trivial generators from sBs~l H H cannot arise next to one another in the rewriting pro­
cess.) 

If a non-trivial generator of the third type in (13) (i.e. an element of O) were to arise 
more than once in rewriting the gj(ab)lJgJ{, then, the "first half of such a generator being 
uniquely determined, we should have 

<PA[gj(ab)kJa] = <pA[gi(ab)k'al 

for some j , l G J and appropriate kj, kt. However this yields gj(ab)k~kigjx G H, so that 
j = /, and then it follows as before that kj = £/. A similar argument shows that a nontrivial 
generator of the fourth type in (13), an element of O 1 , likewise occurs at most once as 
an /î-symbol in the totality of reduced rewritten expressions in ( 12). • 

COROLLARY 3.2. With a e A, b e B, H < A * B, (TA,TB) a special Kurosh system 
forH,J Ç /, etc., as above, suppose that the possibility (10) does not occur. There then 
exists a finite (non-empty) minimally non-coprimitive subset M of the gj(ab)fjgj\ and 
any such subset M, consisting of elements 

(17) *i(a&) V.-••.**(«*) V . 

say, with reduced rewritten expressions in terms of the Kurosh generators of H deter­
mined by (7A, TB) given by (cf. (12)) 

(18) gli{ab)t»g-{=hll\---h,rtL, li=\,...,k, 

must have the following properties. 
(i) If a Kurosh generator h^u in (18) is of conjugate form, say (invoking Lemma 3.1 ) 

hlu/ = taicrMàrxt-\ 

where t G SA and at, i G if, is a specially chosen (t~]HtDA, (a))-double coset represen­
tative in A, etc., then every "cognate" generator 

tajcr^ajxr\ jeJf, 

must also occur as an h-symbol in (18) (and then just once by Lemma 3.1), and further­
more (9) must hold for this t G SA. (The analogous assertion is valid for generators of 
the form sbjbn^bjxs~x.) 
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(ii) Each Kurosh generator h^v G O appearing in (18) occurs exactly twice, once to 
each of the exponents ±1. 

PROOF. We first establish (i) and (ii) for such a finite non-empty set M, and then give 
the (considerably longer) proof that such a set M exists. 

Thus let M be as in the statement of the corollary. To see that (i) holds, suppose the 
contrary, and let h^lJ/l,..., hilrVr be all the Kurosh generators from tAt~lDH (t G SA fixed) 
occuring in the right-hand sides of (18). Assuming, as we are, that the conclusion of (i) 
fails, then either because (8) holds or because h^^,..., h[lrVr do not exhaust all of the 
tajûmJ^aJ~lt~lJ G Jf, the elements hlixVx,..., h[irVr must generate freely a free factor H\ 
say, of//, which furthermore by the Kurosh subgroup theorem has a "free complement" 
7/2 (i>e. such that H = H\ * H2) containing all other h^ occurring in (18). It follows 
that if g\(ab)ElgYl say, is the (unique) element on the left-hand side of (18) involving 
/i/i,!/,, then (g\(ab)ilg\x) has a free complement in H containing all h^v ^ hflll/l, and 
therefore g2(abY2g^x,... ,gk(abYkg^x. Hence the subset M\{g\(ab)ilgY1} must be non-
coprimitive in //, contradicting the minimality of M. 

For (ii), observe that if there were no h^ — h~x G O - 1 , then, supposing without loss 
of generality that g\(ab)ilg\l is the (unique) element in (18) involving h^, we could, 
as in the above proof of (i), decompose H as a free product (g\(ab)txg~^x) * H3 where 
H3 contains all h^ ^ h^v in (18), thereby obtaining once again a contradiction of the 
minimality property of M. 

It follows in much the same way that if for any t G SA the set 

(19) Xt:={taja^arxrx\jeJt} 

is coprimitive, then the set of those gj(ab)[jgj~l involving generators from Xt, freely gen­
erates a subgroup H\ of H freely complemented in H by the subgroup H2 generated by 
all other Xf together with O, which clearly contains all gj(ab)lJgJx not involving gener­
ators from Xt. Hence in view of our assumption that the totality of the gj(ab)lJg^x are 
not coprimitive, these latter gj{ab)ijgjl cannot be coprimitive, and we may restrict at­
tention to them. Thus we may suppose without loss of generality that every Xt is a finite 
minimally non-coprimitive subset of tAt~x Pi H. The existence of a (non-empty) finite, 
non-coprimitive subset of the gj(ab)t]gjx (and therefore a minimal such subset), under 
the assumption of the corollary, is then immediate from the following 

LEMMA 3.3. Let {H\ \ X G A} be a family of groups and for each X let X\ be a 
finite almost coprimitive set of generators ofH\. Let 2, be a subset of the free product 

AeA 

with the property that there exist expressions for the elements of 2 as (semigroup) prod­
ucts of the generators from UAGA ^A> with each such generator appearing at most once 
in the totality of these expressions. Then either £ is coprimitive in H, or Z contains a 
(non-empty) finite non-coprimitive subset. 

https://doi.org/10.4153/CJM-1993-011-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-011-9


236 A. M. BRUNNER, R. G. BURNS AND SHEILA OATES-WILLIAMS 

(In the context of Corollary 3.2, the role of the X\ is played by the Xt (assumed finite 
and almost coprimitive) together with the sets {/z,/i-1}, h G O, also finite and almost 
coprimitive.) 

PROOF OF LEMMA 3.3. (As an aid to understanding the argument the following 

two examples may be useful: Let xn, n G Z, be free generators of a free group F; then 
the set {x~lx^+l | n G Z}, though locally coprimitive in F is not coprimitive (and 
the assumptions of the lemma, with Xn := {x~\x^}, do not hold for it), while the set 
{xnx~lx | n G Z} is coprimitive in F.) 

Writing Z^ for the subset of Z consisting of those elements having at least one syllable 
from^A, we define a graph T by taking as vertices the Z^, and joining two distinct vertices 
ZAl, ZA2, by an edge precisely if ZAl D ZA2 ^ 0. (Note that since the ZA are finite, each 
vertex has finite valency in T.) We shall show that the union of the vertices of any infinite 
connected component of T is a coprimitive subset of//, in fact of the free product of those 
H\ such that ZA belongs to the component. It will then follow that if the whole set Z is 
not coprimitive in //, that there must be a finite connected component of T the union of 
whose vertices is a (finite) non-coprimitive subset of //. 

