
5 Classical Inference II: Optimization

In Chapter 4, we introduced the notions of statistics and estimators, discussed their basic
properties, and examined specific basic estimators, most particularly those of moments
and centered moments, used in classical inference. Although of obvious interest, moments
are often insufficient to fully characterize the probability distribution governing a particular
phenomenon or dataset. It is often the case that the general functional form of a distribution
is known, but not fully specified. Indeed, while the functional dependence on a random
variable X may be known, the function might have dependencies on finitely many model
parameters �θ = (θ1, θ2, . . . , θm), which are a priori unknown or unspecified. For instance,
it might be known that a particular dataset behaves according to a log-normal distribution,
but the parameters μ and σ that determine the specific shape of the distribution could
be unknown. Alternatively, one might be interested in determining the values of model
parameters governing the dependence between dependent and independent variables. One
is thus in need of methods to determine the parameters �θ of a distribution that best describe
or match a set of measured data. Several such “fitting” methods exist, including the method
of maximum likelihood, the extended method of maximum likelihood, various variants of
least-squares methods, and Kalman filter methods. These are presented in §5.1, §5.1.7,
§5.2, and §5.6, respectively. An excellent discussion of the relatively less used method of
moments is presented in ref. [67].

The maximum likelihood and the least-squares methods are optimization problems: both
involve the optimization of a goal function, often called objective function or merit func-
tion. The former involves maximization of a likelihood function while the latter requires
minimization of a χ2 function. Both techniques involve a search in (model) parameter
space for an optimum value, that is, an extremum of an objective function. While such
searches are relatively simple when the model involves only a few parameters, they may
become particularly challenging when models involve a very large number of parameters.
Several techniques exist to handle searches in multiparameter space and it is clearly not
possible to cover them all in this introductory text. We thus focus our discussion on the
general principles of the maximum likelihood and the least-squares methods in following
sections of this chapter, and present a selection of optimization techniques pertaining to
both methods in §7.6 after the introduction of Bayesian inference methods in §§7.2–7.4.

Once an optimum is achieved, one wishes to establish how good the fit really is. One
thus requires a measure of the goodness-of-fit. Such a measure is discussed in §5.3 on the
basis of the likelihood and chi-square functions. One is then particularly interested in eval-
uating errors on the parameters obtained in the optimization. This and related matters are
discussed in §5.3. With parameter values and error estimates in hand, it becomes possi-
ble to extend or extrapolate the results predicted by the model. Techniques to evaluate the
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179 5.1 The Method of Maximum Likelihood

errors on such extrapolations are presented in §5.4, whereas §5.5 presents a technique to
average the results (i.e., parameter values) obtained by two or more experimental studies.

5.1 The Method of Maximum Likelihood

Let p(x|�θ ) dx determine the probability a random variable X be found in the interval [x, x +
dx] given m parameters �θ . Let us assume that the functional form of p(x|�θ ) is known but
not the values of the parameters �θ . Our goal is thus to obtain estimators of these parameters
�θ based on the likelihood of a set {xi}, i = 1, . . . , n, of measured data.

5.1.1 Basic Principle of theMLMethod

Let us assume the measurement of an observable X is repeated n times, thereby yielding a
set of values {xi}, i = 1, . . . , n. If the parameters �θ were known, the data probability model
embodied in the probability density function (PDF) p(x|�θ ) would give us the probability
to obtain the value x1 in the interval [x1, x1 + dx], the value x2 in the interval [x2, x2 + dx],
and so on. Assuming all n measurements are independent and yield uncorrelated results,
the probability of measuring specifically the values �x = (x1, x2, . . . , xn) is then simply the
product of their respective probabilities:

p(x1|�θ ) dx1 × p(x2|�θ ) dx2 × · · · × p(xn|�θ ) dxn =
n∏

i=1

p(xi|�θ ) dxi. (5.1)

If the PDF p(x|�θ ) is a good model of the data, one would expect the foregoing probability
to be relatively large. Conversely, a poor model of the data should yield a low probability.
Obviously, since p(x|�θ ) is a function of �θ = (θ1, θ2, . . . , θm), the value of the above prob-
ability must explicitly depend on the values of these m parameters. Well-chosen values of
�θ should lead to a high probability, whereas a poor choice should result in a low probabil-
ity. Since the intervals dxi feature no dependency on the parameters �θ , it is then sensible
to seek an extremum of the product

∏n
i=1 p(xi|�θ ) which corresponds to the likelihood

function L(�x|n, �θ ) already introduced in Eq. (4.6):

L(�x|�θ ) ≡
n∏

i=1

f (xi|�θ ). (5.2)

Nominally, L(�x|�θ ) corresponds to the joint PDF of the measured xi given the parameters �θ ,
but in this context, the data points are considered fixed (i.e., constant) and one seeks the
values �θ that maximize the likelihood given the data points; in other words, one seeks the
parameter values �θ such that the measured data points are the most probable.

The ML method specifically consists in seeking an extremum (a maximum actually) of
L(�x|�θ ) relative to a variation of the m parameters �θ :

∂L(�θ )

∂θi
= 0 for i = 1, . . . ,m, (5.3)
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180 Classical Inference II: Optimization

Simultaneous solution of these equations yields the ML estimators θ̂i of the parameters θi.
A valid solution exists provided the function L is differentiable with respect to the parame-
ters θi, and the extremum is not on a boundary of the parameters’ range. The ML estimator
θ̂ thus corresponds to the most likely value of �θ based on the n data points xi.

Conceivably, depending on the dataset, the form of the functional, and the number of
parameters, several solutions may exist that correspond to local maxima. Great care must
then be taken to fully explore the parameter space in order to find the parameters �θ with
the largest likelihood L.

We emphasize that given that the solution of ∂L(�θ )/∂θi = 0 is obtained for a specific
set of data points, the parameter values θi corresponding to the extremum thus constitute
estimators of the actual values. As such, it is convenient to write the solution(s) with a hat,
θ̂i, which indicate they are estimators to be distinguished from the true values �θi.

Proof that the ML method produces consistent and unbiased estimators may be found,
for instance, in ref. [116].

The ML method is relatively easy to use and does not require data to be binned or
histogrammed. We consider a few examples of application of the method in the following
sections.

5.1.2 Example 1:ML Estimator of the Rate Parameter
of the Poisson Distribution

Very massive stars end their existence in spectacular explosions known as supernovae.
Supernovae are a relatively rare phenomenon taking place randomly in this and other galax-
ies. Imagine disposing of a large aperture telescope (several meters) equipped with a high-
efficiency and high-resolution camera. You might then be interested in characterizing the
rate of supernovae explosions according to the type of galaxy where they take place. Being
a rare phenomenon, the number of observations n per time period (e.g., per night) may be
modeled according to a Poisson distribution

p(n|μ) = e−μμn

n!
, (5.4)

where μ represents the average rate of explosions (per night). Several nights of observation
will be required to carry out the measurement. For the sake of simplicity, let us assume it
is possible to observe the same region of the sky and for the same exact duration during
N = 100 nights, with equal observational conditions. The number of observations made
nightly are labeled ni, i = 1, . . . ,N .

Our goal is to determine the rate μ using an ML estimator. We thus need an expres-
sion for the likelihood of the data {ni}, i = 1, . . . ,N , given a specific value of μ. Equa-
tion (5.4) provides the probability of observing n explosions in one night given a mean
μ. The likelihood of the data amounts to the probability of a sequence n1, n2, . . . , nN and
is thus simply the product of the probabilities p(ni|μ) of observing ni explosions during
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181 5.1 The Method of Maximum Likelihood

nights i = 1, . . . ,N :

L(μ) =
N∏

i=1

e−μμni

ni!
, (5.5)

=
(

N∏
i=1

ni!

)−1

exp (−Nμ)μ(
∑N

i=1 ni ). (5.6)

Given the exponential factors, it seems simpler to maximize the log of the likelihood, ln L,
rather than L. Indeed, since ln L is a monotonically increasing function of its argument
L, an extremum of this argument shall also correspond to an extremum of the log, and
conversely. The technique is then referred to as log-maximum-likelihood, or simply LML

method. We proceed to seek an extremum of

ln L(μ) = −Nμ+
(

N∑
i=1

ni

)
lnμ−

N∑
i=1

ln ni, (5.7)

by taking a derivative relative to μ

0 = ∂ ln L

∂μ
= −N +

∑N
i=1 ni

μ
, (5.8)

which yields

μ̂ = 1

N

N∑
i=1

ni. (5.9)

We conclude that the LML estimator for the rate parameter μ of the Poisson distribution
is equal to the arithmetic mean of the observations {ni}, i = 1, . . . ,N .

As a concrete example of the method, we consider a simulation of a measurement of
the number of supernova over a span of 100 nights. The number ni of explosions observed
nightly are generated with a Poisson random number generator, with a rate parameter μ =
2.5, and shown in Figure 5.1 as a histogram. The rate parameter is assumed unknown in
the remainder of the analysis. We then proceed to calculate the likelihood of the simulated
data, L(μ), as function of the nightly rate μ in the range [0, 4] according to Eq. (5.5). The
likelihood L(μ) is vanishingly small for most values of μ but clearly peaks near μ = 2.5.
The estimate obtained with the ML method thus corresponds to an extremum (mode) of the
likelihood function L(μ), which is indeed very close to the actual value of the parameter
used in the simulation. We will see, later in this chapter, that the width of the likelihood
function may be used to assess an error on the estimate.

5.1.3 Example 2:LML Estimator of the Decay Constant of the Exponential PDF

Consider a radiological experiment reporting n values t1, t2, . . . , tn corresponding to decay
times of some radioactive isotope X . If the production of this isotope involves no feed
down from heavier isotopes, it is then legitimate to assume the data may be represented by
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Fig. 5.1 (a) Distribution of the number of supernovae explosion per night in a simulated measurement spanning 100 nights for
a rate parameter ofμ = 2.5. (b) Likelihood of the simulated data plotted as a function ofμ (assumed unknown).

an exponential PDF:

p(t|τ ) = 1

τ
e−t/τ . (5.10)

Our goal is to determine the mean lifetime of the isotope, that is, find the parameter value
τ that best represents the collected data and can then be used to characterize the isotope X .

The likelihood function is here the product of n exponential factors

L(τ ) =
n∏

i=1

p(ti|τ ) =
n∏

i=1

1

τ
e−ti/τ , (5.11)

which readily transforms into the exponential of a sum

L(τ ) = τ−n exp

(
−

n∑
i=1

ti/τ

)
. (5.12)

Here again, it is simpler to seek an extremum of ln L rather than L. We find

0 = d ln L

dτ
=
[
−nτ−1 + τ−2

n∑
i=1

ti

]
τ−n exp

(
−

n∑
i=1

ti/τ

)
. (5.13)

The lifetime τ and exponential are nonzero. The factor in square brackets must conse-
quently be null. Solving for τ thus yields the LML estimator τ̂

τ̂ = 1

n

n∑
i=1

ti, (5.14)

as the arithmetic mean of the measured decay times. It is easily verified that τ̂ is an unbiased
estimator of the mean lifetime τ (see Problem 5.1).

As a specific example of application of the estimator (5.14), imagine an experiment
involving the measurement of decays of the unstable isotope 11C, with a mean lifetime
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Fig. 5.2 (a) Histograms of decay times of 11C measured in five different simulated experiments (samples). (b) Histogram of
measured estimates τ̂ obtained from 100 samples based on measurements of 100 (solid line) and 5000 (dashed line)
decay times.

of 20.334 s. We simulated such an experiment using the exponential random generator
introduced in §13.3.3 and produced a set of hundred sequences of 100 decay time values.
Five of these sequences were used to fill the histograms plotted in Figure 5.2a. We used
Eq. (5.14) to calculate hundred estimates of the 11C lifetime on the basis of these sequences.
The values were used to fill a histogram of the estimators, shown in Figure 5.2b. We find
that the estimates are broadly distributed about the value of 20.334 s used to generate the
random numbers. We then repeated the simulations, but this time with datasets consisting
of 5,000 points each. Estimates are once again computed on the basis of Eq. (5.14) and
plotted in Figure 5.2b as the dotted histogram. As expected, we find these estimates are
more narrowly concentrated about the mean. The estimates obtained with a sample size
of 100 average to 20.19 s, whereas the estimates obtained with the sample size of 5,000
average to 20.35 s, which is closer to the value of 20.334 s used in their generation.

5.1.4 Example 3:ML Estimators of the Mean and Variance of a Gaussian PDF

As a third example of application of the ML method, we determine estimators of the mean
and variance of a Gaussian PDF. Let us assume that n measured values xi are distributed
according to a Gaussian PDF with unknown mean μ and standard deviation σ . Given the
exponential nature of the Gaussian PDF, it is once again convenient to use the logarithm of
the likelihood function L:

ln L(μ, σ 2) = ln

(
n∏

i=1

p(xi;μ, σ 2)

)
, (5.15)

= ln

(
n∏

i=1

1√
2πσ

exp

(
− (xi − μ)2

2σ 2

))
. (5.16)
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Transforming the log of the product as a sum of logs, and rearranging the terms, one gets

ln L(μ, σ 2) =
n∑

i=1

(
− ln

√
2π − 1

2
ln σ 2 − (xi − μ)2

2σ 2

)
, (5.17)

= −n ln
√

2π − n

2
ln σ 2 −

n∑
i=1

(xi − μ)2

2σ 2
. (5.18)

The extremum of ln(L) is found in the usual way by equating its derivatives with respect to
μ and σ to zero. Let us first consider an estimator of the mean:

0 = ∂ ln L(μ, σ 2)

∂μ
= −

n∑
i=1

∂

∂μ

(
(xi − μ)2

2σ 2

)
. (5.19)

Solving for μ yields the ML estimator μ̂:

μ̂ = 1

n

n∑
i=1

xi, (5.20)

which, again in this case, is the arithmetic mean of the sampled values. We already showed,
in §4.5.1, that the arithmetic mean of a sample is in general an unbiased estimator of true
mean μ. It is thus simple to verify that this conclusion applies specifically to the Gaussian
distribution also (see Problem 5.7).

