
Adv. Appl. Prob. 46, 687–703 (2014)
Printed in Northern Ireland

© Applied Probability Trust 2014

RECURRENCE AND TRANSIENCE OF CRITICAL
BRANCHING PROCESSES IN RANDOM
ENVIRONMENT WITH IMMIGRATION AND AN
APPLICATION TO EXCITED RANDOM WALKS

ELISABETH BAUERNSCHUBERT,∗ University of Tuebingen

Abstract

We establish recurrence and transience criteria for critical branching processes in random
environments with immigration. These results are then applied to the recurrence and
transience of a recurrent random walk in a random environment on Z disturbed by cookies
inducing a drift to the right of strength 1.
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1. Introduction

This paper complements [4]. In [4] a random walk in a random environment on Z which is
transient to the left and disturbed by cookies of strength 1 to the right was considered. As can
be seen in [4], the study of special kinds of branching processes is essential to obtain results on
recurrence and transience of these excited random walks.

We first motivate the discussion of a critical branching process in a random environment
with immigration (critical BPIRE for short) within the present paper by introducing the random
walk we are dealing with.

1.1. Excited random walk in a random environment

Our model is explained as follows. Consider a sequence (px)x∈Z ∈ (0, 1)Z and put a random
number Mx of cookies on every integer x ∈ Z. Now a nearest-neighbor random walk (Sn)n≥0
is started at 0 with the following transition probabilities. If a random walker reaches site x and
if there is still at least one cookie on this site, he/she removes one cookie and goes to x + 1.
Otherwise he/she jumps to the right with probability px and to the left with probability 1 − px .
For an illustration of this model, see Figure 1, which was previously presented in [4].

The cookies in our model have maximal strength and induce a drift to the right. On the other
hand, we will assume a random environment (px)x∈Z that makes a random walk in a random env-
ironment (RWRE for short), i.e. a random walk where Mx = 0 for all x ∈ Z, be recurrent. So
the question arises as to when the drift caused by the cookies succeeds in forcing the random
walk to +∞. In Theorem 1 below, criteria for transience and recurrence of the process are given.

Let us introduce the notation for the model. Set � := ([0, 1]N)Z. The elements from � are
chosen at random according to a probability measure P on � with corresponding expectation
operator E. For a fixed environment ω = ((ω(x, i))i≥1)x∈Z ∈ � and z ∈ Z, define a nearest-
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Figure 1: Model of the random walk (see [4]). If there are cookies at his/her current position x ∈ Z, the
random walker removes one and makes a step to x + 1. If there is no cookie he/she jumps to the right

with probability px and to the left with probability qx := 1 − px .

neighbor random walk (Sn)n≥0 on a suitable probability space �′ with probability measure
Pz,ω, which satisfies

Pz,ω[S0 = z] = 1,

Pz,ω[Sn+1 = Sn + 1 | (Sm)1≤m≤n] = ω(Sn, #{m ≤ n : Sm = Sn}),
Pz,ω[Sn+1 = Sn − 1 | (Sm)1≤m≤n] = 1 − ω(Sn, #{m ≤ n : Sm = Sn}).

The value of ω(x, i) serves as the transition probability from x to x+1 upon the ith visit at site x.
Furthermore, define Pz[·] := E[Pz,ω[·]] as the annealed or averaged probability measure with
corresponding expectation operator Ez. The random walk (Sn)n≥0 is called recurrent (transient)
if Sn = 0 infinitely often (limn→∞ Sn ∈ {±∞}) P0-almost surely (P0-a.s.).

With the convention sup ∅ = 0, the number of cookies of strength 1 at site x ∈ Z is defined
by

Mx := sup{i ≥ 1 : ω(x, j) = 1 for all 1 ≤ j ≤ i}.
In this paper we postulate the following for the model.

Assumption A. There exists, P-a.s., (px)x∈Z ∈ (0, 1)Z such that the following assumptions
hold.

(A1) It holds P-a.s. that ω(x, i) = px for all i > Mx . Furthermore, P[px = 1
2 ] < 1.

(A2) (px, Mx)x∈Z is independent and identically distributed (i.i.d.).

(A3) E[| log ρ0|] < ∞ and E[log ρ0] = 0, where ρx := (1 − px)p
−1
x for x ∈ Z.

(A4) P[M0 = ∞] = 0 and P[M0 = 0] > 0.

If Mx = 0 P-a.s. for all x ∈ Z, assumptions (A2) and (A3) imply that the RWRE is recurrent,
i.e. −∞ = lim infn→∞ Sn < lim supn→∞ Sn = ∞ P0-a.s.; see, e.g. [17, Theorem 1.7].

Under Assumption A, (Sn)n≥0 can be seen as a recurrent RWRE disturbed by cookies of
strength 1 to the right. In accordance with an RWRE and an excited random walk (ERW),
our model is called an excited random walk in a random environment (ERWRE for short). In
Section 3 we show the following recurrence and transience criteria for the ERWRE.

Theorem 1. Let Assumption A hold, and assume that E[| log ρ0|δ] < ∞ for every 0 <

δ < 6.

(i) If E[(log+ M0)
2+ε] < ∞ for some ε > 0 then Sn = 0 infinitely often P0-a.s.

(ii) If lim inf t→∞(tλP[log M0 > t]) > 0 for some 0 < λ < 2 then limn→∞ Sn = +∞,
P0-a.s.
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Remark 1. The tail assumption lim inf t→∞(tλP[log M0 > t]) > 0 implies that

E[(log+ M0)
2−ε] = ∞ for all ε ≤ 2 − λ.

Remark 2. In the classical model of the ERW the underlying process is a simple symmetric
random walk. Criteria for the recurrence and transience behavior of the classical ERW are
given in Theorem 3.10 of [13]. Hence, if Assumption A holds with P[px = 1

2 ] = 1 in (A1), the
process (Sn)n≥0 is recurrent if and only if E[M0] ≤ 1. Note that this criterion is different from
that given in Theorem 1.

