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Gromov–Witten invariants of P2-stacks

Charles Cadman

Abstract

The Gromov–Witten theory of Deligne–Mumford stacks is a recent development, and
hardly any computations have been done beyond three-point genus 0 invariants. This
paper provides explicit recursions which, together with some invariants computed by hand,
determine all genus 0 invariants of the stack P2

D,2. Here D is a smooth plane curve and P2
D,2

is locally isomorphic to the stack quotient [U/(Z/(2))], where U → V ⊆ P2 is a double
cover branched along D ∩ V . The introduction discusses an enumerative application of
these invariants.

1. Introduction

The Gromov–Witten invariants of a smooth projective variety X are naive counts of curves in X
satisfying various conditions. Such an invariant is specified by choosing a nonnegative integer g, a
collection of subvarieties V1, . . . , Vn of X, and an algebraic class β ∈ H2(X). The invariant then
provides a rough count of genus g curves of class β in X which pass through general representatives
for the classes [V1], . . . , [Vn] ∈ A∗(X). The Gromov–Witten invariant often fails to equal the actual
count, essentially because the objects involved cannot always be deformed sufficiently. An often
cited example is the case of rational curves on a quintic threefold, in which case there are ‘multiple
cover contributions’ to the Gromov–Witten invariants. These contributions were first studied by
Aspinwall and Morrison [AM93].

In general, Gromov–Witten invariants are neither integral nor positive. They fail to be integral
because of the presence of automorphisms, which are an issue for multiple cover contributions. The
invariants can sometimes be negative due to the virtual fundamental class. This is an element of
the Chow group of the stack of stable maps which enters into the definition of the Gromov–Witten
invariants. It is often considered to be a technical detail, but in some cases it becomes the central
object of study.

From the point of view of enumerative geometry, Gromov–Witten invariants therefore have sev-
eral drawbacks. What makes them so useful is their computability and the possibility of extracting
the enumerative quantities from them. This is especially true in genus 0 if X is a homogeneous space
for a semisimple Lie group. Then the Gromov–Witten invariants equal the actual enumerative count,
and the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations reduce all of the invariants to a
small number of easily computable invariants [FP97]. The first reconstruction theorem of Kontsevich
and Manin gives a criterion for when such a reduction via WDVV is possible [KM94].

This paper computes Gromov–Witten invariants of certain Deligne–Mumford stacks. For this,
a more general theory is required, and the work has been done by Chen and Ruan [CR02] and
Abramovich, Graber, and Vistoli [AGV02]. The stacks we study, referred to as ‘P2-stacks’ in the title,
are parametrized by smooth plane curves D, and are denoted by P2

D,2. If the degree of the curve D

happens to be even, then there is a two to one cover of P2 whose branch locus is D, and P2
D,2 is the
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stack quotient of this cover by the Z/(2) action. If the degree of D is odd, then this picture only
holds locally, but the quotient stacks glue together. The general construction of P2

D,2 is worked out
in [Cad].

For the reader who is unfamiliar with stacks, the following may be helpful. If G is a finite group
acting on a quasi-projective variety Y , then there is a morphism

[Y/G] → Y/G,

where [Y/G] is the stack quotient and Y/G is the scheme quotient. This morphism is a bijection
on points, but the stack quotient [Y/G] ‘remembers’ stabilizer groups of points of Y , which are
forgotten in Y/G. A morphism from a scheme S to [Y/G] is the same as a principal G-bundle
P → S together with a G-equivariant map P → Y . So if y ∈ Y is a point with stabilizer H,
then morphisms sending S to the image of y in [Y/G] are equivalent to principal H-bundles on S.
This is essentially how the extra information is ‘stored’ in [Y/G]. In general, if one has a morphism
S → Y/G, then a lifting to a morphism S → [Y/G] requires some extra data on S, and such a
lifting need not exist.

In this paper, the genus 0 Gromov–Witten invariants of P2
D,2 are reduced to a small number of

invariants using the WDVV equations. These basic invariants are then computed by hand. Such a
technique might be possible more generally.

The Gromov–Witten invariants of P2
D,2 take as input numerical equivalence classes on the inertia

stack of P2
D,2. In this paper we instead use the coarse moduli space of the inertia stack, which is

isomorphic to a disjoint union of P2 with D. The interesting classes are the class of a point in P2,
the fundamental class of D, and the class of a point in D, and we denote them by T2, T3, and T4

respectively.
A twisted stable map is a representable morphism of stacks C → P2

D,2 whose induced morphism
of coarse moduli spaces C → P2 is an ordinary stable map such that all ‘twisted’ points of C are
either nodes or marked points. A twisted point is a point which has a nontrivial stabilizer group,
and for stable maps to P2

D,2, this group will always be Z/(2). The stack C is required to have a
certain local picture at nodes and marked points [ACV03, § 2.1], and this local picture completely
determines C given the set of twisted points and the orders of their cyclic stabilizer groups.

Twisted stable maps to P2
D,2 are best understood in terms of tangencies. If C is a smooth curve

and f : C → P2 is a morphism for which f−1(D) is zero dimensional, then f lifts to a morphism
C → P2

D,2 if and only if f∗(D) = 2E for some divisor E (see [Cad, Theorem 3.3.6]). This leads to
the idea that a twisted stable map F : C → P2

D,2 has to have an even order contact with D at every
untwisted point of C. In general, we can characterize genus 0 twisted stable maps F : C → P2

D,2 as
follows. Let C be the coarse curve of C. If f : C → P2 is a stable map, then to have a twisted stable
map F : C → P2

D,2 lying over f , it is necessary and sufficient that the following hold.

(i) For each component Ci of C not mapping into D, the points of Ci having an odd order of
contact with D are precisely the points which are twisted in C.

(ii) For each component Ci of C which maps into D, the number of points of Ci which are twisted
in C is congruent modulo 2 to the intersection number D · Ci.

This work was motivated by the idea that Gromov–Witten invariants of P 2
D,2 might count

rational plane curves having prescribed contacts with D. While this is often true, there are plenty
of counterexamples. When D is a line, the numbers of such curves can be computed from a recursion
of Caporaso and Harris [CH98, § 1.4]. The first discrepancy between the Gromov–Witten invariants
and the actual numbers occurs in degree 4 with the invariant I4(T 7

2 T 4
4 ). If this invariant were

enumerative, it would count the number of rational quartics passing through seven general points
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in P2 and four general points on D. However, the actual number is 398, while the invariant is 416.
This is explained by the existence of twisted stable maps from reducible curves into P2

D,2 which are
illustrated by the diagram below. The dots correspond to twisted points and the numbers indicate
the degree of the component they label.

3

1� � � � �

D

P2

�

�

This shows that there is a contribution to the Gromov–Witten invariant coming from rational
cubics which are tangent to the line and pass through the seven general points. There are 36 such
curves, but each of them counts with multiplicity 1/2, because the twisted curve in the diagram has
a ‘ghost automorphism’ which 2-commutes with the map. Ghost automorphisms are automorphisms
of the twisted curve which cover the identity morphism on its coarse moduli space, and it is shown
in [ACV03, Proposition 7.1.1] that they all come from twisted nodes. It is important that the
component mapping onto D has an odd number of twisted points, because otherwise a representable
morphism would not exist.