Thus let C be an infinite connected component of T. Choose a subtree T of C induc­
tively as follows: Choose a "root", or level 1, vertex Zi say, arbitrarily. (We shall re-index 
the ZA G Vert *T with the natural numbers as we progressively choose them.) The level 2 
vertices are chosen next in the following manner: let Z2 (= Z^2)—we shall occasionally 
use superscripts to indicate the level of a vertex in *T) be any vertex of C adjacent to Zi 
and not contained in Zi (i.e. Z2 2 ^i)> a nd Z3 (= Z^2)) any other vertex of C adjacent 
to Zi and not contained in Zi U Z2, and so on, until all vertices adjacent to Zi have been 
used up. We shall then have as our level 2 vertices in T, all joined to Zi, 

y(2) y(2) 

where Zp} Ç. Zj UZ2U- • -UZ/_i, for each / = 2, ...,&. To obtain the level 3 vertices, first 
join to Z;, a vertex Z^j adjacent to it in C and not contained in |jf=i Z,, and continue as 
for the adjunction of the level 2 vertices to Zi. Repeat this procedure for Z^2),..., Z^2), in 
order, to obtain all of the level 3 vertices, say 

y(3) y(3) 

where again Z^3) 2 UPi *̂ f° r e a ch r <k+ L The tree *T is constructed by continuing 
in this way (inductively) ad infinitum, by joining to each level / vertex (in order) certain 
of the adjacent vertices (in some order) to obtain the level (/ + 1) vertices (observing 
the requirement that each vertex adjoined should not be contained in the union of its 
predecessors). Denote by //, and Xt (Ç Hi) the free factor of H and specified subset 
corresponding to each vertex Z/ of *T (i.e. re-index also the relevant Ht and Xt to accord 
with the re-indexing of the Z* G Vert T). Note that the union of the vertices of T is the 
union of those of C. 

Consider now the subtree T of T maximal with respect to the property of having no 
extremal vertices (with the exception of the root vertex Zi if this is extremal); thus T 
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is obtained from T by shearing off all finite branches compatibly with leaving Zj as a 
vertex of T. From each vertex Z^ of the "trunk" T, choose an element 

for some vertex Z^+1) adjacent to Z^ in T and at the next higher level in T, such that 

(Tu & U ^ -
i<u 

(This is possible by virtue of the fact that Zw Ç. \Ji<u Z/.) Corresponding to each such au, 
let xM, xv be elements of Xw, Xv respectively, occurring as syllables of ou. (Note that, by 
definition of Zw as consisting of all elements of Z with one or more syllables from XM, 
the element ou G ZM must have at least one of its syllables fromXM, and, similarly, since 
also au E Zy+1), a syllable from Xv. Note also that x\ is not defined, and that there may 
be other v for which xv is not defined. 

For each subscript / = 1,2,..., define a subset X/ of X/ as follows: 
(i) if Z/ is a vertex of T, take X/ to consist of all elements of X/ \ {i/, JC/} occurring 

as syllables of vertices Z/ withy < /; 
(ii) if Z/ is a vertex of T but not of T, set X/ := X/ D Z/. 
Note that in either case X/ is a proper subset of X/ (in case (i) since JC/ ^ X/, and in (ii) 

since T is connected). Hence X; is a coprimitive subset of///. Write 

oo 

* : = ( J * < -
1=1 

For each / let X/ be a subset of /// satisfying 

/// - <X/ \ {Xi}) * (X,-), 

in the case that Z/ G Vert T, and /// = (X/) * (X/) otherwise. 
Write U for the set of indices u such that ZM G Vert T. The set 

(20) X : - U ( ^ \ W ) U | J * 
ueu igu 

is a coprimitive subset of //, in view of the assumption that each X, is a finite minimally 
non-coprimitive subset of///. Setting 

oo 

*:=U*.-, 
1=1 

we have in fact 
oo 

ll*Hi=(X)*(X). 
i = l 

We shall now show how the set X U X can be transformed to a set containing 

oo 

IJZ/UXUX, 
/ • = 1 

https://doi.org/10.4153/CJM-1993-011-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-011-9


238 A. M. BRUNNER, R. G. BURNS AND SHEILA OATES-WILLIAMS 

by means of a Nielsen transformation (i.e. induced by a free automorphism of the free 
group o n l U I ) leaving X U X fixed elementwise. (It will then follow that |JSi ^' *s 

coprimitive in n£2* #*•) The Nielsen transformation in question is defined in two stages, 
as a product of two simpler such transformations. First consider the specially chosen 
elements ou from the ZM G Vert CT. Recall that each such GU was chosen from ZM Pi Zv 

where Zv is some vertex of T one level higher than ZM, and that we singled out syllables 
;tM, Jcv of aU9 coming from XM, Xv respectively. Hence GU has the form 

(21) GU = wuxvzu, 

where xv G Xv \ {xv} (since au ^ crv), and the syllables of wu and zu other than xw all lie 
in various % with i > w, since GU was chosen outside |Ji<M £/• As the first of our Nielsen 
transformations of X U X, we pre- or post-multiply each xv by the appropriate elements 
of these % and by 

xueHu = (Xu\{xu})*(Xu). 

However since of course xu G Hu (if xu is defined), this replacement of each xv by the 
chosen au involving it, must be carried out inductively, in the natural order of the indices 
v. 

Thus to begin with, we obtain 

a i = w\x2z\, 

(in the notation of (21)), by pre- or post-multiplying X2 by elements of various X; with 
/ > 1, and by 

x{ eHx = ( X , \ { J C 1 } ) * ( X 1 ) ; 

since Jci is not defined, this presents no difficulty. The inverse transformation simply pre-
or post-multiplies o\ by the inverses of the appropriate elements of 

(X, \ { * i } ) U X , 

(all of which are left fixed), to yield back X2. Now suppose v > 2, and, inductively, that 
we have defined a Nielsen transformation (p of XUX replacing all xVl with vi < v by the 
corresponding aUl, and fixing all other elements of XUX. Then in extending this Nielsen 
transformation to xv as described above (see (21) et seq.), the only xVl involved (if any) 
are those with vi < v, and these are generated by (X U X)(p \ {xv}. It follows that the 
replacement of each xv G X U X by the corresponding au is a Nielsen transformation 0\ 
say. 

The second stage, involving the construction of a Nielsen transformation of (XUX)#i, 
is, though simpler, also carried out inductively. Each element G of Zi \ \o\} has the form 

G = W\X\Z\, 

where Jci G X\ \ {x\}, and the syllables of M>I and z\ all come from X. Thus to obtain 
each such G from a corresponding Jci G Xi \ {x\}, one simply pre- or post-multiplies Jci 
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by various elements of X. Suppose inductively that u (> 1) is such that XM G VertT, 
and that for all wj < u (with XW] G Vert T) we have defined a Nielsen transformation of 
(XUX)#i replacing certain xM] GlM l \{xH |} (via pre- or post-multiplication by elements 
of X) by the elements of 

U(z«i\K})-

Each element <J in Xw \ {crM} but outside \JU <u ^ P n a s the form 

where xu G Xu\ {xu} has not yet been replaced, and the syllables of wu and zu all come 
from X. Hence proceeding as before we may extend our current Nielsen transformation 
to include Xw \ {au} in its range. This completes the definition of the second Nielsen 
transformation 82. The product 6162 is then a Nielsen transformation o fXUX fixing 
XUX, whose image contains all XM G Vert (T. 