Theorem 1 should be compared to the following result from [4], where the underlying RWRE
is transient to the left, and where the following recurrence and transience criteria for the ERWRE
were obtained.

Theorem 2. ([4].) Let assumptions (A1), (A2), and (A4) hold, and assume that {px, Mx, x ∈
Z} is independent under P, E[| log ρ0|] < ∞, E[log ρ0] > 0, and E[p−1

0 ] < ∞.

(i) If E[log+ M0] < ∞ then limn→∞ Sn = −∞, P0-a.s.

(ii) If E[log+ M0] = ∞ and if lim supt→∞(tP[log M0 > t]) < E[log ρ0], then Sn = 0
infinitely often P0-a.s.

(iii) If lim inf t→∞(tP[log M0 > t]) > E[log ρ0] then limn→∞ Sn = +∞, P0-a.s.

Theorem 1 and Theorem 2 both provide recurrence and transience criteria for the ERWRE,
but in the first theorem the underlying random walk is recurrent and in the latter transient to
the left. Basically, if a logarithmic moment of M0 is finite, the random environment (without
cookies) determines the recurrence/transience behavior, whereas an appropriate assumption on
the tail of the distribution of M0 implies that the drift induced by the cookies wins.

Excited random walks go back to Benjamini and Wilson [6], and have been further studied
and extended by, among others, Zerner [21], [22], Basdevant and Singh [2], [3], and Kosygina
and Zerner [12]. A survey on ERW is given by Kosygina and Zerner in [13]. The novelties in
our model are the random transition probabilities on sites without cookies and the unbounded
number of cookies per site. However, we consider only cookies of maximal strength.

A useful technique to obtain results for the one-dimensional ERW is to employ the well-
known relationship between branching processes and random walks. See also [2], [3], [4], and
[12] for this method. Since there are only cookies of strength 1, we can concentrate on branching
processes with immigration and no emigration. In order to prove Theorem 1, we have to deal
with a critical BPIRE. See Section 3 for the precise connection between our model and the critical
BPIRE. Roughly speaking, an excursion to the right of the random walk can be translated into
a branching process by counting the number of upcrossings from n to n + 1, n ∈ N, between
downcrossings from n to n − 1. The translation from the branching process to the excursion is
given by the contour process. The cookies in the ERWRE model correspond to the immigrants
and the random environment gives the random offspring distributions for the branching process.
As we will see in Section 3, the recurrence of the branching process implies the recurrence of
the random walk and vice versa. Thus, the discussion of the BPIRE with focus on its recurrence
and transience behavior is essential.

1.2. Branching processes in random environments with immigration

The literature on branching processes is extensive; see, for instance, the survey article [18].
Vatutin et al. [19] contains a more recent review on branching processes in random environments.
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Critical branching processes in random environments with immigration are studied in, e.g. [11]
and [16]. Unfortunately, a proper transience and recurrence criteria for our model could not be
found or deduced.

Let us introduce the definition of the BPIRE that we study in this paper. It differs slightly
from that given in [11, p. 344f]; see also Remark 3 below.

Definition 1. Consider a sequence e = (en)n∈N = (rn, mn)n∈N of pairs of random variables
which take values in the set of probability measures on N0. For n ∈ N, rn and mn respectively
give the distributions for reproduction and immigration in generation n. Assume that the so-
called random environment (en)n∈N is i.i.d. under some probability measure Q, and denote by
Qe[·] := Q[· | e] the conditional distribution, and by EQ and Ee the expectations with respect
to Q and Qe, respectively.

Furthermore, let {ξ (n)
j , Mk; j, n, k ∈ N} be a family of N0-valued random variables on the

same probability space which is Q-a.s. independent under Qe and satisfies, Q-a.s. for j, n ∈ N,

Qe[Mn ∈ ·] = mn, Qe[ξ (n)
j ∈ ·] = rn.

Then the process (Zn)n≥0 , given by Z0 := 0 and

Zn := ξ
(n)
1 + · · · + ξ

(n)
Zn−1

+ Mn for n ∈ N

(or every process with the same distribution), is called BPIRE. The random variable ξ
(n)
j can

be understood as the number of offspring of the j th individual of generation n − 1, and Mn as
the number of immigrants in the nth generation.

Another useful way to describe the BPIRE is the following. For each j ∈ N, let (Zn(j))n∈N0

be a branching process that starts at time j with Z0(j) = Mj individuals (or immigrants)
and whose reproduction distribution is given by (rn+j )n∈N under Qe. More precisely, we
consider branching processes that have the same distribution as processes realized by Zn(j) =
ξ

(n+j)
j,1 + · · · + ξ

(n+j)

j,Zn−1(j), where, under Qe, {ξ (k)
j,i , Mn; j, i, k, n ∈ N} is independent and ξ

(k)
j,i

has distribution rk , Q-a.s. Then the sum over the offspring at the same time plus the immigrants
at that time,

Zn =
n∑

j=1

Zn−j (j) for n ∈ N,

gives a BPIRE. The latter definition is similar to Key’s definition in [11, p. 344f]; see also
Remark 3 below.

If EQ[log Ee[ξ (1)
1 ]] exists, (Zn)n≥0 is called critical, subcritical, or supercritical according

to whether EQ[log Ee[ξ (1)
1 ]] is equal to 0, less than 0, or greater than 0, in accordance with

the standard classification of branching processes in random environments. For an extended
classification, see, for instance, [19, p. 222f].