When D is a line, we have compared the Gromov–Witten invariants

Id(T 3d−1−a−b
2 T d−a−2b

3 T a
4 )

with the number of rational degree d curves C which have b tangencies with D at smooth points of
C, meet D transversely at a general points, and meet 3d − 1 − a − b general points in P2. For all
except one case with d � 6, the invariants either give the same answer as the recursion of Caporaso
and Harris or otherwise the discrepancy can be accounted for in a manner similar to the above
example. The remaining case, I6(T 11

2 T 6
4 ), involves a virtual fundamental class computation which

we have not done.
When D is a conic, there are similar contributions which prevent the invariants from being

enumerative, but when deg(D) � 3 no rational curve can map onto D, so such contributions are
eliminated. This does not mean that they become enumerative, however. When D is a quartic,
there are components consisting entirely of multiple covers which contribute to the invariants. The
simplest example is I2(T2), which if enumerative would count conics passing through a point which
are tangent to D four times. The extra contribution comes from double covers of lines which are
tangent to D once such that the branch points of the cover lie at the transverse intersection points.
This type of contribution can occur whenever deg(D) � 4.

When D is a cubic, the moduli space of twisted stable maps still has components consisting
of multiple covers, but they do not contribute to the Gromov–Witten invariants. In [Cad05], it is
shown that all of the positive degree genus 0 Gromov–Witten invariants of P2

D,2 are enumerative.
Stronger enumerative results have recently been obtained. In [CC07], more general ‘rth root’ stacks
were used to compute the numbers of rational degree d curves with arbitrary contact conditions
imposed relative to a smooth cubic, except for the case of a single contact of order 3d.
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An interesting problem is to determine the actual number of rational curves satisfying tangency
conditions to D when deg(D) � 4. When D is a line the problem was solved by Caporaso and
Harris [CH98] and, when D is a conic, it was solved by Vakil [Vak00]. The results of this paper
could be used for higher degrees if the nonenumerative contributions could be worked out. In the case
of a quartic, the Gromov–Witten invariants of P2

D,2 are close to being enumerative in the sense that
the extra contributions come from multiple cover components which have the expected dimension.
This means that the extra contributions are probably not hard to compute. When the degree is
larger than 4, there will be contributions from multiple cover components having greater than the
expected dimension. For example, multiple covers of bitangent lines always have this property (when
they contribute to an invariant). This makes the extra contributions much more difficult to compute.

It would also be interesting to find a general formula for the nonenumerative contributions in the
case of a line or conic. Here again, components having greater than the expected dimension would be
difficult to handle. In any case, a new idea is probably required. The referee wondered whether there
is a ‘splitting axiom’ which would allow one to account for the contributions from reducible source
curves, as in the example illustrated above. There is a splitting axiom for twisted Gromov–Witten
invariants [AGV06, Proposition 5.3.1], but it does not seem to apply to this situation. Some other
kind of formula might hold in this situation, but none is known to the author.

To give the reader a sense for the role played by the virtual fundamental class, we give some
invariants which are computed in this paper. Firstly, it should be mentioned that for stacks, there
can exist genus 0, n-pointed degree 0 invariants with n > 3. This never happens for varieties due to
the forgetting-a-point axiom. For the P2-stacks considered in this paper, there is exactly one such
invariant, I0(T 3

3 T4) in the above notation, and it is equal to −1/4. When D is a line or a conic, there
exist infinitely many invariants of degree δ := deg(D). These come from stable maps which on the
level of coarse moduli spaces have image D, which is why they only occur when D is rational. If

λk =
(−1)kk!

2k+1
for k � 0,

then when D is a line, the Gromov–Witten invariant I1(T k
3 T k+3

4 ) = λk, while if D is a conic,
I2(T k

3 T k+6
4 ) = λk.

The paper is organized as follows. Sections 2 and 3 contain general results about stable maps
into XD,r. Section 2 defines evaluation maps and Gromov–Witten invariants, while § 3 deals with
the virtual fundamental class and works out the expected dimension of the stack of stable maps.
Along the way, we investigate the tangent bundle of XD,r in § 3.4. We relate it to the tangent bundle
of X by showing that the sheaf of logarithmic vector fields on X relative to D pulls back to the
sheaf of logarithmic vector fields on XD,r relative to ‘1rD’. Section 4 contains direct computations
of some degree 0 and 1 invariants which are needed in order to use the recursions. Finally, in § 5 we
define the big quantum product, work out the recursions, and provide an algorithm which can be
used to compute any genus 0 invariant.

1.1 Notation and conventions

Throughout this paper, all schemes are equipped with structure morphisms to SpecC and all mor-
phisms of schemes respect these structure morphisms. As a consequence, the same is true for all
stacks that appear. We use µr to denote the group of rth roots of unity in C. Given a stack X, we
use X̂ to denote the coarse moduli space of its inertia stack, assuming it exists.

In this paper, we deviate slightly from [AGV02] where Gromov–Witten invariants are defined in
terms of a stack of twisted stable maps with sections of all gerbes, which is denoted by Mg,n(X, β).
We prefer instead to work with the stack Kg,n(X, β), which is the one defined in [AV02]. We implicitly
assume that all twisted stable maps are balanced. In addition, we work with evaluation morphisms
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from Kg,n(X, β) to the coarse moduli space of the inertia stack, rather than the rigidification of the
inertia stack used in [AGV02].

2. Stable maps to rth root stacks

Let X be a smooth projective variety over C, D ⊆ X be a smooth divisor, and r be a positive integer.
In this section, we investigate stable maps into XD,r and define Gromov–Witten invariants, although
we leave a discussion of the virtual fundamental class for later. First we introduce the contact type
of a twisted stable map and define evaluation maps in terms of this. It is straightforward to show
that the definition in [AGV02] gives rise to the same evaluation maps.

2.1 The rth root construction
We now give a summary of results from [Cad, § 2] which are needed in this paper. Given a scheme
X, an effective Cartier divisor D ⊆ X, and a positive integer r which is invertible on X, there
is a Deligne–Mumford stack XD,r over X on which the pair (OX(D), sD) has an rth root. More
precisely, if f : S → X is a morphism of schemes, then an object of XD,r over f consists of a triple
(M, t, ϕ), where M is an invertible sheaf on S, t is a global section of M , and ϕ : M r → f∗OX(D) is
an isomorphism such that ϕ(tr) = f∗sD. There is a universal object on XD,r covering the projection
π : XD,r → X. We denote the universal line bundle T and its section τ . The vanishing locus of τ
is a substack G ⊆ XD,r which is mapped into D by π, and the restriction G → D is an étale gerbe
with band µr. The projection π is an isomorphism away from D, and it is ramified over D. In fact,
π−1(D) is the rth-order infinitesimal neighborhood of G in XD,r.

2.2 Twisted curves
Recall that a prestable curve over a Noetherian scheme S is a flat, proper morphism C → S whose
geometric fibers are curves with at worst nodal singularities. An n-marked prestable curve has in
addition n sections si : S → C whose images are disjoint and do not intersect the singular locus
of C → S. To give n such sections is equivalent to giving n disjoint effective Cartier divisors Di ⊆ C
which map isomorphically to S (see [Cad, § 4]). The passage from curves to twisted curves requires
the addition of stack structure at the nodes and markings [AV02, Definition 4.1.2]. The stack
structure at a marking is always obtained from the coarse moduli space by applying the rth root
construction to the image of the section. We do not need to consider the stack structure at the
node, but for an interesting treatment see [Ols].

Given a Deligne–Mumford stack C, n divisors Di, and n positive integers ri, we use CD,�r for the
result of applying the r1th root construction along D1, followed by the r2th root construction along
D2, and so on.

Proposition 2.2.1. To give a twisted nodal n-pointed genus g curve over a connected Noetherian
scheme S is equivalent to giving:

(i) a nodal n-pointed genus g curve C over S with markings D1, . . . ,Dn;

(ii) for each marking Di ⊆ S, a positive integer ri; and

(iii) a twisted nodal 0-pointed genus g curve C over S, whose coarse moduli scheme is C.

Then the twisted curve is isomorphic to CD,�r in such a way that the ith marking of the twisted
curve is sent to the gerbe over Di.