There remains the question of the X/ ^ Vert T. Now it is not difficult to see (from 
the definition of T) that if X/ is a terminal vertex of the tree T (different from Xj), then 
the elements of X,- \ X/ all lie in earlier X7- in Vert T. Working backwards from each such 
X/ towards the "trunk" T, one then sees that each X7 connected to X; in the complement 
CT\CI\ has all of its elements outside Xj contained in vertices of *T, so that in fact 

Xu(\JI,u)D\JI,i. 

Since the union of the vertices of *T is the union of the vertices of C, it follows that the 
latter set is coprimitive in the free product of those H\ such that X̂  is a vertex of C, as 
claimed. • 

For the remainder of the proof of Theorem 1.6 we consider a subset M of the 
gj(ab)lJgj~\ j G 7, made up of the elements (17) as in the statement of Corollary 3.2, 
with reduced rewritten expressions in terms of our special Kurosh generators for H as 
in (18), and having properties (i) and (ii) of that corollary (as consequences of deny­
ing the possibility (10)). We shall treat the words on either side of the equation (18) as 
"cyclic" words, i.e. we shall consider the final symbol of each such word as adjacent 
to, and preceding (in clockwise order—see (22) below) the initial symbol, carrying out 
any cancellations thereby made possible. Thus the cyclic words arising from the words 
gn(ab)lflg~\ ji = 1 ,...,&, in (18) will be the same as those arising from the words (ab)1», 
[i — 1, . . . , k, but we preserve the correspondence between each such cyclic word in a 
and b and that arising similarly from its rewritten expression h^\ • • - h^ in the Kurosh 
generators. For each /x = 1,. . . , k, this may be indicated diagramatically as in (22): 

REMARKS. 1. Note that in the cyclic word in the h[a/ depicted on the right side in (22) 
it has been assumed (for convenience only) that h^\ ^ h~^, since in the contrary situation 
h^\ and h^ would have been cancelled, and any further cancellations effected until the 
cyclic word was reduced. However, whatever the additional cancellation incurred, the 
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Jufab)^ < > < )hjui ...hjur^ . 

(22) 

reduced cyclic word arising from h^\ • • • / i ^ continues to have the property established 
in the course of proving Lemma 3.1, of having no two generators of the form (15) as 
adjacent /i-symbols. For in the contrary case, application of the Kurosh rewriting process 
to (g^(ab)l^g~{) — gn(ab)2l»g~l would yield two such adjacent generators, whereas 
the argument beginning just prior to (15), which did not depend on the minimality of /^, 
applies to show that this is not possible. 

2. Since each Kurosh generator of conjugate form (and so, by Lemma 3.1 (i), of the 
form tajamJ^aylt~l or sbjbn^s)bjls~l) occurs at most once in the right-hand sides of the 
equations (18) (and if it does occur then so do all of its "r-cognates" by Corollary 3.2(i)), 
the above process of forming reduced cyclic words out of the h^\ • • • h^, \i = 1 , . . . , /c, 
will not result in the disappearance of any of these generators (although conceivably 
some pairs of mutually inverse /i-symbols of non-conjugate form may cancel). 

In the rest of the proof we shall use the notation h^tï/-\, h^v+\ for the predecessor and 
successor respectively of an /z-symbol h^ of a cyclic ft-word in (22). 

The following corollary of Lemma 3.1, like that lemma, does not require the full 
strength of our hypotheses. 

COROLLARY 3.4. With a eA,beB,H<A*B, (TA, TB), et cetera, as in Lemma 3.1, 
consolidation without cancellation of A-symbols, in reducing any cyclic h-word in (22) 
down to the corresponding cyclic word a and b, occurs in one of the following two ways: 

(i) at most two adjacent h-symbols, say h^v and h^v+\, are involved in the consolida­
tion, and as elements of A * B these have the reduced forms 

h^y = u(tata
l) V + i (to/a/+1)v, 

where t G SA, i £ if, and I satisfies 0 < / < m,-(0 — 1 ifrrii(f) is defined, and is otherwise 
arbitrary (see (7)); 

(ii) the central A-symbol of an h-symbol of conjugate form: 

(23) taia
mMaJxr\ 
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is involved in the consolidation, and 

h^y-x = u(taiami(t)~l)~\ h^+i = tatv, 

(where u ends in an element ofB \ {1} and v begins in an element ofB \ {I}). 

(The analogues of(i) and (ii)for consolidation ofB-symbols in the cyclic h-words in 

(22) are likewise valid.) 

PROOF. (Recall from §2 the definition and non-cancellation property of the signif­

icant syllables of the Kurosh generators.) By Lemma 3.1, if a Kurosh generator of the 

form (23) occurs as an h^v in a cyclic /z-word in (22), then it occurs just once. By the 

remark above, neither the preceding generator h^u-\ nor the succeeding generator h^+i 

can be from tAr1 D / / , whence (ii). Any consolidation of A-symbols not involving a 

generator of the form (23) is readily seen to be of the type indicated in (i). • 

We are now in a position to prove the main lemma, from which Theorem 1.6 follows 

relatively easily. Relative to the given elements a G A, b G B, we choose, as above, a 

special Kurosh system (TA, TB) for/ / < A*/?, and, assuming that the possibility (10) does 

not occur, we have a subset M as in (17) with properties 3.2(i), 3.2(ii), which, together 

with the rewritten expressions in the Kurosh generators (see (18)), are turned into cyclic 

words as indicated in (22). Write PA(Q TA) for the (finite) set of elements TA that are 

initial segments of generators h^v occurring in the reduced cyclic /z-words in (22), and 

define P#(Ç TB) similarly. 

LEMMA 3.5. With notation and assumptions as above, the following statements are 

valid: 

(i) For each t G PA HSU, ta^a1 also belongs to PA for every i G if and every admissible 

I. It follows that for every such t and for all i G if, the positive integer mt(t) is defined 

(since PA is of course finite), that is, if — jf. For all such t, and all i G if, the Kurosh 

generator tata™^ ajx t~x occurs (and then just once by Corollary 3.1(i)) as an h-symbol 

in the cyclic h-words in (22). (The analogous assertion is valid for Pg.) 