We next proceed to find an estimator for the variance σ 2 of the distribution:

0 = ∂ ln L(μ, σ 2)

∂σ 2
= −n

2

1

σ 2
+ 1

2σ 4

n∑
i=1

(xi − μ)2. (5.21)

Solution for σ 2 yields the estimator

σ̂ 2 = 1

n

n∑
i=1

(xi − μ̂)2, (5.22)

which based on our generic discussion of the variance of estimators, in §4.5.3, is known
to be an asymptotically unbiased estimator of the variance (also see Problem 5.2) with the
expectation value

E[σ̂ 2] = (n − 1)σ 2/n. (5.23)

Also recall, from §4.5.3, that the estimator s2 given by Eq. (4.39) is an unbiased estimator of
the variance of distributions. We then expect that it also constitutes an unbiased estimator
of the variance of a Gaussian PDF (see Problem 5.9). However, s2 is not the ML estimator
of σ 2 for a Gaussian PDF.

5.1.5 Errors

There are limited instances of ML estimators whose variance can be calculated analytically.
For instance, the variance of the estimator (5.14) of the mean of an exponential decay,
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185 5.1 The Method of Maximum Likelihood

τ̂ = 1
n

∑n
i=1, can be computed by direct substitution in the expression of the variance. One

gets

Var[τ̂ ] = E[τ̂ 2] − E[τ̂ ]2 = τ 2

n
, (5.24)

which is identical in form to the expression (4.27) of the variance of the sample mean. The
variance of τ̂ is a function of τ , the true mean of the PDF considered. This might seem
rather problematic, since τ is a priori unknown: how indeed does one report the standard
error based on an unknown quantity? However, we have found that τ̂ is an unbiased es-
timator of τ obtained by finding an extremum of the likelihood function L. One can thus
write

∂L

∂τ
= ∂L

∂τ̂

∂τ̂

∂τ
= 0. (5.25)

Since ∂τ̂/∂τ �= 0, one concludes that an extremum for τ yields an extremum for τ̂ , and
conversely. It is thus legitimate to use τ̂ in lieu of τ to get an estimate of the variance. One
can then report a measurement of τ as τ̂ ± τ̂ /√n. This implies that if an experiment was
repeated several times, with the same number of measurements n, one would expect the
standard deviations of the results (i.e., estimates) to be τ/

√
n. Note, however, that in cases

where the distribution of estimates significantly deviates from a Gaussian distribution, it is
more meaningful (and common) to report an error corresponding to the 68.3% confidence
interval (see §6.1.2).

Analytical computation of the variance Var[θ̂ ] of estimators of “complicated” observ-
ables may be tedious, difficult, or even impossible. Fortunately, a number of alternative
computation techniques exist, few of which we briefly examine in the following. See also
ref. [67] for an in-depth discussion of this technical topic.

The most basic technique, commonly applied, to estimate the variance of an estimator
consists in carrying out several experiments yielding the quantity of interest. One repeats
the experimental procedure several times and obtains several sets of measurements, {xi}k ,
where k is an index used to identify the different datasets. Estimators θ̂k are computed for
each dataset k. One can then calculate the expectation values and variance of these esti-
mators. Obviously, it may not always be possible to repeat a given experiment because of
cost, lack of time, or because the observed phenomena might be unique by its very nature
(e.g., observation of neutrinos from a particular supernova explosion). It may, however, be
possible to split the dataset into several subsamples, each of which can be used to obtain
distinct ML estimates. The variance of these estimates relative to the ML estimate of the
full sample can thus be used to evaluate the variance of the estimator.

Whenever repetition or splitting of the data sample produced by an experiment is not
an option, one may resort to a detailed simulation of the experiment to artificially create
repeated evaluations of the estimator of interest. The idea is to replicate the conditions
and procedure of a measurement in a Monte Carlo simulation. While such simulations of
experiments will be discussed in detail in Chapter 14, the technique can be summarized
as follows. Suppose one wishes to measure a variable X distributed according to a certain
PDF f (x|θ ). Once an estimate θ̂ of the parameter θ is obtained experimentally, one carries
out repeated simulations of the experiment by generating instances of x based on f (x|θ̂ ),

https://doi.org/10.1017/9781108241922.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108241922.007


186 Classical Inference II: Optimization

making sure experimental effects and correction procedures are properly taken into ac-
count. The simulated experiments yield estimates θ̂i of the parameter θ . Given a sufficient
number of replications of the experiment, it is then possible to compute the variance of the
values θ̂i and consequently obtain an estimate of the true variance of the estimator.

Yet another technique commonly applied to determine the variance of ML estimators
is to use the minimal variance bound based on the Rao–Cramer–Frechet (RCF) inequality
given by Eq. (4.17), which for several parameters �θ = (θ1, . . . , θm), may be written

(V −1)i j = −
〈
∂2 ln L

∂θi∂θ j

〉
= − ∂2 ln L

∂θi∂θ j

∣∣∣∣
�θ=θ̂
. (5.26)

As an example, consider the calculation of the variance of estimators μ̂ and σ̂ 2 of the mean
and variance of the Gaussian PDF. Using the log of the likelihood function (5.17), it is easy
to calculate (see Problem 5.10) the second-order derivatives with respect to μ and σ 2:〈

∂2 ln L

∂μ2

〉
= − n

σ 2
, (5.27)〈

∂2 ln L

∂σ 2

〉
= − 2n

σ 2
, (5.28)〈

∂2 ln L

∂μ∂σ

〉
= 0. (5.29)

The matrix V −1 is diagonal and is trivially inverted to yield the variances

Var[μ] =
〈
∂2 ln L

∂μ2

〉−1

= σ 2

n
, (5.30)

Var[σ ] =
〈
∂2 ln L

∂σ 2

〉−1

= σ 2

2n
. (5.31)

One finds that the variances Var[μ] and Var[σ ] are proportional to the variance σ 2 of the
Gaussian PDF and inversely proportional to the size n of the data sample used to carry out
the estimate. This is a rather general property that holds in the large n limit for most esti-
mators. It expresses the well-known result that statistical errors are inversely proportional
to the square root of n, the sample size.

The variance of ML estimators may also be determined using a graphical technique. The
technique is based on the RCF bound discussed earlier and the fact that, near an extremum
of the likelihood function L, one can expand the function in a Taylor series about the ML

estimate θ̂ :

ln L(θ ) = ln L(θ̂ ) + 1

2

[
∂2 ln L

∂θ2

]
θ=θ̂

(θ − θ̂ )2 + O(3), (5.32)

where we omitted the first-order term in ∂ ln L/∂θ , which by construction, vanishes at the
extremum. Based on Eq. (5.26), this can be written

ln L(θ ) ≈ ln Lmax − (θ − θ̂ )2

2σ̂ 2
θ

, (5.33)
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Fig. 5.3 Determination of a parameter error with the log-likelihood graphical method: The solid curve is the log of the
likelihood function of the simulated data presented in Figure 5.1. An arbitrary constant K was added to ln L for
convenience of presentation. The log-likelihood function is approximately parabolic in the vicinity of the extremum
located at μ̂ = 2.4 and the value log L − 1/2 is found at 2.56. The standard error�μ thus approximately
amounts to 2.56 − 2.4 = 0.16.

which means the error can be estimated graphically on the basis of

ln L(θ̂ ± σθ ) = ln Lmax − 1

2
. (5.34)

The principle of the graphical method is illustrated in Figure 5.3, which presents a
graph of the logarithm of the likelihood function of the rate parameter μ corresponding
to simulated measurements, discussed in §5.1.2, of the number of supernovae observa-
tions detected nightly over a span of 100 days. The standard error on the parameter μ is
here obtained by graphically finding the values μ̂−�μ and μ̂+�μ corresponding to
log[Lmax] − 1/2, where Lmax is the maximum likelihood observed.

5.1.6 Maximum Likelihood Fit of Binned Data

The LML method enables a relatively straightforward estimation of parameters for PDFs
such as exponential or Gaussian distributions. However, it becomes impractical when the
number of observations of random variable x becomes excessively large. This could be the
case, for instance, if there is insufficient memory to store all the measured values. There
are also issues of numerical accuracy for very large data samples. It is then often desirable,
or more convenient, to carry out a fit based on a histogram of the data (§4.6). The range
of interest [xmin, xmax] is partitioned into m bins, chosen to permit identification of the
relevant PDF features while accounting for the finite resolution of the measurements, the
size of the sample, and the memory available. The bins are not required to be of equal
size; one can use arbitrary bin boundaries [xmin,i, xmax,i] for bins i = 1, . . . ,m. Consider a
sample consisting of N measured values histogrammed into m bins. Each bin will contain
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a number of entries ni (with i = 1, . . . ,m) representative of the PDF that characterizes the
measured data. The number of entries in the whole histogram may then be expressed as a
vector �n = (n1, n2, . . . , nm). Obviously, each value ni is subject to statistical fluctuations.
However, the expectation value of the number of entries in bin i, noted νi, can be expressed
as a function of the unknown parameters �θ of the PDF, given by the following expression:

νi(�θ ) = N

xmax,i∫
xmin,i

p(x|�θ ) dx. (5.35)

It is convenient to denote the expectation values νi in a vector form �ν = (ν1, ν2, . . . , νm)
also. It is the purpose of the fit to determine the parameter(s) �θ most consistent with the
measured values, in other words, the values that yield an extremum of the likelihood func-
tion L(�θ ).

The vector (histogram) �n may be viewed as a single measurement of the m-dimensional
vector �x. If all measurements of x are independent of one another, the values are uncorre-
lated. It implies that the number of entries in the m bins are uncorrelated (although they are
obviously determined by the PDF). In this context, the measurement of the vector �n with a
total number of entries N amounts to a random partition of N draws into m bins, each with
expectation νi(�θ ). This corresponds to a multinomial PDF. The joint probability to measure
the vector �n, given a total number of entries N and expectations �ν, is then given by

pjoint(�n|�ν) = N!

n1!n2! · · · nm!

(ν1

N

)n1
(ν2

N

)n2 · · ·
(νm

N

)nm

, (5.36)

where the ratio νi/N expresses the probability of getting entries in bin i. The logarithm of
this expression yields the log-likelihood function

ln L(θ ) = ln

(
N!

n1!n2! · · · nm!

)
+

m∑
i=1

ni ln
( νi

N

)
. (5.37)

Clearly, the first term of the right-hand side involves variables that are independent of the
PDF parameter(s) �θ . Since we are seeking an extremum of L, it is unnecessary to keep
track of these constants and the search for values �θ that maximize L can thus proceed on
the basis of the second term alone by whatever optimization method is available or practical
(see §7.6 for examples of such methods). When the number of bins is very large, m � N ,
then the binned method becomes equivalent to the standard ML method. This method is
thus insensitive to the presence of null bins in the histograms, in stark contrast to the least-
squares method discussed in §5.2.

5.1.7 Extended Maximum Likelihood Method

We saw in previous sections that the ML method is useful to determine unknown pa-
rameters �θ = (θ1, θ2, . . . , θn) of a PDF p(�x|�θ ) given a set of n measured values �x =
(x1, x2, . . . , xn). But what if the number of observations n is itself a random variable de-
termined by the process or system under observation. This is the case, for instance, in
measurements of scattering cross section where the number of produced particles is itself
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189 5.1 The Method of Maximum Likelihood

a random variable, or in observations and counting of radioactive decays of an unknown
substance over a fixed period of time.

Let us consider processes in which the fluctuations of n are determined by a Poisson
distribution with mean λ. The likelihood of observing n values �x may then be described by
an extended likelihood function as follows:

L(λ; �θ ) = λne−λ

n!

n∏
i=1

p(xi|�θ ). (5.38)

In general, λ may be regarded as a function of �θ , λ ≡ λ(�θ ), or conversely �θ ≡ �θ (λ). The
log of the likelihood function may then be written

ln L = n ln λ(�θ ) − λ(�θ ) − ln(n!) +
n∑

i=1

ln p(xi|�θ ), (5.39)

= −λ(�θ ) +
n∑

i=1

ln(λ(θ )p(xi|�θ )), (5.40)

where in the second line, we have dropped unnecessary constants and use the fact that the
log of a product of distinct factors equals the sum of their logs. Maximization of ln L is
thus, in general, dependent on both the observed value of n as well as the measured values
�x. The observed value n thus constrain the model parameters �θ and conversely, the observed
values xi constrain λ.