This can be proven in the same way as [Cad, Theorem 4.1] and also follows from [Ols]. Note that
CD,�r

∼= C×C CD,�r. Moreover, the divisors Di do not pass through any nodes of the fibers, so the rith
root construction along Di is taking place away from the points of C which have stack structure.
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While this statement is not very precise, it is meant to assure the reader that much of what was done
in [Cad] carries over without change. In particular, the notion of contact type extends to arbitrary
stable maps CD,�r → XD,r.

2.3 Contact type

In [Cad, § 3.2], we derived some key results about line bundles and sections on CD,�r. They extend
without change to CD,�r, because the results of [Cad, § 3.1], from which they follow, are stated in
sufficient generality. We state the more general results here.

Let S be a connected, Noetherian scheme and let C, C, and Di be as in Proposition 2.2.1. Let
γ : CD,�r → C be the projection, and let Ti be the tautological sheaf associated to the rith root
construction along Di. The important properties of these sheaves are contained in the next two
corollaries.

Corollary 2.3.1. Let L be an invertible sheaf on CD,�r. Then there exist an invertible sheaf L on
C and integers ki satisfying 0 � ki � ri − 1 such that

L ∼= γ∗L ⊗
n∏

i=1

T ki
i .

Moreover, the integers ki are unique, L is unique up to isomorphism, and T ri
i

∼= γ∗OC(Di).

Corollary 2.3.2. Given the decomposition in the previous corollary, every global section of L is
of the form γ∗s ⊗ τk1

1 ⊗ · · · ⊗ τkn
n for a unique global section s of L, where τi is the tautological

section of Ti.

If F : CD,�r → XD,r is any morphism, then Corollary 2.3.1 associates to F ∗T a unique n-tuple of
integers k1, . . . , kn, where T is the tautological sheaf of XD,r. Let U ⊆ C be the complement of the
divisors Di and let U ⊆ C be its preimage. Note that U is isomorphic to its preimage in CD,�r.

Proposition 2.3.3. The morphism F is representable if and only if its restriction to U is repre-
sentable and for every i, ri divides r, and ki is relatively prime to ri.

The proof goes through as in [Cad, Proposition 3.3.3]. Being representable is a pointwise condi-
tion by [AV02, Lemma 4.4.3], so for F to be representable is equivalent to its restrictions to U and
the gerbes over D1, . . . ,Dn being representable.

Now assume that F is representable.

Definition 2.3.4. Let �i = kir/ri for 1 � i � n. We define the contact type of F to be the n-tuple
	� = (�1, . . . , �n).

Multiplying the identity gcd(ki, ri) = 1 by r/ri yields gcd(�i, r) = r/ri = �i/ki. Thus, 	k and 	r
are determined by 	� via the following formulas:

ri =
r

gcd(�i, r)
, ki =

�i

gcd(�i, r)
. (2.3.5)

For any β ∈ N1(X), the contact type determines n locally constant functions on Kg,n(XD,r, β)
with integer values from 0 to r−1. We define Kg,n(XD,r, β, 	�) to be the open and closed substack of
Kg,n(XD,r, β) consisting of stable maps with contact type 	�. In [Cad], we found that a stable map
from a smooth twisted curve into XD,r which does not map into the gerbe has to have a contact
type for which D · β −

∑
�i is a multiple of r. Equation (3.5.1) implies that this holds in general.
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2.4 Evaluation maps

In [AGV02], evaluation maps are defined which go from Kg,n(XD,r, β) to a rigidification of the inertia
stack of XD,r. This allows for a richer structure than is required for our purposes.
We instead define evaluation maps which go to the coarse moduli scheme of the inertia stack,
which we denote by X̂D,r. It turns out that X̂D,r is isomorphic to a disjoint union of X with r − 1
copies of D. We denote these copies of D by (X̂D,r)i for 1 � i � r − 1, and let (X̂D,r)0 denote
the component X. A morphism from a connected scheme S to X̂D,r is therefore determined by a
morphism S → X and an integer from 0 to r−1 which is positive only if S → X factors through D.

Given an object ξ of Kg,n(XD,r, β) over a connected Noetherian scheme S, let ei(ξ) be the pair
(g, �i), where �i is the ith component of the contact type of ξ and g : S → X is the composition of
the ith section S → Di ⊆ C with the morphism C → X.

CD,�r
F ��

γ

��

XD,r

��
Di

� � �� C
f �� X

In light of the following lemma, this defines a morphism ei : Kg,n(XD,r, β) → X̂D,r.

Lemma 2.4.1. If �i �= 0, then the morphism g : S → X factors through D.

Proof. The morphism F determines an invertible sheaf M on CD,�r, which is isomorphic to γ∗L ⊗∏n
j=1 T

kj

j by Corollary 2.3.1. It also determines a section t of M , which corresponds to γ∗s
∏

τ
kj

j

by Corollary 2.3.2. Moreover, M r is isomorphic to γ∗f∗OX(D) in such a way that tr goes to
γ∗f∗sD. Taking rth powers of our expressions for M and t, the uniqueness assertions of Corollar-
ies 2.3.1 and 2.3.2 imply that Lr(

∑
�jDj) ∼= f∗OX(D) by an isomorphism sending sr

∏
s
�j

Dj
to f∗sD.

It follows that if �i �= 0, then f∗sD vanishes on Di, which proves the lemma.

2.5 Gromov–Witten invariants

To define Gromov–Witten invariants, one must first define the virtual fundamental class [Kg,n

(XD,r, β)]v . This is an element of the Chow group of Kg,n(XD,r, β) which has the expected dimension.
For now we assume that it has already been defined.

Fix integers g, n � 0 and an effective class β ∈ N1(X). Let 	e = e1 × · · · × en : Kg,n(XD,r, β) →
X̂D,r

×n
and let p : X̂D,r

×n
→ Spec C be the structure morphism. Since Kg,n(XD,r, β) is proper

over C (see [AV02, Theorem 1.4.1]), there is a proper pushforward 	e∗ on Chow groups with rational
coefficients defined by [Vis89, Definition 3.6].

Given any numerical equivalence classes a1, . . . , an ∈ N∗
Q(X̂D,r), the Gromov–Witten invariant

is defined to be

Ig
β(a1 · · · an) := p∗((a1 × · · · × an) ∩ 	e∗[Kg,n(XD,r, β)]v), (2.5.1)

which is regarded as an element of Q. As the definition is clearly symmetric in a1, . . . , an, we
regard Ig

β as an element of the dual of Sym∗(N∗
Q(X̂D,r)). The following proposition is an immediate

consequence of the definitions.

Proposition 2.5.2. Suppose ai = [Vi] for some (irreducible) subvariety Vi ⊆ X̂D,r for 1 � i � n.

Let 	� be such that Vi ⊆ (X̂D,r)�i for each i. If there are no stable maps C → XD,r in Kg,n(XD,r, β, 	�)
such that the ith marked point is sent under C → XD,r → X into the image of Vi ⊆ X̂D,r → X for
all i, then Ig

β(a1 · · · an) = 0.
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3. Virtual fundamental class

3.1 Preliminaries
This section is devoted to studying the virtual fundamental class for the moduli space of stable maps
into XD,r. To begin, we consider an arbitrary smooth, proper, Deligne–Mumford stack X which has
a projective coarse moduli scheme. Note that XD,r is smooth by Proposition 3.4.1. The reader may
also wish to consult [AGV02, § 4.6].