(ii) Corresponding to each element ta^a1 G PA (as in (i)), with I ^ 0, there is an h-

symbol h^v in some cyclic h-word in (22) with taia1 as initial segment, and an h-symbol 

h^ with (tatal)~x as terminal segment, from neither of which these segments are wholly 

cancelled by the appropriate adjacent h-symbols (and analogously for PB). 

PROOF. Using the representation (22) of the equations (18), we shall establish (i) 

and (ii) of the present lemma by reverse induction on the length of t G PA U PB- (It may 

make for greater ease of understanding to visualize the elements of TA as the vertices of 

a tree % where two vertices are joined by an edge if one is an initial segment of the other 

and their lengths (as elements of A * B) differ by 1 ; the tree (PA determined in the same 

way by PA, is then a subtree of %.) 

As the first step of the induction, consider t G PADSA maximal in PA in the sense that 

it is not a proper initial segment of any other element of PA (i.e. represents an extremal 

vertex, or vertex of valency 1, in the finite tree (PA). Since t is either trivial or ends in an 
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element of B \ {1}, we must have, by Definition 2.1, t G TB also (so that / G TA P T#). 
This, together with the maximality property of t, implies that any Kurosh generator /z//r 

(in a cyclic /z-word in (22)) having t as initial segment must have the form 

(24) hilv = ta\t~\ A / G A \ { 1 } . 

Now the Kurosh generator h^l/+\ immediately following h^v in its cyclic /z-word, cannot 
have t as an initial segment, else for the same reasons as applied to h^ it would have to 
be of the form ta^t~x, ai G A \ {1}, contradicting the assumption that the cyclic /z-words 
in (22) are all reduced. Similarly, the preceding Kurosh generator h^,-\ cannot have t~x 

as a terminal segment. Hence the syllable a\ in (24) remains unconsolidated in reducing 
its cyclic /z-word (the ^th) down to the corresponding cyclic alternating word in a and b, 
whence we must have a\ — a. Thus any h[W of the form tat~\ a G A \ {1}, occurring 
in any cyclic /z-word in (22) is actually tat~{. It follows from Corollary 3.2(i) that the 
singleton {tat~~1} is a minimally non-coprimitive set in H H tAt~\ i.e. that tat~] is not 
primitive in H P tAt~x. Since tat~l is almost primitive in tAt~x, we must therefore have 

tArlnH = tAr\ 

whence it follows (via Definition 2. l(iii)) that tis actually maximal in TA, i.e. an extremal 
vertex of the possibly larger tree *Xi, so that conditions (i) and (ii) of the lemma are 
satisfied vacuously for this t. (The analogous argument applies to maximal elements of 

PB.) 

Proceeding now to the inductive step, let t G PA PI SA be an initial segment of some 
element t G PA, whose length exceeds that of t by 1 {i.e. \t\ = |r| + 1, where lengths are 
taken with respect to the free product A * B), and assume inductively that the assertions 
(i), (ii) of the lemma are valid for all elements of PA P SA and PB P SB of length > \t\. 
Since t necessarily ends in an element of A \ {1}, we may write t = ta\ in reduced form, 
where «i G A \ {1}. 

Suppose first that t also belongs to TB (and therefore to PBHSB). Then by the inductive 
hypothesis we have, for every / G if, that: 

(i) rii(t) is defined, and tbibn'{î)b]~lt~l is an /z-symbol in some cyclic /z-word in (22); 
and 

(ii) each of the elements 

(25) tbibJbib2,...Jbibni(î)-\ 

is an initial segment of an /z-symbol in some cyclic /z-word in (22), from which it is not 
all cancelled by the preceding /z-symbol, and likewise its inverse is a terminal segment 
of some h pi/ not entirely cancelled by h^+i. 

These conditions are assumed to hold in particular for that /, say / = /, for which 
b[ = \. If ni(t) = 1, then by (i) tbt~{ occurs (just once by Lemma 3.1(i)) as an /z-symbol, 
hpy say, in (22), and it is easy to see that its initial segment t cannot be wholly cancelled 
by h^u-\, nor all of its terminal segment by h^u+\. On the other hand if nt{t) > 1, then 
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by (ii) above (see (25)) with / = / (so bt = 1) there are /z-symbols in (22) of reduced 
forms 

(26) V = tbu, hlh = (tbn'(î)-lrl 

(possibly one and the same /z-symbol, or mutual inverses), such that the initial segment tb 
is not all cancelled from h^v (in (26)) by its predecessor h^u-\, nor the terminal segment 
£i-«/(?)£-1 Qf ^ wholly cancelled by its successor h^^+i- It follows (from the fact that 
the cyclic /z-words in (22) reduce to cyclic words in the symbols a and b alone) that in 
fact not all of the initial segment t of h^v is cancelled by h^u-\, and that we must have 

h,Ml = tbn'{î)t-\ 

with not all of the terminal segment rx of this generator h^j+i cancelled by /r^+2. 
We infer that in either case (ni(t) > 1) there are /z-symbols hK\, hw such that t — ta\ 

is an initial segment of hK\ and t~x — a^xrx a terminal segment of /zr/r, where neither 
segment is wholly cancelled by the appropriate adjacent /z-symbol (namely hKt\_\, ^,T+I 
respectively). Write, in reduced form, 

hR\ = ta\u, hVr = vax
xrx. 

By construction of our special Kurosh system (TA,TB) for H in A * B, the ending a\ 
of t = ta\ must have the form a\ — aid, i G if, where at is from the prescribed set of 
representatives of double cosets (t~xHtnA)a(a) in A (i.e. such that (8) or (9) holds), and / 
is an integer satisfying 0 < / < mt(t) if mi(t) is defined (i.e. if tai(a)ajxt~xC\H ^ {l})and 
otherwise is arbitrary. By Corollary 3.4 consolidation (if any) of the symbol a\ (= aia1) 
appearing explicitly in hK\ (see above) must occur in the context of one of the following 
three situations: 
(27) 

1 1=1, and at = /, that is a\ = a (no consolidation occurs); 
/ = 0A>A_! = taiami{t)ajxr\ and hKjX-2 = Mia" (m/(r )_lV1 '"1 (in reduced form); 
/ ^ 0, and if / = 1 thena/ ^ 1, and hKj\-\ = U2oT^"X)a^xt~x (in reduced form), 

(where u\ and u^ do not end in elements of A \ {1}). 
Similarly, consolidation (if any) of the A-symbol a\x (= a~layx) explicitly appearing 

in hVT (see above) must occur in the context of one of the following three situations: 
(28) 

ax
 x = a (i.e. I— —I, at = 1), in which case no consolidation occurs; 

/ = nti(t) — 1,/v+i = taia
nll(t)aJ'xrx,hjhT+2 = tatv\ (in reduced form); 

/ ^ rrii(t) — 1, and if / = —1 then a{ ^ 1, and h1hT+\ = taial+lV2 (in reduced form). 