The maximization of ln L greatly simplifies, of course, if λ and �θ are independent.
Derivatives of ln L relative to these variables yield independent conditions:

∂ ln L

∂λ
= ∂

∂λ
(n ln λ− λ) = 0, (5.41)

∂ ln L

∂θ
= ∂

∂θ

n∑
i=1

ln p(xi|�θ ) = 0. (5.42)

The first line yields λ̂ = n whereas the second line amounts to the regular likelihood
method, which is independent of λ. Use of the extended maximum likelihood thus appears
to provide little gain over the regular method in this case.

The extended method remains of interest, nonetheless, for cases where the function
p(xi|�θ ) may be expressed as a linear combination of several (linearly independent) ele-
mentary functions

p(x|�θ ) =
m∑

k=1

θk pk (x), (5.43)

with ∫
pk (x) dx = 1. (5.44)

Such a situation arises when an observable can be expressed as a combination of finitely
many signals, each with their distinct PDF pk (x), and unknown relative probability describ-
able with parameters θk . A specific example of this situation involves the energy deposition
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of charged particles in a detector volume. One finds that the energy loss is a stochastic
process that depends on particle types. The energy loss profile of particles at a given mo-
mentum (observed in a specific scattering experiment) thus depends on the relative proba-
bilities of the different species (e.g., electron, pion, kaon, and so forth). The functions pk (x)
could thus represent the energy loss profiles of different particle types while the parameters
θk would represent their relative probabilities constrained by

m∑
k=1

θk = 1. (5.45)

Evidently, one could treat this case as a regular application of the maximum likelihood
method with m − 1 independent parameters (i.e., with θm = 1 −∑m−1

k=1 θk) but it is ad-
vantageous to carry out the search for an extremum of the likelihood function using all
parameters θk and λ simultaneously.

Substituting the linear combination (5.43) for p(xi|�θ ) in Eq. (5.40) yields

ln L = −λ+
n∑

i=1

ln

(
m∑

k=1

λθk pk (xi)

)
. (5.46)

Let μk = λθk represent the mean value of the number of instances of type k. Using
Eq. (5.45), ln L may then be written

ln L(�μ) = −
m∑

k=1

μk +
n∑

i=1

ln

(
m∑

k=1

μk pk (xi)

)
, (5.47)

where the parameters μk are not subjected to any constraints. The total number of events n
may then be treated as a sum of independent Poisson variables μi and optimization of ln L
thus yields estimates μ̂k of the mean of each of the types k. While mathematically equiva-
lent to the independent optimization of λ and θk , this approach involves the advantage that
all parameters are treated equally and one obtains the contributions of each type k directly.

5.2 The Method of Least-Squares

The ML and LML methods enable the determination of parameters that best characterize
a data set given a specific PDF assumption. Although these methods are powerful, they
may become fastidious, inconvenient, or impractical in many cases. However, an alterna-
tive, called the Least-Squares (LS) method, is available and applicable in a wide range of
situations.

We show in §5.2.1 how the LS method can be formally derived from the ML method
in cases where the measured values can be considered Gaussian random variables. The LS

method is, however, commonly applicable to problems of parameter estimation in which
the Gaussian variable hypothesis is not strictly valid.1

1 The LS method typically yields reasonable results whether or not fluctuations of the dependent variable y are
Gaussian. However, one must be careful with the interpretation of error estimates obtained with non-Gaussian
deviates.
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191 5.2 The Method of Least-Squares

The formal derivation and definition of the LS method presented in §5.2.1 may be
skipped in a first reading. Section 5.2.2 discusses the simple case of straight line fit and lin-
ear regression, which may be skipped by readers already familiar with these basic notions.
Polynomial fits and progressively more complex minimization problems are presented in
§§5.2.3–5.2.7.

5.2.1 Derivation of theLSMethod

Consider a set of observations where a variable y is measured as a function of a variable x.
Let us assume there exists, at least in principle, some relation between the two quantities. A
basic measurement shall consist of n pairs (xi, yi) where the values xi are assumed to be the
control variable (whether explicitly controlled or not) and the values yi are assumed to be
functions of xi. In this context, the variables y and x are also commonly called dependent
and independent variables, respectively. For simplicity’s sake, we will here assume the xi

are known without error. The LS method can, however, be generalized for cases where
both x and y carry measurement errors. We will further assume the yi are Gaussian random
variables, that is, variables with a Gaussian PDF, pG(yi|μi, σi), defined by Eq. (3.124).
This is meant to imply that if it were possible to repeat the measurement several times at
the same value xi, the measured values yi would be distributed according to a Gaussian
PDF of definite mean, μi and width σi. The values μi are assumed to depend on xi in some
manner we model with a function f (x|�θ ) that depends on one or more parameters, �θ = (θ1,
θ2, . . . θm), of a priori unknown value:

μi ≡ f (xi|�θ ). (5.48)

This type of measurement is rather general. Consider as a simple example, a measurement
of the position, x, vs. time, t, of a car subjected to some unknown but constant acceler-
ation (see example in §5.2.2). An LS fit of the data might then yield the value of this
acceleration. Alternatively, one could measure the temperature (dependent variable) along
a bar of metal (position) when the extremities of the bar are submitted to finite temperature
differences, and a model of heat conduction could be used to describe the temperature pro-
file along the bar. The possibilities are endless. One can envision measuring any physical
quantity as a function of some other variable, be it time, space, currents, or electric and
magnetic fields, and seek to model the relation between them. All one needs is a function,
y = f (x|�θ ), modeling the relationship between y and x based on some “free” parameters,
that is, model parameters �θ of unknown or unspecified value. We will introduce the LS

method for problems involving a single independent variable, x, and one dependent vari-
able, y, but it can be readily extended to an arbitrary number of independent and dependent
variables.2

The goal of the LS method is to find the value(s) �θ that maximize the probability of
getting the measured values yi. But since the n variables yi are by assumption distributed
according to Gaussian PDFs pG(yi|μi, σi) of mean μi and width σi, we will apply the
LML method to determine the value(s) of the parameters �θ that maximize the probability

2 In this context, the phrase independent variable implies that x is a control variable, i.e., its values can be selected,
or controlled, while the variable y adopts values possibly determined by x and is, as such, dependent on x.
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192 Classical Inference II: Optimization

of measuring the values yi at the given xi. We use the vector notations �x and �y to denote all
values xi and yi, respectively. The likelihood L of the measured values �y depends on the joint
probability, gjoint(�y,�x|�θ ). Assuming the n points (xi, yi) are measured independently and are
thus uncorrelated, gjoint reduces to the product of the probabilities of all pairs (xi, yi):

gjoint(�y|�μ, �σ ) =
N∏

i=1

pG(yi|xi;μi, σi), (5.49)

=
N∏

i=1

1√
2πσ 2

i

exp

(
− (yi − μi(xi))

2

2σ 2
i

)
, (5.50)

where the values μi(xi) are determined by the model function, f (x|�θ ), which is dependent
on the unknown or unspecified parameter(s) �θ3. We will assume there exists an estimate
for the widths σi, that is, that values σi can be inferred either from the data directly, or on
the basis of some theoretical considerations. The likelihood function of the values yi may
then be written:

L(�y|�x, �σ , �θ ) =
N∏

i=1

1√
2πσ 2

i

exp

(
− (yi − f (xi|�θ ))2

2σ 2
i

)
. (5.51)

Note that this expression of the likelihood function assumes the data points are uncorre-
lated. Extension to a case in which the data points are correlated is relatively simple and
will be discussed in §5.2.4.

Given its formulation as a product of exponentials, it is convenient to consider the log-
arithm of the likelihood function. Since the logarithm, ln(x), grows monotonically with x,
a search for an extremum of the log of the likelihood function shall yield parameter values
that maximize the likelihood function itself:

ln L = −1

2

N∑
i=1

ln
(
2πσ 2

i

)− 1

2

N∑
i=1

(yi − f (xi|�θ ))
2

σ 2
i

. (5.52)

The first term is not a function of the parameter(s) �θ and can be ignored in the search for
an extremum of the log of the likelihood function. Consequently, maximization of ln(L)
only involves the second term of Eq. (5.52) and it is thus convenient to define a chi-square
function as follows:

χ2(�θ ) =
N∑

i=1

[yi − f (xi|�θ )]
2

σ 2
i

. (5.53)

Given the negative sign in front of the sum in Eq. (5.52), maximization of ln L then amounts
to a minimization of the χ2 function. This forms the basis of the LS method.

Proof that the method of least-squares produces consistent and unbiased estimators may
be found for instance in ref. [116].

3 The values xi are taken as given, i.e., selected a priori. One consequently does not consider the probability of
having such values. Only the yi are considered random variables and assigned a probability.
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193 5.2 The Method of Least-Squares

The fact that the minimization of the χ2(�θ ) function is equivalent to the maximization
of the log-likelihood is based on the assumption that the random variables yi are Gaussian
distributed. Although this is not always true in practice, we note that by virtue of the central
limit theorem, the multitude of random phenomena that produce the random character
of the yi, implies their distributions are nearly Gaussian in general. The LS method thus
usually constitutes a reasonable approximation of the ML method. There are nonetheless
cases where this approximation is not valid, and one must use the ML method, rather than
the LS method, to carry out a search for optimal parameter(s) �θ .

The parameters that minimize the χ2 function are called LS estimators and are noted
θ̂1, θ̂2, . . . , θ̂m or simply θ̂ with the understanding that there are m such parameters. Addi-
tionally, the function is commonly called “chi-square” even in cases where the individual
measurements yi do not have Gaussian PDFs.

The χ2 function, Eq. (5.53), was obtained based on the additional assumption that the N
variables yi are uncorrelated. When this assumption is not valid, and there are significant
correlations among the variables yi, one must transform Eq. (5.53) in terms of variables
that are independent. In §5.2.4, we will introduce a technique to accomplish this in the
context of the LS method. However, we first consider two cases of χ2 minimization that do
not involve such correlations: straight-line fits are presented in §5.2.2 while more general
polynomial fits of order n are discussed in §5.2.3.

5.2.2 Straight-Line Fit and Linear Regression

Arguably the simplest and most common case of application of the LS method is for the
determination of the parameters of a straight line, applicable when a variable y is known,
or believed, to depend linearly on an independent variable x:

y = f (x|a0, a1) = a0 + a1x. (5.54)

Given a set of n measured points (xi, yi), with i = 1, . . . , n, our goal is to find the values
of the slope a1 and the ordinate at the origin a0 that minimize the chi-square function, χ2,
defined by Eq. (5.53). By virtue of our choice of model, the χ2 is now a function of the
parameters a0 and a1, which can be written

χ2 =
N∑

i=1

[yi − f (xi|a0, a1)]2

σ 2
i

. (5.55)

We substitute the expression (5.54) for f (x|a0, a1) in Eq. (5.55) to obtain a χ2 function
that explicitly depends on a0 and a1:

χ2(a0, a1) =
N∑

i=1

(yi − a0 − a1xi)
2

σ 2
i

. (5.56)

We seek an extremum of this function (a minimum, actually) relative to variations of a0 and
a1. This is accomplished by finding values of these two parameters for which derivatives
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with respect to a0 and a1 are null simultaneously:

∂χ2(a0, a1)

∂a0
= 0, (5.57)

∂χ2(a0, a1)

∂a1
= 0. (5.58)

Computation of these two derivatives yields

0 = ∂χ2(a0, a1)

∂a0
= −2

N∑
i=1

(yi − a0 − a1xi)

σ 2
i

, (5.59)

0 = ∂χ2(a0, a1)

∂a1
= −2

N∑
i=1

(yi − a0 − a1xi) xi

σ 2
i

. (5.60)

Dropping the common multiplicative factors and rearranging, we get

a0

N∑
i=1

1

σ 2
i

+ a1

N∑
i=1

xi

σ 2
i

=
N∑

i=1

yi

σ 2
i

, (5.61)

a0

N∑
i=1

xi

σ 2
i

+ a1

N∑
i=1

x2
i

σ 2
i

=
N∑

i=1

xiyi

σ 2
i

. (5.62)

It is convenient to define the following quantities:

S ≡
N∑

i=1

1

σ 2
i

Sx ≡
N∑

i=1

xi

σ 2
i

Sxx ≡
N∑

i=1

x2
i

σ 2
i

Sy ≡
N∑

i=1

yi

σ 2
i

(5.63)

Sxy ≡
N∑

i=1

xiyi

σ 2
i

� ≡ SxxS − S2
x

Eq. (5.61) may then be rewritten

a0S + a1Sx = Sy, (5.64)

a0Sx + a1Sxx = Sxy, (5.65)

or equivalently in matrix form:

α�a = �b, (5.66)

where we introduced the matrix α as well as the vectors �a and �b defined as follows:

α =
(

S Sx

Sx Sxx

)
�a =

(
a0

a1

)
�b =

(
Sy

Sxy

)
. (5.67)

To solve for �a, we multiply both sides of Eq. (5.66) by the inverse α−1:

�a = α−1�b. (5.68)
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The inverse of α is

α−1 = 1

�

(
Sxx −Sx

−Sx S

)
. (5.69)

The estimators â0 and â1, which minimize the χ2 function, may thus be written

â0 = 1

�

(
SySxx − SxSxy

)
, (5.70)

â1 = 1

�

(
SSxy − SxSy

)
. (5.71)

The calculation of the coefficients S, Sx, Sxx, and so on relies exclusively on the points
(xi, yi). Equations (5.70 and 5.71) then yield estimators â0 and â1 of the straight-line pa-
rameters that best fit the measured data points. Note that if the values yi are computed
without estimates of their standard deviations, σi, it suffices to set all values σi equal to
unity in the foregoing calculations to obtain estimates of â0 and â1. However, the interpre-
tation of the χ2 of the fit in terms of a χ2-distribution is not strictly possible in this case,
nor are meaningful estimates of the errors on â0 and â1.