The virtual fundamental class of K := Kg,n(X, β) is constructed in the same way as it is for
varieties [Beh97, BF97, LT98]. Here we adopt the approach of Behrend and Fantechi. Let M := Mtw

g,n

be the smooth Artin stack of twisted curves with no stability condition. This is obtained from [Ols,
Theorem 1.9] by base extension to Spec C. We define an element E• of the derived category of K

which is equivalent to a two-term complex of locally free sheaves in positions −1 and 0. Then we
define a morphism φ : E• → LK/M which is surjective on h−1 and an isomorphism on h0. After
verifying that φ is a perfect relative obstruction theory, the construction of [BF97, § 7] produces a
virtual fundamental class [K]v ∈ A∗(K). Note that the mapping cone construction allows one to go
from a perfect relative obstruction theory to an absolute theory which determines the same virtual
fundamental class [GP99, Appendix B].

Before proceeding to define φ, we state some consequences of this construction. On any connected
component of K, [K]v is homogeneous of degree rk(E•) + dim(M), which is called the expected
dimension. By [BF97, § 4], a perfect obstruction theory for K gives rise to an obstruction theory in
the classical sense at any point of K. It follows that at every point of K, the dimension is greater than
or equal to the expected dimension with equality implying that K is a local complete intersection
at that point [Har04, Corollary 7.4].

Suppose that U ⊆ Kg,n(X, β) is an open substack which has the expected dimension. By [BF97,
5.10], the restriction of the virtual fundamental class to U is equal to the virtual fundamental class
determined by the restriction of φ to U. Since U has the expected dimension, the kernel of

h−1(φ|U) : h−1(E•|U) → h−1(LU/M)

has rank 0. Moreover, it is torsion free since it is a subsheaf of a locally free sheaf. Therefore, it
equals 0 and φ|U is an isomorphism. The following proposition follows by definition of the virtual
fundamental class [BF97, § 5].

Proposition 3.1.1. If U ⊆ Kg,n(X, β) is an open substack which has the expected dimension, then
the restriction of [Kg,n(X, β)]v to U is [U], the ordinary fundamental class.

3.2 Perfect relative obstruction theory
We continue with our previous notation. Let C be the universal curve over K.

C
f ��

π

��

X

K

There exist canonical log structures on C and K which make π log smooth [Ols, § 3]. Let ω be the
relative sheaf of log differentials, so that ω is a dualizing sheaf for π.

Let

E• = (Rπ∗(f∗TX))∨.

By duality, E• is isomorphic to Rπ∗(f∗LX ⊗ ω). Let Ctw → M be the universal twisted curve. We
have morphisms f∗LX → LC → LC/Ctw and an isomorphism π∗LK/M → LC/Ctw , the latter coming
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from the following fiber square.

C ��

π

��
�

Ctw

��
K �� M

Composing, we obtain a morphism f∗LX → π∗LK/M, which by duality is equivalent to a mor-
phism φ : E• → LK/M.

We show that E• is equivalent to a two-term complex of locally free sheaves (it is enough for
this to hold locally on K, but it is true globally). Let π : C → K be the relative coarse moduli space
of C over K, i.e. the fibers of π are the coarse moduli spaces of the fibers of π. Let γ : C → C be the
projection. By [OS03, Lemma 4.2], γ∗f∗TX is a coherent sheaf which is flat over K, and Riγ∗f∗TX = 0
for i > 0. It follows that E• ∼= Rπ∗(γ∗f∗TX). One can now apply [Beh97, Proposition 5], since the
proof of that proposition requires only that E is a coherent sheaf, flat over T .

Since deformation theory for Deligne–Mumford stacks works in the same way as for schemes (all
the results of [Ill71, Ill72] apply), the remainder of the proof that φ is a perfect relative obstruction
theory is identical to the case where X is a smooth projective variety.

In summary, if C = (f : C → X,Σ1, . . . ,Σn) is a stable map in Kg,n(X, β), then the expected
dimension of Kg,n(X, β) at C is

χ(f∗TX) + dim(Mtw
g,n). (3.2.1)

3.3 Riemann–Roch for twisted curves
Here we recall a version of the Riemann–Roch theorem for balanced nodal twisted curves which is
proven in [AGV06]. It will be applied later to f∗TXD,r, where f : C → XD,r is a twisted stable
map. First we recall the definition of age.

Let C be a balanced twisted nodal curve, and let E be a locally free sheaf on C. For any closed
point x ∈ C there is a closed substack Gx ⊆ C called the residue gerbe of x (see [LMB00, § 11]).
It is isomorphic to Bµr for some positive integer r called the order of twisting of x. If r > 1, x is
called a twisted point, and otherwise it is called untwisted. The restriction of E to Bµr determines a
representation of µr, but this is not canonical since it depends on the isomorphism Bµr → Gx. If x is
a smooth point, then we can choose an isomorphism Bµr → Gx so that the restriction of the tangent
bundle TC to Bµr corresponds to the standard representation of µr. Then the representation of µr

determined by E is well-defined, and we denote this representation by Ex.
At nodes, one can study E by pulling back to the normalization of C (see [Vis89, Definition 1.18]).

Locally in the étale topology, the node looks like the stack quotient of Spec C[x, y]/(xy) by the group
µr which acts by ζ · (x, y) = (ζx, ζ−1y). The normalization of this stack is two copies of the affine
line each with the origin twisted to order r. So a nodal point x ∈ C has two preimages xi in the
normalization of C, and each determines canonically a representation Exi of µr. The fact that C is
balanced (encoded in the action above) implies that these are dual representations.

Definition 3.3.1. The age of a locally free sheaf E at a smooth point x of a twisted curve C is a
rational number denoted by age(E , x). Let V denote the standard representation of µr, where r is
the order of twisting of x. If

Ex
∼=

n⊕
i=1

V ⊗ki

where 0 � ki � r − 1, then

age(E , x) =
n∑

i=1

ki

r
.
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Theorem 3.3.2. Let C be a balanced twisted nodal curve of genus g over C and let E be a locally
free sheaf on C. Then

h0(C, E) − h1(C, E) = deg(E) + rk(E)(1 − g) −
∑

x

age(E , x),

where the sum is over the twisted smooth points of C.

3.4 Tangent bundle of XD,r

To apply the Riemann–Roch theorem to f∗TXD,r, we need some results about the tangent bundle
to XD,r. Let T be the tautological sheaf on XD,r (see § 2.1) and let G be the gerbe of XD,r. We use
Gk to denote the kth-order infinitesimal neighborhood of G. Let π : XD,r → X be the projection.

Recall from [Cad, Example 2.4.1] that XD,r is locally a stack quotient in the following way.
If V = SpecS ⊆ X is an affine open set on which we have a trivialization of OX(D), then the
tautological section of OX(D) corresponds to an element α ∈ S, and if U = SpecA, where A =
S[x]/(xr − α), then XD,r ×X V is isomorphic to [U/µr], where µr acts on A by (ζ, x) �→ ζ−1x and
(ζ, s) �→ s for ζ ∈ µr and s ∈ S. Moreover, the preimage of Gk in U is defined by the vanishing of
xk. This shows that Gr = π−1(D).

We assume that X is a smooth projective variety and D ⊆ X is a smooth divisor. First we show
that XD,r is smooth, so that TXD,r is locally free.

Proposition 3.4.1. We have that XD,r is smooth over C.

Proof. Using the above notation, it suffices to show that U is smooth. Since U is a closed subscheme
of the smooth variety V × A1 defined by xr − α = 0, it suffices to show that for any closed point
p ∈ V × A1, xr − α /∈ m2

p, where mp ⊆ OV ×A1,p is the maximal ideal.

If xr − α ∈ m2
p, then ∂/∂x(xr − α) ∈ mp, so rxr−1 ∈ mp, which implies x ∈ mp. It follows that

p ∈ D × {0} and α ∈ m2
p, which contradicts the smoothness of D.

Proposition 3.4.2. There is an exact sequence of sheaves on XD,r:

0 → TXD,r → π∗TX → π∗OX(D) ⊗OGr−1 → 0.