Combining the various possibilities in (27) and (28), we infer that one of the following 
four situations occurs: 

t = ta and (hViT+\ = ta2rx or h^r+\ = ta2v2, in reduced form, where ta2 G PA)', 
t = taTx and (/IK,A-I = u2a

2rx in reduced form, with ta~2 G PA)', 

mi(t) is not defined, and both taial±x G PA', 
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rriiit) is defined and both tata
{l±X) mod mM G PA. 

(Moreover, in the last case, if / = 0, then hKf\-\ — taiami{t)a^xt~x, and if/ = m/(f) — 1, 
then h^r+i = tata"1^]ajxrx.) From these we draw immediately the following conclusion 
(from our original assumption that t = fata1 G PADPB); 

(29) taia
l±x G PA, 

(where, if rrii(t) is defined, the integers / ± 1 are reduced modulo m((t) to residues from 
among 0 , 1 , . . . , rrii(t) — 1). Furthermore from (27) and (28) and the argument preceding 
them, we see that, provided / ^ 1, there is an //-symbol in some cyclic //-word in (22) 
with (ta/<z/_1)_1 as terminal segment with the property that this terminal segment is not 
wholly cancelled by the succeeding //-symbol, and, similarly, provided / ^ — 1, there is 
an //-symbol in (22) with taial+x as initial segment not wholly cancelled by the //-symbol 
preceding it. (Here, as in (29), the exponents / ± 1 are to be reduced modulo mfc) if this 
is defined.) 

So far in the inductive step, we have been assuming that t — taid belongs to PB as 
well as PA • Thus we need to consider the case that t $ TB. In this case t must be extremal 
in TA (see Definition 2.1), and only way it can occur as an initial segment of an //-symbol, 
hpv say, in some cyclic //-word in (22) is if 

(30) O 9 V = (taia
l)p-lT-\ T(3^TB\TA, £ G 5 \ {1}, 

in reduced form. By Corollary 3.2(ii) this Kurosh generator appears exactly twice in the 
totality of cyclic //-words in (22), once to each of the exponents ±1 ; there is thus an 
//-symbol in (22) of the form 

(3i) ^ = ( v r ] =ri8(tol-£i/r1. 
Now since the A-symbol aid of h^, (see (30)) does not cancel, and consolidates, if at all, 
only from the left, we can argue in the present situation exactly as before to deduce that 
one of the possibilities (27) occurs. Similarly, since the terminal segment a~lajxrx of 
/z7(ç (see (31)) does not cancel, we can argue as before to infer that one of the situations 
(28) must occur. Hence we deduce that (29) and the statement following it (concerning 
non-cancellation of the wholes of an initial segment taial+x (/ ^ —1) and a terminal 
segment (tata1'1)"1 (/ ^ 1) from some //-symbols in (22)), hold also in the case that 
t $ TB. 

Thus in either case (t G TB or t ^ TB), starting with tata
l we have brought to light 

elements tatal±x in PA (where the integers / ± 1 are to be reduced modulo nti(t) if this is 
defined) with the property that, provided / ^ — 1, (taial+x)~x is a "non-cancelling" initial 
segment of an //-symbol in some cyclic //-word in (22), and, provided / 7̂  1, ( t a / ^ 1 ) 1 

is a "non-cancelling" terminal segment of some such //-symbol. 
Since the inductive hypothesis applies also to the elements taial±x, we may repeat the 

forgoing argument with each of these elements in place of t = taia1 to infer the presence 
in PA of tatal±1, with the property (taking for instance taial^x) that provided / — 1 ^ — 1, 
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there is an h^ with laid as initial segment not wholly cancelled by h^u-\, and provided 
/ — 1 ^ 1, there is an hlè with (taial~2yx as terminal segment not wholly cancelled 
by /*7,<5+i • (If instead we take tata

l+x and apply to it the argument used for t = taia1, we 
deduce, apart from the existence in PA of tdial~2, the existence of an h^, with taial+2 as 
initial segment not wholly cancelled by h^v-\ (provided / + 1 ^ —1), and an h^ with 
(taial)~x as terminal segment not wholly cancelled by h^^+i (provided / + 1 ^ 1).) 

We now reiterate the argument, this time for tatal±2, and so on. If m,-(0 were not 
defined then this iteration could be continued indefinitely, contradicting the finiteness 
of PA', hence nti(t) is defined, and the possibilities in (27) and (28) (and 29) involving 
/ < 0 do not actually arise since 0 < / < mi(t). The above iteration continues until all 
tciid, 0 < k < rrii(t), are encountered in PA. In particular when we reach tai (k = 0) 
or tatami^~\ then the next iteration will disclose taicf1^ ajx t~x as an /z-symbol in some 
cyclic /z-word in (22). Hence by Corollary 3.2(i), condition (9) holds for this t, (so that 
in particular ra/(r) is defined for all / G if), and for every / G if, taiami{t) a\x rx occurs as 
an h^ in a cyclic /z-word in (22). The inductive step is completed by repeating the whole 
of the above argument for each t\ G ^ f l SA (and each ti G PB H SB) of the same length 
as t. m 

COMPLETION OF THE PROOF OF THEOREM 1.6. We shall deduce from Lemma 3.5, 
just established, that the index of H in A * B is E^=i ^» fr°m which it is immediate first 
that J = I (since the index is finite), and secondly that the minimally non-coprimitive 
subset M (see (17)) in fact contains all gi(ab)l,g^x, i G J = 1. 

It follows from Lemma 3.5 (and the definition of our Kurosh system) that PA = TA. 
Hence by that lemma each element tcua1 G TA (t G SA, i G if, 0 < / < mi(t)) is an 
initial segment of an h^ occurring in some cyclic /z-word in (22) from which it is not 
wholly cancelled by h^v-\, and analogously for (tata

l)~x (as terminal segment of some 
/i-symbol). Now by Corollary 3.4, consolidation of the A-endings of such initial and 
terminal segments occurs only in the following ways: 

(32) h^v-\ = u\(taial~l)~\ V = tata
lU2, 

in reduced form (i.e. u\ ends, and u2 begins, in an element of B \ {1}), and then 
h^v-\h^ = u\au2 in reduced form, without further consolidation of the symbol a ap­
pearing explicitly here; or 

(33) h,t-x = vx(taia
m^-x\ hlb = taia

mMa;xrx, hlMl = tatv2, 

in reduced form, so that ^^ih^^s+i = v\av2, without any further consolidation of the 
symbol a by /i7^_2, 7̂,<5+2> et cetera. 

