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Abstract
We develop a theory of graph algebras over general fields. This is modelled after the theory developed by
Freedman et al. (2007, J. Amer. Math. Soc. 20 37–51) for connection matrices, in the study of graph homo-
morphism functions over real edge weight and positive vertex weight. We introduce connection tensors
for graph properties. This notion naturally generalizes the concept of connection matrices. It is shown that
counting perfect matchings, and a host of other graph properties naturally defined as Holant problems
(edge models), cannot be expressed by graph homomorphism functions with both complex vertex and
edge weights (or even from more general fields). Our necessary and sufficient condition in terms of con-
nection tensors is a simple exponential rank bound. It shows that positive semidefiniteness is not needed
in the more general setting.
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1. Introduction
Many graph properties can be described in the general framework called graph homomorphisms.
Suppose G and H are two graphs. A mapping from the vertex set V(G) to the vertex set V(H) is a
graph homomorphism if every edge {u, v} ofG is mapped to an edge (or a loop) ofH. For example,
if H consists of two vertices {0, 1} with one edge between them and a loop at 0, then a vertex map
φ : V(G)→{0, 1} is a graph homomorphism iff φ−1(1) is an independent set of G. As another
example, ifH =Kq is a clique on q vertices (no loops), then a vertex map φ : V(G)→{1, . . . , q} is
a graph homomorphism iff φ is a proper vertex colouring of G using at most q colours.

A more quantitative notion is the so-called partition function associated with graph homo-
morphisms. The idea is that we can consider a fixed H with vertex weights and edge weights, and
aggregate all graph homomorphisms from G toH, in a sum-of-product expression called the par-
tition function. This expression is invariant under graph isomorphisms, thus expressing a graph
property of G. This is a weighted counting version of the underlying concept [6, 32, 37].

More concretely, if each vertex i ∈V(H) has weight αi and each edge {i, j} of H has weight βi,j
(non-edge has weight 0), then the partition function ZH( · ) determined by H is

ZH(G)= hom (G,H)=
∑

φ : V(G)→V(H)

∏
u∈V(G)

αφ(u)
∏

{v,w}∈E(G)
βφ(v),φ(w). (1)
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The partition functions of graph homomorphisms can express a broad class of weighted counting
problems. Historically these partition functions also arise in statistical physics, where they play a
fundamental role [5]. In classical physics the vertex and edge weights are typically (non-negative)
real numbers, but in quantum theory they are complex numbers. But even in classical physics,
sometimes a generalization to complex numbers allows a theoretically pleasing treatment. For
example, Baxter generalized the parameters to complex values to develop the ‘commuting transfer
matrix’ for the six-vertex model [5]. The book [29] (Section 2.5.2) treats the Hamiltonian of a one-
dimensional spin chain as an extension of the Hamiltonian of a six-vertex model with complex
Boltzmann weights.

Another source of fascination with these objects comes from the classification program for
counting problems in complexity theory. In recent years, many far-reaching classification theo-
rems have been proved classifying every problem in a broad class of counting problems as being
either computable in polynomial time, or being #P-hard. This has been proved for graph homo-
morphisms (GH) [9, 13, 24, 25, 28, 30, 53], for counting constraint satisfaction problems (#CSP)
[8, 10, 12, 26] and for Holant problems [3, 4, 15, 18, 31]. These theorems are called complexity
dichotomies. If we consider problem instances restricted to planar graphs and variables to take
Boolean values, there is usually a trichotomy, where every problem is either (1) computable in
polynomial time, or (2) #P-hard on general graphs but computable in polynomial time for pla-
nar graphs, or (3) #P-hard on planar graphs. Counting perfect matchings, including weighted
versions, is one such problem that belongs to type (2). The planar tractability of counting perfect
matchings is by Kasteleyn’s algorithm (a.k.a. FKT algorithm) [33, 34, 52]. Valiant introduced holo-
graphic algorithms to significantly extend the reach of this methodology [11, 54, 55]. It is proved
that for all #CSP where variables are Boolean (but constraint functions can take complex val-
ues), the methodology of holographic algorithms is universal [14]. More precisely, we can prove
that (A) the three-way classification above holds and (B) the problems that belong to type (2) are
precisely those that can be captured by this single algorithmic approach, namely a holographic
reduction to Kasteleyn’s algorithm.

#CSP are ‘vertex models’ where vertices are variables, and constraints are placed on subsets of
these variables. The partition function of GH can be viewed as a special case of #CSP where each
constraint is a binary function as an edge weight (and for undirected graphs, a symmetric binary
function). When vertex weights are present they are unary functions.

In contrast to vertex models, one can consider ‘edge models’ where each edge is a variable, and
constraint functions are placed at each vertex. This is called a Holant problem.1 Counting perfect
matchings is a Holant problem where the constraint function at each vertex is the EXACT-ONE
function. Counting all matchings is a Holant problem with the AT-MOST-ONE constraint. Other
Holant problems include counting edge colourings or vertex disjoint cycle covers. Many problems
in statistical physics, such as (weighted) orientation problems, ice models, six-vertex models, etc.,
are all naturally expressible as Holant problems.

It has been proved [15] that for Holant problems defined by an arbitrary set of complex-valued
symmetric constraint functions on Boolean variables, (A) the three-way classification above holds,
but (B) holographic reductions to Kasteleyn’s algorithm are not universal for type (2); there is an
additional class of planar P-time computable problems; these, together with holographic reduc-
tions to Kasteleyn’s algorithm, constitute a complete algorithmic repertoire for this class. (It is
open whether this also holds for non-symmetric constraint functions.)

But this should strike the readers as somewhat ironic. Counting perfect matchings is the prob-
lem that Kasteleyn’s algorithm solves for planar graphs. However this algorithmic approach is
proved universal for type (2) only for vertex models but not for edge models, and yet counting

1Balázs Szegedy [50] studied ‘edge coloring models’ which are equivalent to a special case of Holant problems where for
each arity d a symmetric vertex function fd is given and placed at vertices of degree d. In general, Holant problems allow
different (possibly non-symmetric) constraint functions from a set assigned at vertices; see [11].
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perfect matchings is a quintessential Holant problem. It is most naturally expressed in the edge
model. It is not naturally expressed as a vertex model.

Or can it?
Freedman et al. [27] proved that counting perfect matchings cannot be expressed as the

partition function of GH; however, their proof restricts to a definition of partition functions
with positive vertex weights and real valued edge weights. More importantly they give a
characterization for a graph property to be expressible as such a partition function of GH.

Their characterization consists of two conditions on a connection matrix: a rank condition and
a positive semidefiniteness condition. But when we move fromR to the complex fieldC, this pos-
itive semidefiniteness condition breaks down. At a high level, a succinct reason is that for complex
matrices M, it is not true that MTM is positive semidefinite. However, partition functions of GH
with complex weights are interesting [1, 5, 29, 35, 36, 44], and natural in the quantum setting.
More intrinsically (but less obviously), even if one is dealing with counting problems defined
by real weights, complex matrices are essential as holographic transformations. For example, the

matrix Z= 1√
2

[ 1 1
i −i

]
is one of the most important holographic transformations [11, 15] in deal-

ing with orientation problems such as the six-vertex model, even when all given weights are real.
Note that Z transforms the binary EQUALITY function to DISEQUALITY, which is expressible in

the form of signature matrices as: ZTIZ=
[
0 1
1 0
]
. Thus the results in [27] do not answer whether

counting perfect matchings, and other similar problems naturally expressible as Holant prob-
lems (edge models), can be expressed as partition functions of GH when complex vertex and edge
weights are allowed.We note that Schrijver [46, 48] gave beautiful characterizations of graph prop-
erties expressible as partition functions of GH with complex edge weights but no vertex weights.
Thus effectively the vertex weights are all 1 (and there are also subtle differences in the model
which we will discuss in Subsection 4.7). So the expressibility of these Holant problems as (1) with
complex αi and βi,j remained an open problem.

In this paper we resolve this question. We define the notion of a connection tensor. Then we
give a tensor theoretic characterization of when a graph parameter can be expressed as GH over
any field. We show that there is only one condition, which is both necessary and sufficient for a
graph parameter to be expressible by GH with arbitrary vertex and edge weights, and that is a
simple exponential bound on the rank of the connection tensor. Positive semidefiniteness is not
required (and would not be meaningful in a general field).

This characterization is purely algebraic. As a consequence we show that counting perfect
matchings is not expressible as partition functions of GH over an arbitrary field (over a field of
characteristic p> 0 we count perfect matchings modulo p). We also prove the same inexpressibil-
ity for several other naturally defined Holant problems. Over bounded degree graphs, we prove
a sharp threshold for the domain size (|V(H)|) for expressibility, using holographic transfor-
mations. While we dispense with their positive semidefiniteness condition, the paper [27] is an
inspiration for this work from which we borrow many definitions and ideas.

To handle general vertex weights a significant technical difficulty, we have to overcome fol-
lowing the approach of [27] is the possibility that vertex weights can cancel. In particular, the
possibility that the sum of all vertex weights can be 0 creates a non-trivial technical obstacle, and
we have to introduce some consequential changes to their proof. To do that, in addition to the
algebras of quantum graphs G(S), we define a second type of algebras of quantum graphs G⊆(S),
where S⊆Z+ is a finite set of labels. In G(S) the generators are precisely S-labelled graphs, whereas
in G⊆(S) their label sets can be arbitrary subsets of S. We need to do this because the normalization
argument from [27] fails in our setting (precisely because the sum of all vertex weights can be 0).
One technical step involves correctly defining the notion of a projection from one quotient algebra
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Table 1.. Main concepts and sets used in the paper⊕
I F, FI , Symn(FI ), rkS, T(f , k, n)

PLG,PLG⊆(S),PLG(S),PLG[k](=PLG([k]))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G,G⊆(S), G(S),G[k](=G([k]))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K,K⊆S,KS,K[k]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ĝ, Ĝ⊆(S), Ĝ(S), Ĝ[k](= Ĝ([k]))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G̃⊆(S), G̃(S), G̃[k](= G̃([k]))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

US, U∅, Uk(= U[k]), uS = US +K, u∅ = U∅ +K
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

πS : G→G⊆(S), π̂S : Ĝ→ Ĝ⊆(S)

to another, π̂S : Ĝ→ Ĝ⊆(S). It must be onto Ĝ⊆(S) which is not in general the same as Ĝ(S), the
corresponding quotient algebra without the normalization. (In [27] this G⊆(S) was not needed.)
After the appropriate algebraic structures are all in place, now somewhat more elaborate than that
of [27], we are able to establish our algebraic characterization of expressibility of a graph property
as GH.

An outline of this paper is as follows. Our main theorems are Theorems 3.2 and 3.3. To prove
these theorems we need a proper algebraic setting, and these are certain infinite-dimensional
algebras, which are vector spaces endowed with a multiplication. These algebras are infinite-
dimensional because we wish to account for all finite labelled graphs in one structure. Being
infinite-dimensional introduces some technical complications. In Section 2 we include some basic
notions, mainly regarding tensor spaces. In the context of this paper, the coordinates of these
infinite-dimensional vector spaces represent partially labelled graphs in the algebra G(S) or G⊆(S)
(to be defined in Section 5). In Section 3, we introduce the basic definitions of graph algebras and
connection tensors of a graph parameter. In Section 4, we show how the tensor theoretic char-
acterization can be used to prove that some graph properties cannot be expressed as GH over
any field. The main proof starts in Section 5. In Subsection 5.1, we define the monoid of par-
tially labelled graphs and the algebra of quantum graphs in more detail. We define the algebras
of quantum graphs G(S) and G⊆(S), the ideals KS and K⊆S, and the respective quotients Ĝ(S) and
Ĝ⊆(S), all to be formally defined in Subsection 5.1. We also introduce and prove the correctness
of the definition of the aforementioned projection π̂S : Ĝ→ Ĝ⊆(S), which arises from the linear
map πS : G→ G⊆(S). As said before, the possibility that the vertex weights sum to 0 does not
allow us to perform the corresponding normalization step, and we cannot just simply repeat the
proofs from [27] without extending all the definitions systematically. With all the groundwork set,
we may finally proceed to the main proof. We show the existence of the basis of idempotents in
the quotient algebras Ĝ(S) for finite S⊆Z+ by constructing an isomorphism onto F

r for some r
(a composition of two isomorphisms, see Lemma 5.5 and Corollary 5.6) thereby bounding their
dimensions as well. After that we are able to proceed similarly to Section 4 from [27], modifying
the original proofs as needed.

Table 1 lists the main concepts and sets used in the paper.
There is a substantial body of work related to the partition function of graph homomorphisms

[2, 7, 17, 21, 23, 38, 40–43, 45, 46, 48]. The book [39] by Lovász and the survey by Borgs et al.
[6] provide a good overview of various results. We note that Szegedy [51] showed that counting
perfect matchings can be expressed as a suitable limit of the partition functions of graph homo-
morphisms to a graph on two vertices, so this comes very close to be the partition function of an
actual vertex model. We will discuss this in Subsection 4.7.
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2. Some basic concepts
In this paper F denotes an arbitrary field, also viewed as a one-dimensional vector space over F.
The set FI consists of tuples indexed by I . We let Z>0 denote the set of positive integers. For
any integer k≥ 0, let [k]= {1, . . . , k}. In particular, [0]=∅. For finite I = [n] we write F

n. By
operations on components FI is an algebra (vector space and a ring). By convention F

0 = F
∅ =

{∅}, and 00 = 1 in Z, F, etc. We use
⊔

to denote disjoint union. In Subsection 2.1 we briefly state
some concepts and results. A more detailed account is given in Section A.

2.1 Multilinear algebra
We assume that the reader is familiar with tensors. A main feature in this paper is that we deal
with infinite-dimensional spaces and their duals; and this infinite dimensionality causes some
technical complications. For example, multilinear functions on a direct product

∏n
i=1 Vi of vector

spaces can be naturally identified with the dual space (
⊗n

i=1 Vi)∗ of linear functions on
⊗n

i=1 Vi.
Moreover,

⊗n
i=1 V∗i canonically embeds into (

⊗n
i=1 Vi)∗ via (⊗n

i=1 fi)(⊗n
i=1 vi)=

∏n
i=1 fi(vi). A

special case is that (V∗)⊗n embeds into (V⊗n)∗. If all Vi’s are finite dimensional then this embed-
ding is an isomorphism.However, for infinite dimensionalVi, it is well known that this embedding
is not surjective. We describe this in Subsection A.1 of the appendix.

For any symmetric tensor A ∈ Symn(V) we define the symmetric rank of A to be the least r≥ 0
for which A can be expressed as

A=
r∑

i=1
λiv⊗ni , λi ∈ F, vi ∈V ,

and we denote it by rkS(A). If there is no such decomposition we define rkS(A)=∞. If rkS(A)<
∞ then in any such expression of A as a sum of rkS(A) terms all λi �= 0, all vi �= 0 and are pairwise
linearly independent. In Subsection A.2 we show that if F is infinite, then rkS(A)<∞ for all
A ∈ Symn(V). We prove all needed technical multilinear algebra statements in Section A.

2.2 Weighted graph homomorphisms
We recap the notion of weighted graph homomorphisms [27], but state it for an arbitrary field F.

An (F-)weighted graph H is a graph with a weight αH(i) ∈ F \ {0} associated with each node i
and a weight βH(i, j) ∈ F associated with each edge i j. For undirected GH, we assume βH(i, j)=
βH(j, i).