Throughout the paper, the distribution rn will be represented by its probability generating
function (PGF) ϕn(s) := ∑

k≥0 skrn({k}) = Ee[sξ
(n)
1 ], 0 ≤ s ≤ 1. Apart from Lemma 1 below

and its application in the proof of Theorem 3, it will be furthermore assumed that mn Q-a.s.
takes values in the set of dirac measures on N0, {δn, n ∈ N0}. In this case let us write n

instead of δn as shorthand notation. Thus, for a sequence (Mn)n∈N of N0-valued random
variables, (ϕ, M) := (ϕn, Mn)n∈N denotes an environment where the distribution for offspring
in generation n of an individual in generation n − 1 is given by the PGF ϕn and where Mn

individuals immigrate in the nth generation Q(ϕ,M)-a.s.
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Remark 3. In his formulation of the BPIRE model in [11], Key does not count the number of
immigrants at time n as a part of generation n; he only considers their offspring as part of the
next generation.

Note that (Zn)n≥0 is a time homogeneous Markov chain under Q. In this paper it is assumed
that the BPIRE is irreducible on N or N0 under Q, i.e. every state can be reached from any
other with positive probability; see, e.g. [10, p. 151]. A sufficient condition for irreducibility
on N0 is Q[M1 = 0] < 1 and Q[M1 = 0, ξ

(1)
1 = k] > 0 for every k ∈ N0. Motivated by the

application to the ERWRE, we are interested in recurrence and transience criteria for a critical
BPIRE.

Theorem 3. Let (Zn)n≥0 be an irreducible BPIRE with PGF ϕn for offspring in generation n

and Mn immigrants in generation n. Assume that the following assertions hold.

(i) (ϕn, Mn)n∈N is i.i.d. under Q.

(ii) EQ[| log μ1|2] < ∞, EQ[log μ1] = 0, and Q[μ1 = 1] < 1, where μn := ϕ′
n(1).

(iii) EQ[(log+ M1)
2+ε] < ∞ for some ε > 0.

Then (Zn)n≥0 is recurrent.

The next theorem gives a criterion for transience of a critical BPIRE. Let Qϕ denote the
conditional distribution Q[· | ϕ], and write varϕ for the variance according to the measure Qϕ .

Theorem 4. Consider an irreducible BPIRE (Zn)n≥0 with PGF ϕn for offspring in generation
n and Mn immigrants in generation n. Assume that the following assertions hold.

(i) (ϕn, Mn)n∈N is i.i.d. under Q.

(ii) 1. EQ[| log μ1|δ] < ∞ for every 0 < δ < 6 and EQ[log μ1] = 0.

2. EQ[(log+(varϕ(ξ
(1)
1 )μ−2

1 ))2] < ∞, where μn := ϕ′
n(1).

(iii) lim inf t→∞(tλQ[log M1 > t]) > 0 for some 0 < λ < 2.

Then (Zn)n≥0 is transient.

Theorem 4(iii) implies in particular that EQ[(log+ M1)
2−ε] = ∞ for some ε > 0; see also

Remark 1. Note the gap in Theorems 3 and 4 concerning assumption (iii). Theorem 4(ii.2) is a
technical assumption and might be weakened, but is always satisfied in our application to the
ERWRE.

The recurrence criterion for the branching process was inspired by some work on random
difference equations, e.g. [1], since there is some similarity between these processes. In
[9, p. 1196] Goldie examined recurrence and transience of random difference equations but
characterized only positive recurrence. Also, note the short review of the main known results
on these processes in [15, Section 3].

The present paper is organized as follows. Section 2 is dedicated to the proofs of Theorems 3
and 4 for the critical BPIRE. In Section 3, the relation between the ERWRE and the branching
process is established in order to prove Theorem 1. Examples are also given for the different
cases of the theorem.
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2. Branching process in a random environment with immigration

First, let us deduce for our model an analogous result about positive recurrence for an
irreducible subcritical BPIRE from Theorem 3.3 of [11].

Lemma 1. Let (Zn)n≥0 be a BPIRE with reproduction according to the sequence of PGFs
(ϕn)n∈N and immigration according to probability measures (mn)n∈N. Assume that the follow-
ing assertions hold.

(i) (ϕn, mn)n∈N is i.i.d. under Q.

(ii) EQ[log+ E(ϕn,mn)n∈N
[M1]] < ∞.

(iii) EQ[log+ μ1] < ∞ and EQ[log μ1] < 0, where μn := ϕ′
n(1).

Then (Zn)n≥0 is positive recurrent.

Proof. It is helpful to work with the alternative description of the BPIRE given in Definition 1.
As in [11], we amplify this definition in the sense that we do not only consider branching
processes (Zn(t))n∈N0 starting at positive times, but allow t ∈ Z. Therefore, the random
environment is assumed to be a sequence e = (ϕx, mx)x∈Z of i.i.d. random variables.

Recall that, for n ≥ 1, the BPIRE can be defined as Zn = ∑n
j=1 Zn−j (j). Key [11]

considered in a more general setting a BPIRE of the form

Z̃(1)
n :=

n−1∑
j=1

Zn−j (j).

We shift this process and set, for k ∈ N0,

Z̃
(−k)
0 :=

k∑
j=1

Zj (−j),

which is a BPIRE at time 0 that started in the past at time −k.
Since e is a sequence of i.i.d. random variables and since the branching processes (Zn(t))n∈N0 ,

t ∈ Z, are independent under Qe, we obtain for v ∈ N0 and n ∈ N,

Q[Zn = v] = Q[Z0(n) + Z̃(1)
n = v]

=
v∑

j=0

EQ[Qe[Z0(n) = v − j, Z̃(1)
n = j ]]

=
v∑

j=0

EQ[Qe[Z0(n) = v − j ]Qe[Z̃(1)
n = j ]]

=
v∑

j=0

EQ[Qe[Z0(0) = v − j ]Qe[Z̃(1−n)
0 = j ]].