Since each Kurosh generator taiami{t)a^xt~x does occur as an h^ (by Lemma 3.5), it 
follows from (32) and (33) that these situations (i.e. (32) and (33)) must occur in some 
cyclic h-word in (22) (for each relevant / in the case of (32)). Hence with each 

tata
l eTA (t eSA,ielf,0<l< m/(0), 
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we can associate, in one-to-one fashion, a symbol a in some cyclic word in a and b arising 
from one of the words g^(ab)l^lg~l in (17). Since the number of such symbols altogether 
in these words is E*=1 /^, we deduce that 

which is just the index of H in A * B. m 

4. Proof of Theorem 1.4: The APE [x,y] is tame. Our proof that [x,y] is a tame 
APE in F(x,y) is intricate, and parallels the proof occupying the preceding section (us­
ing Schreier free generators for the relevant subgroup H < F(x, y) instead of Kurosh 
generators). 

As with the proof of Theorem 1.6 in the preceding section, we subdivide the proof of 
Theorem 1.4 into a sequence of lemmas. We first choose a set Of of "minimal" Schreier 
free generators for H (relative to the basis {JC, v} of F)\ thus each h G Of can be written in 
reduced form as txr~x or tyr~\ where t, r belong to a minimal right Schreier transversal 
T say, for H in F = F(JC, y). (Here by "minimal" we mean that each t E T has least length 
among all elements of its coset Ht.) It is a well-known property of such free generators 
that their expression in one or the other of these forms is unique, and also that their 
"significant symbols" (i.e. the explicitly appearing x in h = txr~\ or y in tyr~x), remain 
uncancelled in every appearance of h±l in any reduced word in the generators Of, that 
is, remain uncancelled in reducing such a word down to a reduced word in x and y. 

We choose the (//, ([x,y]))-double coset representatives #/, / G /, from T, ensuring 
that each at has least length amongst all elements of its double coset Hat([x,y]). 

LEMMA 4.1 (cf. LEMMA 3.1, COROLLARY 3.2). Let H < F(x,y), H,{a{ \ i e I}, 
J Ç /, et cetera, be as above. The following assertions are valid. 

(i) In the totality of rewritten expressions for the aj [JC, y]Mj aj {,j G J, as reduced words 
in the h G Of, each h that actually appears, does so at most twice, and if it does appear 
twice, then once with the exponent +1 and once with exponent — 1. 

(ii) If condition (i) of Theorem 1.4 does not hold, then there is a finite subset M of the 
ûj[x> y]mjajx> j G /, for simplicity say 

M = {adx,y]m'aYl,...,ak[x,yra^}, 

which is minimally non-coprimitive in H, and consequently by (i) has the property that 
each generator h G 9{ appearing in (the totality of) the reduced rewritten expressions 

(34) a^y^a-1 = h^ • • • V„> V ^ U ^ 1 , /i = 1,... *, 

appears exactly twice (possibly in different right-hand sides in (34)), once to each of the 
exponents ±1 . 

PROOF, (i) The free generators (or inverses thereof) h[iV G ^ f U !H~X, occurring in 
the rewritten expression for aj[x, y]mjajl in terms of those generators (obtained by means 
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of the "Schreier rewriting process"—see [4]), are all of one or other of the following 
forms: 

^{aj[x^x-l)y~~x[^{aj[x^x-{y-x)YX-
^ / _ i 

(f(aj[x,y]kJx~ly~l)x[(p(aj[x,y]kjx~ly~lx)] 

^(aJ[x.ytx~xy~xx)y[^{aj[x^x)\\ 

where ip\ F —> T is the coset representative function for //, and 0 < kj < rrij. Now by the 
uniqueness of the form of Schreier free generators of a subgroup (noted above), two free 
generators t\Z\T^x, ^ 2 ^ 1 £ 0~C are equal if and only if t\ = t2, Z\ — Zi{— x or y), and 
r\ = T2. Hence by (35), given two (possibly equal) double coset representatives #,, au 
(J J G / ) , the same free generator h with significant symbol x (for instance) can appear 
twice altogether, both times with exponent +1, in the reduced rewritten expressions for 
aj[x,y]mJaJ~l and ai[x,y]mia]~l if and only if 

ip(aj[x,yfix-ly-1) = ^(fl/fr,?]*'*"1?-1), 

for some 0 < kj < nij, 0 < k\ < mu However then 

aj[x9y]k-klaïl G//, 

so that cij, ai lie in the same double coset Hg{[x,y]), whence j — I. However then if h 
actually occurs twice, we must have kj ^ kj (= &/), and the fact that 0 < \kj — kj\ < nij 
contradicts the minimality of my. One shows analogously that no h~x G 9i~x can occur 
twice in the rewritten expressions for the aj[x,y]mJaJx, completing the proof of (i). 

The proof of (ii) is analogous to that of Corollary 3.2, only somewhat simpler. We 
omit the details. • 

For the remainder of this section we shall assume that the assertion (i) of Theorem 1.4 
is invalid, and consider a fixed minimally non-coprimitive subset M, with elements de­
noted as in Lemma 4.1(H) (and with reduced rewritten expressions as in (34)), which, 
by Lemma 4.1(ii), has the property that each h G H appearing in those rewritten ex­
pressions, appears exactly twice, moreover once to each of the exponents ±1 . As in the 
preceding section we form, for convenience, reduced "cyclic" words from the words on 
either side of the equations (34), by regarding the terminal symbol of each word as adja­
cent to its initial symbol, depicting such words by labelling the edges of a corresponding 
cyclic graph, in clockwise order, as indicated in (36) below. Since consequent cancella­
tions are to be carried out, each word a^[x,y]m>1a~x will yield the same cyclic word as 
[x, y]mv, and cancellations may conceivably occur also in forming the cyclic words in 
the h^. (In fact such cancellations do not occur, but we shall not need this fact.) How­
ever we preserve the correspondence between the cyclic word in x and y arising from 
each a^[x,y]m^a^x in (34) and that in the h G 9i arising from its rewritten expression 
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-hlir„ in (34) (In the Figure (36) we have in fact assumed that h^\ ^ h^l for 

notational convenience only). Thus each of the k reduced cyclic h-words in (36) yields 

the corresponding reduced cyclic word in x and y on replacing each h^ by its actual 

expression as a word in F(x,y), and then reducing. 

Q/zLxrf&?<—> f - > < - ^ ^ i . . . ^ ( / / - i , . . - > ) 

(36) 

We denote by S (Ç T) the (finite) set of elements of T that are initial segments of 

generators h G 9~C actually occurring in some reduced cyclic /z-word in (36), i.e. of some 

hpv. As in the previous section, it may be useful to visualize S as a tree S whose vertices 

are just the elements of S, and where s\,S2 G S are joined by an edge precisely if one 

is an initial segment of the other and their lengths differ by 1. We denote by *T the tree 

determined similarly by T. 