Let G be an unweighted graph (with possible multiple edges, but no loops) and H a weighted
graph (with possible loops, but no multiple edges). A map φ : V(G)→V(H) is a homomorphism
if every edge of G goes to an edge or loop of H. In this paper, it is convenient to assume that H
is a complete graph with a loop at all nodes by adding all missing edges and loops with weight
0. Then the weighted graph H is described by an integer q= |V(H)| ≥ 0 (H can be the empty
graph), a nowhere zero vector a= (α1, . . . , αq) ∈ F

q and a symmetric matrix B= (βij) ∈ F
q×q. In

this setting every map φ : V(G)→V(H) is a homomorphism. We assign the weights

αφ =
∏

u∈V(G)
αH(φ(u)), homφ (G,H)=

∏
uv∈E(G)

βH(φ(u), φ(v)), (2)

and define
hom (G,H)=

∑
φ : V(G)→V(H)

αφ homφ (G,H). (3)

When G is the empty graph, i.e. V(G)=∅, the only map φ : ∅→V(H) is the empty map φ =∅;
in that case we have the empty products α∅ = 1, hom∅ = 1 and hom (G,H)= 1.
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If all node weights and edge weights in H are 1, then this is the number of homomorphisms
from G into H. Without loss of generality we require all vertex weights αH(i) �= 0 since any vertex
i with αH(i)= 0 can be deleted together with all incident edges i j and loops at i.

Note that whenH is the empty graph, then hom (G,H)= 0 ifG is not the empty graph (because
there is no map φ : V(G)→V(H) in this case), and hom (G,H)= 1 if G is the empty graph
(because there is precisely one empty map φ =∅ in this case.) The function fH = hom (·,H) is
a graph parameter, a concept to be formally defined shortly.

3. Graph algebras
3.1 Basic definitions
An F-valued graph parameter is a function from finite graph isomorphism classes to F.2 For con-
venience, we think of a graph parameter as a function defined on finite graphs and invariant under
graph isomorphism. We allow multiple edges in our graphs, but no loops, as input to a graph
parameter. A graph parameter f is calledmultiplicative, if for any disjoint unionG1 G2 of graphs
G1 and G2 we have f (G1 G2)= f (G1)f (G2).

A k-labelled graph (k≥ 0) is a finite graph in which k nodes are labelled by 1, 2, . . . , k (the
graph can have any number of unlabelled nodes). Two k-labelled graphs are isomorphic if there
is a label-preserving isomorphism between them. We identify a (k-labelled) graph with its (k-
labelled) graph isomorphism class. We denote by Kk the k-labelled complete graph on k nodes,
and by Uk, the k-labelled graph on k nodes with no edges. In particular, K0 =U0 is the empty
graph with no nodes and no edges. A graph parameter on a labelled graph ignores its labels.

It is easy to see that for a multiplicative graph parameter f , either f is identically 0 or f (K0)= 1.
Every weighted graph homomorphism fH = hom (·,H) is a multiplicative graph parameter.

The product of two k-labelled graphs G1 and G2 is defined as follows: we take their disjoint
union, and then identify nodes with the same label. Hence for two 0-labelled graphs,G1G2 =G1 
G2 (disjoint union). Clearly, the graph product is associative and commutative with the identity
Uk, so the set of all isomorphism classes of finite k-labelled graphs together with the product
operation forms a commutative monoid which we denote by PLG[k].

Let G[k] denote the monoid algebra FPLG[k] consisting of all finite formal linear combina-
tions in PLG[k] with coefficients from F; they are called (k-labelled, F-)quantum graphs. This is a
commutative algebra with Uk being the multiplicative identity, and the empty sum as the additive
identity. Later, in Section 5 we will expand these definitions to allow label sets to be arbitrary finite
subsets of Z>0.

3.2 Connection tensors
Now we come to the central concept for our treatment. Let f be any graph parameter. For all
integers k, n≥ 0, we define the following n-dimensional array T(f , k, n) ∈ F

(PLG[k])n , which can
be identified with (V⊗n)∗, where V is the infinite-dimensional vector space with coordinates
indexed by PLG[k], i.e. V =⊕PLG[k] F. The entry of T(f , k, n) at coordinate (G1, . . . ,Gn) is
f (G1 · · ·Gn); when n= 0, we define T(f , k, n) to be the scalar f (Uk). Furthermore, by the com-
mutativity of the product the arrays T(f , k, n) are symmetric with respect to coordinates, i.e.
T(f , k, n) ∈ Sym(F(PLG[k])n). Fix f , k and n, we call the n-dimensional array T(f , k, n) the (kth,
n-dimensional) connection tensor of the graph parameter f . When n= 2, a connection tensor is
exactly a connection matrix of the graph parameter f studied in [27], i.e. T(f , k, 2)=M(f , k).

In contrast to [27], we will be concerned with only one property of connection tensors, namely
their symmetric rank. The symmetric rank rkS(f , k, n)= rkS(T(f , k, n)), as a function of k, n, will

2The concept can be defined over commutative rings but our treatment uses properties of a field.
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be called the symmetric rank connectivity function of the parameter f . This may be infinite, but for
many interesting parameters it is finite, and its growth rate will be important for us.

Remark 3.1. In [27], the matrix rank ofM(f , k) was used for the connection matrices. The results
of the present paper use the symmetric tensor rank of the connection tensors T(f , k, n) and
hold for arbitrary fields. For n= 2, tensor rank coincides with matrix rank, i.e. rank(T(f , k, 2))=
rank(M(f , k)), and furthermore if char F �= 2, then the symmetric tensor rank also coincides,
rkS(T(f , k, 2))= rank(T(f , k, 2))= rank(M(f , k)). Since the field in [27] is R, the notions are
consistent.

Proposition 3.1. Let f be a graph parameter that is not identically 0. The following are equivalent:

(1) f is multiplicative.
(2) f (K0)= 1 and for all n≥ 0, rkST(f , 0, n)= 1.
(3) f (K0)= 1 and there exists some n≥ 2, rkST(f , 0, n)= 1.

Proof. Suppose f �= 0 is multiplicative. Then f (K0)2 = f (K0), showing that f (K0) ∈ {0, 1}.
If f (K0)= 0, then the relation f (G)= f (G)f (K0) implies that f (G)= 0 for every G, which is
excluded. So f (K0)= 1. Trivially rkST(f , 0, n)= 1 for n= 0, 1. Fix any n≥ 2. Then f (G1 · · ·Gn)=
f (G1) · · · f (Gn) for any 0-labelled graphs G1, . . . ,Gn, which implies that rkST(f , 0, n)= 1.

Now suppose f (K0)= 1 and for some n≥ 2, rkS(f , 0, n)= 1. This implies that there is a graph
parameter φ and a constant cn such that f (G1 · · ·Gn)= cnφ(G1) · · · φ(Gn). Putting allGi =K0, we
get cnφ(K0)n = f (K0)= 1 so φ(K0) �= 0 and cn = 1/φ(K0)n. Dividing φ by φ(K0) we can assume
that φ is normalized so that f (G1 · · ·Gn)= φ(G1) · · · φ(Gn) and φ(K0)= 1. Next, taking G1 =
G and Gi =K0 for 2≤ i≤ n we see that f (G)= φ(G) for every G and therefore f (G1 · · ·Gn)=
f (G1) · · · f (Gn). Finally, substituting Gi =K0 for 2< i≤ n, we get f (G1G2)= f (G1)f (G2) so f is
multiplicative.

3.3 Connection tensors of homomorphisms
Fix a weighted graph H = (α, B). Recall that in the definition of hom (·,H) we assume H to be
a complete graph with possible 0 weighted edges and loops, but no 0 weighted vertices. For any
k-labelled graph G and mapping φ : [k]→V(H), let

homφ (G,H)=
∑

ψ : V(G)→V(H)
ψ extends φ

αψ

αφ
homψ (G,H), (4)

where αφ =∏i∈[k] αH(φ(i)), and αψ and homψ are defined by (2). Here ψ extends φ means that
if ui ∈V(G) is labelled by i ∈ [k] then ψ(ui)= φ(i), so αψ

αφ
is the product of vertex weights of αψ

not in αφ . Then

hom (G,H)=
∑

φ : [k]→V(H)

αφ homφ (G,H). (5)

Our main contribution in this paper is that a simple exponential bound in k on the symmetric
rank of the connection tensor of a graph parameter characterizes it being expressible as hom (·,H).
This holds over all fields F. In the following theorems, the rank function rkS(fH , k, n) is defined
over the field F.

Theorem 3.1. For any graph parameter defined by the graph homomorphism fH = hom (·,H), we
have fH(K0)= 1 and rkS(fH , k, n)� |V(H)|k for all k, n≥ 0.
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Proof. The first claim is obvious, as an empty product is 1, and the sum in (3) is over the unique
empty map ∅ which is the only possible map from the empty set V(K0). For the second claim
notice that for any k-labelled graphs G1, . . . ,Gn and φ : [k]→V(H),

homφ (G1 · · ·Gn,H)= homφ (G1,H) · · · homφ (Gn,H). (6)

When n= 0, this equality is homφ (Uk,H)= 1 according to (2), as an empty product is 1.
By (5) and (6), for the connection tensor T(fH , k, n) we have the following decomposition:

T(fH , k, n)=
∑

φ : [k]→V(H)

αφ( homφ (·,H))⊗n,

where each homφ (·,H) ∈ F
PLG[k] and k, n≥ 0. Let q= |V(H)|. Then each T(fH , k, n) is a linear

combination of qk tensor n-powers and therefore rkST(fH , k, n)≤ qk for k, n≥ 0.
The main results of this paper are Theorems 3.2 and 3.3, a converse to Theorem 3.1.

Theorem 3.2. Let f be a graph parameter for which f (K0)= 1 and there exists a non-negative integer
q such that rkS(f , k, n)≤ qk for every k, n≥ 0. Then there exists a weighted graph H with |V(H)| ≤ q
such that f = fH.

More generally, we have the following stronger theorem.

Theorem 3.3. Let f be a graph parameter for which f (K0)= 1 and there exists a non-negative integer
q such that for every k≥ 0 there exists n≥ 2 such that rkS(f , k, n)≤min (n− 1, qk). Then there
exists a weighted graph H with |V(H)| ≤ q such that f = fH.

Theorem 3.3 implies Theorem 3.2 by choosing a large n. Indeed if rkS(f , k, n)≤ qk, we may
choose any n≥max (qk + 1, 2), which is qk + 1 unless q= 0 and k> 0.

In Section 5 we will prove Theorem 3.3, then Theorem 3.2 also follows.

4. Applications
In this section we give some applications of Theorem 3.1. In Subsection 4.7, we also describe some
fine distinctions in the model of graph homomorphism in this paper as is found in [27], compared
to that of [46]. In Subsection 4.7, we also use holographic transformations to show that the graph
parameter that counts the number of perfect matchings in a graph can be expressed as a limit of
partition functions of vertex models, a result of Szegedy [51].

4.1 Tensor rank lower bound of certain tensors
We first prove a lemma about the rank of the connection tensor for graph matchings. LetMa,b =
Mn;a,b ∈ Symn(F2) denote the function {0, 1}n→ F (n≥ 0), such that on the all-0 input 0 it takes
value a, on all inputs of Hamming weight one it takes value b, and on all other inputs it takes value
0. This function is denoted by [a, b, 0, . . . , 0] in the Holant literature. (M0;a,b is just a constant a.)
We have the following lemma; the proof is adapted from the proof of Lemma 5.1 in [20].

Lemma 4.1. If b �= 0 and n≥ 0, then rkSMn;a,b ≥ n.

Proof. For n= 0 the lemma is trivial. Let n≥ 1. Clearly Mn;a,b �= 0, and so r= rkSMn;a,b ≥ 1.
Suppose r< n for a contradiction. Then we can write Mn;a,b =

∑r
i=1 λiv

⊗n
i where λi ∈ F, and

vi = (αi, βi) ∈ F
2 are non-zero and pairwise linearly independent. The decomposition implies that

the linear system Ax= �b with the extended matrix
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Â= [A | �b]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αn1 αn2 . . . αnr a

αn−11 β1 αn−12 β2 . . . αn−1r βr b

αn−21 β21 αn−22 β22 . . . αn−2r β2r 0
...

...
. . .

...
...

βn1 βn2 . . . βnr 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

has a solution xi = λi, 1≤ i≤ r. Note that Â is (n+ 1)× (r+ 1) and A has only r columns.
We show that rank Â= r+ 1> rankA. This is a contradiction. We consider the following two
cases.

(1). All βi �= 0. Then, by the pairwise linear independence of vi, the ratios αi/βi are pairwise
distinct. Then the last r rows of A, i.e. rows n− r+ 2 to n+ 1 form an r× r Vandermonde
matrix of rank r. Note that n+ 1≥ n− r+ 2> 2. By b �= 0, we get an (r+ 1)× (r+ 1)
submatrix of Â of rank r+ 1 by taking row 2 and the last r rows.

(2). Some βi = 0. Without loss of generality we can assume it is β1. Again by the pairwise linear
independence of vi, all other βi �= 0, and all αi/βi are pairwise distinct for 2≤ i≤ r (vacu-
ously true if r= 1). Then since b �= 0, the submatrix of Â formed by taking rows 1, 2 and
the last r− 1≥ 0 rows have rank r+ 1.

We now show that for an infinite field F, we can give a tight upper bound for rkSMn;a,b
where b �= 0 and n≥ 1. The existence of a decomposition Mn;a,b =

∑r
i=1 λiv

⊗n
i where r≥ 1,

λi ∈ F and vi = (αi, βi) ∈ F
2 (1≤ i≤ r) is equivalent to the statement that system (7) has a solution

xi = λi (1≤ i≤ r). Note that by Lemma 4.1, we must have r≥ n.
Assume F is infinite. We show how to achieve r= n with one exceptional case. First, we set all

βi = 1. By comparing with the Vandermonde determinant det ([A | �t ]) as a polynomial in t, where
the last column is �t= (tn, tn−1, . . . , t, 1)T , we have

det Â= det ([A | �b])= (− 1)n
∏

1≤i<j≤n
(αi − αj) ·

(
a− b

n∑
i=1

αi
)
.

To see this equation, note that as a polynomial in t the Vandermonde determinant det ([A | �t ])=∏
1≤i<j≤n (αi − αj)

∏n
i=1 (αi − t)=∑n

i=0 citi for some ci ∈ F (0≤ i≤ n). Then det Â= acn +
bcn−1.

If we set α1, . . . , αn ∈ F to be pairwise distinct, and
∑n

i=1 αi = a/b, then rank A= rank Â=
n. The (affine) hyperplane �:

∑n
i=1 αi = a/b has points away from its intersections with finitely

many hyperplanes xi = xj (i �= j), as long as each of these hyperplanes is distinct from �. This is
trivially true if n= 1. Let n≥ 2. Under an affine linear transformation we may assume � is the
hyperplane xn = 0 in F

n and we only need to show F
n−1 is not the union of finitely many, say k,

affine hyperplanes. Consider the cube Sn−1 for a large subset S⊆ F. The union of these k affine
hyperplanes intersecting Sn−1 has cardinality at most k|S|n−2 < |S|n−1, for a large S.

Each hyperplane xi = xj (i �= j) is distinct from�, except in one case
a= 0, n= 2, and char F= 2. (8)

In this exceptional case, we can easily prove that indeed rkSM2;0,b = 3.
We have proved the following.

Lemma 4.2. If F is infinite, b �= 0 and n≥ 1, then rkSMn;a,b = n with one exception (8). In that
exceptional case, rkSM2;0,b = 3.
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We remark that for any infinite F not in case (8), for n≥ 2 we can achieve rank A= rank Â= n
in (7) by further requiring that all αi �= 0 (in addition to being pairwise distinct, and all βi = 1).
This is simply to avoid the intersections of�with another finitely many hyperplanes distinct from
�. Setting ai = 1/αi, we can set ai ∈ F such that rank A= rank Â= n for the following Â.

Â= [A | �b]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1 a

a1 a2 . . . an 1
...

...
. . .