For the last equality, note that the processes are just shifted. Since e is i.i.d., the products under
EQ have the same law. According to Lemma 2.2 of [11], limn→∞ Qe[Z̃(1−n)

0 = j ] exists Q-a.s.
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for each j ∈ N0. Hence, by the dominated convergence theorem, π(v) := limn→∞ Q[Zn = v]
exists for every v ∈ N0 and

π(v) =
v∑

j=0

EQ[Qe[Z0(0) = v − j ] lim
n→∞ Qe[Z̃(1−n)

0 = j ]]. (1)

Let us now show that π is a probability measure on N0. By (1),

∑
v∈N0

π(v) =
∑
v∈N0

v∑
j=0

EQ[Qe[Z0(0) = v − j ] lim
n→∞ Qe[Z̃(1−n)

0 = j ]]

=
∑
j∈N0

∑
v≥j

EQ[Qe[Z0(0) = v − j ] lim
n→∞ Qe[Z̃(1−n)

0 = j ]]

=
∑
j∈N0

EQ[ lim
n→∞ Qe[Z̃(1−n)

0 = j ]].

Note that, for all j ∈ N0,

π̃(j) := EQ[ lim
n→∞ Qe[Z̃(1−n)

0 = j ]] = lim
n→∞ EQ[Qe[Z̃(1−n)

0 = j ]] = lim
n→∞ Q[Z̃(1)

n = j ]

and π̃ defines a probability measure on N0 according to Theorem 3.3 of [11]. Thus,
∑
v∈N0

π(v) = 1

and the subcritical BPIRE is positive recurrent; see, e.g. [10, Theorem 8.18]

Now we will prove the recurrence and transience criteria for a critical BPIRE. The recurrence
criteria in Theorem 3 is inspired by a similar result for an autoregressive model defined by a
random difference equation in the critical case stated in [1]. Some of the ideas in [1, p. 480f]
will be employed and transferred to our BPIRE model.

Proof of Theorem 3. Assume that Q[M1 = 0] < 1 since Zn = 0, Q-a.s., for all n ∈ N0 if
Q[M1 = 0] = 1.

As in [1], let us define Y0 := 0 and

Yn := log(μ1 · · · μn).

Then (Yn)n≥0 is an oscillating random walk, i.e. lim supn→∞(±Yn) = ∞, Q-a.s.; see, e.g. [10,
Proposition 9.14]. The strict descending ladder epochs, see also [8, Section XII.1], are defined
by L0 := 0 and

Ln := inf{k > Ln−1 : Yk < YLn−1}.
Since (Yn)n≥0 is oscillating, Ln is Q-a.s. finite. Let L := L1, and note that EQ[YL] < 0.

Following the strategy in [1] we consider the subprocess (ZLn)n≥0 and answer the following
questions. Is this process a Markov chain? Is it comparable to (Zn)n≥0; more precisely, is it
some kind and, if so, which kind of branching process? Is it recurrent? The third question is
central for the proof of the theorem since the recurrence of the subprocess yields the recurrence
of the process itself. Indeed, we show that (ZLn)n≥0 is a subcritical BPIRE.

https://doi.org/10.1239/aap/1409319555 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319555


694 E. BAUERNSCHUBERT

L3 = 6

L2 = 5

L1 = 2

654321

M6 = 0

M5 = 2

M4 = 1

M3 = 4

M2 = 1

M1 = 2

ϕ6

ϕ5

ϕ4

ϕ3

ϕ2

ϕ1

Figure 2: An illustration of the process and subprocess. In this figure it is assumed that L1 = 2, L2 = 5,
and L3 = 6. The boxes with solid lines represent the offspring of the previous generation, whereas boxes

with dotted lines represent immigrants in generation 1, 2, and 3 of the subprocess (ZLn)n≥0.

Intuitively by Figure 2, (ZLn)n≥0 appears to be a BPIRE under Q(ϕ,M) with reproduction
distribution given by the PGF

λn(s) := ϕLn−1+1(ϕLn−1+2(· · · ϕLn(s))), 0 ≤ s ≤ 1,

and measure mn for immigration in generation n ∈ N, where mn is the law of

M̃n :=
Ln∑

j=Ln−1+1

ZLn−j (j).

This can be made precise. Calculation and iteration yield, Q-a.s. for s ∈ [0, 1] and n ∈ N,

E(ϕ,M)[sZLn ] = E(ϕ,M)[ϕLn(s)
ZLn−1 ]sMLn

= E(ϕ,M)[ϕLn−1+1(· · · ϕLn(s))
ZLn−1 ]ϕLn−1+2(· · · ϕLn(s))

MLn−1+1 · · · sMLn .

The PGF for reproduction is given by the first factor conditioned on ZLn−1 = 1. The remaining
factors equal the PGF for immigration and coincide with the PGF of M̃n since, for Ln−1 + 1 ≤
j ≤ Ln, Q-a.s.,

E(ϕ,M)[sZLn−j (j)] = ϕj+1(· · · ϕLn(s))
Mj . (2)

The sequence (λn, mn)n∈N is i.i.d. under Q since the increments of the ladder epochs (Ln −
Ln−1)n∈N are i.i.d. under Q; see [8, Section XII.1]. The subcriticality of (ZLn)n≥0 follows
from EQ[log λ′

1(1)] = EQ[YL] < 0.
Furthermore, the following arguments reveal that the subprocess is still Markovian under Q.