Proof. Since π∗OD
∼= OGr , the morphisms in the above sequence clearly exist. The injectivity of

the differential follows from the fact that it is an isomorphism away from G. Note also that

π∗TX → π∗(TX ⊗OD) → π∗(O(D) ⊗OD) → π∗O(D) ⊗OGr−1

is a sequence of surjective maps. It remains to show exactness in the middle, and this can be shown
locally. It suffices to show this after pulling back to U since U → XD,r is étale. So we need to show
that the following sequence of A-modules is exact in the middle

0 → DerC(A,A) → DerC(S, S) ⊗S A → α−1A/x−1A → 0.

The second homomorphism is defined by sending a derivation δ : S → S to α−1δ(α). The compo-
sition is 0 because α−1δ(xr) = rx−1δ(x). Note that a derivation A → A is uniquely determined by
a derivation δ : S → A and an element δ(x) ∈ A such that rxr−1δ(x) = δ(α). If

∑
aiδi �→ 0 in

α−1A/x−1A, then
∑

aiδi(α) ∈ αx−1A = xr−1A, so
∑

aiδi extends to a derivation A → A.

Let E be the kernel of TX → OD(D), which is locally free. From the above proposition, it
follows that as subsheaves of π∗TX, π∗E is a subsheaf of TXD,r. We have the following commutative
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diagrams with exact rows.

0 �� π∗E ��

��

π∗TX �� π∗OD(D) ��

��

0

0 �� TXD,r �� π∗TX �� π∗OX(D) ⊗OGr−1
�� 0

0 �� OXD,r
��

��

T ⊗r �� π∗OD(D) ��

��

0

0 �� T �� T ⊗r �� π∗OX(D) ⊗OGr−1
�� 0

For the second diagram, note that T ⊗r ∼= π∗OX(D) and that Gr−1 is cut out by a section of
T ⊗(r−1). By applying the snake lemma to both diagrams, we see that the cokernel of π∗E → TXD,r

is isomorphic to the cokernel of OXD,r
→ T , which is T ⊗OG since this morphism is the tautological

section which cuts out G. So we have an exact sequence

0 → π∗E → TXD,r → T ⊗OG → 0, (3.4.3)

and therefore

c1(TXD,r) = π∗
(

c1(TX) − r − 1
r

[D]
)

. (3.4.4)

Proposition 3.4.5. There is an exact sequence of sheaves on G:

0 → OG → π∗E ⊗ OG → TXD,r ⊗OG → T ⊗OG → 0.

Note that π∗E ⊗OG/OG is locally free since it is the kernel of a surjection of locally free sheaves.

Proof. This follows from (3.4.3), given the fact that Tor
OXD,r

1 (T ⊗OG,OG) = OG, which follows by
tensoring the exact sequence

0 → OXD,r
→ T → T ⊗OG → 0

with OG.

Remark 3.4.6. The above exact sequences all hold if X is a smooth twisted curve and D is an
untwisted point of X. Therefore, (3.4.3) implies that

TC ∼= TC
(
−

∑
pi

)
⊗

∏
Ti,

where C is a smooth twisted curve with coarse moduli scheme C, pi are the points of C which are
twisted in C, and Ti is the tautological sheaf corresponding to pi. Recalling the notation from the
beginning of § 3.1, it follows that (Ti)xi is the standard representation, where xi ∈ C is the preimage
of pi.

Let f : C → XD,r be a genus g twisted stable map of class β and contact type 	� (see Defini-
tion 2.3.4). Then (3.4.4) implies that

deg(f∗TXD,r) = deg(f∗π∗TX) − r − 1
r

β · D = −β · (KX + D) +
1
r
β · D. (3.4.7)

Proposition 3.4.5 implies that the age of f∗TXD,r at a twisted point is equal to the age of f∗T at
the same point. From the definition of contact type, we have

age(f∗TXD,r, xi) =
�i

r
(3.4.8)
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where xi is the ith marked point. Since rk(TXD,r) = rk(TX) = dim(X), Theorem 3.3.2 implies
that

χ(f∗TXD,r) = −β · (KX + D) +
1
r

(
β · D −

n∑
i=1

�i

)
− dim(X)(g − 1). (3.4.9)

3.5 Expected dimension of Kg,n(XD,r, β, 	�)
Fix g, n, β, � and let K = Kg,n(XD,r, β, 	�). From (3.4.9), it is clear that the restriction of the virtual
fundamental class to K (which we denote by [K]v) is homogeneous in the Chow group of K. Its
degree is the expected dimension of K and is denoted by edim(K). This number is important in
Gromov–Witten theory because it determines which Gromov–Witten invariants can be nonzero.
For example, suppose that we choose for each i an element ai ∈ N ci((X̂D,r)�i) ⊆ N∗(X̂D,r). Then
the Gromov–Witten invariant Ig

β(a1 · · · an) can be nonzero only if edim(K) =
∑

ci.

Since the dimension of Mtw
g,n is 3g − 3 + n, we can compute the expected dimension from (3.2.1)

and (3.4.9):

edim(K) = −β · (KX + D) +
1
r

(
β · D −

n∑
i=1

�i

)
+ n + (3 − dim(X))(g − 1). (3.5.1)

4. Some invariants of P2
D,2

4.1 Preliminaries
In this section we compute some Gromov–Witten invariants of P2

D,2, where D ⊆ P2 is a smooth
curve of degree δ. In the next section we use these invariants together with associativity of the big
quantum product to find recursions that determine all of the genus 0 invariants.

We denote the class of a curve in N1(P2) by its degree d. Since we are only interested in genus 0
invariants, we use Id to mean I0

d . Recall that P̂2
D,2

∼= P2	D. We fix the following basis for N∗(P̂2
D,2):

• T0 is the unit class of P2;

• T1 is the hyperplane class of P2;

• T2 is the class of a point in P2;

• T3 is the unit class of D;

• T4 is the class of a point in D.

Our first computation is an immediate consequence of Proposition 2.5.2. We use T �n as shorthand
for

∏4
i=0 T ni

i :

I0(T �n) = 0 if n2 + n4 � 2; (4.1.1)

I1(T �n) = 0 if n2 + n4 � 3. (4.1.2)

4.2 Degree 0, three-point invariants
For any triple 	� of integers 0 and 1, let K�� = K0,3(P2

D,2, 0, 	�). By (3.5.1), the expected dimension of
K�� is

2 − �1 + �2 + �3

2
. (4.2.1)

Since the expected dimension must be an integer, it follows from this that K�� = ∅ if there are an
odd number of ones in 	�. If 	σ is any permutation of 	�, then clearly K��

∼= K�σ, so there are essentially
two distinct cases. Note that there is a natural morphism F�� : K�� → M0,3(P2, 0) ∼= P2 which is

equal to the composition of any evaluation map K�� → P̂2
D,2 with the projection P̂2

D,2 → P2.
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It follows from [Cad, Theorem 4.2] that F(0,0,0) is an isomorphism over P2\D. Since the expected
dimension of K(0,0,0) is 2 and P2 \D is smooth of dimension 2, it follows from Proposition 3.1.1 that
(F(0,0,0))∗[K(0,0,0)]v = [P2]. It follows that

I0(T 2
0 T2) = I0(T0T

2
1 ) = 1 (4.2.2)

and that all other degree 0, three-point invariants involving neither T3 nor T4 are zero.