...
...

an−11 an−12 . . . an−1n 0

an1 an2 . . . ann 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

The linear system Ax= �b has a solution (λ1, . . . , λn) implies that Mm;a,b =
∑n

i=1 λiv
⊗m
i , where

vi = (1, ai), for all 0≤m≤ n. (Form= 0,M0;a,1 = a is a constant, and v⊗0i = 1.)

4.2 Perfect matchings
Let F be any set of F-valued constraint functions, a.k.a. signatures, from some finite set [q]. For
example, the binary EQUALITY (=2 ) signature on (x, y) outputs value 1 if x= y, and 0 otherwise.
Similarly one can define ALL-DISTINCT on [q], and EXACT-ONE and EXACT-TWO on the Boolean
domain (q= 2). An input to a Holant problem Holant(F) is 	= (G, π) where G= (V , E) is a
graph (with possible multiple edges and loops), and π assigns to each v ∈V some fv ∈F of arity
deg (v), and associate its incident edges as input variables to fv. The output is Holant(G;F)=∑
σ

∏
v∈V fv(σ |E(v) ), where the sum is over all edge assignments σ : E→ [q], E(v) denotes the

incident edges of v and σ |E(v) denotes the restriction of σ . Bipartite Holant(G;F | G) are defined
on bipartite graphs G= (U,V , E) where vertices in U and V are assigned signatures from F and
G, respectively.

The graph parameter that counts the number of perfect matchings in a graph, denoted by
#PERFECT-MATCHING (or pm), is a quintessential Holant problem, corresponding to the EXACT-
ONE function. In this subsection we show it is not expressible as a GH function over any field.
This was proved in [27] for GH functions with real edge and positive vertex weights. However
that proof does not work for arbitrary fields, e.g. for the field of complex numbers C, or even for
real numbers with arbitrary (not necessarily positive) vertex weights. A crucial condition in [27] is
positive semidefiniteness. Our main result (Theorems 3.1, 3.2 and 3.3) indicates that the property
of being expressible as a GH function is completely characterized by tensor rank.

Let pm(G)=m · 1 ∈ F (the sum ofm copies of 1 ∈ F) wherem is the number of perfect match-
ings in G. Obviously, pm is a multiplicative graph parameter with pm(K0)= 1. Next, let G be a
k-labelled graph, let X⊆ [k], and let pm(G, X) denote the number of matchings in G (expressed
in F) that match all the unlabelled nodes and, for labelled nodes, exactly the nodes in X. Then for
any k-labelled graphs G1, . . . ,Gn,

pm(G1 · · ·Gn)=
∑

X1...Xn=[k]
pm(G1, X1) · · · pm(Gn, Xn).

Thismeans thatT(pm, k, n) is the productN⊗nk Wk,n whereNk has infinitelymany rows indexed
by all k-labelled graphs G, but only 2k columns indexed by the subsets X of [k], with the entry at
(G, X)

Nk;G,X = pm(G, X),
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andWk,n is a symmetric 2k × . . .× 2k︸ ︷︷ ︸
n times

tensor (from Symn(F2k)), where

Wk,n;X1,...,Xn =
{

1 if X1  . . .  Xn = [k],
0 otherwise.

For any k, if Wk,n =
∑r

i=1 aiv
⊗n
i , then T(pm, k, n)=∑r

i=1 ai(Nkvi)⊗n. Hence rkST(pm, k, n)≤
rkSWk,n. We show that in fact equality holds. Consider the family of k-labelled graphs {PX}X⊆[k]
of cardinality 2k indexed by the subsets of [k] and is defined as follows: each PX has |X| unlabelled
vertices {xi}i∈X and k-labelled vertices {yi}ki=1 labelled 1 to k, with an edge between xi and yj iff
i= j. It is easy so see that for X, Y ⊆ [k],Nk;PX ,Y = 1 if X= Y and 0 otherwise. Then if we consider
the subset of rows in Nk corresponding to {PX}X⊆[k] we see that they form the identity matrix
I2k with a suitable order of rows. Therefore rkSWk,n = rkS

(
I⊗n2k Wk,n

)
≤ rkST(pm, k, n) and so

rkST(pm, k, n)= rkSWk,n.
Note that for k= 1,W1,n is just the perfect matching tensor (or the EXACT-ONE function on n

inputs)M0,1 ∈ Symn(F2) where n≥ 1. Applying Lemma 4.1 with a= 0, b= 1, we get rkSW1,n ≥ n
and therefore rkST(pm, 1, n)≥ n for n≥ 1. Now if pm were expressible as hom (·,H) for some
weighted graph H with q= |V(H)|, then by Theorem 3.1, rkST(pm, k, n)≤ qk for k, n≥ 0 so that
rkST(pm, 1, n)≤ q for n≥ 0. However, as we have just shown rkST(pm, 1, n)≥ n for n≥ 1 which
contradicts the upper bound when n> q. Hence pm is not expressible as a graph homomorphism
function over any field. We state it as a theorem.

Theorem 4.1. The graph parameter #PERFECT-MATCHING(pm) is not expressible as a graph
homomorphism function over any field.

In this proof we have only used simple k-labelled graphs that do not have edges between the
k-labelled vertices. The graphs {PX}X⊆[k] clearly have this property, and this property is preserved
under product of k-labelled graphs. It follows that Theorem 4.1 holds even when pm is restricted
to simple graphs.

We can prove the same inexpressibility results for other Holant problems, such as weighted
matchings, proper edge colourings, and vertex disjoint cycle covers. We will also discuss bounded
degree cases of weighted matchings.

4.3 Weightedmatchings
We prove that the more general problem #WEIGHTED-MATCHINGa defined by wma(G)=
Holant(G;{Mn;a,1}n≥0) is not expressible as a GH function over any field, for any a.

Clearly, wma is a multiplicative graph parameter with wma(K0)= 1. If a= 0 then wma is just
#PERFECT-MATCHING (pm). Counting all matchings is wma for a= 1.

Let G be a k-labelled graph, X⊆ [k], and let wma(G, X) denote the partial Holant sum in
wma(G) over all {0, 1}-edge assignments of G such that within [k], those in X have exactly one
incident edge assigned 1 and all nodes in [k] \ X have no incident edges assigned 1. Then we have
for any k-labelled graphs G1, . . . ,Gn,

wma(G1 · · ·Gn)=
∑

X1...Xn⊆[k]
ak−|X1...Xn|wma(G1, X1) · · ·wma(Gn, Xn).

This means that T(wma, k, n) is the product N⊗nk;a Wk,n;a, where Nk;a has infinitely many rows
indexed by all k-labelled graphs G, and 2k columns indexed by X⊆ [k], with the entry at (G, X)

Nk;a;G,X =wma(G, X),
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andWk,n;a is a symmetric 2k × . . .× 2k︸ ︷︷ ︸
n times

tensor (from Symn(F2k)), where

Wk,n;a;X1,...,Xn =
{

ak−|X1...Xn| if X1  . . .  Xn ⊆ [k],
0 otherwise.

Hence rkST(wma, k, n)≤ rkSWk,n;a. We show that in fact equality holds. Consider the same
family of k-labelled graphs {PX}X⊆[k] defined in the previous subsection. It is easy to see that
for X, Y ⊆ [k], Nk;a;PX ,Y = a|X|−|Y| if Y ⊆ X and 0 otherwise. Here by convention, a0 = 1 even
if a= 0. Consider the rows in Nk;a corresponding to {PX}X⊆[k]. They form the non-singular

matrix
[ 1 0
a 1⊗n

]
if the rows and columns are ordered lexicographically for X, Y ⊆ [k]. Therefore

rkSWk,n;a = rkS
([ 1 0

a 1

]⊗n
Wk,n;a

)
≤ rkST(wma, k, n) and so rkST(wma, k, n)= rkSWk,n;a.

Note that for k= 1, W1,n;a =Mn;a,1 = [a, 1, 0, . . . 0] ∈ Symn(F2) where n≥ 1. Applying
Lemma 4.1 with b= 1, we get rkSW1,n;a ≥ n and therefore rkST(wma, 1, n)≥ n for n≥ 1. Now
if wma were expressible as hom (·,H) for some weighted graph H with q= |V(H)|, then by
Theorem 3.1, rkST(wma, k, n)≤ qk for k, n≥ 0 so that rkST(wma, 1, n)≤ q for n≥ 0. This contra-
dicts rkST(wma, 1, n)≥ n when n> q. Hence wma is not expressible as a graph homomorphism
function over any field.

By the same remark for Theorem 4.1, the proof for Theorem 4.2 carries over to simple graphs.

Theorem 4.2. The graph parameter #WEIGHTED-MATCHINGa (wma) where a ∈ F as a func-
tion defined on simple graphs is not expressible as a graph homomorphism function over any
field F.

4.4 Bounded degree graphs
Fix any d≥ 2. A degree-d bounded graph is a graph with maximum degree at most d. In this
subsection, we investigate the expressibility of the graph parameter #WEIGHTED-MATCHINGa
(wma) as a GH function on bounded degree graphs. More precisely, we are interested when wma
is expressible as a hom (·,H) with |V(H)| = q on degree-d bounded graphs. For convenience, we
temporarily allow vertex weights to be 0, and it will be addressed later.

Given a graph G (possibly withmultiple edges but no loops), letG′ be the vertex-edge incidence
graph of G. The vertex set V(G′) consists of the original vertices from V(G) on the LHS and the
edges E(G) on the RHS. LetH be the weighted graph specified by vertex weights (α1, . . . , αq) ∈ F

q

and a symmetric matrix B= (βij) ∈ F
q×q for edge weights, then for any G

hom (G,H)=Holant(G′;{
q∑

i=1
αie⊗nq,i }n≥0 | B), (10)

where {eq,i}qi=1 ∈ F
q has a single 1 at the ith position and 0 elsewhere. Here hom (G,H) is expressed

in (10) as a domain-qHolant sum onG′: any LHS vertex ofG′ of degree n is assigned the signature∑q
i=1 αie

⊗n
q,i (which takes value αi if all incident edges have value i ∈ [q], and 0 otherwise), and any

RHS vertex of G′ (an edge of G) is assigned the symmetric binary signature specified by B.
First, we show that for any a ∈ F, if wma is expressible as hom (·,H) with |V(H)| = q on degree-

d bounded simple graphs over any field F, then q≥ d. Recall the proof from Section 4.3. This
time we restrict the connection tensor T(wma, 1, d) (for k= 1) to the 1-labelled graphs P∅ and
P[1], which are just K1 and K2 without the label. The product of d-labelled graphs from {P∅, P[1]}
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having � copies of P[1] is the star graph S� with one internal node labelled by 1 and � external unla-
belled nodes. All these are degree-d bounded simple graphs. Note that T(wma, 1, d)|{P∅,P[1]}d =[ 1 0
a 1

]⊗d
W1,d;a. Therefore rkS

(
T(wma, 1, d)|{P∅,P[1]}d

)
= rkS

([ 1 0
a 1

]⊗d
W1,d;a

)
= rkSW1,d;a ≥

d, the last step is by Lemma 4.1. On the other hand, if wma is expressible as hom (·,H) with
|V(H)| = q on degree-d bounded simple graphs, then arguing similarly to the proof of Theorem
3.1 but restricting the domain of the arguments Gi, 1≤ i≤ d in (6) to {P∅, P[1]}, we have
rkS

(
T(wma, 1, d)|{P∅,P[1]}d

)
≤ q so d≤ q. Then clearly this bound also holds if we do not allow

0-weighted vertices.
Now let F be infinite. By the remark after Lemma 4.2, if we are not in the exceptional case (8)

(we put n= d), then for some ai, αi ∈ F we haveMm;a,1 =∑d
i=1 αi(1, ai)⊗m, for every 0≤m≤ d.

Let T ∈ F
d×2 be the matrix whose 1st and 2nd columns are (1, 1, . . . , 1)T and (a1, a2, . . . , ad)T

respectively. Then ed,iT = (1, ai). Define the symmetric matrix B= (βij)= TTT ∈ F
d×d. Now let

H be a weighted graph on d vertices specified by (α1, . . . , αd) ∈ F
d and B= (βij) ∈ F

d×d. Then for
any degree-d bounded graph G we have the following equality chain:
wma(G)=Holant(G;

{Mm;a,1
}
0≤m≤d )=Holant(G′;

{Mm;a,1
}
0≤m≤d|(=2 ))

=Holant(G′;

⎧⎨⎩
d∑

i=1
αi(1, ai)⊗m

⎫⎬⎭
0≤m≤d

|(=2 ))=Holant(G′;

⎧⎨⎩
d∑

i=1
αi(ed,iT)⊗m

⎫⎬⎭
0≤m≤d

|(=2))

=Holant(G′;

⎧⎨⎩
d∑

i=1
αie⊗md,i T

⊗m
⎫⎬⎭

0≤m≤d
|(=2))=Holant(G′;

⎧⎨⎩
d∑

i=1
αie⊗md,i

⎫⎬⎭
0≤m≤d

|T⊗2(=2)).

where the last equation moving T⊗n from the LHS of the Holant problem to T⊗2 in the RHS,
is called a holographic transformation [11, 55] (the argument works for arbitrary fields). This
follows from the associativity of the operation of tensor contraction. The EQUALITY function
(=2 ) is transformed to T⊗2(=2 ), which has the matrix form TTT = B. Hence this is precisely the
function hom (G,H). We have temporarily allowed 0-weighted vertices; but in fact by the lower
bound q≥ d no 0-weighted vertex exists, since otherwise by removing 0-weighted vertices we
would have wma( · )= hom (·,H′) with fewer vertices.

The inexpressibility with |V(H)| = 2 for the exceptional case (8) holds even for simple graphs,
by considering paths of 0, 1 or 2 edges. Also, in this case it can be easily shown that wma = pm is
expressible as hom (·,H) where |V(H)| = 3: this can be done similarly to the expressibility proof
above via a holographic transformation (then H cannot have 0-weighted vertices).

This proves Theorem 4.3.

Theorem 4.3. Let F be a field and d≥ 2. Then for the graph parameter #WEIGHTED-MATCHINGa
(wma) where a ∈ F as a function defined on degree-d bounded graphs the following hold:

1. wma is not expressible as hom (·,H) with |V(H)|< d even on degree-d bounded simple
graphs.

2. If F is infinite, then wma is expressible as hom (·,H) with |V(H)| = d, with one exception (8)
in which case the minimal value for |V(H)| is 3.

Note that #PERFECT-MATCHING (pm) is just the special case a= 0. Hence Theorem 4.3 also
holds for pm.
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4.5 Proper edge d-colourings
Next we show that the graph parameter #d-EDGE-COLORING (ecd) is not expressible as a GH
function over any field of characteristic 0. Given a graph G, ecd(G) counts the number of proper
edge d-colourings in a graph, where d≥ 1 is the number of colours available.

Clearly, ecd is a multiplicative graph parameter with ec(K0)= 1. Since char F= 0, F is infinite.
Consider K1 as a 1-labelled graph and the star graph Sd with one internal node labelled by 1
and d unlabelled external nodes all connected to node 1, where d≥ 1. Consider the connection
tensor T(ecd, k, n) restricted to {K1, Sd}n. For (G1, . . . ,Gn) ∈ {K1, Sd}n, if more than one Gi = Sd
then the product G1 · · ·Gn has no proper edge d-colouring because the labelled vertex has degree
≥ 2d> d. Then it is easy to see that the connection tensor T(ecd, k, n) restricted to {K1, Sd}n has
the formM1,d! = [1, d!, 0, . . . , 0] ∈ Symn(F2), and d! �= 0 in F as char F= 0. Therefore by Lemma
4.1, rkSM1,d! ≥ n for n≥ 1. Hence rkST(ecd, 1, n)≥ n for n≥ 1.