The same mathematical procedure applies whether one considers a straight-line fit or
a linear regression. The term fit is, however, usually reserved for problems (or systems)
where a model is used to infer a linear relationship between the dependent and indepen-
dent variables. For instance, Hubble’s law (V = Hz, with z = �λ/λ) states there is a linear
relation between the receding velocity, V , and the redshift, z, of galaxies. A linear fit carried
out on a set of measured points, (zi,Vi), consequently yields an estimate of the Hubble con-
stant H . By contrast, the term linear regression is typically used for cases where no model
is known a priori, or whenever large variances characterize both variables. The foregoing
procedure thus yields an estimate of the trend between the variables, akin to an estimate of
correlation. A linear regression can, for instance, be used to characterize the relationship
between the height and weight of humans in a given population (see Figure 5.4).

The fact that the measurements yi each carry an error σi implies the model parameters
a0 and a1 are known with limited precision only. We can estimate their respective errors
using the error propagation technique introduced in §2.11, Eqs. (2.222, 2.223). Given that
only the coefficients Sy and Sxy are functions of yi, we can write

∂a0

∂y j
= 1

�

(
Sxx
∂Sy

∂y j
− Sx

∂Sxy

∂y j

)
, (5.72)

∂a1

∂y j
= 1

�

(
S
∂Sxy

∂y j
− Sx

∂Sy

∂y j

)
. (5.73)

The derivatives of Sy and Sxy with respect to y j yield 1/σ 2
j and x j/σ

2
j , respectively. Inserting

these values in the preceding expressions, we get

∂a0

∂y j
= 1

�

(
Sxx

1

σ 2
j

− Sx
x j

σ 2
j

)
, (5.74)

∂a1

∂y j
= 1

�

(
S

x j

σ 2
j

− Sx
1

σ 2
j

)
. (5.75)
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Fig. 5.4 (a) Straight-line fit on simulated data. (b) Example of a linear regression between the weight and height of children in
an arbitrary population sample.

Assuming the yi are independent, the variances σ 2
a0

and σ 2
a1

may now be estimated using
Eq. (2.222), which we rewrite here in terms of a0, a1 as function of yi:

σ 2
a0

=
N∑

j=1

[
∂a0

∂y j

]2

σ 2
j , (5.76)

σ 2
a1

=
N∑

j=1

[
∂a1

∂y j

]2

σ 2
j . (5.77)

Substituting the derivatives (5.74) in the preceding expressions, we get after simplification
(see Problem 5.11):

σ 2
a0

= Sxx

�
, (5.78)

σ 2
a1

= S

�
. (5.79)

The variances σ 2
a0

and σ 2
a1

correspond respectively to the elements (α−1)11 and (α−1)22 of
the inverse of matrix α. This is no mere accident and in fact derives from a general result
we will discuss in §5.2.5.

5.2.3 LS Fit of a Polynomial

The LS method introduced in the previous section for linear fits is readily extended to
polynomial fits of any order. For instance, let us assume the data may be represented by a
polynomial of order m:

f (x) = ao + a1x + . . .+ amxm =
m∑

j=0

a jx
j. (5.80)
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For notational convenience, we represent the m + 1 parameters ai as a vector �a =
(a0, a1, . . . , an). Once again, we assume the measurements yi are independent. The χ2

function may then be written

χ2(�a) =
N∑

i=1

(
yi −

m∑
k=0

akxk
i

)2

σ 2
i

. (5.81)

We seek the values of the parameters aj, j = 0, . . . ,m, that yield a minimum χ2. This is
accomplished by setting all derivatives of χ2 with respect to the parameters aj equal to
zero simultaneously:

∂χ2

∂a j
= −2

N∑
i=1

(
yi −

m∑
k=0

akxk
i

)
σ 2

i

∂

∂a j

(
m∑

k=0

akxk
i

)
= 0. (5.82)

The derivative of
∑m

k=0 akxk
i with respect to a j yields x j. Equation (5.82) thus simplifies to

∂χ2

∂a j
= −2

N∑
i=1

(
yi −

m∑
k=0

akxk
i

)
x j

i

σ 2
i

= 0. (5.83)

We rearrange and separate the terms to get

N∑
i=1

yix
j
i

σ 2
i

=
N∑

i=1

m∑
k=0

akxk
i x j

i

σ 2
i

=
m∑

k=0

ak

N∑
i=1

xk
i x j

i

σ 2
i

. (5.84)

The index j takes values from 0 to m, and the index i runs from 1 to N . Equation (5.84)
hence corresponds to m + 1 equations that must be solved simultaneously. It is convenient
to define a matrix α and a column vector �b with the elements

αk j =
N∑

i=1

xk
i x j

i

σ 2
i

, (5.85)

b j =
N∑

i=1

yix
j
i

σ 2
i

. (5.86)

Equation (5.84) may then be written as a linear equation:

α �a = �b, (5.87)

which yields the solution

â = α−1�b, (5.88)

in which we use the notation â to emphasize that the preceding expression yields estimators
of the model parameters ai, i = 1, . . . ,m.

A polynomial fit may thus be accomplished with the following three steps: (1) calcula-
tion of the matrix α, (2) calculation of the column vector �b, and (3) inversion of the matrix
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Fig. 5.5 Quadratic fit of simulated data (ti, yi)where the yi are measured altitudes vs. times ti of a rocket subjected to a
constant acceleration a.

α and multiplication by �b according to Eq. (5.88). Techniques and programs to invert ma-
trices and solve linear equations are described in various textbooks and are available in
various software packages.

Figure 5.5 displays a quadratic fit of simulated data describing the altitude y of a rocket
as a function of time. The data were generated with the constant acceleration model y(t ) =
0.5at2 + vot + yo, with values a = 15 m/s2, vo = 0, and yo = 0. Measurement errors were
simulated with Gaussian deviates with widths σi = 5.00 + 0.03 ∗ y. The fit was carried
out using the same quadratic model and assumed knowledge of the measurement errors.
Trajectory parameters obtained from the fit are within statistical errors of the values used
for the generation of the simulated trajectory.

We will show in §5.2.5 that the variances of the estimators â are given by the diagonal
elements of the inverse matrix α. However, for polynomials of high-order m, the matrix α is
prone to become ill conditioned, and its inversion may become numerically unstable. It is
possible to partly remedy this problem by using orthogonal polynomials. Indeed, orthogo-
nal polynomials, or any other complete basis of orthogonal functions, enable a straightfor-
ward and unique decomposition of arbitrary (continuous) functions. As such, they typically
produce fit coefficients, for each element of the basis, that are nearly independent of one
another.

5.2.4 LS Fit for Correlated Variables yi

In §5.2.1, we showed that minimization of the χ2 function, defined by Eq. (5.53), is equiv-
alent to the maximum of the likelihood function L of measuring the values yi. The deriva-
tion assumed the values yi are mutually independent. There are, however, several classes
of measurements that yield correlated variables yi, that is, with nonvanishing covariances,
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199 5.2 The Method of Least-Squares

Cov[yi, y j] �= 0 for i �= j. Given the existence of such correlations, one expects the mini-
mization of Eq. (5.53) to yield incorrect results because the values will be given inappro-
priate weights. Proper weights may be restored if one can transform the variables yi, with
nonzero covariances Cov[yi, y j], into a set of variables zi with Cov[zi, z j] = 0 for i �= j.
This can be readily accomplished by using the inverse of the covariance matrix of the
variables yi. Given Vi j = Cov[yi, y j] = E[yiy j] − E[yi]E[y j], the χ2 function may then be
written

χ2(�θ ) =
N∑

i, j=1

(yi − f (xi|�θ ))(V −1)i j(y j − f (x j|�θ )), (5.89)

in which expectation values μi(xi|�θ ) were replaced by model functions f (xi|�θ ). Note that if
the variables yi are uncorrelated, then the covariance matrix Vi j is diagonal, its inverse is a

diagonal matrix with coefficients
(
2σ 2

i

)−1
, and Eq. (5.53) is thus recovered. The parameters

that minimize the function χ2 are called LS estimators and are noted θ̂1, θ̂2, . . . , θ̂m or
simply θ̂ . As in all other cases, minimization of χ2 proceeds by equating the derivatives of
Eq. (5.89) with respect to θi to zero. We discuss general implementations of the method for
linear and nonlinear models in §§5.2.5 and 5.2.7 respectively, and an implementation for
binned data in §5.2.6.

5.2.5 Generalized Linear Least-Squares Fit

The LS fit method is applicable for fits of any function f (x|�θ ) but is particularly well suited
and considerably simplifies when f is a linear function of its parameters aj, j = 1, . . . ,m

f (xi|�a) =
m∑

j=1

a j f j(xi), (5.90)

where the coefficients f j(xi) may be arbitrary functions of x, not just powers of x, as in
the case of simple polynomial fits discussed in §5.2.3. However, the functions f j(xi) must
be linearly independent and may not depend on the model parameters a j. Orthogonal
functions, in particular, present the advantage that the coefficients a j are not correlated.
Commonly used functions, beside powers of x, include Fourier decompositions, orthogonal
polynomials, and Legendre polynomials.

We repeat the steps carried out for fits with polynomials to obtain the estimates â j.
However, we include the possibility, discussed in the previous section, that the data yi

might be correlated. For notational convenience, we introduce coefficients Fi j defined as
follows:

Fi j = f j(xi). (5.91)

The χ2 function becomes

χ2 =
N∑

i,k=1

⎛⎝yi −
m∑

j=1

Fi ja j

⎞⎠ (V −1)ik

⎛⎝yk −
m∑

j′=1

Fk j′a j′

⎞⎠, (5.92)
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which may also be formulated in a convenient matrix form

χ2 = (�y − F�a)TV −1 (�y − F�a) , (5.93)

in which �y − F�a is considered an N × 1 column vector, �y being a column vector represent-
ing all N entries yi. F is an N × m matrix with elements equal to the coefficients Fi j, and �a
is an m × 1 column vector containing the parameters a j. The notation OT is used to denote
the transpose of matrix O.

We find the minimum of χ2 by differentiating with respect to ap, with p = 0, . . . ,m:

0 = ∂χ2

∂ap
, (5.94)

= −
N∑

i,k=1

⎛⎝ m∑
j=1

Fi jδ jp

⎞⎠ (V −1)ik

⎛⎝yk −
m∑

j′=1

Fk j′a j′

⎞⎠
−

N∑
i,k=1

⎛⎝yk −
m∑

j=1

Fk ja j

⎞⎠ (V −1)ik

⎛⎝ m∑
j′=1

Fi j′δ j′ p

⎞⎠, (5.95)

= −2
N∑

i,k=1

Fip(V −1)ik

⎛⎝yk −
m∑

j′=1

Fk j′a j′

⎞⎠. (5.96)

On the second line, we used ∂a j/∂ap = δ jp, in which δ jp is the Kroenecker symbol:

δi j = 1 for i = j,
0 for i �= j.

We next took the sum
∑m

j=1 Fi jδ jp = Fip and made use of the fact that the inverse of matrix
V is symmetric. The preceding expression is succinctly expressed in matrix form:

0 = FTV −1 (�y − F�a) , (5.97)

which we rewrite as

FTV −1F�a = FTV −1�y. (5.98)

As in prior sections, it is convenient to introduce the matrix α and column vector�b, defined
as

α = FTV −1F, (5.99)

�b = FTV −1�y. (5.100)

Equation (5.98) becomes

α�a = �b. (5.101)

Solving for �a, we get

â = α−1�b. (5.102)
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This expression provides estimates â = (â0, . . . , âm) that are linear functions of the mea-
surements �y. It can thus be computed analytically. The inversion of large matrices, however,
becomes rather tedious for large values of N or m and is thus best carried out numerically
on a computer. In practice, it is often most efficient or simply convenient to use numerical
algorithms, such as the one described in §5.2.7. It can be shown that the foregoing estimates
â j have zero bias and minimum variance.

Errors (variances) on the parameters may be obtained using the error propagation tech-
nique introduced in Eqs. (2.222, 2.223) and used in §5.2.2. The covariance matrix Ui j of
the fit estimators âi and â jmay be written

Ui j =
N∑

k,k′=1

∂ai

∂yk
Vkk′

∂a j

∂yk′
. (5.103)

In order to compute the derivatives ∂ai/∂yk , we note that Eqs. (5.100) and (5.102) may be
combined to obtain

�a = (
FTV −1F

)−1
FTV −1�y. (5.104)

We thus get

∂�a

∂�y
= (

FTV −1F
)−1

FTV −1. (5.105)

The covariance matrix U of the estimators âi may then be written

U = (
FTV −1F

)−1
FTV −1V

[ (
FTV −1F

)−1
FTV −1

]T
. (5.106)

The matrix
(
FTV −1F

)
and its inverse are by construction symmetric. Equation (5.106) thus

simplifies to

U = (
FTV −1F

)−1
. (5.107)

By construction, U is an m × m symmetric matrix. Its diagonal elements Uj j correspond
to the variances, Var[â j], of the estimators a j and as such should provide estimates of the
errors on each of the fit parameters. However, the nondiagonal elements Ui j, corresponding
to covariances Cov[âi, â j] of the estimators ai and ai are in general non-null, even if the
matrix V is itself diagonal. The errors on the parameters a j are correlated and thus cannot
be specified independently, that is, for each parameter individually.