For n ≥ 1 and i1, . . . , in+1 ∈ N0, the Markov property of (Zn)n≥0 under Q(ϕ,M) implies that

Q[ZLn+1 = in+1, ZLn = in, . . . , ZL1 = i1]
=

∑
k∈N

EQ[1{Ln=k}Q(ϕ,M)[ZLn+1 = in+1, ZLn = in, . . . , ZL1 = i1]]

=
∑
k∈N

EQ[1{Ln=k}Qθk(ϕ,M),in
[ZL1 = in+1]Q(ϕ,M)[ZLn = in, . . . , ZL1 = i1]], (3)
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where θk denotes the shift θk(ϕj , Mj )j∈N = (ϕk+j , Mk+j )j∈N and in in Qθk(ϕ,M),in
denotes

the number of ancestors. Since (ϕj , Mj )j∈N is i.i.d., it follows that (3) equals
∑
k∈N

EQ[Qθk(ϕ,M),in
[ZL1 = in+1]] EQ[1{Ln=k}Q(ϕ,M)[ZLn = in, . . . , ZL1 = i1]]

= Qin [ZL1 = in+1]Q[ZLn = in, . . . , ZL1 = i1].
To apply Lemma 1, we have to check that EQ[log+ E(ϕ,M)[M̃1]] < ∞ is satisfied. The

integrability of log(1 + E(ϕ,M)[M̃1]) implies the integrability of log+ E(ϕ,M)[M̃1] and vice
versa. We follow the strategy of the proof of Lemma 5.49 of [7]. According to [7, Lemma
5.23], log(1 + E(ϕ,M)[M̃1]) is integrable if and only if

lim sup
n→∞

E(ϕ,M)[M̃n]1/n < ∞ Q-a.s. (4)

Since EQ[| log μ1|2] < ∞, Theorem 1a of [8, Section XII.7, p. 414f] can be applied and
yields Q[L > n] ∼ c/

√
n for some constant c > 0. This implies that EQ[Lβ ] < ∞ for every

0 < β < 1
2 . Let β = 1/(2 + ε). Then by, e.g. [10, Theorem 4.23], we obtain, Q-a.s.,

lim sup
n→∞

L
β
n

n
= 0. (5)

For the proof of (4), note that, by (2) and since μj · · · μLn < 1 for each j < Ln, we obtain,
Q-a.s.,

E(ϕ,M)[M̃n] =
Ln∑

j=Ln−1+1

E(ϕ,M)[ZLn−j (j)] =
Ln∑

j=Ln−1+1

Mjμj+1 · · · μLn ≤
Ln∑
j=1

Mj. (6)

Now, an analogous calculation to that given in [7, p. 336] yields (4). For completeness, let
us give the full argument. Inequality (6) gives

lim sup
n→∞

E(ϕ,M)[M̃n]1/n ≤ lim sup
n→∞

exp

(
1

n
log

( Ln∑
j=1

Mj

))

≤ lim sup
n→∞

exp

(
1

L
β
n

log

(
1 +

Ln∑
j=1

Mj

)
L

β
n

n

)
. (7)

Since

log

(
1 +

Ln∑
j=1

Mj

)
≤ sup

1≤j≤Ln

log(1 + Mj) + log Ln

and log Ln/L
β
n → 0 for n → ∞, we obtain

lim sup
n→∞

1

L
β
n

log

(
1 +

Ln∑
j=1

Mj

)
≤ lim sup

n→∞
1

L
β
n

(
sup

1≤j≤Ln

(log(1 + Mj))
1/β

)β

≤ lim sup
n→∞

(
1

Ln

Ln∑
j=1

(log(1 + Mj))
1/β

)β

. (8)
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Recall that EQ[(log+ M1)
1/β ] = EQ[(log+ M1)

2+ε] < ∞. Hence, the right-hand side of (8) is
finite Q-a.s. by the law of large numbers, and (4) follows from (5), (7), and (8).

Summing up, the subprocess (ZLn)n≥0 is a BPIRE with reproduction according to (λn)n∈N

and immigration distribution (mn)n∈N, where (λn, mn)n∈N is i.i.d. and E[log E(ϕ,M)[M̃1]] < ∞.
Applying Lemma 1 reveals that (ZLn)n≥0 is positive recurrent, in particular recurrent. Hence,
(Zn)n≥0 is recurrent.

Before proving Theorem 4, let us deduce a useful result from Theorem 2 of [20].

Lemma 2. Let d ∈ N, c > 0, and 0 < a < 1. Assume that {V, Vi,n; i, n ∈ N0} is a
family of i.i.d., a.s. nonnegative random variables. Then EQ[(log+ V )d ] < ∞ if and only if∑

n∈N0
an

∑�cnd−1�
i=0 Vi,n < ∞, Q-a.s.

Proof. The proof follows by induction over d. Since log(1 + ∑k
i=1 xi) ≤ ∑k

i=1 log(1 + xi)

for any k ≥ 1 and xi ≥ 0, 1 ≤ i ≤ k, we obtain EQ[log+ V ] < ∞ if and only if
EQ[log+(

∑�c�
i=0 Vi,0)] < ∞. Furthermore, the latter is equivalent to the almost-sure conver-

gence of
∑

n∈N0
an

∑�c�
i=0 Vi,n; see, for instance, [14, Theorem 5.4.1]. Thus, the result for

d = 1 follows.
Let the assertion hold for some d ≥ 1. It will be useful to consider random variables

with three indices. Therefore, let {V, Vj,i,n; j, i, n ∈ N0} be i.i.d. It follows from Theorem 2
of [20] that EQ[(log+ V )d+1] is finite if and only if EQ[(log+ V0)

d ] is finite, where V0 =∑
n∈N0

anV0,0,n. By the induction hypothesis, EQ[(log+ V0)
d ] < ∞ is equivalent to the

almost-sure convergence of

∑
j∈N0

aj

�cjd−1�∑
i=0

∑
n∈N0

anVj,i,n =
∑
j∈N0

∑
n∈N0

aj+n

�cjd−1�∑
i=0

Vj,i,n =
∑
k∈N0

ak
k∑

j=0

�cjd−1�∑
i=0

Vj,i,k−j .

The number of summands in
∑k

j=0
∑�cjd−1�

i=0 Vj,i,k−j is asymptotically equal to kdc/d for

k → ∞. For d ≥ 1, note that the almost-sure convergence of
∑

n∈N0
an

∑�c̃nd�
i=0 Vi,n for some

c̃ > 0 and all 0 < a < 1 implies the almost-sure convergence for all c̃ > 0. Hence, the lemma
follows.