Now if ecd were expressible as hom (·,H) for some weighted graphH with q= |V(H)|, then by
Theorem 3.1, rkST(ecd, 1, n)≤ q for n≥ 0. This contradicts the upper bound when n> q. Hence
ecd is not expressible as a graph homomorphism function over any field F of char F= 0.

By the same remark for Theorem 4.1, the proof for Theorem 4.4 carries over to simple graphs.

Theorem 4.4. The graph parameter #d-EDGE-COLORING (ecd) with d≥ 1 as a function defined
on simple graphs is not expressible as a graph homomorphism function over any field of
characteristic 0.

4.6 Vertex-disjoint cycle covers
We show that the graph parameter vdcc (#VERTEX-DISJOINT-CYCLE-COVER) which counts the
number of vertex disjoint cycle covers in a graph is not expressible as a GH function over an
arbitrary field. In a multigraph without loops a cycle is a vertex disjoint closed path of length at
least 2. The graph parameter vdcc(G)=m · 1 ∈ F, where m is the number of edge subsets E′ that
form a vertex disjoint set of cycles that cover all vertices.

Clearly, vdcc is a multiplicative graph parameter with vdcc(K0)= 1. Next, consider K1 and K3
as 1-labelled graphs. Note that K3 is a cycle of 3 vertices. It is easy to see that the connection tensor
T(vdcc, k, n) restricted to {K1,K3}n has the formM0,1 = [0, 1, 0, . . . , 0] ∈ Symn(F2) and therefore
by Lemma 4.1, rkSM0,1 ≥ n for n≥ 1. Hence rkST(vdcc, 1, n)≥ n for n≥ 1.

Now if vdcc were expressible as hom (·,H) for some weighted graph H with q= |V(H)|, then
by Theorem 3.1, rkST(vdcc, 1, n)≤ q for n≥ 0. This contradicts the upper bound when n> q.
Hence vdcc is not expressible as a GH function over any field.

By the same remark for Theorem 4.1, the proof for Theorem 4.5 carries over to simple graphs.

Theorem 4.5. The graph parameter #VERTEX-DISJOINT-CYCLE-COVER (vdcc) as a function
defined on simple graphs is not expressible as a graph homomorphism function over any field.

4.7 Some previous work andmodel distinction
Schrijver [46] gave a beautiful characterization of a graph property G �→ f (G) to be expressible as
ZH( · ) in (1) with complex βij but all αi = 1. However, there are some subtle differences in the
definition. In particular, somewhat deviating from the standard definition (as in [27] and in this
paper) the graphs G are allowed to have loops (indeedmultiloops andmultiedges) in [46]. The cri-
terion is expressed in terms of a sum

∑
P∈�V(G)

μPf (G/P)= 0 for all G with |V(G)|> f (K1). Here
�V(G) is the partition lattice on V(G), μP is the Möbius inversion function on partitions, and the
graph G/P is obtained from G by condensing all vertices in P into one vertex. This condensation
naturally creates loops. In [46] Schrijver carefully makes the distinction between the results in that
paper with that of [27], and states that ‘[A]n interesting question is how these results relate’.
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In [48] Schrijver gave another characterization of expressibility asZH( · ) in (1) with complex βij
but all αi = 1. Again, the graphs Gmay have multiloops andmultiedges. The criterion is expressed
in terms of a rank bound of the kth ‘connectionmatrix’ for every k. However, here the definition of
the ‘connection matrix’ differs from that of [27]. They are defined over ‘k-marked graphs’ where
the k marked vertices are not necessarily distinct. This is in contrast to ‘k-labeled graphs’ in [27],
as well as in this paper. Thus the kth ‘connection matrix’ in [48] is a super matrix of the kth
‘connection matrix’ in [27], and the rank bound is a stronger requirement.

At the end of this subsection we will show that this distinction is material, by showing that the
well-known hardcore gas model in statistical physics,

∑
ind I⊆V(G) λ|I|, where the sum is over all

independent sets of G, cannot be expressed in the model discussed in [46, 48], i.e. without vertex
weight. On the other hand, obviously the hardcore gas model is defined as a partition function of
GH with vertex weight. In particular the rank bound for the ‘connection matrix’ in [48] must fail,
while it must hold for that of [27], as well as for our connection tensor.

The terminology in the literature on this subject is unfortunately not uniform. In Lovász’s book
[39], separate from the partition function of GH as in (1), the model studied by Szegedy in [50]
is called the ‘edge coloring model’. This is essentially what we called Holant problems, or edge
models. The slight difference is that Holant problems allow different constraint functions from a
set assigned at different vertices, while the edge colouring model studied in [50] is a special case of
Holant problems where for each arity d a single symmetric vertex function fd is given and placed
at all vertices of degree d.

In short, in edgemodels edges play the role of variables, and constraint functions are at vertices,
and in vertex models vertices play the role of variables, and edges have binary constraint functions
as well as vertices have unary constraint functions. Counting matchings, or perfect matchings,
or valid edge colourings, or cycle covers, etc., are naturally expressible as edge models. It turns
out that many orientation problems can also be expressed as edge models after a holographic

transformation (by Z= 1√
2

[ 1 1
i −i

]
). However, confusingly, the edge colouring model had also

been called a vertex model in [22]. We also note that a preliminary version of [49] appeared as
[47] which used the terminology ‘vertex model’, and that was changed to ‘edge coloring model’ in
the final version [49]. In particular, these papers [22, 49, 50] do not address the expressibility of
counting perfect matchings in the vertex model as in (1) with arbitrary vertex and edge weights,
which is the subject of the present paper. However, Szegedy [51] proved that counting perfect
matchings can be expressed as the limit of the partition function of a parametrized vertex model
(see below).

Now we prove that the hardcore gas model fails the expressibility criterion of Schrijver [48] as

a partition function of GH without vertex weight. We observe that if we take A=
[ 1 1
1 0

]
indexed

by {0, 1}, which is the binary NAND function representing the independent set constraint, and the
vertex weight α0 = 1, α1 = λ, then∑ind I⊆V(G) λ|I| is clearly an instance of the expression (1). We
now show that such an expression is impossible without vertex weight.

To state Schrijver’s criterion we need a few definitions. Let f be a graph property. A k-marked
graph is a pair (G,μ) where G= (V , E) is graph, and μ : [k]→V is a function marking k (not
necessarily distinct) vertices. So a vertex may have several marks; this is the key distinction with
k-labelled graphs. For k-marked graphs (G1,μ) and (G2, ν), the product (G1,μ)(G2, ν) is the k-
marked graph obtained by first taking a disjoint union and then merging all vertices of G1 and
G2 that share a common mark. (Note that this merging process may produce multiedges and
multiloops.) The kth connection matrix Ck,f in the sense of [48] is the infinite matrix whose
rows and columns are indexed by all finite k-marked graphs and the entry at ((G1,μ), (G2, ν))
is f ((G1,μ)(G2, ν)). The expressibility criterion by Schrijver in [48] (Theorem 1) is that f (∅)= 1
and for some c, rank(Ck,f )≤ ck for all k.
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We show that for the hardcore gas model this rank grows super exponentially. We consider
the following submatrix. Let �k be the set of all partitions of [k]. The rows and columns of the
submatrix are indexed by the following k-marked graphs. For every P= {C1, . . . , Cs} ∈�k we
have a k-marked graph GP with s vertices denoted by v1, . . . , vs, with no edges. For every j ∈ [k],
let Ct be the unique set in P that contains j, then we mark vt with j. Now suppose P,Q ∈�k are
the indices of a row and column respectively, then the entry at (P, Q) is the hardcore gas function
evaluated at the product graph GPGQ. We observe that this product graph is just GP∨Q where
P ∨Q is the least-upper-bound of P and Q in the lattice order of refinement: P≤ P′ iff P refines
P′. It follows that the entry at (P, Q) is∏

D∈P∨Q
(1+ λ)= (1+ λ)|P∨Q|.

It is proved in [48] (Proposition 1) for λ �= −1, 0, 1, 2, . . . , k− 2, this matrix is nondegenerate. As
its dimension |�k| grows superexponentially in k, we see that the criterion in [48] is not satisfied.
(However, it is easy to see that on d-regular graphs (d≥ 1) the hardcore gas model is expressible as

a partition function of GHwithout vertex weight, with the edge weight matrix
[ 1 λ1/d

λ1/d 0

]
, where

λ1/d can be taken to be any dth root from λ. Basically, the entry 0 ensures that only independent
sets can contribute non-zero weight to the partition function, and for each vertex assigned to be
in an independent set each of the d incident edges contributes a factor λ1/d.)

In contrast to Theorem 4.1, B. Szegedy in [51] shows that graph parameters arising from finite
rank edge colouring models (defined in [51]) are in fact partition functions of singular vertex
colouring models. Roughly speaking, for any fixed size (complete) graph H we consider vertex and
edge weights ofH that depend on a parameter t, and denoting the weighted graph byHt , we say a
graph parameter is the partition function of a singular vertex colouringmodel if it is the limit of the
graph homomorphism function hom (G,Ht) when t→ 0. In particular, their connection matrices
are exponentially rank bounded, a consequence by taking limits. The graph parameter #PERFECT-
MATCHING (pm) is easily seen to be the partition function of a finite rank edge colouring model,
so it can be expressed as a singular vertex colouringmodel. In fact, in [51] it is shown that pm(G)=
limt→0 hom (G,Ht), where Ht has the vertex weights (1/t,−1/t), and edge weights

[ 1+ t2 1
1 1

]
.

Now we give a simple proof of this fact using holographic transformations.

We have the factorization
[ 1+ t2 1
1 1

]
=MMT, where M=

[ 1 t
1 0

]
. A holographic transforma-

tion byM transforms the vertex weight function of a vertex of degree d to
1
t

[
(1, 0)⊗d − (0, 1)⊗d

]
M⊗d = 1

t

[
(1, t)⊗d − (1, 0)⊗d

]
which is [0, 1, t, . . . , td−1] in the symmetric signature notation, i.e. it takes values 0 and 1 on inputs
of Hamming weight 0 and 1, respectively, and ti−1 on inputs of Hamming weight i, where 2≤ i≤
d. Meanwhile, the edge weight function is transformed to the binary EQUALITY (represented by

the identity matrix I2 =
[ 1 0
0 1

]
). Taking limit as t→ 0 we get the graph parameter pm.

5. Proof of main theorem
For now, we do not make any assumptions on the graph parameter f ; we will introduce more
assumptions as needed to prove the desired statements. When we speak of submonoids, subrings
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and subalgebras we require that the multiplicative identity coincide with that of the larger struc-
ture. When a subset with the induced operations forms a monoid, ring or algebra we will simply
say that it is respectively a monoid, ring or algebra in the larger structure. We allow zero algebras
and rings, in which 0= 1. Statements about such structures can be easily checked. A function of
arity zero is a scalar. We identify a (labelled) graph with its (labelled) graph isomorphism class.

5.1 Themonoid and algebra of graphs
For every finite set S⊆Z>0, we denote by US the graph with |S| nodes labelled by S and no edges.
Note that U∅ =K0 is the empty graph.

We put all k-labelled graphs into a single structure as follows. By a partially labelled graph
we mean a finite graph in which some of the nodes are labelled by distinct positive integers.
(All label sets are finite.) Two partially labelled graphs are isomorphic if there is an isomorphism
between them preserving all labels. For two partially labelled graphs G1 and G2, let G1G2 denote
the partially labelled graph obtained by taking the disjoint union of G1 and G2, and identifying
the nodes with the same label; the union of the label sets becomes the labels of G1G2. This way
we obtain a commutative monoid PLG consisting of all isomorphism classes of finite partially
labelled graphs with the empty graph U∅ being the identity.3 For every finite set S⊆Z>0, we call
a partially labelled graph S-labelled, if its labels form the set S. We call a partially labelled graph
⊆S -labelled, if its labels form a subset of S. We define PLG(S) and PLG⊆(S) to be the subsets
of PLG consisting of all isomorphism classes of S-labelled and ⊆S-labelled graphs, respectively.
Clearly PLG(S)⊆PLG⊆(S). Then both PLG(S) and PLG⊆(S) are commutative monoids in
PLG. PLG⊆(S) is a submonoid of PLG with the same identity U∅, while PLG(S) is a submonoid
of PLG iff S=∅, as the identity in PLG(S) is US.

Let G denote the monoid algebra FPLG consisting of all finite formal linear combinations in
PLG with coefficients from F; they are called (partially labelled, F-)quantum graphs. Restricting
the labels to precisely S or to subsets of S, we have FPLG(S) or FPLG⊆(S), the algebras of S-
labelled or⊆S-labelled quantum graphs, denoted by G(S) or G⊆(S), respectively. G(S) is an algebra
inside G with US being the multiplicative identity, and G⊆(S) is a subalgebra of G. The empty sum
is the additive identity in all.

Because many definitions, notations and statements for PLG(S), G(S) and PLG⊆(S), G⊆(S)
appear similar, we will often commingle them to minimize repetitions, e.g. we use G(⊆)(S) to
denote either G(S) or G⊆(S) (and the statements are asserted for both).

We can extend f to a linear map on G, and define an n-fold multilinear form, where n≥ 1,

〈x1, . . . , xn〉(n) = f (x1 · · · xn), for x1, . . . , xn ∈ G.
It is symmetric because G is commutative. Note that if we restrict each argument to G[k] and then
write it with respect to the basis PLG[k] of G[k], we get precisely the connection tensor (array)
T(f , k, n).

Let

K= {x ∈ G | ∀y ∈ G, f (xy)= 〈x, y〉 = 0}
be the annihilator of G. Clearly, K is an ideal in G, so we can form the quotient algebra Ĝ = G/K
which is commutative as well. We denote its identity by u∅ =U∅ +K. More generally, we let
uS =US +K for any finite subset S⊆Z>0. If x ∈K, then f (x)= f (xU∅)= 0 and so f can also be
considered as a linear map on Ĝ by f (x+K)= f (x) for x ∈ G. For a partially labelled graph G we
denote by Ĝ=G+K the corresponding element of Ĝ. More generally, we write x̂= x+K for any

3In [27], the word semigroup instead of monoid is used. A monoid is a semigroup with identity, and all semigroups in [27]
have or assume to have identity. Thus, our use of the term monoid is consistent with that of [27].
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x ∈ G. SinceK is an ideal in G, the form 〈·, . . . , ·〉(n) on G induces an n-fold multilinear symmetric
form on Ĝ, where n≥ 1,

〈x1, . . . , xn〉(n) = f (x1 · · · xn), for x1, . . . , xn ∈ Ĝ. (11)
We can also define

Ĝ(⊆)(S)= (G(⊆)(S)+K)/K= {x+K | x ∈ G(⊆)(S)+K} = {x+K | x ∈ G(⊆)(S)}.
It is easy to see that Ĝ⊆(S) is a subalgebra of Ĝ with the same identity u∅ =U∅ +K, and Ĝ(S) is an
algebra inside Ĝ with the identity uS =US +K.4

If S, T ⊆Z>0 are finite subsets, then PLG(⊆)(S) ·PLG(⊆)(T)⊆PLG(⊆)(S∪ T) so by linearity
we get G(⊆)(S) G(⊆)(T)⊆ G(⊆)(S∪ T) and so, going to the quotients, we have Ĝ(⊆)(S)Ĝ(⊆)(T)⊆
Ĝ(⊆)(S∪ T). Also note that for a finite S⊆Z>0, we have PLG(S)⊆PLG⊆(S) so by linearity
G(S)⊆ G⊆(S) and then by going to the quotients we obtain Ĝ(S)⊆ Ĝ⊆(S).

Since G(⊆)(S)∩K is an ideal in G(⊆)(S), we can also form another quotient algebra

G̃(⊆)(S)= G(⊆)(S)/(G(⊆)(S)K).