Now we study K(1,1,0). Since e1 and e2 map to D, F(1,1,0) factors through D. For any closed point
x ∈ D, we now describe the unique point in the fiber of F(1,1,0) over x. Let C be the square root of
P1 at two distinct points, let T1 and T2 be the tautological sheaves corresponding to the resulting
twisted points, and let T be the tautological sheaf on P2

D,2. There is a morphism f : C → P2
D,2

which on the level of coarse moduli spaces sends P1 to x and satisfies f∗T ∼= T1 ⊗ T2 ⊗ OC(−1).
Since T1 and T2 appear with exponent 1, this morphism has contact type (1, 1, 0). It is easy to see
that any stable map in the fiber over x has such an underlying morphism f , and also that there
is a unique such stable map up to isomorphism. Moreover, f : C → P2

D,2 has a unique nontrivial
2-automorphism given by multiplication by −1 on f∗T .

We can now compute the deformation and obstruction spaces for this stable map. By Proposi-
tion 3.4.5, we have an exact sequence

0 → OC → f∗TXD,r → T1 ⊗ T2 ⊗OC(−1) → 0.

If γ : C → P1 is the projection, then it follows from [Cad, Theorem 3.1.1] that γ∗ of the right-hand
term is OP1(−1), so it has no cohomology. Hence, h0(C, f∗TXD,r) = 1 and h1(C, f∗TXD,r) = 0.
Since this holds for every stable map in K(1,1,0), it follows from [BF97, Proposition 7.3] that K(1,1,0)

is smooth of the expected dimension and [K(1,1,0)]v = [K(1,1,0)].

Let U → K(1,1,0) be an étale surjective map. Then U is smooth and one-dimensional and every
component of U dominates D. It follows by [Har77, Proposition III-9.7] that U → D is flat, which
by definition implies that F(1,1,0) is flat. Since K(1,1,0) is proper, F(1,1,0) is also proper and hence
finite. The degree of F(1,1,0) is the degree of F−1

(1,1,0)
(x) for any x ∈ D. By generic smoothness, the

preimage of a general x ∈ D is reduced, so it follows by the above analysis that F−1
(1,1,0)(x) ∼= Bµ2

for general x ∈ D, and hence F(1,1,0) has degree 1/2. Therefore, (F(1,1,0))∗[K(1,1,0)]v = (1/2)[D].

It now follows that the only nonzero degree 0, three-point invariants involving either T3 or T4 are

I0(T1T
2
3 ) = δ/2 and I0(T0T3T4) = 1/2. (4.2.3)

4.3 Some degree 1 invariants

Now we compute the invariants

I1(T 2
2 T δ

3 ) = δ! and I1(T2T
δ−1
3 T4) = (δ − 1)!. (4.3.1)

It follows in the same way that I1(T δ−2
3 T 2

4 ) = (δ − 2)! if δ � 2, but this invariant also follows from
the associativity relations.

Let �i = 0 for i = 1, 2 and �i = 1 for 3 � i � δ + 2. We have a finite morphism F :
K0,δ+2(P2

D,2, 1, 	�) → M0,δ+2(P2, 1) by [AV02, Theorem 1.4.1]. Since this is compatible with the
evaluation maps, it factors through

⋂δ+2
i=3 e−1

i (D) ⊆ M0,δ+2(P2, 1).

Let p : M0,δ+2(P2, 1) → M0,2(P2, 1) be the flat and proper morphism which forgets the last δ
markings. Let U ⊆ M0,2(P2, 1) be the dense open subscheme consisting of stable maps f : P1 → P2

such that f(P1) is transverse to D and the marked points do not map into D. Let G and H be as
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in the following diagram.

K0,δ+2(P2
D,2, 1, 	�) ��

G

���������������

F
��⋂δ+2

i=3 e−1
i (D) � � ��

H
��

M0,δ+2(P2, 1)
p

��������������

U
� � �� M0,2(P2, 1)

If f : C → P2
D,2 is a stable map in G−1(U), then we claim that C is smooth. If C had a node,

then there would be a component mapping with degree 0 which would have to contain at least
two marked points. Both would have to be twisted by definition of U . If C0 ⊆ C is the irreducible
component which maps with positive degree, then the contact type of f |C0 must be odd at every
preimage of G by [Cad, Theorem 3.3.6]. This implies that every such point must be twisted, but
since there are δ points in the preimage of G and only δ twisted markings, there cannot be a node.

Let V ⊆
⋂δ+2

i=3 e−1
i (D) be the open subscheme containing only maps from smooth curves into P2.

Proposition 4.3.2. We have that G−1(U) → H−1(U) ∩ V is an isomorphism.

Proof. This follows from [Cad, Theorem 4.2] after observing that, in the notation used there, U0,δ+2

(P2
D,2, 1, 	�) = G−1(U) and V0,δ+2(P2, 1, 	�) = H−1(U) ∩ V .

Proposition 4.3.3. We have that H−1(U) ∩ V → U is finite and étale of degree δ!.

Proof. To show the morphism is étale, we use the following criterion. Let R be a Noetherian ring
and I ⊆ R a nilpotent ideal. Given a commutative diagram

Spec(R/I) ��

��

H−1(U) ∩ V

��
SpecR �� U

it must be shown that there is a unique morphism SpecR → H−1(U) ∩ V making the diagram
commute. This means we have a smooth family of rational curves C → SpecR with two disjoint
sections s1, s2 and a morphism f : C → P2 such that over Spec(R/I), f−1(D) is a disjoint union
of δ sections which are disjoint from s1 and s2. Since I is nilpotent, f−1(D) must have δ connected
components. Each is clearly finite over SpecR, and each is flat by [Cad, Lemma 5.2]. Since a flat,
finite, degree 1 morphism is an isomorphism, each connected component of f−1(D) is a section.
This verifies the criterion.

The morphism is proper by Proposition 4.3.2 since G is proper. To show it is finite of degree δ!,
it suffices to show that each closed point has δ! preimages. The closed point is represented by a line
transverse to D with two markings away from D, and a preimage is determined by an ordering of
the δ intersection points. This completes the proof.

Note that the first two evaluation maps K := K0,δ+2(P2
D,2, 1, 	�) → P2 factor through G. Since

the product of evaluation maps M0,2(P2, 1) → P2 × P2 is a birational morphism, it follows from the
next proposition that I1(T 2

2 T δ
3 ) = δ!.

Proposition 4.3.4. We have G∗[K]v = δ![M0,2(P2, 1)].

Proof. By (3.5.1), [K]v is homogeneous of degree 4 in the Chow group of K. Since U is dense in
M0,2(P2, 1), the only contribution to G∗[K]v comes from the closure of G−1(U) in K. By Proposi-
tions 4.3.2 and 4.3.3, G−1(U) is smooth of the expected dimension, so the result now follows from
Propositions 3.1.1 and 4.3.3.

508

https://doi.org/10.1112/S0010437X06002570 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002570


Gromov–Witten invariants of P2
-stacks

To compute I1(T2T
δ−1
3 T4), we work instead with the following diagram.

K0,δ+1(P2
D,2, 1, 	σ) ��

G

���������������

⋂δ+1
i=2 e−1

i (D) � � ��

H
��

M0,δ+1(P2, 1)

��
U

� � �� e−1
2 (D) � � �� M0,2(P2, 1)

Here σ1 = 0 and σi = 1 for 2 � i � δ+1. The dense open set U ⊆ e−1
2 (D) consists of lines transverse

to D where the first marked point lies off of D. Let V ⊆
⋂δ+1

i=2 e−1
i (D) be the open subscheme of

maps from smooth curves into P2.

By the same arguments as above, one can show that G−1(U) → H−1(U)∩V is an isomorphism,
that H−1(U)∩V → U is finite and étale of degree (δ−1)!, and that the morphism U → M0,1(P2, 1)
forgetting the second marking is étale. It follows that G−1(U) is smooth of the expected dimension
and that G∗[K]v = (δ−1)![e−1

2 (D)]. Then the result follows from the fact that the exceptional locus
of M0,2(P2, 1) → P2 × P2 does not contain P2 × D.