It is instructive to consider the covariance matrix U in terms of second-order derivatives
of the χ2 function. Toward this end, we will calculate the second-order derivatives of the
χ2 function based on Eq. (5.96).

∂2χ2

∂ar∂as

∣∣∣∣
�a=â

= −2
∂

∂ar

N∑
i,i′=1

Fis

(
V −1

)
ii′

⎛⎝yi′ −
m∑

j′=0

Fi′ ja j

⎞⎠, (5.108)

= 2
N∑

i,i′=1

Fis

(
V −1

)
ii′Fi′r, (5.109)

= 2
(
FTV −1F

)
sr
. (5.110)
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The order of the derivatives is inconsequential and the matrix F TV −1F is symmetric, that
is, equal to its transpose:(

FTV −1F
)T = FT

(
V −1

)T
F = FTV −1F, (5.111)

since V and V −1 are symmetric matrices. But as per Eq. (5.107), we found that the co-
variance matrix U is equal to

(
FTV −1F

)−1
. We thus obtain the interesting and useful

result:

∂2χ2

∂ar∂as

∣∣∣∣
�a=â

= 2
(
U −1

)
sr

(5.112)

In the vicinity of the solution â (i.e., near the minimum of the χ2-function), it is legitimate
to write

χ2(�a) = χ2(â) + 1

2

m∑
i, j=0

∂2χ2

∂ai∂a j

∣∣∣∣
�a=â

(ai − âi)
(
aj − â j

)+ O(3) (5.113)

Note that the absence of first derivatives stems from the fact that the series expansion is
carried out at the minimum in which first-order derivatives vanish implicitly. Substituting
the expression (5.112) for the second-order derivative, we obtain

χ2(�a) = χ2(â) +
m∑

i, j=0

(
U −1

)
i j
δaiδaj, (5.114)

in which δai = ai − âi. In order to interpret this expression, consider for illustrative pur-
poses a case in which U is a diagonal with elements σ 2

i . The inverse U−1 thus has diagonal
elements 1/σ 2

i and Eq. (5.114) therefore implies that the χ2 shall increase by one unit when
deviations δai = σi from â are considered. This is a rather generic result. It tells us that the
χ2 increases by one unit when a fit parameter is varied away from its optimal value by one
standard deviation (while all other coefficients are kept constant and equal to their value at
the χ2 minimum).

Equation (5.114) provides numerical and graphical techniques to estimate and visual-
ize the errors on the estimators âi as illustrated in Figure 5.6 for cases involving one- and
two-parameter fits. Panel (a) displays 15 simulated measurements of a constant but noisy
signal of amplitude y = 10 fitted with a constant polynomial y(x) = a0. The fit yields a
value a0 = 9.67 ± 0.81 with a minimum χ2 = 19.6 for 14 degrees of freedom. Panel (c)
shows the dependence of the fit χ2 on a0 and displays how the errors on a0 may be obtained
by increasing the χ2 by one unit. Panel (b) displays a noisy linear signal fitted with a first
order polynomial, y(x) = a0 + a1x. Panel (d) displays iso-contours of the fit χ2 plotted as a
function of a0 and a1 for values χ2 = χ2

min + 1 and χ2 = χ2
min + 2. The symmetric and cir-

cular aspects of the contour indicate the parameters a0 and a1 are essentially uncorrelated.
Their errors are thus independent and shown as one standard deviation errors in panel (b)
based on the χ2 = χ2

min + 1 contour.
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Fig. 5.6 Graphical interpretation of fitχ 2 for one- and two-parameter fits. (a) Noisy constant signal; (b) linear signal
dependence; (c)χ 2 of the constant signal fit vs. the fit parameter a0; (d)χ 2 iso-contours atχ 2

min + 1 and
χ 2
min + 2 as a function of the fit parameters a0 and a1.

5.2.6 LS Fit with Binned Data

The LS method discussed in prior sections enables fits with arbitrary functions (models) for
datasets containing an arbitrary number N of data points (xi, yi). However, it is not always
possible or practical to handle all data points (xi, yi) individually. Often, one wishes to fit a
model to data that have been binned into a histogram. We saw in §5.1.6 that the ML method
readily enables model parameter estimation with histograms. But the ML method can be
cumbersome and one consequently wishes to extend the LS method for fits of binned data
also.

Consider a measurement in which data have been binned into a histogram consisting of
n bins. Let Hi represent the number of entries in bin i, with i = 1, . . . , n. We wish to fit the
data with some function f (x|�θ ) determined by m ≥ 1 parameter(s) �θ , which have yet to be
estimated. Let N be the total number of entries in the histogram. The function f (x|�θ ) is
used as a model of the data. One thus expects the number of entries in bin i to be given by

μi(�θ ) = N pi(�θ ) = N

xi,max∫
xi,min

f (x|�θ ) dx, (5.115)
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in which we have defined the probability pi(�θ ) that there will be entries in bin i. The
parameters �θ are determined by minimization of the χ2 function:

χ2(�θ ) =
N∑

i=1

(
Hi − μi(�θ )

)2

σ 2
i

, (5.116)

in which the variance σ 2
i of the number of entries Hi must be estimated either from the data

or from the model. There are thus few options as to how to proceed with the minimization
of χ2.

The LS fit can be somewhat simplified if the number of bins n is very large and such
that there are just a few entries in each bin. In this case, the content of each bin may
be reasonably well described by Poisson distributions and the variance of the number of
entries in bin i is equal to the mean number of entries “predicted” by the model, μi(�θ ). The
χ2 function may then be written as

χ2(�θ ) =
N∑

i=1

(
Hi − μi(�θ )

)2

μi(�θ )
=

N∑
i=1

(
Hi − N pi(�θ )

)2

N pi(�θ )
. (5.117)

The functions pi(�θ ) are integrals of f (x|�θ ) dependent on the unknown parameters �θ and
the boundaries of each bins. Minimization of the χ2 by analytical methods, described in
prior sections, thus become intractable and one must then use numerical techniques such
as those presented in §5.2.7.

An alternative approach consists in approximating the variances σ 2
i by the number of

entries Hi in each bin. Such a substitution is reliable if the bin contents Hi are uncorrelated
and sufficiently large to provide a reliable estimate of the fluctuations. This leads to the
Modified Least-Squares (MLS) fit method based on the minimization of the χ2 function
defined as

χ2(�θ ) =
n∑

i=1

(
Hi − N pi(�θ )

)2

Hi
. (5.118)

Again in this case, the minimization of the χ2 involves integrals pi(�θ ) and as such is best
handled by numerical methods. However, note that since the denominator includes the bin
content Hi, the method will fail whenever the number of entries in one or more bin is null.
It may be possible to remedy this problem by rebinning, that is, grouping bins together, or
by using variable size bins.

Recall that in the case of the ML method, a multinomial function is used to estimate the
expectation value of the number of entries per bin μi rather than a Poisson PDF. One can
show that the variance of the ML estimate converges faster to the minimum variance bound
than the LS or MLS estimates. This implies that for fits of binned data, it is preferable to
use ML estimators whenever feasible.
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5.2.7 NumericalLSMethods

We have so far focused on applications of the LS method for fits of linear models of
the form given by Eq. (5.90). However, scientific analyses and data parameterization
commonly involve nonlinear models that cannot be readily linearized. Examples of non-
linear functions commonly used include the Gaussian and Breit–Wigner distributions. It is
also often desirable to add or mix elementary functions. For instance, one might wish to
represent a signal and its background as a sum of a Gaussian distribution and a polynomial
of order m as follows:

f (x|ai,N, μ, σ ) =
m∑

i=0

aix
m + N exp

(
− (x − μ)2

2σ 2

)
. (5.119)

Clearly, this function’s dependence on μ and σ is nonlinear, and given the addition of the
“background” terms

∑
aixm cannot be linearized by taking a logarithm of the function.

Nonlinear models abound in physics, and in science in general. It is thus particularly im-
portant to consider model parameter estimation in the context of such models.

Numerical χ2 minimization methods are a particular case of the more general case of
optimization (or extremum finding) encountered both in classical and Bayesian inference
problems. Rather than discussing numerical approaches piecemeal in this and following
chapters, we present a systematic and comprehensive discussion of numerical techniques
and algorithms in §7.6.

5.3 Determination of the Goodness-of-Fit

As we saw in §5.2.1, the LS method is derived from and therefore strictly equivalent to
the ML method whenever the measurements yi are Gaussian random variables. When this
condition is met, the LS estimators �θ obtained by χ2 minimization consequently coincide
with those obtained by the ML method. Once estimators are known, and for a given set of
data points, one can then seek the probability of getting a certain χ2 value.

It is convenient to introduce normalized deviates, denoted zi(�θ ), and defined as

zi(�θ ) = (
yi − μi(θ̂ )

)
/σi, (5.120)

in which θ̂ are the estimator values obtained in the fit. By construction, a normalized devi-
ate zi(�θ ) measures the deviation between an observed value yi and the valueμi(θ̂ ) predicted
by the model for xi, according to parameters θ̂ , and relative to the standard deviation σi.
As such, the normalized deviates provide a measure of the level of agreement or com-
patibility between the data and the model (obtained from the fit), relative to the errors σi.
The deviates zi should be distributed according to the standard normal distribution if the
yi are Gaussian distributed. Additionally, with known variances σ 2

i , a function μi(θ̂ ) linear
in the parameters �θ , and with proper functional form (i.e., an appropriate representation
of the data), one expects the minimum χ2 = ∑

i z2
i obtained by the LS method should be
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distributed according to the χ2 PDF with N − m degrees of freedom, as shown in §3.13.3.
It is consequently appropriate to use the χ2 value obtained in a fit of data with Gaussian
deviates to evaluate the goodness of the fit.

Recall from §3.13 that the expectation value of a random variable with a χ2 PDF is
equal to the number of degrees of freedom, NDoF. It is thus convenient (and customary)
to quote the χ2 divided by the number of degrees of freedom, NDoF, as a measure of the
goodness of a fit. The number of degrees of freedom NDoF is equal to N − m, N being the
number of data points or bins, and m the number of fit parameters. If the value χ2/NDoF is
much smaller than one, or near zero, then the fit is much better than expected, on average,
given the size of the data set and the number of fit parameters. Very small χ2/NDoF values
are not impossible but have rather low probability of occurring. Fits yielding “very” small
χ2/NDoF values might then signal that the errors (standard deviations), σi, used in the fit
are overestimated or correlated. Large values of χ2/NDoF, on the other hand, indicate that
the fit is very poor. This is an indication that the model f (x|�θ ) used to fit the data has a very
small likelihood of yielding the measured data. The hypothesis that this particular model
constitutes an accurate representation of the data (and the phenomenon considered) is thus
regarded as having a low probability. Alternatively, it is possible that the errors σi are much
underestimated and consequently yield a rather large χ2.

It is customary to report the goodness of a fit in terms of its significance level or p-value.
The significance level corresponds to the probability that the model hypothesis4 would lead
to a χ2 value worse (i.e., larger) than that actually achieved:

p =
∞∫
χ2

pχ (z|NDoF) dz, (5.121)

where pχ2 (z|NDoF) is the χ2-distribution for NDoF degrees of freedom. Integrals of
pχ2 (z|NDoF) are best calculated with numerical routines available in software packages
such as Mathematica®, MATLAB®, or ROOT®.

It is important to realize that the choice of minimum p-value used toward the rejection
of model hypotheses is rather subjective and may very well depend on the purpose of a
particular measurement. See §6.6.5 for a more extensive discussion of this issue. Addition-
ally, it is also important to acknowledge that the errors σi may be under- or overestimated,
thereby resulting in too large or too small a value of χ2, respectively. The use of a χ2 test
as a measure of the goodness of a fit may thus be completely unwarranted if the errors have
not been properly calibrated.

5.4 Extrapolation

Having obtained estimates of model parameters with the ML, LML, LS, or related meth-
ods, it is often necessary to use the estimates to determine values predicted by the model in

4 The notions of hypothesis and hypothesis testing are discussed at great length in Chapter 6.
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regions where no measurements exist. Doing this is fairly easy: one needs only to plug in
the parameter estimates, θ̂ , obtained from the fit into the model formula, and calculate the
function values y = f (x|θ ) at the relevant values of x. Somewhat less easy, however, is the
calculation of error estimates δy on values y = f (x|θ ) predicted by or extrapolated from
the model. The model parameters are in general not independent. One must then use the
covariance matrix U of the model parameters to determine the error δy on an extrapolated
value according to

δy2 =
(
∂y

∂�θ

)T

U

(
∂y

∂�θ

)
. (5.122)

As a practical example, let us consider the implementation of the foregoing formula
for a polynomial of order m with coefficients ai, i = 0, . . . ,m. We must first calculate the
derivatives ∂y/∂aj:

∂y

∂�aj
=

m∑
k=0

∂ak

∂a j
xk = x j. (5.123)

The expression (5.122) may then be written:

δy2 = (
1 x · · · xm

)
⎛⎜⎜⎜⎝

U00 U01 · · · U0m

U10 U11 · · · U1m
...