We have the following canonical isomorphisms between G̃(⊆)(S) and Ĝ(⊆)(S).
Claim 1. Let S⊆Z>0 be finite. Then G̃(⊆)(S)∼= Ĝ(⊆)(S) as algebras via x+ G(⊆)(S)∩K �→ x+
K, x ∈ G(⊆)(S).

Proof. It follows from the Second Isomorphism Theorem for algebraic structures (see [19]
p. 8). �

For finite S⊆Z>0, it is convenient to treat the algebras G̃(⊆)(S) and Ĝ(⊆)(S) as separate objects
despite this isomorphism in Claim 1. As it will be seen later, the algebras G̃(S) with S= [k],
where k≥ 0, are naturally associated with the kth connection tensors T(f , k, n), n≥ 0. Later we
will need to work with various finite S⊆Z>0 simultaneously and need an ambient algebra in
which dependencies between elements can be established. The algebras G̃(S) do not naturally pos-
sess this property as they are the quotients of the algebras G(S) which have no common element
except 0. However, the fact that Ĝ(S)⊆ Ĝ for any finite S⊆Z>0 will allow us to establish depen-
dencies between their elements. In other words, Ĝ will serve as the ambient algebra in which
further derivations will take place. Next, the ⊆-definitions will be needed to define a projection
π̂S : G→ G⊆(S) (see Claims 6 and 7). This projection will be used later in the proof.

We say that elements x, y ∈ G (or Ĝ) are orthogonal (with respect to f ), if f (xy)= 0 and denote it
by x⊥ y. For a subset A⊆ G (or Ĝ), denote by A⊥ = {x ∈ G (or Ĝ) | ∀y ∈A, x⊥ y} the set of those
elements in G (or Ĝ) orthogonal to all elements in A. Next, we say that subsets A, B⊆ G (or Ĝ)
are orthogonal (with respect to f ), if x⊥ y for all x ∈A and y ∈ B. Similarly, we can talk about an
element of G (or Ĝ) being orthogonal to a subset of G (or Ĝ) and vice versa. Note that the notion
of orthogonality is symmetric since all the multiplication operations considered are commutative.
From the definition, we have K= G⊥. Next, denote (commingling the notations KS and K⊆S)

K(⊆)S = {x ∈ G(⊆)(S) | ∀y ∈ G(⊆)(S), x⊥ y} = G(⊆)(S)∩ (G(⊆)(S))⊥.
Clearly, K(⊆)S is an ideal in G(⊆)(S), so we can form yet another quotient algebra G(⊆)(S)/K(⊆)S.

Next, we define an orthogonal projection from Ĝ to the subalgebra Ĝ⊆(S). We will show how to
do it in a series of lemmas. Let S⊆Z>0 be finite. For every partial labelled graph G, let GS denote

4In contrast to [27] we cannot in general normalize f to make all elements uS the same in the quotient algebra Ĝ, for various
finite S⊆Z>0. This is because in our more general setting, it is possible f (K1)= 0, in which case the normalization step from
[27] fails. For graph parameters expressible as a graph homomorphism function, this corresponds to the case when all vertex
weights sum to 0.
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the ⊆S-labelled graph obtained by deleting the labels not in S from the vertices of G (unlabeling
such vertices). Extending this map by linearity, we get a linear map πS : G→ G⊆(S). Note that
(πS)|G⊆(S) = id|G⊆(S). In particular, πS : G→ G⊆(S) is surjective.
Claim 2. Let S⊆Z>0 be finite. If x ∈ G and y ∈ G⊆(S), then

f (xy)= f (πS(x)y).

Proof. For every G1 ∈PLG and G2 ∈PLG⊆(S), the graphs G1G2 and πS(G1)G2 are isomor-
phic as unlabelled graphs. Hence f (G1G2)= f (πS(G1)G2) as f ignores labels. The claim follows by
linearity.

Claim 3. Let S⊆Z>0 be finite. If x ∈ G, then x− πS(x) ∈ (G⊆(S))⊥.
Proof. Fix any y ∈ G⊆(S). By Claim 5.1, f (xy)= f (πS(x)y) so f ((x− πS(x))y)= 0. Thus x−

πS(x) ∈ (G⊆(S))⊥.
So for any x ∈ G, we can write x= πS(x)+ (x− πS(x)) where πS(x) ∈ G⊆(S), and x− πS(x) ∈

(G⊆(S))⊥. This gives a decomposition G = G⊆(S)+ (G⊆(S))⊥. To get a direct sum decomposition,
we need to pass to the quotient algebra. But to do so properly we need some more properties.

Claim 4. Let S⊆Z>0 be finite. Then KS = G(S)∩K.

Proof. Clearly, G(S)∩K= G(S)∩ G⊥ ⊆ G(S)∩ (G(S))⊥ =KS, so we only need to prove the
reverse inclusion. Let x ∈KS = G(S)∩ (G(S))⊥. Take any y ∈ G. Then

f (xy) (1)= f (xπS(y))
(2)= f (xUSπS(y))

(3)= 0.

Here step (1) uses Claim 2 as x ∈ G(S)⊆ G⊆(S); (2) is true because x= xUS for x ∈ G(S); (3) is true
as πS(y) ∈ G⊆(S) so USπS(y) ∈ G(S), and as x ∈ (G(S))⊥. Then x ∈K so x ∈ G(S)∩K, implying
KS ⊆ G(S)∩K.

Claim 5. Let S⊆Z>0 be finite. Then K⊆S = G⊆(S)∩K.

Proof. Clearly, G⊆(S)∩K= G⊆(S)∩ G⊥ ⊆ G⊆(S)∩ (G⊆(S))⊥ =K⊆S, so we only need to prove
the reverse inclusion. Let x ∈K⊆S = G⊆(S)∩ (G⊆(S))⊥. Take any y ∈ G. Then

f (xy) (1)= f (xπS(y))
(2)= 0.

Here step (1) uses Claim 2; (2) is true as πS(y) ∈ G⊆(S) and x ∈ (G⊆(S))⊥. Then x ∈K so x ∈
G⊆(S)∩K, implying K⊆S ⊆ G⊆(S)∩K. �

It follows from Claims 4 and 5 that G(⊆)(S)/K(⊆)S = G(⊆)(S)/(G(⊆)(S)∩K)= G̃(⊆)(S) so the
(canonical) isomorphism of algebras from Claim 1 takes the following form:

G̃(⊆)(S)∼= Ĝ(⊆)(S), x+K(⊆)S �→ x+K, x ∈ G(⊆)(S). (12)

Claim 6. Let S⊆Z>0 be finite. For the linear map πS : G→ G⊆(S) we have πS(K)=K⊆S.
Proof. Because (πS)|G⊆(S) = id|G⊆(S) and, by Lemma 5,K⊆S = G⊆(S)∩K, we infer that πS(K)⊇

K⊆S. For the reverse inclusion, let x ∈K. Fix any y ∈ G⊆(S). Then by Claim 2, f (πS(x)y)= f (xy)=
0, the last equality is true because x ∈K. Hence πS(x) ∈K⊆S so that πS(K)⊆K⊆S. �

For the linear map πS : G→ G⊆(S)⊆ G by Lemmas 6 and 5, πS(K)=K⊆S = G⊆(S)∩K, so that
we have the well-defined linear map (which we denote by π̂S)

π̂S : Ĝ→ Ĝ⊆(S), π̂S(x+K)= πS(x)+K, x ∈ G. (13)

It is easy to see that (π̂S)|Ĝ⊆(S) = id|Ĝ⊆(S). In particular, π̂S : Ĝ→ Ĝ⊆(S) is surjective.
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Claim 7. Let S⊆Z>0 be finite. Then Ĝ = Ĝ⊆(S)⊕ (Ĝ⊆(S))⊥ via x= π̂S(x)+ (x− π̂S(x)), x ∈ Ĝ.
Proof. First, let x ∈ Ĝ.Write x= y+Kwhere y ∈ G. Then π̂S(x)= πS(y)+K andπS(y) ∈ G⊆(S).

We have x− π̂S(x)= y− πS(y)+K. By Claim 5.1, y− πS(y) ∈ (G⊆(S))⊥ so that x− π̂S(x) ∈
(Ĝ⊆(S))⊥, since the bilinear form on G extends to Ĝ in (11).

So we only need to show that Ĝ⊆(S)∩ (Ĝ⊆(S))⊥ = 0(= {K}). Let z belong to this intersection.
Write z= t+K= t′ +K where t ∈ G⊆(S) and t′ ∈ (G⊆(S))⊥. Then clearly t− t′ ∈K⊆ (G⊆(S))⊥,
and so t= (t− t′)+ t′ ∈ (G⊆(S))⊥. Thus t ∈ G⊆(S)∩ (G⊆(S))⊥ =K⊆S ⊆K, the last inclusion
holds by Claim 5. Therefore z= t+K=K, implying that Ĝ⊆(S)∩ (Ĝ⊆(S))⊥ = 0. �

Thus Claim 7 allows us to rightfully call π̂S : Ĝ→ Ĝ⊆(S) an orthogonal projection of Ĝ to Ĝ⊆(S).
If S, T ⊆Z>0 are finite subsets, then πS(PLG(⊆)(T))=PLG(⊆)(S∩ T), where the projec-

tion is surjective because the restriction (πS)|PLG(⊆)(S∩T) = id|PLG(⊆)(S∩T). So by linearity we get
πS(G(⊆)(T))= G(⊆)(S∩ T). Going to the quotients, we conclude that π̂S(Ĝ(⊆)(T))= Ĝ(⊆)(S∩ T).

Claim 8. Let n≥ 2 and S⊆Z>0 be finite. Then for any x ∈ G(⊆)(S), we have x ∈K(⊆)S iff
f (xx1 · · · xn−1)= 0 for all x1, . . . , xn−1 ∈ G(⊆)(S).

Proof. For⇒, it suffices to note that G(⊆)(S) is closed under multiplication (in G). To prove⇐,
note that n− 2≥ 0 and for any y ∈ G(⊆)(S), we have f (xy)= f (xyUn−2)= 0, where U =U∅ in the
G⊆(S) case and U =US in the G(S) case, so x ∈K(⊆)S.

The primary goal of the various Claims above is to define the projection π̂S : G→ G⊆(S) to be
used later and to prove Lemmas 5.1 and 5.2.

Lemma 5.1. Let S⊆Z>0 be finite. Then the annihilator of Ĝ(⊆)(S) in Ĝ(⊆)(S) is zero, i.e. if x ∈
Ĝ(⊆)(S) and f (xy)= 0 for every y ∈ Ĝ(⊆)(S), then x is the zero element of Ĝ(⊆)(S), namely K.

Proof. Let x ∈ Ĝ(⊆)(S) be an element satisfying the hypothesis of the lemma. Write x= h1 +K
where h1 ∈ G(⊆)(S). By hypothesis, for every y ∈ Ĝ(⊆)(S) we have f (xy)= 0. Let h2 ∈ G(⊆)(S) and
put y= h2 +K ∈ Ĝ(⊆)(S). Then xy= h1h2 +K. By the definition of f on Ĝ, f (h1h2)= f (xy)= 0.
Hence h1 ∈K(⊆)S ⊆K where the last inclusion is true by Claims 4 and 5. This implies that x is the
zero element of Ĝ(⊆)(S), which is K.

Lemma 5.2. Let k, r≥ 0 and n≥max (2, r). Suppose the connection tensor T(f, k, n) can be
expressed as

T(f , k, n)=
r∑

i=1
aix⊗ni ,

where ai �= 0 and xi ∈ F
PLG[k] are non-zero and pairwise linearly independent for 1≤ i≤ r. Then

for any h ∈ G[k], we have h ∈K[k] iff xi(h)= 0, 1≤ i≤ r.

Proof. The lemma is clearly true for r= 0. Let r≥ 1. By Claim 8, h ∈K[k] iff f (hh1 · · · hn−1)= 0
for all h1, . . . , hn−1 ∈ G[k]. In terms of T(f , k, n), this is equivalent to (T(f , k, n))(h, ·, . . . , ·)= 0
which is the same as

r∑
i=1

ai xi(h) x⊗(n−1)i = 0.

Now if xi(h)= 0, 1≤ i≤ r, then this equality clearly holds. Conversely, if this equality holds, then
by Lemma A.5, aixi(h)= 0 but ai �= 0 so xi(h)= 0, 1≤ i≤ r.

We will also need the following lemma that classifies all subalgebras of Fm for m≥ 0. A proof
is given in Subsection A.3. Recall that we allow zero algebras and require any subalgebra of an
algebra to share the multiplicative identity.
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Lemma 5.3. All subalgebras of Fm, where m≥ 0, are of the following form: For some partition
[m]=⊔s

i=1 Ii, where s≥ 0, and Ii �= ∅ for i ∈ [s], the subalgebra has equal values on each Ii,

F
(I1,...,Is) = {(c1, . . . , cm) ∈ F

m | ∀i ∈ [s], ∀j, j′ ∈ Ii, cj = cj′ }.

5.2 Building an algebra isomorphism
In this part of the proof regarding f , for an arbitrary fixed k≥ 0, we assume that there exists
n= nk ≥ 2 such that rkST(f , k, n)≤ n− 1.We will pick an arbitrary such n and call it nk, and then
write rk = rkST(f , k, nk). (Note that this is weaker than the uniform exponential boundedness in
k for rkST(f , k, n) in Theorem 3.2, nor do we require f (K0)= 1 here.)

Then, for n= nk, we can write

T(f , k, n)=
rk∑
i=1

ak,n,ix⊗nk,n,i. (14)

Then ak,n,i �= 0 and 0 �= xk,n,i ∈ F
PLG[k] are pairwise linearly independent for 1≤ i≤ rk.

Define the linear map

k,n : G[k]→ F
rk , k,n(h)= (xk,n,i(h))i=1,...,rk , h ∈ G[k]. (15)

We show thatk,n : G[k]→ F
rk is a surjective algebra homomorphism, after a normalization step

(to be carried out later). Clearly, as n≥ 2,

h1 · h2 · h3 · · · hn = (h1h2) ·Uk · h3 · · · hn
so

f (h1 · h2 · h3 · · · hn)= f ((h1h2) ·Uk · h3 · · · hn)
for all h1, . . . , hn ∈ G[k]. (When n= 2 this is f (h1h2)= f ((h1h2)Uk).) Therefore

(T(f , k, n))(h1, h2, ·, . . . , ·)= (T(f , k, n))(h1h2,Uk, ·, . . . , ·)
for all h1, h2 ∈ G[k]. In terms of the decomposition in (14), this is equivalent to

rk∑
i=1

ak,n,i xk,n,i(h1) xk,n,i(h2) x⊗(n−2)k,n,i =
rk∑
i=1

ak,n,i xk,n,i(h1h2) xk,n,i(Uk) x⊗(n−2)k,n,i .

It follows that
rk∑
i=1

ak,n,i
(
xk,n,i(h1) xk,n,i(h2)− xk,n,i(h1h2) xk,n,i(Uk)

)
x⊗(n−2)k,i = 0

for any h1, h2 ∈ G[k]. The condition rk ≤ n− 1 allows us to apply Lemma A.5. Since ak,n,i �= 0 for
1≤ i≤ rk, we obtain that

xk,n,i(h1) xk,n,i(h2)= xk,n,i(h1h2) xk,n,i(Uk), h1, h2 ∈ G[k], 1≤ i≤ rk. (16)

Let 1≤ i≤ rk. Since xk,n,i �= 0, there exists h ∈ G[k] such that xk,n,i(h) �= 0. Substituting h1 = h2 = h
into (16), we infer that xk,n,i(Uk) �= 0, 1≤ i≤ rk.