Let us now prove the transience criterion for an irreducible critical BPIRE.

Proof of Theorem 4. The strategy of the proof is similar to that of Theorem 2.2 of [4].
First we discuss an autoregressive model defined by the critical random difference equation
Xn := μnXn−1 + Mn for n ∈ N and X0 = 0. We will show that, Q-a.s.,

Xn > e
√

n for large n. (9)

Thereafter, (Xn)n≥0 is coupled with the critical BPIRE (Zn)n≥0 to obtain the transience.
As in the proof of Theorem 3, we define Yn = log μ1 +· · ·+ log μn. Let 1

2 < κ < 1/λ, and
let

T (κ) := inf{k ∈ N : Yn ≥ −nκ for all n ≥ k}.
By the law of the iterated logarithm, T (κ) is finite Q-a.s.; see, e.g. [10, Corollary 14.8, p. 275].
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Choose 0 < δ < 6 such that γ := δκ − 2 > 1. Then

EQ[T (κ)γ ] =
∑
n∈N

nγ Q[T (κ) = n]

≤ 1 +
∑
n≥2

nγ Q[Yn−1 < −(n − 1)κ ]

≤ 1 +
∑
n≥2

nγ Q[|Yn−1| > (n − 1)κ ].

This is finite due to the complete convergence theorem of Baum and Katz [5, Theorem 3, (a)
⇒ (b)], and the assumptions EQ[| log μ1|δ] < ∞ and EQ[log μ1] = 0. Therefore,

EQ[T (κ)γ ] < ∞. (10)

Consider now the autoregressive model. The recursion of Xn yields

Xn = Mn + μnMn−1 + μnμn−1Mn−2 + · · · + μ2 · · · μnM1.

Set
Wn := M1 + μ1M2 + μ1μ2M3 + · · · + μ1 · · · μn−1Mn

for n ∈ N. Then, exchangeability implies that, for all n ∈ N,

Q[Xn > e
√

n] = Q[Wn > e
√

n]. (11)

Recall that 1
2 < κ < 1/λ and γ > 1. By assumption (iii) of the theorem, there is some

constant c1 > 0 such that Q[M1 > e2nκ ] > c1n
−κλ for large n. Thus, for a suitable constant

c2 > 0, we obtain the following bound from above for large n ∈ N:

Q

[
Wn ≤ e

√
n, T (κ) < n1/γ

]
≤ Q

[ ⋂
n1/γ ≤i<n

{μ1 · · · μiMi+1 ≤ e
√

n}, T (κ) < n1/γ

]

= Q

[ ⋂
n1/γ ≤i<n

{Mi+1 ≤ e
√

n−Yi }, T (κ) < n1/γ

]

≤ Q

[ ⋂
n1/γ ≤i<n

{Mi+1 ≤ e2nκ }
]

≤ (1 − Q[M1 > e2nκ ])n−n1/γ −1

≤ e−c2n
1−κλ

.

Hence,

Q[Wn ≤ e
√

n] ≤ Q[Wn ≤ e
√

n, T (κ) < n1/γ ] + Q[T (κ) ≥ n1/γ ]
≤ e−c2n

1−κλ + Q[T (κ) ≥ n1/γ ]
for large n. By (10) and (11), and since κλ < 1, we obtain

∑
n≥1

Q[Xn ≤ e
√

n] < ∞,
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and (9) follows by the Borel–Cantelli lemma. Furthermore, we can now choose N ∈ N and
xN > e

√
N such that

Q

[ ⋂
n≥N+1

{Xn > e
√

n} ∩ {XN ≤ xN }
]
Q

[N−1⋂
n=1

{Xn > e
√

n} ∩ {XN ≥ xN }
]

> 0. (12)

Define X
(xN)
N := xN and X

(xN)
n := μnX

(xN )
n−1 + Mn for n > N , and note that {XN ≤ xN, Xn >

e
√

n for all n > N} ⊆ {X(xN)
n > e

√
n for all n > N}. Thus, (12) and the independence of

(ϕj , Mj )1≤j≤N and (ϕj , Mj )j≥N+1 under Q yield

Q

[⋂
n≥1

{Xn > e
√

n}
]

≥ Q

[N−1⋂
n=1

{Xn > e
√

n} ∩ {XN ≥ xN }
⋂

n≥N+1

{X(xN)
n > e

√
n}

]

= Q

[N−1⋂
n=1

{Xn > e
√

n} ∩ {XN ≥ xN }
]
Q

[ ⋂
n≥N+1

{X(xN)
n > e

√
n}

]

> 0.

Hence, we have Qϕ[⋂n≥1{Xn > e
√

n}] > 0 on some Q-nonnull set D.
The next step is to couple (Xn)n≥0 and (Zn)n≥0. As can be seen from the notation, the

increments of the difference equation correspond to the number of immigrants in the BPIRE and
the multiplication factor μn to the expected number of offspring of an individual in generation
n − 1.

Fix e−1 < β < 1. We will show that

Qϕ

[⋂
n∈N

{Zn ≥ β
√

nXn}
∣∣∣∣

⋂
k∈N

{Xk > e
√

k}
]

> 0 (13)

on D. Thus, Q[limn→∞ Zn = ∞] > 0 since eβ > 1, and the transience follows.
Let B0 := ⋂

k≥1{Xk > e
√

k} and, for n ∈ N,

Bn :=
n⋂

j=1

{Zj ≥ β
√

jXj } ∩
⋂
k≥1

{Xk > e
√

k}.