5. The big quantum product

5.1 Preliminaries

We continue with the notation of the last section. So D ⊆ P2 is a smooth curve of degree δ and
T0, . . . , T4 is the chosen basis of N∗(P̂2

D,2).

First we define the big quantum product for P2
D,2 and then we use the fact that it is associative to

compute recursions. While the big quantum product exists for any smooth Deligne–Mumford stack
having projective coarse moduli scheme, we only define it for P2

D,2 in order to simplify the notation.
The reader may also wish to consult [AGV02, CR02]. We have adopted the notation of [FP97, § 8].

Let (gij)0�i,j�4 be the matrix 


0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 2
0 0 0 2 0


 .

This corresponds to the inverse matrix of the intersection form

a ⊗ b �→
∫
I(P2D,2)

a · b

expressed in the basis {π∗Ti}, where I(P2
D,2) is the inertia stack of P2

D,2 and π : I(P2
D,2) → P̂2

D,2 is
the projection. The reason for the twos is that one gets a factor of 1/2 when one integrates over G

instead of D. In general, an involution on the inertia stack enters into the definition of gij but for
P2

D,2 this involution is the identity.

The definition of the big quantum product uses a generating function for the genus 0 Gromov–
Witten invariants Id(T

n0
0 · · · T n4

4 ) called the quantum potential. It is a power series in indeterminates
y0, . . . , y4 given by

Φ(y0, . . . , y4) =
∑

n0+···+n4�3

∞∑
d=0

qdId(T n0
0 · · ·T n4

4 )
yn0
0

n0!
· · · yn4

4

n4!
.
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Let

Φijk =
∂3Φ

∂yi∂yj∂yk

for 0 � i, j, k � 4.

Definition 5.1.1. The big quantum product is the R := Q[[y0, . . . , y4, q]]-linear product on the free
R-module with basis T0, . . . , T4 which is given by

Ti ∗ Tj =
4∑

e,f=0

Φijeg
efTf .

5.2 Forgetting an untwisted point

Here we apply the forgetting a point axiom [AGV06] to the stacks P2
D,r. Let 	� be an n-tuple and let

	σ = (�1, . . . , �n, 0). If either n � 3 or d > 0, then it follows from [AV02, Corollary 9.1.3] that there
is a morphism F : K0,n+1(P2

D,2, d, 	σ) → K0,n(P2
D,2, d, 	�) which forgets the last marked point. The

forgetting a point axiom says firstly that K0,n+1(P2
D,2, d, 	σ) is isomorphic to the universal curve over

K0,n(P2
D,2, d, 	�) in such a way that F is the projection and en+1 is the composition of the universal

morphism with the projection P2
D,2 → P2. The second part of the axiom is that

F ∗[K0,n(P2
D,2, d, 	�)]v = [K0,n+1(P2

D,2, d, 	σ)]v .

From this, the following equations can be derived almost exactly as in the case of ordinary stable
maps (cf. [FP97, § 7,I–III]).

(i) If n0 > 0 and either d > 0 or
∑

ni > 3, then

Id(T �n) = 0. (5.2.1)

(ii) If n1 > 0 and either d > 0 or
∑

ni > 3, then

Id(T �n) = dId(T
n0
0 T n1−1

1 T n2
2 T n3

3 T n4
4 ). (5.2.2)

(iii) If n2 > 0 and
∑

ni > 3, then

I0(T �n) = 0. (5.2.3)

5.3 Identity and associativity

The quantum product is clearly commutative. We also need the fact that T0 is a multiplicative
identity and that the product is associative.

Theorem 5.3.1. For 0 � i � 4, T0 ∗ Ti = Ti.

Proof. By (5.2.1), the only nonzero invariants with n0 > 0 are those of the form I0(T0TiTe) for any
i and e. From Definition 5.1.1, we see that T0 ∗ Ti =

∑
I0(T0TiTe)gefTf . The invariants I0(T0TiTe)

are computed in (4.2.2) and (4.2.3). The theorem now follows from the definition of gij .

For associativity of the quantum product, see [AGV06]:

(Ti ∗ Tj) ∗ Tk = Ti ∗ (Tj ∗ Tk) for all i, j, k. (5.3.2)
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5.4 Simplifications
Let Ψ, Ψ′, and Γ be the power series defined by the following formulas:

Ψ =
1
6

4∑
i,j,k=0

I0(TiTjTk)yiyjyk;

Ψ′ =
∑

n3+n4�4

I0(T n3
3 T n4

4 )
yn3
3

n3!
yn4
4

n4!
;

Γ =
∑

n2+n3+n4�0

∞∑
d=1

(qey1)dId(T
n2
2 T n3

3 T n4
4 )

yn2
2

n2!
yn3
3

n3!
yn4
4

n4!
.

(5.4.1)

By (5.2.1)–(5.2.3), Ψ + Ψ′ + Γ is congruent to Φ modulo terms of degree less than or equal to 2.
Since the big quantum product only involves the third-order partial derivatives of Φ, we can use
Ψ + Ψ′ + Γ in place of Φ in Definition 5.1.1.

We now introduce the stringy product, denoted by ·s. For our purposes, it is just a convenient
way to encode the effect of Ψ on the big quantum product. It is defined by

Ti ·s Tj =
∑
e,f

Ψijeg
efTf .

From (4.2.3), we compute T3 ·s T3 = (δ/2)T1, T3 ·s T1 = δT4, T3 ·s T4 = (1/2)T2, and T3 ·s T2 = 0. By
associativity, commutativity, and the fact that T0 is a unit, this determines the stringy product.

Once we have the stringy product, we only need to use Ψ′ and Γ, and these only involve T2, T3,
and T4. So we use Id(n2, n3, n4), or sometimes Id(	n), to denote Id(T

n2
2 T n3

3 T n4
4 ). It is important to

know which invariants can be nonzero.

Proposition 5.4.2. If Id(n2, n3, n4) �= 0, then

3d − 1 =
dδ + n4 − n3

2
+ n2.

Proof. Let �i = 0 for 1 � i � n2 and �i = 1 for n2 + 1 � i � n2 + n3 + n4. Equation (3.5.1)
implies that the expected dimension of K0,n2+n3+n4(P

2
D,2, d, 	�) is 3d − dδ/2 + (n3 + n4)/2 + n2 − 1.

The equality comes from setting this equal to 2n2 + n4.

If we apply this to Ψ′, we see that I0(0, n3, n4) can only be nonzero when n3 − n4 = 2.
Equation (4.1.1) imposes the additional condition n4 � 1. We have thus shown that Ψ′ = λy3

3y4/6,
where λ := I0(0, 3, 1).

It follows that the quantum product is given by

Ti ∗ Tj = Ti ·s Tj +
∑
ef

(Ψ′
ije + Γije)gefTf

= Ti ·s Tj + Γij1T1 + Γij2T0 + 2Γij3T4 + 2Γij4T3 + λ
∂2y2

3y4

∂yi∂yj
T4 +

λ

3
∂2y3

3

∂yi∂yj
T3. (5.4.3)

5.5 Recursions
Using (5.4.3) together with associativity, it is a simple but tedious computation to compute the
recursions. The only difficulty is in knowing which products to apply associativity to, and we do not
claim to have found the most efficient algorithm. The following four relations are obtained by
comparing, respectively, the coefficients of T0 in (T1 ∗ T1) ∗ T2 and T1 ∗ (T1 ∗ T2), those of T3 in
(T3 ∗ T3) ∗ T4 and T3 ∗ (T3 ∗ T4), those of T3 in (T3 ∗ T1) ∗ T4 and T3 ∗ (T1 ∗ T4), and those of T1
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in (T3 ∗ T3) ∗ T1 and T3 ∗ (T3 ∗ T1)

Γ222 = Γ2
112 − Γ111Γ122 + 2(2Γ123Γ124 − Γ113Γ224 − Γ114Γ223) (5.5.1)

δΓ144 + 4λ(y4Γ444 − y3Γ344) − 2Γ234 = 2(Γ2
134 − Γ133Γ144) + 4(Γ334Γ344 − Γ333Γ444) (5.5.2)

2δΓ444 − Γ124 − 4λy3Γ144 = 2(Γ114Γ134 − Γ113Γ144) + 4(Γ144Γ334 − Γ133Γ444) (5.5.3)

Γ233 + δ(1
2Γ111 − 2Γ134) + 2λ(y3Γ113 + y4Γ114)

= Γ2
113 − Γ111Γ133 + 2(2Γ133Γ134 − Γ113Γ334 − Γ114Γ333).