Therefore we can assume in (14) that each xk,n,i is normalized so that xk,n,i(Uk)= 1 (1≤ i≤ rk).
Combined with this, condition (16) becomes for 1≤ i≤ rk,{

xk,n,i(h1h2) = xk,n,i(h1) xk,n,i(h2), h1, h2 ∈ G[k];
xk,n,i(Uk) = 1;

(17)
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so the linear functions xk,n,i : G[k]→ F, 1≤ i≤ rk are algebra homomorphisms. Then we have

k,n(gh)= (xk,n,1(gh), . . . , xk,n,rk(gh))= (xk,n,1(g) xk,n,1(h), . . . , xk,n,rk(g) xk,n,rk(h))

= (xk,n,1(g), . . . , xk,n,rk(g)) · (xk,n,1(h), . . . , xk,n,rk(h))=k,n(g)k,n(h).

So we have

k,n(gh)=k,n(g)k,n(h), g, h ∈ G[k],
k,n(Uk)= (xk,n,1(Uk) . . . , xk,n,rk(Uk))= (1, . . . , 1)︸ ︷︷ ︸

rk times

∈ F
rk ,

and therefore k,n : G[k]→ F
rk is an algebra homomorphism. We now prove its surjectivity.

Clearly, im(k,n) is a subalgebra of Frk . By Lemma 5.3, we may assume that im(k,n) has the
form F

(I1,...,Is) for some partition {I1, . . . , Is} of [rk]. The pairwise linear independence of xk,n,i
for 1≤ i≤ rk implies that for any 1≤ i1 < i2 ≤ rk, we have xk,n,i1 �= xk,n,i2 , so there exists h ∈ G[k]
such that xk,n,i1 (h) �= xk,n,i2 (h). Since each Ii �= ∅, it follows that |Ii| = 1 for 1≤ i≤ s. Hence
im(k,n)= F

({1},...,{rk}) = F
rk . We have shown thatk,n : G[k]→ F

rk is surjective.
This results in the following lemma.

Lemma 5.4. Let k≥ 0. The constructed mapk,n : G[k]→ F
rk defined in (15) is a surjective algebra

homomorphism, after the normalization to set xk,n,i(Uk)= 1 for 1≤ i≤ rk.

Next, by rk ≤ n− 1 and n≥ 2, clearly n≥max (2, rk), so Lemma 5.2 applies. So we have

kerk,n = {h ∈ G[k] | xk,n,i(h)= 0, 1≤ i≤ rk} =K[k],

where the first equality is by the definition of k,n, and the second equality is by Lemma
5.2. Note that by Claim 4, we have K[k] = G[k]∩K. Then k,n : G[k]→ F

rk factors through
G[k]/ kerk,n = G[k]/K[k] = G̃[k], inducing an algebra isomorphism

̃k,n : G̃[k]→ F
rk , ̃k,n(h+K[k])= (xk,n,1(h), . . . , xk,n,rk(h)), h ∈ G[k].

It follows that dim G̃[k]= dim F
rk = rk. In particular, G̃[k] is a finite dimensional algebra.

Applying LemmaA.3, we get dim G̃[k]= dim span{xk,n,i}rki=1. Then dim span{xk,n,i}rki=1 = rk imply-
ing that xk,n,i, 1≤ i≤ rk, are linearly independent. (Note that we started off only assuming they are
non-zero and pairwise linearly independent.) We formalize some of the results obtained above.

Lemma 5.5. Let k≥ 0. Assume there exists n= nk ≥ 2 such that rk = rkST(f , k, nk)≤ nk − 1. Then
the constructed map

̃k,n : G̃[k]→ F
rk , ̃k(h+K[k])= (xk,n,1(h), . . . , xk,n,rk(h)), h ∈ G̃[k]

is an algebra isomorphism and dim G̃[k]= rk.

Composing ̃k : G̃[k]→ F
rk with the canonical algebra isomorphism between G̃[k] and Ĝ[k]

given in (12), we have an algebra isomorphism ̂k : Ĝ[k]→ F
rk . In particular, dim Ĝ[k]=

dim G̃[k]= rk.

Corollary 5.6. With the same assumption as in Lemma 5.5, the map

̂k,n : Ĝ[k]→ F
rk , ̂k,n(h+K)= (xk,n,1(h), . . . , xk,n,rk(h)), h ∈ Ĝ[k]

is an algebra isomorphism and dim Ĝ[k]= rk.
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Note that if S⊆Z>0 is finite and |S| = k, there are natural isomorphisms between G̃(S) and
G̃[k] and also between Ĝ(S) and Ĝ[k], both resulting from any bijective map between S and [k]. As
a result, we conclude the following.

Corollary 5.7. Let k≥ 0 and S⊆Z>0 with |S| = k. Suppose there exists some n= nk ≥ 2 so that
rkST(f , k, n)≤ n− 1. Let rk = rkST(f , k, n). Then G̃(S)∼= Ĝ(S)∼= F

rk and dim G̃(S)= dim Ĝ(S)=
rk. In particular, the value rk is independent of the choice of n.

5.3 One n implies for all n
Let nk retain the same meaning as in Lemma 5.5, and let r= rk = rkS(T(f , k, nk)). For any h ∈
G[k], clearly h= hUnk−1

k so f (h)= f (hUnk−1
k ). As xk,nk,i(Uk)= 1, 1≤ i≤ r,

f (h)= f (hUnk−1
k )= (T(f , k, nk))(h,Uk, . . . ,Uk)=

r∑
i=1

ak,nk,i(xk,nk,i(Uk))nk−1xk,nk,i(h)

=
r∑

i=1
ak,nk,ixk,nk,i(h)

for any h ∈ G[k]. Hence f|G[k] =
∑r

i=1 ak,nk,ixk,nk,i, i.e. f|G[k] is a linear combination of r algebra
homomorphisms xk,nk,i : G[k]→ F, for 1≤ i≤ r. In particular, applying to the product h1 · · · hm,
for anym≥ 0 and any h1, . . . , hm ∈ G[k] (note that thism is arbitrary, not constrained by nk),

f (h1 · · · hm)=
r∑

i=1
ak,nk,ixk,nk,i(h1 · · · hm)=

r∑
i=1

ak,nk,ixk,nk,i(h1) · · · xk,nk,i(hm).

(Whenm= 0, we view it as f (Uk)=
∑r

i=1 ak,nk,ixk,nk,i(Uk)=
∑r

i=1 ak,nk,i.) Hence

T(f , k,m)=
r∑

i=1
ak,nk,ix

⊗m
k,nk,i

(18)

for all m≥ 0. (When m= 0, (18) is still valid as T(f , k, 0)= f (Uk)=
∑r

i=1 ak,nk,i =∑r
i=1 ak,nk,ix

⊗0
k,nk,i

where the last equality is true as x⊗0k,nk,i
= 1.)

As shown before, xk,nk,i where 1≤ i≤ r are linearly independent. Then by Lemma A.4 applied
to (18), where the parameter m in the tensor power is at least 2, we get rkS(T(f , k,m))= r for all
m≥ 2; and the decomposition (18) is actually unique up to a permutation form≥ 3.

To summarize, this leads to the following.

Theorem 5.1. Let k≥ 0. Assume that for some n= nk ≥ 2, rkST(f , k, n)= r≤ n− 1. Then the
following hold:

(1). rkST(f , k, n)= r for every n≥ 2.
(2). There exist r linearly independent algebra homomorphisms xi : G[k]→ F, and a1, . . . , ar ∈

F \ {0} such that f|G[k] =
∑r

i=1 aixi; also for every n≥ 0,

T(f , k, n)=
r∑

i=1
aix⊗ni . (19)

Moreover, for any n≥ 3, any expression of T(f, k, n) as
∑r

i=1 biy
⊗n
i , where yi : G[k]→ F are

linear maps, is a permutation of the sum in (19).

We remark that this is a non-trivial statement: The existence of some nk has produced a
uniform expression for the tensors T(f , k, n) all the way down to n= 0.
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5.4 Putting things together
From now on, we assume that for every k≥ 0, there exist some n= nk ≥ 2 such that
rkST(f , k, n)≤ n− 1. For every k≥ 0, we pick an arbitrary such n, call it nk, and let rk =
rkST(f , k, nk).

Having developed the theory in a more general setting, we can now follow the proof in [27]
closely. As mentioned before, developing this theory in a more general setting is necessary because
f (K1)= 0 is possible which makes the normalization step from [27] infeasible. Now the main
difference from [27] starting from this point is that many of our derivations will additionally
contain units of the form uS for various finite S⊆Z>0 because we cannot ensure that uS = u∅. We
will be interested in the idempotent elements of Ĝ. For two elements p, q ∈ Ĝ, we say that q resolves
p, if pq= q. We also say equivalently p is resolved by q. It is clear that the binary relation resolves
is antisymmetric and transitive and, when restricted to idempotents, reflexive. Furthermore, it is
easy to see that the binary relation resolves on Ĝ has the following properties:

1. The idempotent 0=K resolves everything and 1= u∅ =U∅ +K=K0 +K is resolved by
everything.

2. If ab= 0 and c resolves both a and b, then c= 0.
3. If a resolves b, then c resolves a iff c resolves a b.

In the algebra F
r (r≥ 0), the idempotents are 0-1 tuples in F

r , and for idempotents q=
(q1, . . . , qr) and p= (p1, . . . , pr), q resolves p iff qi = 1 implies pi = 1.

Let S be a finite subset of Z>0 with |S| = k, and set r= rk as above. By Corollary 5.7, Ĝ(S)∼= F
r

as algebras, so Ĝ(S) has a (uniquely determined idempotent) basis PS = {pS1, . . . , pSr } such that
(pSi )2 = pSi and pSi p

S
j = 0 for i �= j. These correspond to the canonical basis {ei}1≤i≤r of Fr under

this isomorphism. For i �= j, we have 〈pSi , pSj 〉 = f (pSi p
S
j )= 0. Furthermore, for all 1≤ i≤ r,

f (pSi )= f ((pSi )
2)= 〈pSi , pSi 〉 �= 0, (20)

otherwise Ĝ(S) contains a non-zero element orthogonal to Ĝ(S) with respect to the bilinear form
〈·, ·〉 restricted to Ĝ(S)× Ĝ(S), contradicting Lemma 5.1. We will call the elements pSi ∈PS basic
idempotents.

We denote by PT,p the set of all idempotents in PT that resolve a given element p ∈ Ĝ. If p ∈PS
and S⊂ T and |T| = |S| + 1, then the number of elements in PT,p will be called the degree of
p ∈PS, and denoted by deg (p). Obviously, this value is independent of which (|S| + 1)-element
superset T of S we take.

For any q ∈ Ĝ(T), we have quT\S = q. (Here by definition, uT\S =UT\S +K ∈ Ĝ(T \ S)⊆
Ĝ(T)⊆ Ĝ.) It follows that for any S⊆ T and p ∈ Ĝ, we have q resolves p iff q resolves puT\S, since
qp= quT\Sp= qpuT\S. It is also important to point out that an element in Ĝ(S) is an idempotent
in Ĝ(S) iff it is an idempotent in Ĝ.
Claim 9. Let x be any idempotent element of Ĝ(S). Then x is the sum of exactly those idempotents
in PS that resolve it,

x=
∑

p∈PS,x

p.

Proof. Let k= |S|, and r= rk. By the isomorphism Ĝ(S)∼= F
r , every 0-1 tuple x= (x1, . . . , xr) ∈

F
r is the sum

∑r
i=1 xiei.
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In particular

uS =
∑
p∈PS

p, (21)

since uS ∈ Ĝ(S) corresponds to the all-1 tuple in F
r .

Claim 10. Let S⊆ T be two finite sets. Then every q ∈PT resolves exactly one element of PS.

Proof. Let k′ = |T| and r′ = rk′ . Consider the idempotents puT\S (which could be 0) under the
isomorphism Ĝ(T)∼= F

r′ , where p ∈PS. We can write the 0-1 tuple corresponding to puT\S in F
r′

as the sum of those canonical basis 0-1 vectors. Recall that for any q ∈PT , q resolves p iff q resolves
puT\S. Note that puT\S must have disjoint positions with entry 1 for distinct p ∈PS, and the sum∑

p∈PS puT\S = uSuT\S = uT is the all-1 tuple in Fr′ . Thus each q ∈PT resolves exactly one p ∈PS.

Claim 11. Let T and U be finite sets, and let S= T ∩U. If x ∈ Ĝ(T) and y ∈ Ĝ(U), then
f (xy)= f (π̂S(x)y).

Proof. For every T-labelled graph G1 and U-labelled graph G2, the graphs G1G2 and πS(G1)G2
are isomorphic as unlabelled graphs. Hence f (G1G2)= f (πS(G1)G2) as f ignores labels. Then we
extend the equality from PLG by linearity to G and after that proceed to the quotient Ĝ = G/K
using the definition of f on Ĝ.

We remarked in (20) that f (p) �= 0 for any p ∈PS.

Claim 12. Let S⊆ T be two finite sets. If q ∈PT resolves p ∈PS, then

π̂S(q)= f (q)
f (p)

p.

Proof. Note that q ∈ Ĝ(T). Since S⊆ T, it follows that π̂S(q) ∈ Ĝ(S). Because the only element
from Ĝ(S) orthogonal to Ĝ(S) with respect to the dot product 〈·, ·〉 restricted to Ĝ(S)× Ĝ(S) is 0 (by
Lemma 5.1), it suffices to show that both sides give the same dot product with every basis element
in PS. For any p′ ∈PS \ {p}, we have p′p= 0 so p′q= p′pq= 0. By Claim 11, this implies that

〈p′, π̂S(q)〉 = f (p′π̂S(q))= f (p′q)= 0=
〈
p′, f (q)

f (p)
p
〉
.

Furthermore,

〈p, π̂S(q)〉 = f (pπ̂S(q))= f (pq)= f (q)=
〈
p,

f (q)
f (p)

p
〉
.

This proves the claim. �

Claim 13. Let T andU be finite sets and let S= T ∩U. Then for any p ∈PS, q ∈PT,p and r ∈ Ĝ(U)
we have

f (qr)= f (q)
f (p)

f (rp).

Proof. By Claims 11 and 12,

f (qr)= f (π̂S(q)r)= f (q)
f (p)

f (rp).

�
Claim 14. Let T andU be finite sets and let S= T ∩U. If both q ∈PT , r ∈PU resolve p ∈PS, then
qr �= 0.
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Proof. By Claim 13,

f (qr)= f (q)
f (p)

f (rp)= f (q)
f (p)

f (r) �= 0.

Claim 15. If S⊆ T, and q ∈PT resolves p ∈PS, then deg (q)≥ deg (p).

Proof. It suffices to show this in the case when |T| = |S| + 1. Let U ⊂Z>0 be any (|S| + 1)-
element superset of S different from T; suppose this is the disjoint union U = S  {a}, a /∈ T. Let
Y be the set of elements in PU resolving pu{a} (equivalently, resolving p, because every r ∈PU
resolves u{a} as a ∈U). Then pu{a} =∑r∈Y r by Claim 9. Here |Y| = deg (p). Furthermore, we
have ∑

r∈Y
qr= q

∑
r∈Y

r= qpu{a} = qu{a}. (22)

Each term q r on the left hand side is non-zero by Claim 14, and since the terms are all idempotent,
each of them is a sum of one or more elements of PT∪U . Furthermore, if r, r′ ∈ Y (r �= r′), then we
have the orthogonality relation

(qr)(qr′)= q(rr′)= 0,
so the sets of basic idempotents of PT∪U in the expansion of each term are pairwise disjoint.
Therefore the expansion

∑
r∈Y qr in PT∪U contains at least |Y| = deg (p) terms. On the right

hand side of (22), for any z ∈PT∪U , z resolves q iff z resolves qu{a} since a ∈U. Thus the number of
terms in the expansion of qu{a} in the basisPT∪U is precisely deg (q) by definition. Thus, deg (q)≥
|Y| = deg (p). The claim is proved. �

5.5 Bounding the expansion
At this point, we finally assume that all the conditions of Theorem 3.3 are satisfied, i.e. f (K0)= 1
and there is an integer q≥ 0 such that for every k≥ 0 there exists n= nk ≥ 2 satisfying rk,n =
rkST(f , k, n)≤min (n− 1, qk). In particular r0,n ≤ q0 = 1 for n= n0 ≥ 2. Clearly, r0,n �= 0 since
f (K0)= 1 so r0,n = 1. By Proposition 3.1, f is multiplicative.