By the definition of (Zn)n≥0 in Definition 1, on D, we obtain

Qϕ[Zn < β
√

nXn, Bn−1]
=

∑
k∈N

Qϕ[Zn < β
√

nXn, Zn−1 = k, Bn−1]

=
∑
k∈N

Qϕ

[
μnk −

k∑
i=1

ξ
(n)
i > μn(k − β

√
nXn−1) + Mn(1 − β

√
n), Zn−1 = k, Bn−1

]

≤
∑

k>(eβ)
√

n−1

Qϕ

[
μnk −

k∑
i=1

ξ
(n)
i > (1 − β

√
n−√

n−1)μnk

]
Qϕ[Zn−1 = k, Bn−1].
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For the inequality in the last line, note that the summation over 1 ≤ k ≤ (eβ)
√

n−1 yields 0.
Now, Chebyshev’s inequality implies that

Qϕ

[
μnk −

k∑
i=1

ξ
(n)
i > (1 − β

√
n−√

n−1)μnk

]
≤ varϕ(ξ

(n)
1 )

(1 − β
√

n−√
n−1)2μ2

nk
.

Note that, for large n, 1 − β
√

n−√
n−1 ≥ − 1

2 (
√

n − √
n − 1) log β. Hence,

Qϕ[Zn < β
√

nXn, Bn−1] ≤ 4 varϕ(ξ
(n)
1 )

μ2
n(log β)2(

√
n − √

n − 1)2(eβ)
√

n−1
Qϕ[Bn−1]

for large n. Thus, it holds for some 0 < α < 1 that

Qϕ[Zn < β
√

nXn | Bn−1] ≤ α
√

n−1 varϕ(ξ
(n)
1 )μ−2

n

for large n and

∑
n∈N0

α
√

n varϕ(ξ
(n+1)
1 )μ−2

n+1 =
∑
k∈N0

(k+1)2−1∑
n=k2

α
√

n varϕ(ξ
(n+1)
1 )μ−2

n+1

≤
∑
k∈N0

αk

(k+1)2−1∑
n=k2

varϕ(ξ
(n+1)
1 )μ−2

n+1.

By the assumption that EQ[(log+(varϕ(ξ
(1)
1 )μ−2

1 ))2] < ∞, Lemma 2 yields, on D, Q-a.s.,

∑
n∈N

Qϕ[Zn < β
√

nXn | Bn−1] < ∞. (14)

Furthermore, we have, on D, Q-a.s.,

Qϕ[Zn ≥ β
√

nXn | Bn−1] ≥ Qϕ

[Zn−1∑
i=1

ξ
(n)
i ≥ μnβ

√
n−√

n−1Zn−1 | Bn−1

]
> 0 (15)

for all n ≥ 1. The strict inequality in (15) holds since

β
√

n−√
n−1 ≤ 1 and Qϕ

[ k∑
i=1

ξ
(n)
i ≥ μnk

]
> 0 for any k ∈ N.

The left-hand side of (13) equals
∏

n∈N Qϕ[Zn ≥ β
√

nXn | Bn−1] and, thus, (13) follows from
(14) and (15).

Remark 4. The recurrence and transience criteria in Theorems 3 and 4 hold in the same way
for a BPIRE with one ancestor. Starting with Z0 = 0 in Definition 1 is only due to the proof of
Lemma 1. To make sure that the BPIRE dies out infinitely often Q-a.s. in Theorem 3, we have to
additionally assume—if the process starts with one ancestor—that Q[ϕ1(0) > 0, M1 = 0] > 0.
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3. Excited random walk in a random environment

The aim of this section is to transfer the recurrence and transience criteria from the BPIRE
to the ERWRE. Therefore, note the well-known connection between branching processes with
migration and excited random walks. For a simple symmetric random walk disturbed by
cookies, this idea was employed, e.g. in [2], [3], and [12]. In [4] the author explained the
connection between a left-transient RWRE disturbed by cookies of maximal strength and a
subcritical BPIRE. In this section we establish an analogous relation between a critical BPIRE
and a recurrent RWRE disturbed by cookies of maximal strength. This connection is used to
prove Theorem 1. For a detailed explanation of the relation, we refer the reader to [4] or [12],
but try to give the main ideas here.

Let X
(j)
i , i ∈ N and j ∈ Z, be a family of ±1-valued random variables on �′ such that they

are independent under Pz,ω for all z ∈ Z and ω ∈ � and

Pz,ω[X(j)
i = 1] = ω(j, i) = 1 − Pz,ω[X(j)

i = −1].
The events {X(j)

i = 1} and {X(j)
i = −1} are respectively called successes and failures. Let

ξ
(k)
j := #{successes in (X

(k)
i )i>Mk

between the (j − 1)th and the j th failure}.
Now, set V0 := 1 and

Vk := ξ
(k)
1 + · · · + ξ

(k)
Vk−1

+ Mk.

Under Assumption A, (Vk)k≥0 is a BPIRE under P1, with one ancestor, immigrants (Mk)k≥1,
and offspring given by (ξ

(k)
j )j,k∈N. Note that ξ

(k)
j has geometric distribution with parameter

1 − pk , (geoN0
(1 − pk) for short), i.e. P1,ω[ξ (k)

j = n] = pk(ω)n(1 − pk(ω)) for n ∈ N0 and
P-almost every ω ∈ �.

To give an idea of the role of (Vk)k≥0, note the following. The ERWRE can be realized
recursively by

Sn+1 = Sn + X
(Sn)
#{m≤n : Sm=Sn} for n ≥ 0.