We are now in a position to state and prove the main 

LEMMA 4.2 (cf. LEMMA 3.5). Let H < F(x,y), H, M, S, et cetera, be as above. The 

following assertions are valid. 

(i) For each non-trivial s G S, each of the three (four if s = 1) words in F(x,y), of 

length \s\ + 1 having s as initial segment, is again an initial segment of an h^, in some 

cyclic h-word in (36). 

(ii) Each non-trivial element s £ SU Sx±l U Sy±{ is an initial segment of an h[lv in 

some cyclic h-word in (36) from which it is not wholly cancelled by the preceding h-

symbol h^v-\ (where ifv — I we set h^ := h^r ) . Similarly, the inverse of each such 

s is a terminal segment of an h^ in some cyclic h-word in (36) from which it is not all 

cancelled by the succeeding h-symbol / Î ^ + I (:= h^ if 6 = r7J. 

PROOF. Much as in the proof of Lemma 3.5 we shall establish (i) and (ii) of the 

present lemma by means of reverse induction on the length of s G S. As the first step 

of the induction, consider s G S maximal in S in the sense that it is not a proper initial 

segment of any other element of S (i.e. represents an end vertex, or vertex of valency 1, 

in the finite tree 5) . By definition of S and by the property of M restated above, there 
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must then exist h^, hlè in the right-hand sides of (36) (possibly in different words) such 
that 

h in, = sx^"a~\ a G S, (or h^ = sy£^(j~l), 

and 
hlS = h~l = cjx~£ti"s~\ (or h-ys = vy~£fU/s~l), 

where Xe ̂  (ovy^11) is significant (e^ = ±1). We shall assume that z[lv = 1, and also that 
the significant syllable of h^ is x rather then y, the other possibilities yielding to similar 
arguments; thus we assume that 

h^v = sxa~l
 9 h^ — h~l = ax~ls~l. 

Now if the initial segment s of h^ does not cancel entirely into its predecessor h^v- \ 
in the fith cyclic /z-word in (36), then, since x is always immediately preceded byy~\ the 
word s must end in y~l. (Note that, as in the statement of the lemma, the predecessor of 
h^x in its cyclic word, is of course h^ , assuming these do not cancel in their cyclic h-
word.) On the other hand, if the terminal segment s~x of h^ does not cancel entirely into 
its successor h^^+i in the 7th cyclic word on the right in (36), then for a similar reason, 
the word s~l must begin in y~l, i.e. s must end in y. (Again, note that, as in the statement 
of the lemma, the successor of the symbol ft7r, in the 7th cyclic word on the right in (36) 
is, of course, just h^\.) Hence at least one of the segments s of h^ = sxa~l and s~l of 
h^s = (TX~1S~1, must cancel entirely into the appropriate adjacent /z-symbol (= h^v-\ or 
hyfi+i as the case may be) in the cyclic word in the h G Oi in which it occurs. Suppose 
for instance that the segment s of h^ = sxa~l so cancels; by the maximality condition 
on s, and since y~l always precedes x in the cyclic words on the left in (36), the element 
h^js-i must then have the form 

fyz,i/-i =cr\y~ls~l, di G S. 

By the basic property of the set M there then exists an /z-symbol hK\ in one of our cyclic 
words in the / Î G ^ , which is the inverse of h^v-\\ 

Kx =syaïl. 

It is still open as to whether the terminal segment s~l of h^ = ax~ls~l cancels 
completely into /z7^+i. If it does not, then, as already noted, s must end in y, whence we 
infer that the initial segment s of hK\ cancels completely into hK^-\- Thus in this case 
we have 

hK,\-\ = (Jixs~\ CJ2 G 5, 

and we have found /z-symbols in various of the cyclic /z-words in (36), of the form 

(37) sxa~l, syor]~\ sx~xa^\ 

so that sx, sy, sx~l are initial segments of various such /z-symbols, as we wished to show. 
Furthermore since the syllables x, y, x~[ explicitly appearing in these /z-symbols are 
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all significant, none of the initial segments sx, sy, sx~x, nor the corresponding terminal 
segments of the inverses of the /z-symbols in (37), wherever they occur in the cyclic h-
words in (36), cancels completely with adjacent /z-symbols, so that condition (ii) of the 
lemma is also satisfied by this s. 

We have yet to consider the case that the terminal segment s~x of h^b does cancel 
completely into h^^+i. In this case we must have (in reduced form) 

/ r^+i = sy~laj{, 0-3 G S, 

and we have found /z-symbols appearing in cyclic /z-words in (36) of the Schreier forms 

sxa~ , sya~\ sy~ a J , 

so that condition (i) of the lemma is satisfied. That condition (ii) is satisfied follows as 
before. 

Turning now to the inductive step, suppose that s is an initial segment of some element 
s\ G 5, where \s\ \ = \s\ + 1, and that both statements (i) and (ii) of the lemma are valid 
for all elements of S having s as a proper initial segment. We shall suppose that s\ = sy 
in reduced form, the argument in the other three cases being similar. Thus by virtue of 
the inductive hypothesis, the (reduced) words s\x — syx, s\x~x — syx~!, and s\y — sy2 

are initial segments of/z-symbols appearing in various of the cyclic /z-words in (36), and 
in addition, corresponding to each of these three words s (= s\x, s\x~x or s\y) there are 
factors h^, hlè in some such (cyclic) words, such that s is an initial segment of /z;i//, s

 j 

a terminal segment of h^, neither segment cancelling into the appropriate adjacent h-
symbol (i.e. into h^u-\ in the case of the initial segment s of /z;///, and into /i-^+i in the 
case of the terminal segment s~x of hlb). 

To begin the argument for the inductive step, let hlu/ be an /z-symbol in one of our 
(cyclic) words, of, for instance, the form 

hp, = s\x~~lu = syx~ l u, 

where not all of the initial segment s\x~~l cancels into h^u-\. Since s\ ends in y and x ] 

is in fact always preceded by _y in the cyclic words in x, y that we are considering (see 
the left-hand side of (36)), it follows that at most the initial segment s of h[u, cancels 
into h^v-\. If s is not wholly cancelled by h^u-\, then (since v is always immediately 
preceded by x in our cyclic words) the word s must end in x. 