...
. . .

...
Um0 Um1 · · · Umm

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
x
...

xm

⎞⎟⎟⎟⎠ . (5.124)

For a straight-line fit, y = a0 + a1x, this expression reduces to

δy2 = U00 + 2U01x + U11x2, (5.125)

in which U00 = Sxx/� and U11 = S/� are the variances of a0 and a1, respectively, while
U01 = Sx/� is the covariance of a0 and a1.

It is important to stress that neglect of the off-diagonal terms, which may be quite large
relative to the diagonal terms, can lead to gross misrepresentations of the errors δy on
extrapolated values (see Problem 5.12).

5.5 Weighted Averages

It is the hallmark of science that measurements should be reproducible and that advances
in technology typically lead to improved measurements of physical quantities. It is often
the case that different groups of scientists conduct distinct measurements of a given ob-
servable, for instance, the mass of a particle, the value of a fundamental constant such as
the speed of light, and so on. Distinct experiments generally have different degrees of re-
liability, accuracy, precision, and yield different measurement results with distinct errors.
Given historical trends, one might expect that more modern experiments yield more ac-
curate and precise results. One might thus be tempted to rely only on the latest or most
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precise results. But why give up the valuable information provided by other experiments?
Why not combine the information gathered to obtain a world average that accounts for all
data available? This can be accomplished with the weighted average (WA) method, which
is introduced here as a special case of the LS method. Weighted averages may additionally
be obtained with the ML method and within the Bayesian inference paradigm discussed in
Chapter 7.

Suppose the quantity of interest, with a true value θ , has been measured N times, yield-
ing N independent values (estimates) θ̂i and errors σi, with i = 1, 2, . . .N . Since a single
phenomenon is being considered, it is reasonable to expect all measurements should yield
the same value θ . It is thus acceptable to combine them to get a better estimate of θ . This
can be readily accomplished with the LS method by minimization of the χ2 objective func-
tion for a model f (x|θ ) = θ :

χ2(θ ) =
N∑

i=1

(
θ̂i − θ

)2

σ 2
i

. (5.126)

We set the derivative of Eq. (5.126) with respect to θ equal to zero to seek an extremum
that yields the value θ most compatible with the existing measurements θ̂i:

d

dθ
χ2(θ ) = −2

N∑
i=1

(θi − θ )

σ 2
i

= 0. (5.127)

Solving for θ yields

θ̂WA =
N∑

i=1

θi

σ 2
i

/
N∑

i=1

1

σ 2
i

. (5.128)

We use the subscript “WA” to indicate that the preceding estimate is equal to the sum of
the estimates θi weighted by their respective variances and as such corresponds to a special
case of a weighted average procedure defined as

θ̂WA =
N∑

i=1

ωiθi

/
N∑

i=1

ωi, (5.129)

with weights wi = 1/σ 2
i .

The weights ωi determine the importance given to estimates θi in the average. Measure-
ments with a smaller variance σ 2

i have a larger weight and thus contribute more to the
weighted average θ̂WA. Note that the factor

∑
i wi is needed for proper normalization of the

weights, unless they are already normalized, in other words, if
∑

i wi = 1.
The second-order derivative of the χ2-function with respect to θ yields the variance of

the estimate

Var
[
θ̂WA

]
=
(

N∑
i=1

σ−2
i

)−1

, (5.130)

which amounts to the inverse of the sums of all the weights. The variance Var[θ̂WA] is, by
construction, smaller than the individual variances σ 2

i . Consequently, there is an obvious
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209 5.6 Kalman Filtering

advantage in combining the results of several measurements. Three special cases are of in-
terest: first, if all measurements have equal errors, σi = σ , then the variance of the estimate
simplifies to

Var
[
θ̂WA

]
=
(

N∑
i=1

σ−2

)−1

= σ 2

N
, (5.131)

and the error σWA on the estimate θ̂WA equals the measurement error divided by the square
root of the number N of measurements:

σWA = σ√
N

(equal errors). (5.132)

Second, if one measurement has a much smaller error than the others, it will dominate both
the mean and its variance. Third, if a measurement has a much larger error than the others,
it will play a negligible role in the evaluation of the mean and its variance.

The foregoing weighted procedure can be generalized to situations in which the mea-
surements θi are not independent. This would be the case, for instance, if some or all of the
estimates are based in part on the same data. One must then first determine the covariance
Vi j of the measurements. One can then verify (see Problem 5.13) that the WA is given by
Eq. (5.129) with weights replaced by

w j =

N∑
i=1

(V −1)i j

N∑
k,m=1

(V −1)km

. (5.133)

Clearly, Eq. (5.133) reduces to Eq. (5.129) if the covariance matrix is diagonal, that is, if
the measurements θ̂i are uncorrelated.

Averaging of experimental results may also be achieved with products of likelihood
functions (as well as sums of log of likelihood functions) of combined datasets [67] and
Bayesian inference techniques discussed in Chapter 7.

5.6 Kalman Filtering

Kalman filtering (KF) is a technique that was initially designed and used for radar sig-
nal processing. It is quite general, however, and is used nowadays in many applications,
including signal processing, signal fitting, pattern recognition, as well as navigation and
control.

By design, a Kalman filter operates recursively on one or multiple streams of noisy input
data to produce statistically optimal estimates of the underlying state of a physical system.
The technique is named after Rudolf E. Kalman5 (b. 1930), one of the early and primary
developers of the theory [122]. It was introduced in high-energy physics by Billoir as a

5 Hungarian-born American electrical engineer, mathematician, and inventor.
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progressive method of track-fitting [41]. The equivalence between progressive methods
and Kalman filters was established by Fruhwirth [88].

In nuclear and high-energy physics, Kalman filtering is commonly applied toward track
reconstruction in complex detectors, where it usually involves a linear, recursive method
of track-fitting shown to be equivalent to a global least-squares minimization procedure
(see §5.6.6). It is therefore an optimal linear estimator of track parameters. Provided the
track model is truly linear and measurement errors are Gaussian, the Kalman filter is also
efficient. It was formally shown that no nonlinear estimator can do better. Extensions and
generalizations of the method to nonlinear systems, known as extended Kalman filters
(EKF), have also been developed.

Kalman filters have the following attractive features that make them preferable over
global least-squares methods under appropriate circumstances:

1. A Kalman filter is recursive and is thus well suited for progressive signal processing,
particularly track finding and fitting in large and complex detection systems.

2. A Kalman filter can be extended into a smoother and thereby provides for optimal
estimates of signals throughout the evolution of a system.

3. A Kalman filter readily enables efficient resolution and removal of outlier points.
4. In contrast to least-squares methods, a Kalman filter does not involve the manipulation

or inversion of large matrices.

We motivate and introduce the notion of recursive fitting (filtering) in §5.6.1. The linear
Kalman filter algorithm is outlined in §5.6.2. A detailed derivation of the expression of the
Kalman gain matrix is presented in §5.6.5, whereas a proof of the equivalence between the
Kalman filter method and the least-squares method is sketched in §5.6.6. An example of
application for charged particle track reconstruction in complex detectors is presented in
§9.2.2. The Kalman filtering techniques presented in this section constitute a small subset
of the field of optimal estimation and control theory covered in more specialized works
(e.g., see [70, 93, 168, 199]).

5.6.1 Recursive Least-Squares Fitting and Filtering

The least-squares method discussed in §5.2 is ideal for the estimation of model param-
eters when all data have been acquired and can be fitted all at once. However, there are
applications in which a progressive and recursive knowledge of a system’s or model’s pa-
rameters are required. In other words, rather than waiting for the whole dataset to become
available, one wishes to obtain an estimate on the basis of existing data and progressively
improve the estimate as additional data are collected. Such a task is the domain of recursive
least-squares filtering methods.

We saw in §4.5 that the arithmetic mean constitutes an unbiased estimator of the mean
of a set of data. One can alternatively obtain the arithmetic mean as the least-squares
estimator of a data model involving a zeroth-order polynomial. Indeed, for a dataset
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�x = (x1, x2, . . . , xk ) with measurement errors �σ = (σ1, σ2, . . . , σk ), the χ2 of a zeroth-
order polynomial is

χ2 =
k∑

i=1

(xi − a)2

σ 2
i

. (5.134)

Setting the derivative of χ2 with respect to a equal to zero yields the least-squares estimate:

â =
∑k

i=1 xi/σ
2
i∑k

i=1 1/σ 2
i

. (5.135)

For the sake of simplicity, let us consider a case where all errors σi are equal. One writes

âk = 1

k

k∑
i=1

xi, (5.136)

where âk denotes the estimate of a obtained with k values xi. It corresponds to the arith-
metic mean of a sample of k values xi. Adding one value to the sample, one can obviously
write

âk+1 = 1

k + 1

k+1∑
i=1

xi. (5.137)

It is convenient to formulate the estimate âk+1 in terms of the estimate âk , as follows:

âk+1 = 1

k + 1

(
k

1

k

k∑
i=1

xi + xk+1

)
1

k + 1
(kâk + xk+1) (5.138)

where in the second line, we have used the expression (5.136) of the estimator âk . Defining
â0 = 0 and â1 = x1, we shift the indices of Eq. (5.138) by one unit and obtain

âk = 1

k
((k − 1)âk−1 + xk ) (5.139)

= âk−1 + 1

k
(xk − âk−1)

We find that the new estimate âk is equal to the prior estimate âk−1, plus a “correction”
proportional to the difference between the new measurement xk and the prior estimate,
known as the kth residue. The weight given to the correction is determined by the factor
1/k, which we call the gain of the filter and denote K (1)

k . We thus can write

âk = âk−1 + K (1)
k (xk − âk−1) , (5.140)

with the filter gain

K (1)
k = 1

k
. (5.141)

Equation (5.140) provides us with a recursive formula to estimate the arithmetic mean of
a growing sample of values, xi. Setting a0 = 0, for k = 1, one has K (1)

1 = 1, and the first
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k
3,0002,5002,0001,5001,0005000

s/
k

 aΔ

0.4−

0.2−

0

0.2

0.4

Fig. 5.7 Evolution of the error�ak of the estimate âk of five constant signals with Gaussian noise of standard deviationσ .
Solid lines show the 68% confidence interval (1/

√
k) of the sample mean for a data sample of size k.

measured value is given maximal weight

â1 = K (1)
1 x1 = x1, (5.142)

whereas for increasing values of k, one finds the gain K (1)
k decreases monotonically and

vanishes for k → ∞: additional values are progressively given a smaller weight in the
calculation of the estimate â.

Equation (5.140) epitomizes the concept of recursive filtering and fitting. One starts with
no information and the first measurement is given maximal weight in the determination of
the first estimate â1. This and subsequent estimates serve as priors toward the recursive
determination of posterior estimates, which are expected to progressively converge toward
the true value of the observable. The gain K determines the importance given to new in-
formation provided by measurements xk . It is initially large but tends to decrease as the
number of sampled values progressively increases.

Figure 5.7 illustrates how estimates âk of a constant value a progressively converge to-
ward the true value while the gain tends to zero.

We saw in §4.5 that the estimator of the mean is given by Eq. (5.136). This can be verified
also for the estimators âk as follows:

E [âk] = 1

k

k∑
i=1

E [xi] = 1

k

k∑
i=1

a = a. (5.143)

In order to examine the variance of estimators âk , it is convenient to express the measure-
ments xk in terms of their expectation value a and a signal noise vk :

xk = a + vk, (5.144)
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where the term vk represents random numbers with null expectation value, E [vk] = 0, and
variance E

[
v2

k

] = σ 2. One can then calculate the residue

a − âk = a − âk−1 − 1

k
(a + vk − âk−1) (5.145)

= (a − âk−1)

(
1 − 1

k

)
− 1

k
vk (5.146)

Squaring and taking the expectation value, we obtain the variance of the estimator âk :

Var [âk] = E
[
(a − âk )2] =

(
1 − 1

k

)2

Var [âk−1]

− 2
1

k

(
1 − 1

k

)
E [(a − âk−1) vk] + 1

k2
E
[
v2

k

]
(5.147)

The expectation value E
[
v2

k

]
is the variance σ 2 of the noise vk while the expectation value

E [(a − âk−1) vk] vanishes because the noise vk is assumed to be uncorrelated to that of
prior measurements. The preceding expression thus provides the variance E

[
(a − âk )2]

in terms of the variance at step k − 1 and a second term depending on the signal noise.
Defining the “covariance matrix,” Sk = E

[
(a − âk )2], we can then rewrite the preceding as

Sk = (1 − Kk )2 Sk−1 + K2
k σ

2, (5.148)

which gives us an equation for the evolution of the covariance Sk of the estimate âk in
terms of prior values Sk−1 and the variance σ 2 of the measurement noise. Note that for
small values of k, the gain is near unity, K ≈ 1, and the evolution of Sk is dominated by the
signal noise, whereas for large k the gain nearly vanishes and the covariance Sk becomes
approximately constant. One can verify by simple substitution that the expectation value
of the covariances Sk scales as

Sk = σ 2

k2
. (5.149)

The foregoing recursive formalism is readily applicable to polynomial or linear function of
all orders. We consider a general extension to all linearizable models in §5.6.2.