We denote the time when the ERWRE first hits k ∈ Z by

Tk := inf{n ∈ N : Sn = k}.
Now, consider the first excursion to the right of (Sn)n≥0 and count for k ∈ N the number of

upcrossings from k to k + 1 during this excursion:

Uk := #{n ≥ 0 : n < T0, Sn = k, Sn+1 = k + 1}.
For the moment, assume that S1 = 1. If the first excursion is finite then, up to time T0, the
random walker ate all cookies on site 1 to max1≤n≤T0 Sn. Let 1 ≤ k < max1≤n≤T0 Sn. Before
his/her return to 0, the walker stepped from k to k + 1 Mk times plus an additional number
of times, or, more precisely, plus the number of successes in (X

(k)
i )i>Mk

prior to the Uk−1th
failure, where U0 = 1. Thus, on {T0 < ∞} ∩ {S1 = 1}, we obtain

Uk = Vk (16)

for all 1 ≤ k ≤ max1≤n≤T0 Sn; see also [4, Lemma 3.3] or [12, Equation (14)].
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Analogously to [12, p. 1962] or [4] we call the ERWRE recurrent from the right if the first
excursion to the right of 0, if there is any, is P0-a.s. finite, i.e. P1[T0 < ∞] = 1.

In the next step a connection between right recurrence of (Sn)n≥0 and recurrence of (Vn)n≥0
is established. Roughly speaking, by (16), as soon as (Uk)k≥1 becomes 0—which means that
the first excursion of the ERWRE is finite—(Vk)k≥1 becomes 0 or extinct, and vice versa.

Lemma 3. Let Assumption A hold. The ERWRE (Sn)n≥0 is recurrent from the right if and only
if (Vk)k≥0 is recurrent in 0, i.e. P1[there exists k ∈ N : Vk = 0] = 1.

• If (Sn)n≥0 is recurrent from the right then all excursions are P0-a.s. finite.

• If (Sn)n≥0 is not recurrent from the right then P0[limn→∞ Sn = +∞] > 0.

This lemma can be proven analogously to Lemmas 3.5, 3.6, and 3.7 of [4]. Instead of Lemma
3.2 of [4] we use the facts that P0[lim infn→∞ Sn ∈ {±∞}] = 1 and

P0

[
lim sup
n→∞

Sn = +∞
]

= 1. (17)

Intuitively, assertion (17) is expected since the underlying random walk is recurrent and the
cookies induce a drift to the right. In fact, by Lemma 15 of [21], which also holds in the setting
� = ([0, 1]N)Z, P0,ω[Tk ≤ t] is monotone with respect to the environment ω for any t > 0
and k ∈ N. Then P0,ω[lim supn→∞ Sn = +∞] = P0,ω[⋂k∈N

⋃
t∈N{Tk ≤ t}] is monotone and

(17) holds.

Remark 5. In the case of right recurrence note that, due to monotonicity, there are, contrary to
the model in [4], a.s. infinitely many finite excursions to the right since the underlying random
environment induces a recurrent random walk. Hence, P0[Sn = 0 infinitely often] = 1 if
(Sn)n≥0 is recurrent from the right.

Proof of Theorem 1. If P[M1 = 0] = 1, the statement follows from [17, Theorem 1.7] about
the RWRE. Thus, assume that P[M1 = 0] < 1.

The process (Vk)k≥0 as described above is a BPIRE with immigrants (Mn)n≥1 and offspring
distribution geoN0

(1 − pj ), j ∈ N. It is irreducible on N0 since, by Assumption A, P[M1 =
0] > 0 and 0 < p1 < 1, P-a.s. and, thus, P[M1 = 0, ξ

(1)
1 = k] > 0 for every k ∈ N. Given

an environment ω ∈ �, the expected number of offspring produced by a single particle in the
(j − 1)th generation and its variance are

μj (ω) := E0,ω[ξ (j)
1 ] = pj (ω)

1 − pj (ω)
= ρ−1

j (ω)

and

var0,ω(ξ
(j)
1 ) = pj (ω)

(1 − pj (ω))2 ,

respectively. Hence, since we suppose that Assumption A holds for Theorem 1, (Vk)k≥0 is a
critical BPIRE according to Definition 1. Furthermore, P[μ1 = 1] < 1 holds by Assumption A.
Supposing that E[| log μ1|δ] < ∞ for every 0 < δ < 6 also includes, in particular, that
E[(log p1)

2] < ∞. To see this, note that

E

[(
log

p1

1 − p1

)2]
≥ E

[(
log

p1

1 − p1

)2

1{p1<κ}
]

for any κ > 0.
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Now, for small enough κ , a constant c > 0 can be found such that

(
log

p1

1 − p1

)2

= (log p1 − log(1 − p1))
2 ≥ c(log p1)

2

holds on {0 < p1 < κ}. Therefore, E[(log+(var0,ω(ξ
(1)
1 )μ−2

1 ))2] = E[(log p1)
2] < ∞ is

fulfilled, and, finally, the assumptions of Theorems 3 and 4 are satisfied.
If E[(log+ M0)

2+ε] < ∞ holds for some ε > 0 then the BPIRE (Vk)k≥0 is recurrent by
Theorem 3. Lemma 3 gives P0[Sn = 0 infinitely often] = 1 since the underlying RWRE is
recurrent and the first statement of Theorem 1 follows.

Let lim inf t→∞(tλP[log M1 > t]) > 0 for some 0 < λ < 2. Then (Vk)k≥0 is transient
by Theorem 4. Thus, by Lemma 3, P0[limn→∞ Sn = +∞] > 0. Now, following the same
strategy as in the proof of Theorem 1.1(iii) of [4], we obtain P0[limn→∞ Sn = +∞] = 1. This
completes the proof.

Example 1. Suppose that the assumptions of Theorem 1 are fulfilled, and let λ > 0. Let M0
satisfy

P[M0 = 0] = 1 − 1

(1 + log 2)λ
,

P[M0 ≥ k] = 1

(1 + log k)λ
for k ≥ 2, k ∈ N.

Theorem 1 makes no statement for λ = 2, but, for λ < 2, we obtain limn→∞ Sn = +∞ P0-a.s.
due to limt→∞ tλP[log M0 ≥ t] = 1 > 0. If λ > 2 then Sn = 0 infinitely often P0-a.s. since
we can choose ε > 0 such that 2 + ε < λ and get E[(log+ M0)

2+ε] < ∞.
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