(5.5.4)

It is now possible to compute λ using (5.5.4). Comparing the coefficients of qey1y2
2y

δ
3/2δ! yields

δ(1
2 + 2λ)I1(2, δ, 0) = 2δI1(2, δ + 1, 1) − I1(3, δ + 2, 0).

The right-hand side is zero by (4.1.2) and I1(2, δ, 0) is nonzero by (4.3.1). Therefore, λ = −1/4.
By comparing coefficients in (5.5.1)–(5.5.4), we obtain recursions (5.5.5)–(5.5.8) in that order.

In each recursion, d1 and d2 vary over positive integers and 	p := (p2, p3, p4) and 	q := (q2, q3, q4) vary
over triples of nonnegative integers. In addition to the condition in parentheses, we also assume
d > 0:

(n2 � 3)

Id(n2, n3, n4)

=
∑

d1+d2=d
�p+�q=�n−(1,0,0)

Id1(	p)Id2(	q)
(

n3

p3

)(
n4

p4

)[
d2

1d
2
2

(
n2 − 3
p2 − 1

)
− d3

1d2

(
n2 − 3

p2

)]

+
∑

d1+d2=d
�p+�q=�n+(−1,1,1)

2Id1(	p)Id2(	q)
(

n3

p3 − 1

)(
n4

p4

)[
2d1d2

(
n2 − 3
p2 − 1

)
− d2

1

(
n2 − 3

p2

)
− d2

2

(
n2 − 3
p2 − 2

)]

(5.5.5)

(n4 � 2)

(dδ + n3 − n4 + 2)Id(n2, n3, n4)
= 2Id(n2 + 1, n3 + 1, n4 − 1)

+
∑

d1+d2=d
�p+�q=�n+(0,2,0)

2d1d2Id1(	p)Id2(	q)
(

n2

p2

)[(
n3

p3 − 1

)(
n4 − 2
p4 − 1

)
−

(
n3

p3 − 2

)(
n4 − 2

p4

)]

+
∑

d1+d2=d
�p+�q=�n+(0,3,1)

4Id1(	p)Id2(	q)
(

n2

p2

)[(
n3

p3 − 2

)(
n4 − 2
p4 − 1

)
−

(
n3

p3 − 3

)(
n4 − 2

p4

)]
(5.5.6)

(n4 � 3)

2δId(n2, n3, n4)
= dId(n2 + 1, n3, n4 − 2) − n3dId(n2, n3 − 1, n4 − 1)

+
∑

d1+d2=d
�p+�q=�n+(0,1,−1)

2Id1(	p)Id2(	q)
(

n2

p2

)(
n3

p3 − 1

)[
d1d

2
2

(
n4 − 3
p4 − 1

)
− d2

1d2

(
n4 − 3

p4

)]

+
∑

d1+d2=d
�p+�q=�n+(0,2,0)

4Id1(	p)Id2(	q)
(

n2

p2

)(
n3

p3 − 2

)[
d2

(
n4 − 3
p4 − 1

)
− d1

(
n4 − 3

p4

)]
(5.5.7)
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(∀	n)
1
2
d2(dδ − n3 − n4)Id(n2, n3, n4)

= 2dδId(n2, n3 + 1, n4 + 1) − Id(n2 + 1, n3 + 2, n4)

+
∑

d1+d2=d
�p+�q=�n+(0,2,0)

Id1(	p)Id2(	q)
(

n2

p2

)(
n4

p4

)[
d2

1d
2
2

(
n3

p3 − 1

)
− d3

1d2

(
n3

p3

)]

+
∑

d1+d2=d
�p+�q=�n+(0,3,1)

2Id1(	p)Id2(	q)
(

n2

p2

)(
n4

p4

)[
2d1d2

(
n3

p3 − 2

)
− d2

1

(
n3

p3 − 1

)
− d2

2

(
n3

p3 − 3

)]
.

(5.5.8)

Combining these recursions with (4.3.1) and Proposition 5.4.2, the genus 0 Gromov–Witten
invariants of P2

D,2 can be computed by the following algorithm.

Algorithm 5.5.9. Let d � 1 and n2, n3, n4 � 0 be integers. Compute I := Id(n2, n3, n4) as follows.

(i) If 3d − 1 �= (dδ + n4 − n3)/2 + n2, then I = 0.
(ii) Otherwise, if (d, n2, n3, n4) = (1, 2, δ, 0), then I = δ!.
(iii) Otherwise, if (d, n2, n3, n4) = (1, 1, δ − 1, 1), then I = (δ − 1)!.
(iv) Otherwise, if n2 � 3, apply recursion (5.5.5).
(v) Otherwise, if n4 � 2 and n4 − n3 �= dδ + 2, apply recursion (5.5.6).
(vi) Otherwise, if n4 − n3 = dδ + 2, apply recursion (5.5.7).
(vii) Otherwise, apply recursion (5.5.8).

Justification. To justify the algorithm, we first show that if n4 − n3 = dδ + 2 then n4 � 3, and if
step (vii) is reached then n3 + n4 �= dδ. The first statement follows from dδ � 1 and n3 � 0. To
reach the last step, we must have n2 � 2, n4 � 1, and 3d−1 = (dδ+n4−n3)/2+n2. If n3 +n4 = dδ,
then n3 � dδ − 1, so 3d − 1 � 3. This implies d = 1, and the only two possibilities for (n2, n3, n4)
are handled in steps (ii) and (iii).

Since the recursions do not clearly reduce degree d invariants to degree d− 1 invariants, it must
also be shown that the algorithm terminates. To do this, fix a degree d and define a sequence
of triples (n(i)

2 , n
(i)
3 , n

(i)
4 ) to be admissible if in order to compute Id(n

(i)
2 , n

(i)
3 , n

(i)
4 ), the algorithm

requires one to compute Id(n
(i+1)
2 , n

(i+1)
3 , n

(i+1)
4 ). It suffices to show that any admissible sequence

starting at a given point has bounded length.
One can see this geometrically by working in the (n3, n4) plane, noting that n2 is determined

by n3 and n4. From a given point, one is only allowed to move by five vectors: (1,−1), (0,−2),
(−1,−1), (1, 1), and (2, 0). So n4−n3 is nonincreasing in an admissible sequence. Moreover, a move
by (−1,−1) is only allowed on the line n4 − n3 = dδ + 2, a move by (1, 1) is only allowed in the
range n4 � 1, and these two sets are disjoint. Otherwise, n4 − n3 decreases by 2.

Once an admissible path reaches the line n4 − n3 = (6 − δ)d − 8, it must terminate since then
n2 = 3. From this it is easy to get a bound on the length of an admissible path starting at (n3, n4).
For example 1

2 [n4 − n3 + 8 − (6 − δ)d] + n4 + max(0, 10 − (6 − δ)d) works.
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