
Nion Swift: Open Source Image Processing Software for Instrument Control, Data

Acquisition, Organization, Visualization, and Analysis Using Python.

Chris Meyer ​1*​, Niklas Dellby ​1​, Jordan A. Hachtel​3​, Tracy Lovejoy ​1​, Andreas Mittelberger ​1​, and Ondrej
Krivanek ​1,2

1.​ Nion R&D, 11511 NE 118th St., Kirkland, WA 98034, USA
2.​ Department of Physics, Arizona State University, Tempe, AZ 85287, USA
3.​ Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830,
USA
* Corresponding author: cmeyer@nion.com

Advances in imaging and spectroscopy techniques have introduced the ability to generate vast amounts
of data as measured in time, space, and other conditions. Spectrum imaging, for example, can generate
hundreds of gigabytes in minutes and 4D STEM diffraction can generate data even faster. The data
typically includes related components such as HAADF images, EELS data, and instrumentation data.
Simple visualization may include slicing data spatially at a specific energy, looking at an EELS
spectrum integrated over an area, or selecting specific regions in diffraction pattern to access atomic
scale potentials and electric fields from a 4D STEM diffraction data set. Processing and analysis stretch
from simple tasks such as energy axis alignment and data splicing to more involved procedures such as
principal component analysis, sparse data set in-painting, and automated quantification of typically
noisy data sets. The visualization, processing, and analysis tools must be able to be shared, reported
upon, and reused months or years later. To verify and trust this workflow, the tools must be readily
available and transparent in their functionality. From initial conception to now, we have focused on this
functionality and these priorities to develop Nion Swift [1].

As compared to other image processing applications, Nion Swift provides several unique capabilities.
The main display area, a tiled workspace where images and plots are displayed, is easily configured for
the workflow and is persistent, making it easy to return to later. In addition, Nion Swift tracks
relationships between data. Data acquisition stores metadata defining the same acquisition parameters,
reference frame, session, site, sample, and even location on the sample. It also includes a rich
description of its NumPy-compatible data with time, collection, data, and element indexes. Finally, in
addition to being able to import and export individual pieces of data, Nion Swift tracks sets of data and
relationships, processing, analysis, and visualizations within them, storing them in a single portable file
based on HDF5.

While Python is not optimized for speed, and there are issues with concurrency and utilization of
multiple processors, Nion Swift has been engineered to move heavy duty processing into optimized
libraries like NumPy, making performance comparable to equivalent software written in C++. The
latency from data acquisition to display for a 2048x2048 image can be under 50 ms and the throughput
can be as high as 20 frames per second. High performance drawing is achieved using a native Qt based
UI which also utilizes multiple threads. The Python code maintains and coordinates the data acquisition
and flow, storage, processing, analysis, and visualization, but leaves processing to multi-threaded,
optimized Python libraries. Also, the Python ecosystem itself is continually improving performance and
Nion Swift is positioned to quickly take advantage of these improvements. For even higher processing

122
doi:10.1017/S143192761900134X

Microsc. Microanal. 25 (Suppl 2), 2019
© Microscopy Society of America 2019

https://doi.org/10.1017/S143192761900134X Published online by Cambridge University Press

https://doi.org/10.1017/S143192761900134X

speeds, Swift will be able interface to software running on graphics processing units (GPUs, e.g. [2]).

Since Nion Swift is a foundation on which other projects can be built, we have put considerable effort
into ensuring that a stable application programming interface (API) is available for plug-in package
developers. The goal is to allow plug-in packages to run without modification for several years and to
minimize maintenance requirements for plug-in packages that have an even longer lifetime. We plan to
accomplish this by publishing an API with a well defined deprecation policy, using standard Python
libraries such as NumPy and SciPy where possible, using a strict versioning policy, and making nearly
everything open source and published on GitHub for review.

As an example of Nion Swift processing, Fig. 1 shows 4D STEM diffraction data set with associated
field magnitude and direction calculations (top row), an EELS SI data set with associated background
subtracted spectrum calculation (middle row), and an FFT with mask and simulated EELS multi-acquire
(bottom row).

More information about Nion Swift is available at [3].

References:
[1] C.E. Meyer et al., Microsc. Microanal. 20 (Suppl 3, 2014) 1108-1109.
[2] R.S. Pennington, F. Wang and C.T. Koch, Ultramicroscopy 141 (2014) 32-37.
[3] http://nion.com/swift

Figure 1. Nion Swift screenshot showing library, data panel, workspace with images and line plot,
histogram, and inspectors.

Microsc. Microanal. 25 (Suppl 2), 2019 123

https://doi.org/10.1017/S143192761900134X Published online by Cambridge University Press

https://doi.org/10.1017/S143192761900134X