Next, from f (K0)= 1, we have U∅ =K0 /∈K so that u∅ =U∅ +K is a non-zero identity in
Ĝ(∅)= Ĝ[0] �= 0. As u∅ is the sum of all basic idempotents in G(∅) we infer that P∅ �= 0. Hence
there is at least one basic idempotent.

If for any finite S⊆Z>0, a basic idempotent p ∈PS has degree D≥ 0, then for any superset
T ⊆Z>0 of S with |T| = |S| + 1, there are D basic idempotents resolving p. Let S⊆ T, t= |T \ S|
and T \ S= {u1, u2, . . . , ut}. For each 1≤ i≤ t, we can pick D basic idempotents quij ∈PS∪{ui}
resolving p, where 1≤ j≤D. For any mapping φ : {1, . . . , t}→ {1, . . . ,D}, we can form the prod-
uct qφ =∏t

i=1 q
ui
φ(i). If t= 0, we assume qφ = p. These are clearly idempotents resolving p. If

φ �= φ′ then for some i, we have the orthogonality relation qui
φ(i)q

ui
φ′(i) = 0. Thus qφqφ′ = 0. Also

by applying Claim 13 t times,

f (qφ)= f (qφp)= f

( t∏
i=1

qui
φ(i)p

)
=
( t∏
i=1

f (qui
φ(v))

f (p)

)
f (p) �= 0, (23)

and so qφ �= 0. Thus the set {qφ | φ : {1, . . . , t}→ {1, . . . ,D}} is linearly independent. This implies
that the dimension of Ĝ(T) over F is at leastDt =D|T|−|S|. But by Corollary 5.7 and the hypothesis
of Theorem 3.3 we also have the upper bound q|T|. If D> q, this leads to a contradiction if |T| is
large. It follows that D≤ q, i.e. the degrees of basic idempotents for any S and any p ∈PS are
bounded by q. Let D≥ 0 denote the maximum degree over all such S and p ∈PS, and suppose it is
attained at some particular S and p ∈PS. We now fix this S and p. Note that for the existence of D
we also use the existence of a basic idempotent.
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For u ∈Z>0 \ S, let qu1 , . . . , quD denote the elements of PS∪{u} resolving p. Note that for u, v ∈
Z>0 \ S, there is a natural isomorphism between Ĝ(S∪ {u}) and Ĝ(S∪ {v}) (induced by the map
that fixes S pointwise and maps u to v), and we may choose the indexing so that qui corresponds to
qvi under this isomorphism.

Now for any finite set T ⊇ S all basic idempotents in PT that resolve p can be described. To
describe these, let V = T \ S, and for every map φ : V→{1, . . . ,D}, we define as before

qφ =
∏
v∈V

qvφ(v). (24)

We have shown that these are linearly independent.

Claim 16.
PT,p = {qφ : φ ∈ {1, . . . ,D}V}.

Proof. We prove this by induction on the cardinality of V = T \ S. For |V| = 0, 1 the assertion
is trivial. Suppose that |V|> 1. Pick any u ∈V , let U = S∪ {u} andW = T \ {u}; thus U ∩W = S.
By the induction hypothesis, the basic idempotents in PW resolving p are elements of the form
qψ , for ψ ∈ {1, . . . ,D}W .

Let r be one of these. By Claim 14, rqui �= 0 for any 1≤ i≤D, and clearly resolves r. We can
write rqui as a sum of basic idempotents in PT resolving it, and it is easy to see that these also
resolve r (as resolve is transitive). For each rqui the sum is non-empty as rqui �= 0. Furthermore,
the sets of basic idempotents occurring in the expressions for rqui and rquj (i �= j) are disjoint; this
follows from item 5.4 stated at the beginning of this subsection, and qui q

u
j = 0. If the sum for any

rqui has more than one basic idempotent, then r would have degree>D, violating the maximality
of D. So each rqui must be a basic idempotent in PT itself.

Each r ∈PW resolves p iff r resolves puW . Hence puW =∑r∈PW,p r. Also pu{u} =∑D
i=1 qui .

Therefore we have
puT = puWpu{u} =

∑
r∈PW,p,1≤i≤D

rqui ,

i.e. the basic idempotents rqui (r ∈PW,p, 1≤ i≤D) form the set of basic idempotents inPT resolv-
ing puT , which is equivalent to resolving p. It follows that these are all the elements of PT,p. This
proves the claim. �

It is immediate from the definition that an idempotent qφ resolves qvi uV (equivalently qvi ) iff
φ(v)= i. Hence it also follows that

qvi uV =
∑

φ : φ(v)=i
qφ .

By the same reason, it also follows that for u, v ∈V , u �= v, and any 1≤ i, j≤D,

qui q
v
j uV =

∑
φ : φ(u)=i
φ(v)=j

qφ . (25)

5.6 Constructing the target graph
Nowwe can defineH as follows. Let S and p be fixed as above. For any u ∈Z>0 \ S, let {qu1 , . . . , quD}
be defined as in subsection 5.5.

LetH be the looped complete graph onV(H)= {1, . . . ,D}. We have to define the node weights
and edge weights. For every i ∈V(H), let

αi = f (qui )
f (p)
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be the weight of node i.5 This definition does not depend on the choice of u, because if v ∈Z>0 \ S
and v �= u, then the isomorphism from Ĝ(S∪ {u}) to Ĝ(S∪ {v}) (induced by the map that fixes S
and maps u to v), will send qui to q

v
i .

Let u, v ∈Z>0 \ S, u �= v, and let W = S∪ {u, v}. Let Kuv denote the graph on the vertices u
and v that are correspondingly labelled u and v, and has only one edge connecting u and v. Let
kuv =Kuv +K denote the corresponding element of Ĝ({u, v}). We can express pkuv as a linear
combination of the basic idempotents from PW . Note that r ∈PW resolves p iff r resolves pu{u,v},
thus pu{u,v} =∑r∈PW,p r. So if r

′ ∈PW \PW,p, we have r′p= r′u{u,v}p= 0. Thus r′pkuv = 0. It fol-
lows that pkuv is a linear combination of the basic idempotents from the subset PW,p. We write
this unique expression

pkuv =
D∑

i,j=1
βijqui q

v
j .

This defines (by the uniqueness) the weight βij of the edge i j. Note that βij = βji for all i, j, since
pkuv = pkvu.

We prove that this weighted graph H gives the desired homomorphism function.

Claim 17. For every finite graph G, f (G)= hom (G,H).

Proof. Let V be a finite subset of Z>0 disjoint from S of cardinality |V(G)|. We label V(G) by
V thus making G a V-labelled graph, so now G ∈ G(V). Since f ignores labels, we may identify V
and V(G), and assume V(G)=V . Now we take T = S V , thus V = T \ S. This defines qφ as in
subsection 5.5. By (25), we have for each pair u, v of distinct elements of V(G),

pkuvuV =
∑

i,j∈V(H)
βijqui q

v
j uV =

∑
i,j∈V(H)

βi,j
∑

φ : φ(u)=i
φ(v)=j

qφ =
∑

φ∈V(H)V
βφ(u),φ(v)qφ .

Here to define the set of mappings φ we take T = S V , thus V = T \ S. Then the last equality
follows from the fact that

{φ : V→V(H)} =
⊔

i,j∈V(H)
{φ ∈V(H)V : φ(u)= i, φ(v)= j}

is a partition. Let g =G+K be the corresponding element of G in Ĝ(V). Clearly G=
(
∏

uv∈E(G) Ku,v)UV so g = (
∏

uv∈E(G) kuv)uV . (When E(G)=∅, we view it as G=UV so g = uV .)
We have f (G)= f (g) by the definition of f on Ĝ. Also note that guV = g so g = gu|E(G)|V . Also, p is
an idempotent so p= p|E(G)|+1. Then

pg = p|E(G)|+1gu|E(G)|V = p

⎛⎝ ∏
uv∈E(G)

pkuvuV

⎞⎠ uV = p

⎛⎝ ∏
uv∈E(G)

⎛⎝ ∑
φ∈V(H)V

βφ(u),φ(v)qφ

⎞⎠⎞⎠ uV .

(When E(G)=∅, this is simply pg = puV .) Note that when we expand the product of sum as a
sum of products, for any two edges uv ∈ E(G) and u′v′ ∈ E(G), if the mappings φ and φ′ ∈V(H)V
(in the respective sums) disagree on any vertex of V =V(G), the product qφqφ′ = 0. This implies
that in the sum-of-products expression we only sum over all φ ∈V(H)V (and not over the |E(G)|-
tuples of these). Also qφ resolves p, so pqφ = qφ . Moreover, each qφ ∈ Ĝ(S∪V) so qφuV = qφ . This

5For F=R, if we require the positive semidefiniteness of the connection matricesM(f , k) for k≥ 0, then since p and qui are
basic idempotents, f (p)= f (p2)> 0 and similarly f (qui )> 0. Thus αi > 0, and so we recover the positive vertex weight case;
see [27].
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implies that

pg =
⎛⎝ ∑
φ : V→V(H)

⎛⎝ ∏
uv∈E(G)

βφ(u),φ(v)

⎞⎠ qφ

⎞⎠ uV =
∑

φ : V→V(H)

⎛⎝ ∏
uv∈E(G)

βφ(u),φ(v)

⎞⎠ qφ .

(When E(G)=∅, we view it as pg = puV =∑φ : V→V(H) qφ =
∑
φ : V→V(H) (

∏
uv∈E(G)

βφ(u),φ(v))qφ which is true by Claims 9 and 16 with T = S∪V and the fact that an element
h ∈ Ĝ(S∪V) resolves p iff h resolves puV .) Note that p ∈ Ĝ(S) and has a representative in
G(S) as a linear combination of labelled graphs from PLG(S), g ∈ Ĝ(V) has the representative
G ∈PLG(V)⊆ G(V), and S∩V =∅. Hence f (p)f (g)= f (pg), as f is multiplicative, f ignores
labels and also by the definition of f on Ĝ. Therefore by (23) and (24),

f (p)f (G)= f (p)f (g)= f (pg)=
∑

φ : V→V(H)

⎛⎝ ∏
uv∈E(G)

βφ(u),φ(v)

⎞⎠ f (qφ)

=
∑

φ : V→V(H)

⎛⎝ ∏
uv∈E(G)

βφ(u),φ(v)

⎞⎠⎛⎝ ∏
v∈V(G)

αφ(v)

⎞⎠ f (p),

Since f (p) �= 0, we can cancel it on both sides, and complete the proof. �
Remark 5.1. Note that ifD= 0, then from the proof we get thatH is the empty graph, so f (G)= 0
unless G=K0 (the empty graph) and f (K0)= 1. After that, we trivially get Ĝ(T)= 0 for any T �= ∅
and Ĝ(∅)∼= F as algebras. However, p ∈PS so it follows that S=∅. Therefore by the previous
isomorphism P∅ = {p} so p is the only basic idempotent in Ĝ(∅) and so in the entire Ĝ.

6. Extensions
So far we have allowed G to have multiple edges but no loops as is the standard definition. We
can extend the results in this paper to more general graphs. If we allow (multiple) loops in G, we
can show that the (multiplicative) graph parameter f (G)= a#loops(G) where 1 �= a ∈ F (a can be
0) cannot be expressed as a GH function, even though its connection tensors T(f , k, n) all have
symmetric rank 1 and f (K0)= 1. To get the corresponding representation theorem for graphs with
(multiple) loops, in the target graph H each loop e attached to a vertex i must have two weights:
βii which is used when a nonloop edge of G is mapped onto e, and the other, say γi, when a loop
of G is mapped onto e. In this extended model we have the following:

• The main expressibility results Theorems 3.1, 3.2 and 3.3 remain true with the proof from
Section 5 carrying over to this model with slight adjustments.

• The GH inexpressibility results from Section 4 remain true as the provided proofs involve
only simple loopless graphs. (For #VERTEX-DISJOINT-CYCLE-COVER (vdcc), a loop at a
vertex is considered a cycle cover of that vertex; this is consistent with the definition in
Holant problems.)

• The results from Subsection 4.4 on bounded degree graphs remain true in the sense that
the inexpressibility results hold if we allow γi to be arbitrary (again, since only simple loop-
less graphs were used in the proof), while the expressibility holds even with the stronger
requirement γi = βii.

Analogously, a GH expressibility criterion can be stated and proved within the framework of
directed GH with minor adjustments, too. We note that generalizations of results in [27] were
given in [40] to amore general model which captures directed graphs, hypergraphs, etc.We expect
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that it is possible to generalize the GH expressibility criterion in this paper for arbitrary fields to
this more general model in a similar way as done in [40].

A. Appendix
A.1 Multilinear algebra
We prove some statements we need about tensors. We assume that the reader is familiar with
the definition of a multilinear function, tensor product and dual space. It is good to start
with coordinate-free definitions because it allows a succinct notation. But we will mostly use
coordinates. The results are concrete, and they can be understood without too much formalism.

Unless stated otherwise, we do not impose a particular order on the rows and columns of matri-
ces, or coordinates of tensors. The vector spaces may be infinite dimensional; and this infinite
dimensionality is a main technical point that causes some complications.

The tensor product of vector spacesV1, . . . ,Vn overF is denoted byV1 ⊗ · · · ⊗Vn or
⊗n

i=1 Vi.
Elements of

⊗n
i=1 Vi are called order-n tensors. When Vi =V for 1≤ i≤ n, we denote the tensor

product by V⊗n. (By convention V⊗0 = F, and v⊗0 = 1 ∈ F.) Define a group action by Sn on V⊗n
induced by σ (⊗n

i=1 vi)=⊗n
i=1vσ (i). Recall that V⊗n consists of finite linear combinations of such

terms. We call a tensor A ∈V⊗n symmetric if σ (A)=A for all σ ∈ Sn, and denote by Symn(V)
the set of symmetric tensors in V⊗n. As Fmay have finite characteristic p, the usual symmetrizing
operator from V⊗n to Symn(V), which requires division by n!, is in general not defined.

Multilinear functions on
∏n

i=1 Vi can be naturally identified with the dual space (
⊗n

i=1 Vi)∗ of
linear functions on

⊗n
i=1 Vi, induced by f �→ f ′, satisfying f ′(⊗n

i=1 vi)= f (v1, . . . , vn). Moreover,⊗n
i=1 V∗i canonically embeds into (

⊗n
i=1 Vi)∗ via (⊗n

i=1 fi)(⊗n
i=1 vi)=

∏n
i=1 fi(vi). A special case

is that (V∗)⊗n embeds into (V⊗n)∗. If all Vi’s are finite dimensional then this embedding is an
isomorphism. However, if Vi are infinite dimensional, this embedding is not surjective. To see
this, considerV⊗2 whereV is the linear span of {ei | i ∈Z>0}, where ei is the 0-1 vector indexed by
Z>0 with a single 1 at the ith position. Let f ∈ (V⊗2)∗ be such that f (ei ⊗ ej)= δij, which is 1 if i= j
and 0 otherwise. Then there is no tensor T ∈ (V∗)⊗2 that embeds as f . Indeed, any T ∈ (V∗)⊗2
is, by definition, a finite sum T =∑1≤k<n ckfk ⊗ gk. If T were to embed as f , then consider the
n× nmatrix where the (i, j) entry is f (ei ⊗ ej), which is the identity matrix In of rank n. However
T(ei ⊗ ej)=∑1≤k<n ckfk(ei) · gk(ej), and so the matrix for the embedded T has rank < n, being a
sum of n− 1 matrices of rank ≤ 1.