5.6.2 The Kalman Filter Algorithm

In the framework of the Kalman filter, a physical system (e.g., a radio signal, a charged
particle track traversing a magnetic spectrometer) is represented by a set of ns param-
eters, called the Kalman state vector, �s = (s1, s2, . . . , sns ), which is allowed to vary as
a function of some independent variable, t. For live-feed signal processing applications,
time is obviously a convenient choice of independent variable. However, other choices
are also possible or appropriate depending on the specificities of physical systems un-
der study. For instance, in the case of charged particle reconstruction inside a magnetic
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spectrometer, the independent variable may be taken as the track length or the position
across the spectrometer.

The state of the system is usually regarded as dynamically evolving as a function of
the independent parameter t. While primarily deterministic, the dynamic process may also
involve a stochastic component, usually called process noise. Process noise may arise be-
cause of background processes or through the dynamical evolution of the system. For in-
stance, a track propagating through a detector is likely to interact with materials composing
the detector. Interactions may lead to energy loss and scattering. The instantaneous prop-
erties of the track (e.g., momentum and direction) are thus likely to change stochastically
due to such interactions.

Kalman filtering typically involves recursive measurements of nm dependent parame-
ters, �mk = (m1,m2, . . . ,mnm )k , determined by the state of the system and the properties of
the measurement device. Measurements typically involve fluctuations associated with the
granularity and geometry of the devices as well as, ultimately, the intrinsically stochastic
nature of the measurement process. Uncertainties associated with the measuring process
are commonly known as measurement noise (see §12.1 for a more in-depth discussion of
process and measurement noises).

Measurements of the dependent parameters are achieved recursively by sampling the
system’s signal(s). Depending on the applications and systems considered, such sampling
might be carried out repeatedly at an arbitrarily large frequency or through finitely many
steps. Either way, it is usually the case that both the measurements and the state of the sys-
tem are expressed as functions of the independent variable t. The frequency of the sampling
process being finite by its very nature, it is convenient to discretize all variables of inter-
ests in terms of t steps measured with an arbitrary index k. Thus, �sk and �mk represent the
state of the system and measured values at “step” tk . Some applications involve recursively
unlimited measurement of samples and thus have unbound values of step tk . Spectrometers
used in particle physics for measurements of charged particle momenta, however, involve
finitely many detection planes and thus feature data processing with finitely many values
of (time) steps tk .

Basic Kalman filters assume that knowledge of the state at step k, noted ŝk|k−1 and known
as prior, can be predicted based on knowledge of the state at tk−1 according to a linear
model:

�sk|k−1 = Fk�sk−1 + �wk, (5.150)

where F is a linear function (an ns × ns matrix) describing the evolution of the state vec-
tor between the two times tk−1 and tk . In practical situations, the evolution of the system
between two steps may be nonlinear, and one should instead write

�sk|k−1 = φk (�sk−1) + �wk, (5.151)

where φk (�sk−1) is a nonlinear function of the state vector at step k. The principle of the
method remains the same, however, and leads to extended Kalman filters (EKFs) (see
§5.6.4).

The vector �wk corresponds to process noise and amounts to stochastic variations of
the signal (state) associated with background processes accumulated during the interval
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tk–tk−1. One assumes the process noise to be unbiased, that is, such that

E [�wk] = 0, (5.152)

and characterized by a predictable ns × ns covariance matrix Wk with elements

(Wk )i j = Cov
[
(wk )i, (wk ) j

]
, (5.153)

where (wk )i and (wk ) j are noise values of state parameters (sk )i and (sk ) j, i, j = 1, . . . , ns

at step k.
Uncertainties of the components of the state vector �sk are likewise described by an ns ×

ns covariance matrix denoted Sk
6:

(Sk )i j = Cov
[
(sk )i, (sk ) j

]
. (5.154)

One represents measurements performed at step k (layer k) with a vector noted �mk . The
dimensionality nm of �mk is smaller or equal to that of the state vector (nm ≤ ns) and is
generally limited to just a few parameters, that is, nm � ns. For instance, in a magnetic
spectrometer, straw tube chambers would provide a single measurement of position, u or
v, yielding nm = 1, while pad chambers or continuous devices such as Time Projection
Chambers would yield measurements of two coordinates, y and z, and be represented by a
two-element vector, �z = (y, z). One further assumes that it is possible, given an estimate of
the Kalman state, �sk , to project (predict) a measurement by means of a linear function, Hk ,
according to

�mk = Hk�sk + �vk . (5.155)

The function Hk represents an nm × ns matrix that projects the vector �sk onto the measure-
ment coordinates �mk . It is often possible and convenient to choose some parameters of the
state model �sk to be values of the measurements �mk . The matrix Hk thus simplifies trivially.
For instance, for nm = 2 and ns = 6, one could write

Hk =
[

1 0 0 0 0 0
0 1 0 0 0 0

]
. (5.156)

However, such a simplification is not always possible or desirable. There are also cases
where a linear function is not available.

The vector �v represents the measurement noise associated with the determination of the
measurement vector �m. The measurement noise is assumed to be unbiased, in other words,
with null expectation value such that

E [�vk] = 0. (5.157)

It is characterized by a known error covariance matrix, Vk defined according to:

(Vk )i j = Cov
[
(vk )i, (vk ) j

]
. (5.158)

6 In this and following sections, we use lowercase letters for the physical quantities and corresponding capital
letters for their respective covariance matrix: s → S; w → W ; v → V
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It is generally further assumed that the process and measurement noises are strictly inde-
pendent, and that successive measurement noises are also uncorrelated.

Cov
[
(sk )i, (vk ) j

] = 0 (5.159)

Cov
[
(vk )i, (vk′ ) j

] = 0 for k �= k′ (5.160)

The Kalman filter algorithm requires an initial estimate of the system state �s0 at t0. This
and subsequent estimates of the state vector at tk−1, noted �sk−1|k−1 with k > 1, are used to
predict the state of the system at the next measurement step tk .

�sk|k−1 = Fk�sk−1|k−1. (5.161)

One also predicts (projects) the covariance matrix of the state vector as

Sk|k−1 = FkSk−1|k−1 (Fk )T + Wk . (5.162)

The measurement �mk is then used to update and improve the knowledge of the Kalman
state with

�sk ≡ �sk|k = �sk|k−1 + Kk

(
�mk − Hk�sk|k−1

)
(5.163)

where the quantity Kk is called the Kalman gain matrix. It can be calculated as follows
(for a derivation of this result, see §5.6.5):

Kk = Sk|k−1 (Hk )T (Vk + HkSk|k−1 (Hk )T )−1
. (5.164)

The matrix inversion involved in Eq. (5.164) is typically rather simple because the mea-
surement error covariance matrix has a small dimensionality. In some cases, when Hk is
diagonal, the inversion may even become trivial.

To operate the Kalman filter, one first initializes the covariance matrix S0|0 with large
diagonal values and null off-diagonal elements. As the filter progresses from step to step,
more information about the system is acquired by added measurements �mk . The diagonal
elements reduce to values representative of the uncertainty on the system parameters. Ini-

tially, Sk|k−1 dominates the factor
(
Vk + HkSk|k−1 (Hk )T )−1

so the gain Kk is near unity.
As the number of sampled measurements increases, this factor becomes increasingly dom-
inated by the covariant matrix Vk , and the Kalman Kk gain becomes progressively smaller.
With a large Kalman gain, the addition of a new measurement has a significant impact on
the updated system parameters. As the gain reduces, the addition of new measurements has
a progressively smaller impact on the updated state of the system.

The filtered (updated) covariance is given by

Sk|k = (I − KkHk ) Sk|k−1, (5.165)

where I denotes an ns × ns identity matrix. Again, one finds that initially, the Kalman gain
being large, the covariance matrix rapidly decreases in magnitude. As more information is
added, the gain diminishes and added measurements have diminishing impact on the state
covariance.

The recursive operation of the filter is schematically illustrated in Figure 5.9. An ex-
ample of an application for charged particle track reconstruction in a complex detector is
schematically illustrated in Figure 5.8 and discussed in detail in §9.2.3.
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Fig. 5.8 A particle detector may be represented as a succession of material volumes or layers. Measurements �mk are carried out
in active layers whereas passive volumes contribute no information to the knowledge of the track and may in fact
produce degradation of information through stochastic processes such as differential energy loss and multiple
Coulomb scattering. The state vector is therefore defined at finitely many layers only. Starting at some base layer i, one
proceeds iteratively to predict and measure the state at successive layers. Given the knowledge of a track state�sk−1 at
layer k − 1, one predicts its state�sk at layer k using a linear function. The measurement �mk is then used to update and
improve the knowledge of the state of the track. The process is repeated iteratively until all (relevant) layers have been
traversed.

Fig. 5.9 Schematic illustration of the components of the Kalman filter algorithm.
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5.6.3 Kalman “Smoother”

In cases where it might be useful to have optimal information on the system at all steps
tk , one can carry out a “smoothing” pass on the data. The smoothing pass begins with
the first step k = n and proceeds recursively backward from the last measurement k = n.
The smoothed state vector at tk is based on all n measurements steps and is calculated as
follows:

�sk|n = �sk|k + Ak

(
�sk+1|n − �sk|n

)
, (5.166)

with the smoother gain matrix

Ak = Sk|k (Fk )T + (
Sk+1|k

)−1
. (5.167)

The covariance matrix of the smoothed state vector is

Sk|n = Sk|k + Ak

(
Sk+1|n − Sk+1|k

)
(Ak )T . (5.168)

Multiple extensions and variants of the foregoing algorithm are documented in the scien-
tific and engineering literature.

5.6.4 The Extended Kalman Filter

The propagation of the state vector �s with Eq. (5.150) assumes the evolution of the system
may be described with a linear function of the state parameters. This is a rather limiting
assumption and, in practice, one often deals with nonlinear state evolution equations such
as

�sk = �fk (�sk−1, �wk−1) , (5.169)

as well as nonlinear state-to-measurement “projection” equations such as

�mk = �hk (�sk,�vk ). (5.170)

It may be possible, however, to linearize Eqs. (5.169) and (5.170) and obtain an extended
Kalman filter (EKF).

Let us define matrices Ak and Bk as derivatives of the functions (�fk (�sk−1, �wk−1))i, i =
1, . . . , ns, with respect to j components ( j = 1, . . . , ns) of the state vector �sk and process
noise �wk , respectively:

(Ak )i j = ∂ (�fk )i

∂ (�sk ) j
(�sk−1, 0) , (5.171)

(Bk )i j = ∂ (�fk )i

∂ (�wk ) j
(�sk−1, 0) . (5.172)

Let us additionally define matrices Pk and Qk as derivatives of the functions
(�hk (�sk−1,�vk−1))i, i = 1, . . . , nm, with respect to j components of the state vector �sk and
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Fig. 5.10 Schematic illustration of the extended Kalman filter algorithm. The algorithm is essentially identical to the discrete
algorithm, but the matrices are here replaced by nonlinear functions for the evolution of the state�sk and derivatives of
these functions for the evolution of the covariance matrix Sk .

measurement noise �vk , respectively:

(Pk )i j = ∂ (�hk )i

∂ (�sk ) j
(�sk−1, 0) , (5.173)

(Qk )i j = ∂ (�hk )i

∂ (�vk ) j
(�sk−1, 0) . (5.174)

The state and state covariance evolution equations may then be written

�sk|k−1 = �f (�sk−1, 0) , (5.175)

Sk|k−1 = AkSk−1AT
k + BkWk−1BT

k , (5.176)

while the measurement update equations are

Kk = Sk|k−1PT
k

(
PkSk|k−1PT

k + QkVkQT
k

)−1
, (5.177)

�sk = �sk|k−1 + Kk

(
�m −�h(sk|k−1, 0)

)
, (5.178)

Sk = (I − KkPk) Sk|k−1. (5.179)

As illustrated in Figure 5.10, the extended Kalman filter is quite similar to the regular dis-
crete Kalman filter and proceeds recursively through steps of state update and measurement
update based on Eqs. (5.175) and (5.177), respectively.

However, it is important to note, in closing this section, that the linearization of the
evolution equations implies that the random variables are no longer Gaussian distributed
after undergoing their respective nonlinear transformations.
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5.6.5 Derivation of the Kalman Gain Matrix

In this section, we derive the expression (5.164) of the Kalman gain Kk . It may be skipped
in a first reading of the material.

Let us assume the state of a system can be represented by an n-elements state vector ŝk

and that its evolution can be described by the linear equation

ŝk = Fk ŝk−1 + Kk (�mk − HkFk ŝk−1) , (5.180)

where the matrix Fk determines the evolution of the system in the absence of noise, ŝk−1

is the prior information on the state of the system, Kk the Kalman gain matrix we wish to
determine, Hk a matrix that projects the state ŝk onto a prediction of a measurement, and �mk

represents an actual measurement. A measurement �mk of the system may be represented
as �mk = Hk�sk + �vk , where �sk is the actual value of the system’s state at step k and �vk a
random vector representing the process noise incurred in the evolution of the state from
step k − 1 to step k. We will assume that the state, process noise, and measurement noise
are uncorrelated:

Cov
[
��sk−1, �w

T
k

] = 0, (5.181)

Cov
[
��sk−1,�v

T
k

] = 0, (5.182)

Cov
[
�wk,�v

T
k

] = 0. (5.183)

Our goal is to calculate the covariance matrix Sk of the system state �sk and determine
the gain matrix K that simultaneously minimizes all elements of this covariance matrix. In
order to obtain the covariance matrix, let us first calculate the residue ��sk at each step k of
filtering as follows:

��sk = �sk − ŝk

= �sk − Fk ŝk−1 − Kk (�mk − HkFk ŝk−1) . (5.184)

We next replace the value of the measurement �mk by the sum of the projection of the state
�sk and measurement noise �vk :

��sk = �sk − Fk ŝk−1 − Kk (Hk�sk + �vk − HkFk ŝk−1) . (5.185)

We next also replace �sk on the righthand side by its value in terms of the previous state and
process noise:

��sk = Fk�sk−1 + �wk − Fk ŝk−1 (5.186)

− Kk (Hk (Fk�sk−1 + �wk ) + �vk − HkFk ŝk−1) .