Again by the inductive assumption there is a factor /z^ of one of our cyclic /i-words, 
with the reduced form 

hlb = V(SIJC)"1 = vx~ls{
] = vx~{y~*s~\ 

such that Jt"1^1 = x~ly~ls~l does not cancel entirely into /z^+i. Since s\, ' begins 
in y 1 , which symbol always immediately follows x~l in the cyclic words in x and y 
in (36), not more than the segment s~l can in fact cancel from the end of hlb. If s * is not 
wholly cancelled then since y~l is always immediately followed by x in the aforesaid 
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cyclic words, we conclude that in this case s begins in x {i.e. s ends in x ) . Since 
this contradicts the conclusion reached in the preceding paragraph, we infer that in fact 
either precisely the segment s is cancelled from h^ = syx~lu, or precisely s~l from 
h^s = vx~ly~ls~l, or both. In the former case we must have 

h^u-i = u\xs~l, 

and in the latter, 
hlj+i = sxvu 

in reduced form. 
Summarizing the situation thus far, we have that: 

(38) sy is an initial segment of h^, not all of which cancels into h^u-\ ; 

(39) y~ls~{ is a terminal segment of hys, not all of which cancels into /i7^+i ; 

and at least one of the following occurs: 

f xs~l is reduced as written, and is a terminal segment of h^u-\ 
r 4 n , I not entirely cancelling into h^ ; 

J sx is reduced as written, and is an initial segment of /z7̂ +i 
[ not entirely cancelling into h^ 

Suppose that the first of the possibilities (40) occurs. In view of the basic property 
of our set of cyclic words there is then a factor hK\ — h~j/__l = sx~lu\x (in reduced 
form) occurring in one of those cyclic words, so that either sx~l G S or the syllable 
x~l appearing explicitly here is significant. In the former case, i.e. if sx~l G 5, then 
the inductive hypothesis applies to sx~l = sj say, and the above argument in terms of 
sy = s\ G S adapts directly to yield the following analogues of (38), (39): 

(41) sx~l is an initial segment of some hw, 

with the property that not all of sx~x cancels into /ir/,T-I; 

(42) xs~l is a terminal segment of some hap, 

with the property that not all of xs~l cancels into ha^+\. 

In the other case, i.e. if x~~l is significant in hK\ = sx~xu\x, (and so also in h^u-\ — 
u\xs~l), these two assertions are clear. 

If the second of the assertions (40) also occurs then we obtain in a similar way the 
analogues of (38) and (39) for sx and x~~ls~l. Hence if both of the possibilities (40) 
occur, then provided s ^ 1, we have established that s has the desired properties (and, 
incidentally, that s ends in y). 

If in this situation (i.e. where both of the possibilities (40) occur) we have 5 = 1 , then 
it remains to show that sy~l = y~~l and (sy~l )~l = y are respectively initial and terminal 
syllables of /z-symbols in our cyclic /z-words, that are not cancelled by the appropriate 
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adjacent factors. Now by the analogue of (39) with y_1 replaced by x~! (and with 5 = 1 ) , 
which we are assuming to hold, we know that there is a factor h^ of a cyclic /z-word in 
(36) with x_ 1s_ 1 = JC""1 as terminal syllable, not cancelled by /z^+i . Since x~~x is always 
followed immediately by y_1 in our cyclic words in x and y, it follows that /z^+i must 
begin with y"1. Similarly by (41), which we are assuming to hold, we know that there is 
a factor h1]T of a cyclic /z-word in (36) with sx~l = x_1 as initial segment, not cancelled 
by h^r-1. Since JC" l is always preceded by y in the cyclic words in x and y in (36), it must 
therefore be the case that h^T-\ ends in y. 

We have yet to consider the case that just one of the possibilities (40) holds, say the 
first. As noted earlier, the assumption that the second statement in (40) is not valid, im­
plies that s must end in x~~], say s = sx~~l in reduced form. Since the first of the statements 
in (40) is valid, so also is (41) (and (42)), i.e. sx~l = sx~2 is an initial segment of some 
factor hK\, not all of which cancels into its predecessor /ZK,A-I • Hence exactly s must can­
cel into /IK,A-I» since otherwise we should have a segment of one of our reduced cyclic 
words in x and y (namely the Kth) of the form JC-2. Thus hK^\ has, for the usual sort of 
reason, the reduced form 

where the terminal segment ys~~l does not wholly cancel into hK\, i.e. the syllable y re­
mains uncancelled. By our basic assumption concerning the set M, or, equivalently, the 
set of cyclic /z-words in (36), there is in some such cycle a syllable 

KQ = K,X-\ = sy~]w~{. 

If the syllable y"1 is significant here, then we have found an /z-symbol in some cyclic h-
word, namely hap, with non-cancelling initial segment sy~~l. Otherwise sy~1 E S, and the 
inductive hypothesis applies to sy~{ — 53, to yield, via an argument similar to the earlier 
one for 51 = sy, the existence of an /z-symbol of some cyclic /i-word, with non-cancelling 
initial segment sy~l. 

The remaining case, namely that where just the second of the two possibilities in (40) 
occurs, being similar, the proof is concluded. • 

COMPLETION OF THE PROOF OF THEOREM 1.4. (Recall that we are assuming that 
condition 1.4(i) does not hold.) Since 1 G S and by Lemma 4.2(i) every vertex of S 
has the same valency in S as it does in T, it follows that S = 1\ i.e. S = T. It is then 
also clear from Lemma 4.2(i) that every free generator h of H occurs in the rewritten 
expression of some a^[x,y]mfia~l G M (see (34)), moreover exactly twice (once to each 
of the exponents ±1). In view of the facts that the significant symbols of the h[lv in the 
reduced rewritten expression for the a^[x,y]m^a~l (see (34)) do not cancel and that the 
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total of the lengths of all the corresponding cyclic words in x, y (see (36)) is 4 E L I rn^, 
it follows that 

k 
Rank/ /< 2 ]TmAl. 

However by assertion (ii) of Lemma 4.2 each non-trivial element s of S is an initial seg­
ment of some h^v in a cyclic ft-word, from which it is not all cancelled by the predecessor 
h^-\ and similarly for s~x as terminal segment of some /z7($. Hence there is a total of 
at least 2{\S\ — 1) non-significant syllables of various hap that remain uncancelled in 
reducing the cyclic /z-words to cyclic words in x and y, and therefore there remain at 
most 

4 X > / , - 2 ( | S | - l ) 

syllables of those cyclic words in* and}7, that are candidates for the status of significance. 
Hence in fact 

(43) Rank// < 2 ^ m M - (\S\ - 1). 

Now by the Schreier rank formula, 

Rank/ /= |T| + 1 = |5| + 1, 

and this and (43) together give 

\S\ + \<2J2m,-\S\ + h 

or 

\S\ < f "V 

On the other hand since the elements aj[x,yYJaJ~\j G 7, 0 < tj < m}•• — 1, lie in distinct 
cosets of// in F(x, v), the index \S\ of H in F(jf,y) is at least E/ey ^/. Hence |/| = /:, and 
/ / has (finite) index 

\F'.H\=Y,Mj> 
jeJ 

as claimed. • 
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