Noting that the difference �sk−1 − ŝk−1 corresponds to the residue at step k − 1, we obtain
after a simple reorganization of Eq. (5.186)

��sk = (1 − KkHk ) Fk��sk−1 + (1 − KkHk ) �wk − Kk�vk, (5.187)
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221 5.6 Kalman Filtering

which expresses the residue��sk in terms of the residue��sk−1, plus two terms that account
for the process and measurement noises.

We define the state vector covariance matrix Sk as

Sk = E
[
��sk��s

T
k

]
, (5.188)

where��sk is represented as a column vector while��sT
k corresponds to its transpose, a row

vector. The covariance of the process noise and measurement noise are noted Wk and Vk ,
respectively:

Wk = E
[
��wk��wT

k

]
, (5.189)

Vk = E
[
��vk��v

T
k

]
. (5.190)

Substituting the expression (5.187) in the definition (5.188) of the covariance Sk , we obtain
after some algebraic manipulations

Sk = ((1 − KkHk ) Fk) E
[
�sk−1�sT

k−1

]
((1 − KkHk ) Fk)T

+ (1 − KkHk ) E
[
wkw

T
k

]
(1 − KkHk )T

+ KkE
[
�vk�v

T
k

]
KT

k + cross terms

where the “cross terms” are proportional to expectation values E[��sk−1�wk], E[��sk−1�vk],
and E[�wk�v

T
k ] and thus null by hypothesis, while the factors E[�sk−1�sT

k−1], E[wkw
T
k ], and

E[�vk�v
T
k ] correspond to Sk−1, Wk , and Vk , respectively. We thus obtain

Sk = (1 − KkHk ) FkSk−1 ((1 − KkHk ) Fk)T (5.191)

+ (1 − KkHk ) Wk (1 − KkHk )T + KkVkKT
k .

Noting that the transpose of a product of matrices (AB)T equals the product of their trans-
poses in reverse order, BT AT , we define the matrix Sk|k−1 as

Sk|k−1 = FkSk−1FT
k + Wk . (5.192)

The foregoing expression for the covariance matrix Sk may thus be written

Sk = (1 − KkHk ) Sk|k−1 (1 − KkHk )T + KkVkKT
k , (5.193)

which provides us with a rather complicated formula for the evolution of the state covari-
ance matrix. We will see in the following that this expression greatly simplifies. But first,
let us find the value of the Kalman gains Kk that minimize the covariance Sk . This is readily
accomplished by setting derivatives of Sk with respect to Kk equal to zero and solving for
Kk . Noting that Sk , Sk|k−1, and Vk are symmetric matrices by construction, the derivatives
of Sk readily simplify to

0 = ∂Sk

∂Kk
= −2 (1 − KkHk ) Sk|k−1HT

k + 2KkVk (5.194)

which further simplifies to
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0 = −Sk|k−1HT
k + Kk

(
HkSk|k−1HT

k + Vk

)
(5.195)

The optimal Kalman gain matrix is thus

Kk = Sk|k−1HT
k

(
HkSk|k−1HT

k + Vk

)−1
. (5.196)

Inserting the foregoing expression in Eq. (5.193), we find after some simple manipulations

Sk = (1 − KkHk ) Sk|k−1, (5.197)

or substituting the definition (5.192) of Sk|k−1, we obtain

Sk = (1 − KkHk )
(
FkSk−1FT

k + Wk

)
. (5.198)

The covariance Sk is determined by the linear projection of the prior Sk−1 and the process
noise determined by the Kalman gain Kk . The gain is initially large and gives more weight
to measurements �mk . It progressively decreases, however, with the addition of data and
eventually vanishes for large values of k. The covariance matrix thus tends toward

Sk = FkSk−1FT
k + Wk (5.199)

in the limit where the gain vanishes.

5.6.6 Kalman Filter as a Least-Squares Fitter

We demonstrate, in this section, that the Kalman filter technique is equivalent to the least-
squares method.

The χ2 function is defined on the basis of the measurements �mi, the measurement co-
variance matrix Vi, and a model h(t;�s) with state parameters �s to be determined by the
fitting procedure:

χ2 =
k∑

i=1

(
�mi −�h(ti,�si)

)
V−1

i

(
�mi −�h(ti,�si)

)T
(5.200)

Rather than trying to evaluate Eq. (5.200) for all values of i, let us consider the contribution
of the “last” measurement k and those of the k − 1 prior measurements. Let χ2

k represent
the contribution of the last measured point:

χ2
k =

(
�mk −�h(tk,�sk )

)
V−1

k

(
�mk −�h(tk,�sk )

)T
, (5.201)

where �mk and Vk stand for the kth measurement and its covariance matrix, while �h(tk,�sk )
represents the expected measurement value for step tk and model parameters �sk . The
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223 5.6 Kalman Filtering

contribution of all k − 1 prior measurements is encapsulated in the covariance matrix Sk−1

of the state. One can thus write

χ2
k−1 = (�sk−1 − ŝk−1)T S′−1

k−1 (�sk−1 − ŝk−1) . (5.202)

The total χ2 is then simply the sum χ2
k−1 + χ2

k , which one seeks to minimize in order to
determine the optimal state (model) parameters �s. We thus take the derivative of χ2 relative
to �s:

dχ2

d�s
= 2S′−1

k (�sk−1 − ŝk−1) − ∇s
�hV−1

k

(
�mk −�h(tk,�sk )

)
. (5.203)

Equation (5.203) has a dependency on the unknown parameters �sk . We thus replace �sk by
ŝk +��sk with ��sk defined as the residue:

��sk = �sk − ŝk (5.204)

For small residues, one can expand�h(tk,�sk ) as a Taylor series

�h(tk, x̂k +��sk ) = �h(tk, ŝk ) +��sk∇s
�h(tk, ŝk ), (5.205)

and obtain

dχ2

d�s
= 2S′−1

k ��sk−1

− ∇s
�h(ŝ)V−1

k

(
�mk −�h(ŝk ) −��sk∇s

�h(ŝ)
)
, (5.206)

where for brevity we have omitted the dependence on tk . The first ∇s
�h in Eq. (5.206) is a

function of the true value �sk but it should be legitimate to use a gradient evaluated at ŝk

instead. Defining Hk = ∇s
�h, we thus obtain

dχ2

d�s
= 2S′−1

k ��sk−1 (5.207)

+ HT
k V−1

k Hk��sk − 2HT
k V−1

k

[
�mk −�h(ŝk )

]
. (5.208)

Setting this derivative to zero and solving for ��sk , one gets

��sk =
[
S′−1

k + HT
k V−1

k Hk

]−1
HT

k V−1
k

[
mk −�h(ŝ)

]
(5.209)

which one readily rewrites

�sk = ŝk +
[
S′−1

k + HT
k V−1

k H
]−1

HT
k V−1

k

[
mk −�h(ŝ)

]
(5.210)

to obtain an expression of the form of Eq. (5.180) but with a seemingly different gain
matrix

Kk =
[
S′−1

k + HT
k V−1

k H
]−1

HT
k V−1

k . (5.211)
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In order to demonstrate this expression is equivalent to Eq. (5.164), we must first show that
the inverse of the updated covariance matrix Sk may be written as

S−1
k = S′−1

k + HkV−1
k HT

k . (5.212)

To verify this statement, it suffices to demonstrate that SkS−1
k = I using Eq. (5.197) for Sk

and the preceding expressions for S−1
k and K.

SkS−1
k = (1 − KkHk ) S′

k

(
S′−1

k + HkV−1
k HT

k

)
= 1 + S′

kV−1
k HT

k − S′
kHT

k

(
HkS′

kHT
k + Vk

)−1
HkS′

kS′−1
k

− S′
kHT

k

(
HkS′

kHT
k + Vk

)−1
HkS′

kHkV−1
k HT

k ,

which can be shown to indeed simplify to unity after a modest amount of matrix algebra
(see Problem 9.1). We can then use Eq. (5.212) for Sk to obtain an alternative expression
of the gain matrix. Starting from Eq. (5.211), we write

Kk = S′
kHT

k

(
HkS′

kHT
k + Vk

)−1
(5.213)

and insert SkS−1
k and V−1

k Vk judiciously in Eq. (5.213):

Kk = SkS−1
k S′

kHT
k V−1

k Vk

(
HkS′

kHT
k + Vk

)−1

= SkS−1
k S′

kHT
k V−1

k

(
HkS′

kHT
k V−1

k + I
)−1
.

Inserting the expression (5.212) for S−1
k , one gets

Kk = Sk

(
S′−1

k + HkV−1
k H T

)
S′

kHT
k V−1

k Vk

(
HkS′

kHT
k + Vk

)−1

= Sk

(
I + HT

k V−1
k HS′

k

)
HT

k V−1
k

(
HkS′

kHT
k V−1

k + I
)−1

= SkHT
k V−1

k

(
I + HkS′

kHT
k V−1

k

) (
HkS′

kHT
k V−1

k + I
)−1

= SkHT
k V−1

k .

Finally, substituting the expression (5.212) for Sk , we get

Kk =
[
S′−1

k + HkV−1
k H T

]−1
HT

k V−1
k , (5.214)

which is the expression (5.211) we sought to demonstrate is equivalent to Eq. (5.164) for
the Kalman gain. We have thus established that the Kalman filter is formally equivalent to
the least-squares method.

Note that while the foregoing expression for the Kalman gain is equivalent to
Eq. (5.164), its calculation involves two matrix inversions and is thus more computationally
intensive. Use of Eq. (5.164) is thus preferred in general.
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Exercises

5.1 Show by direct calculation that the estimator τ̂ given by Eq. (5.14) is an unbiased es-
timator of the lifetime τ of the exponential PDF, Eq. (5.10). Next, determine whether
the estimator τ̂ is biased, unabised, or asymptotically unbiased.

5.2 Show that the expectation value of σ̂ 2 defined by Eq. (5.22) is E[σ̂ 2] = (n − 1)σ 2/n
for a Gaussian distribution, and that σ̂ 2 is consequently a biased estimator of the
variance of this distribution.

5.3 Imagine a researcher is studying the behavior of system and finds it can be rep-
resented by a variable x with some PDF f (x|�θ ) in which �θ represents a single or
multiple unknown parameters. It is often the case that an “experiment” returns a ran-
dom number, n, of values {xi}, with i = 1, . . . , n. Assuming the number n obeys a
Poisson distribution of mean ν, show that one can extend the ML method to obtain
an extended likelihood function, L(ν, �θ ), defined as

L(ν, �θ ) = νn

n!
e−ν

n∏
i=1

f (xi|�θ ) = e−ν

n!

n∏
i=1

ν f (xi|�θ ). (5.215)

5.4 Maximize the function L(ν, �θ ) derived in Problem 5.3 to first show that the estimator
ν̂ has an expected value of n. Next, consider the application of this extended likeli-
hood function for the determination of the estimator, θ̂ , in experiments where n is a
random variable.

5.5 Devise an exponential generator and test the convergence of the estimator τ̂ for var-
ious combinations of sample sizes and number of samples. Repeat the exercise for a
Gaussian PDF.

5.6 Show that the following expression yields an asymptotically unbiased estimator λ̂ of
the decay constant λ = 1/τ :

λ̂ = 1

τ̂
= n

(
n∑

i=1

ti

)−1

. (5.216)

5.7 Show that the estimator μ̂ obtained in Eq. (5.20) is an unbiased estimator of the mean
μ of a Gaussian PDF.

5.8 Show that the estimator σ̂ 2, given by Eq. (5.22), is an asymptotically unbiased esti-
mator of the variance σ 2 of a Gaussian PDF.

5.9 Verify by direct calculation that s2, given by Eq. (5.22), is an unbiased estimator of
the variance σ 2 of a Gaussian PDF.

5.10 Verify that Eqs. (5.27) and (5.30) yield the variances of estimators of the mean and
standard deviation of a Gaussian distribution, respectively.

5.11 Derive Eq. (5.78), providing the variance of the coefficients a0 and a1 of linear fits
obtained with the LS method.

5.12 Imagine a linear fit y = a0 + a1y of 103 measured points {xi, yi} has produced co-
efficients a0 = 0.55 and a1 = 10.04 with an error matrix U00 = 0.04, U11 = 0.11,
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and U01 = −0.03. Extrapolate the value y predicted by the model at x = 5 and com-
pare the errors δy on this extrapolation obtained while excluding and including the
off-diagonal elements of the error matrix.

5.13 Show that if correlations exist between measurements θ̂i and their covariance matrix
Vi j is known, then the weighted average of these measurements involves the weights
given by Eq. (5.133).

5.14 Show that the sum of the weights given by Eq. (5.133) equals unity.
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