Let Ai : Vi→Ui (1≤ i≤ n) be linear maps of vector spaces. They induce a homomorphism
(
⊗n

i=1 Ui)∗ → (
⊗n

i=1 Vi)∗ via f �→ g, satisfying g(⊗n
i=1 vi)= f (⊗n

i=1 Aivi).
If Vi are vector subspaces of Ui, then

⊗n
i=1 Vi canonically embeds in

⊗n
i=1 Ui. In particular,

if V ⊆U, then V⊗n and Symn(V) canonically embed in U⊗n and Symn(U) respectively. Under
this embedding Symn(V)= Symn(U)∩V⊗n. We will also denote the space of symmetric n-fold
multilinear functions on V by Sym((V⊗n)∗), i.e. the functions from (V⊗n)∗ that are symmetric.
We have (V∗)⊗n ∩ Sym((V⊗n)∗)= Symn(V∗).

In this paper, we are interested in vector spaces of the formV =⊕i∈I Fi, or just
⊕

I F, where I
is an (index) set and each Fi, i ∈ I , is a copy of F indexed by i. In this case V has a basis {ei | i ∈ I},
and a vector v ∈V has finitely many nonzeros in this basis. Note that for infinite I this is a proper
subset of FI , and in particular {ei | i ∈ I} is not a basis6 for FI . For V =⊕I F, the dual space V∗
can be identified with F

I via f �→ (f (ei))i∈I . For V =⊕I F, we have V⊗n =⊕In F, and (V⊗n)∗
can be identified with F

In , the n-dimensional arrays. We can view Sym(FIn)= Sym((V⊗n)∗) as
symmetric arrays, i.e. arrays in F

In that are invariant under permutations from Sn, with respect
to the basis {ei | i ∈ I} of V =⊕i∈I Fi.

6Of course every vector space has a basis; however, this requires Zorn’s Lemma so the proof is nonconstructive. In this
paper, our results are constructive usually working with an explicitly given basis.
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Any A ∈⊗n
j=1 Vj, where n≥ 1, can be expressed as a finite sum

A=
r∑

i=1
vi1 ⊗ · · · ⊗ vin, vij ∈Vj.

The least r≥ 0 for which A has such an expression is called the rank of A, denoted by rank(A).
Clearly, A= 0 iff rank(A)= 0. If r= rank(A)> 0 then in any such expression of A of r terms all
vectors vij �= 0. When n= 0,

⊗n
j=1 Vj is F, and we define rank(A)= 1 for A �= 0 and rank(A)= 0

for A= 0.
Similarly, for A ∈ Symn(V) we define the symmetric rank of A to be the least r≥ 0 for which A

can be expressed as

A=
r∑

i=1
λiv⊗ni , λi ∈ F, vi ∈V ,

and is denoted by rkS(A). If there is no such decomposition we define rkS(A)=∞. If rkS(A)<∞
then in any such expression of A as a sum of rkS(A) terms all λi �= 0, all vi �= 0 and are pairwise
linearly independent.We show in LemmaA.6 that for infinite F, rkS(A)<∞ for allA ∈ Symn(V).

We also need to refer to the rank of functions in (
⊗n

i=1 Vi)∗. As mentioned before
⊗n

i=1 V∗i
is embedded as a subspace of (

⊗n
i=1 Vi)∗. For a function F ∈ (

⊗n
i=1 Vi)∗, where n≥ 1, we define

the rank of the function F to be∞ if F /∈⊗n
i=1 V∗i , and if F ∈

⊗n
i=1 V∗i , the rank of F is the least r

for which F can be written as

F=
r∑

i=1
fi1 ⊗ · · · ⊗ fin, fij ∈V∗j .

When n= 0, (
⊗n

j=1 Vj)∗ is F∗ ∼= F, and we define rank(F)= 1 for F �= 0 and rank(F)= 0 for F=
0. The symmetric rank rkS(F) of F ∈ Sym((V⊗n)∗) is similarly defined. It is∞ if F �∈ Symn(V∗).
For F ∈ Symn(V∗), we define rkS(F) to be the least r such that

F=
r∑

i=1
λif⊗ni , λi ∈ F, fi ∈V∗,

if such an expression exists; rkS(F)=∞ otherwise. By the same Lemma A.6 for infinite F, we have
rkS(F)<∞ for all F ∈ Symn(V∗).

Basically, the rank of a multilinear function is just an extension of the tensor rank from⊗n
i=1 V∗i to (

⊗n
i=1 Vi)∗. Similarly the symmetric rank is the extension from Symn(V∗) to

Sym((V⊗n)∗). Clearly for all symmetric A, rank(A)≤ rkS(A). Both rank and rkS are unchanged
when moving from

⊗
Vi to

⊗
Ui, if Vi ⊆Ui.

LemmaA.1. The vectors x1, . . . , xr ∈ F
I are linearly independent iff in the r× I matrix formed by

x1, . . . , xr as rows there exists a non-zero r× r minor.

Proof.⇐ is obvious, so let us prove⇒. Let R⊆ [r] be a maximal subset satisfying the property
that for some finite subset C⊆ I the set of vectors {xi |C : i ∈ R} is linearly independent, where
xi |C is the restriction of xi to C. Suppose linear independence is achieved by C for R. Then it also
holds for any C′ ⊇ C.

If R �= [r], let j ∈ [r] \ R, and consider R+ = R∪ {j}. The set {xi |C : i ∈ R+} is linearly depen-
dent. Hence a unique linear combination holds for some ci ∈ F (i ∈ R),

xj |C =
∑
i∈R

cixi |C . (A.1)
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For any k �∈ C, {xi |C∪{k} : i ∈ R+} is also linearly dependent, and we have xj |C∪{k}=∑
i∈R c′ixi |C∪{k} for some c′i ∈ F. Compared to (A.1), c′i = ci for all i ∈ R. Hence xj =∑i∈R cixi, a

contradiction to {x1, . . . , xr} being linearly independent. So R= [r]. There exists a non-zero r× r
minor in the R× C submatrix.

For x= (xi)i∈I ∈ F
I and h= (hi)i∈I ∈⊕I F (in a direct sum, only finitely many hi are zero),

we denote their dot product by x(h)=∑i∈I xihi ∈ F. Here we view F
I as the dual space of

⊕
I F.

(In general the dot product of the pair x, y ∈ F
I is not defined.)

Lemma A.2. Let x1, . . . , xr ∈ F
I be linearly independent. Then there exist h1, . . . , hr ∈⊕I F dual

to x1, . . . , xr, i.e. xi(hj)= δij, 1≤ i, j≤ r.

Proof. By Lemma A.1, there exist r distinct indices kj ∈ I , 1≤ j≤ r such that the matrix A=
(aij)ri,j=1 = ((xi)kj)ri,j=1 is invertible, and let B= (bij)=A−1. Taking hi =∑r

j=1 bjiekj ∈
⊕

I F, 1≤
i≤ r, we see that the equality AB= Ir directly translates into the desired result. �

Lemma A.3. Let x1, . . . , xr ∈ F
I . Consider the linear map  :

⊕
I F→ F

r , h �→
(x1(h), . . . , xr(h)). Then dim (

⊕
I F/ ker)= dim span{xi}ri=1.

Proof. By the First Isomorphism Theorem for vector spaces
⊕

I F/ ker∼= im. So it suf-
fices to prove dim im= dim span{xi}ri=1. Clearly it suffices to prove the case when x1, . . . , xr are
linearly independent, and that follows directly from Lemma A.2. �
Lemma A.4. Let r≥ 0, and let x1, . . . , xr ∈ F

I be r linearly independent vectors and a1, . . . , ar ∈
F \ {0}. Then for any integer n≥ 2, the symmetric tensor

A=
r∑

i=1
aix⊗ni ∈ Symn(FI) (A.2)

has rkS(A)= r. For n≥ 3, any expression of A as
∑r

i=1 biy
⊗n
i is a permutation of the sum in (A2).

Proof.When r= 0, the statement is trivially true so we assume r≥ 1. Let n≥ 2 and rkS(A)= s.
Clearly s≤ r. By being of symmetric rank s, there exist y1, . . . , ys ∈ F

I and b1, . . . , bs ∈ F \ {0}
such that

r∑
i=1

aix⊗ni =A=
s∑

j=1
bjy⊗nj . (A.3)

By Lemma A.2 there exist h1, . . . , hr dual to x1, . . . , xr . For any 1≤ i≤ r, applying h⊗(n−1)i to
the sum, we get aixi as a linear combination of y1, . . . , ys. Hence s≥ r as x1, . . . , xr are linearly
independent. So s= r, and y1, . . . , ys are linearly independent.

Next, let n≥ 3 and consider (A.3) again, where s= r. Since rkS(A)= r, all bj �= 0. Applying hi,
we get

aix⊗(n−1)i = B=
r∑

j=1
bjyj(hi)y

⊗(n−1)
j . (A.4)

From the LHS, rkS(B)= 1. By what has just been proved, rkS(B) is the number of terms with non-
zero coefficients on the RHS. Hence for any i, there is exactly one j such that yj(hi) �= 0. Applying
h⊗(n−2)i to (A.4), we get aixi = b′jyj, where b′j = bj(yj(hi))n−1 �= 0. Since x1, . . . , xr are linearly
independent, the map i �→ j is a permutation. From aixi = b′jyj we get ai = b′jyj(hi)= bj(yj(hi))n.
It follows that yj = (ai/b′j)xi = yj(hi)xi. Therefore bjy⊗nj = bj(yj(hi))nx

⊗n
i = aix⊗ni . Thus the

expressions on the LHS and the RHS of (A.3) are the same up to a permutation of the terms.
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Lemma A.5. Let r≥ 0, and let x1, . . . , xr ∈ F
I be r non-zero pairwise linearly independent vectors.

Then for any non-negative integer n≥ r− 1, the rank-1 symmetric tensors

x⊗n1 , . . . , x⊗nr ∈ Symn(FI)

are linearly independent.

Proof. The case r= 0 is vacuously true. It is also trivially true for r= 1, since x⊗n1 is non-
zero. Assume r≥ 2. By pairwise linear independence, for every 1≤ i, j≤ r, i �= j, from Lemma A.2
there exists hij such that xi(hij)= 1, xj(hij)= 0. Suppose

∑r
i=1 λix

⊗n
i = 0 where λi ∈ F, 1≤ i≤ r.

Applying
⊗

1≤j≤r, j�=i hij, we get λix⊗(n−(r−1))i = 0 for 1≤ i≤ r, and thus λi = 0 since n≥ r− 1
and therefore x⊗(n−(r−1))i is non-zero. Hence x⊗n1 , . . . , x⊗nr are linearly independent. �
Remark A.1. For r≥ 2, the non-zero hypothesis is subsumed by pairwise linear independence.

A.2 Finite symmetric tensor rank
The proof of the following lemma is essentially the same as Lemma 4.2 in [20]; the only modifi-
cation needed is to avoid a symmetrization step, which could result in a division by 0 in a field of
finite characteristic.

Lemma A.6. If F is a field of cardinality |F|> n, a fortiori if F is infinite, and V is a vector space
over F, then every symmetric tensor A ∈ Symn(V) has a finite symmetric tensor rank rkS(A)<∞.
Moreover, when dimV <∞, we have rkS(A)≤

(dimV+n−1
n

)
.

Proof. By definition, every A ∈ Symn(V)⊆V⊗n is a finite sum A=∑m
i=1 vi1 ⊗ · · · ⊗ vin. Let

V ′ = span{vij | i ∈ [m], j ∈ [n]} be a finite dimensional subspace of V . As A ∈ Symn(V ′), we can
assume V is finite dimensional, with no change in rkS(A); so we let V = F

N , for some N.
Let T = span{x⊗n | x ∈V} ⊆ Symn(V). Our claim is that equality holds. For every entry of x⊗n,

which is a product of coordinate entries of x, we can classify it by how many factors are the jth
coordinate of x, for j ∈ [N]. There are

(n+N−1
N−1

)= (N+n−1n
)
coordinates which can be indexed by

tuples (i1, . . . , iN) where i1, . . . , iN ≥ 0 and i1 + · · · + iN = n, such that every entry of every t ∈ T
is equal to its entry at one of these coordinates. We define a compression operator C which selects
only those

(N+n−1
n
)
coordinates, and define

S= span{C(x⊗n) | x ∈V} = {C(t) | t ∈ T}.
The compression operatorC is also applicable to Symn(V). Indeed, by definition as a symmetric

array in F
Vn , any A ∈ Symn(V) is invariant under any permutation of n. This means that for any

(k1, . . . , kn), where k1, . . . , kn ∈ [N], and any permutation π ∈ Sn, if (e∗1, . . . , e∗N) is the dual basis
to the canonical basis of V , then (e∗k1 ⊗ · · · ⊗ e∗kn)(A)= (e∗kπ(1) ⊗ · · · ⊗ e∗kπ(n) )(A). This invariance
can be characterized by the tuple (i1, . . . , iN), where ij = the number j ∈ [N] among (k1, . . . , kn).
Thus C is applicable to Symn(V), and we denote the result C(Symn(V))= {C(v) | v ∈ Symn(V)} ⊆
F(

N+n−1
n ). As T ⊆ Symn(V), we have S⊆ C(Symn(V)).

Next we prove that S= F(
N+n−1

n ). Then it follows that S= C(Symn(V)), from which it clearly
follows that T = Symn(V) since C simply removes repeated entries.

Suppose otherwise, then dim S<
(N+n−1

n
)
. There exists a non-zero vector in F(

N+n−1
n )

such that it has a zero dot product with all S. This means there exists a non-zero tuple
(a(i1,...,iN )) ∈ F(

N+n−1
n ) indexed by N-tuples of non-negative integers that sum to n, such that∑

(i1,...,iN ) a(i1,...,iN )x
i1
1 · · · xiNN = 0, for all x1, . . . , xN ∈ F.
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As a polynomial in xN it has degree at most n, and yet it vanishes at |F|> n points. So for
any fixed 0≤ iN ≤ n,

∑
(i1,...,iN−1) a(i1,...,iN−1,iN )x

i1
1 · · · xiN−1N−1 = 0, for all x1, . . . , xN−1 ∈ F, which can

be viewed as a polynomial in xN−1 of degree at most n− iN ≤ n. Iterating N steps, we reach a
contradiction that the tuple (a(i1,...,iN )) is entirely zero.

A.3 Subalgebras of Fm

We give a proof of Lemma 5.3, restated below.

Lemma A.7. All subalgebras of Fm, where m≥ 0, are of the following form: For some partition
[m]=⊔s

i=1 Ii, where s≥ 0, and Ii �= ∅ for i ∈ [s], the subalgebra has equal values on each Ii,

F
(I1,...,Is) = {(c1, . . . , cm) ∈ F

m | ∀i ∈ [s], ∀j, j′ ∈ Ii, cj = cj′ }.
Proof.Whenm= 0, the statements is obvious. Letm≥ 1 and S⊆ F

m be a subalgebra of Fm. In
particular, the multiplicative identity is the m-tuple (1, . . . , 1) ∈ S. We call i, j ∈ [m] equivalent if
xi = xj for any x= (x1, . . . , xm) ∈ S. This is clearly an equivalence relation so it partitions [m] into
(non-empty) equivalence classes I1, . . . , Is so that [m]=⊔s

i=1 Ii. As [m] �= ∅ we have s≥ 1. We
claim that S= F

(I1,...,Is). Clearly, S⊆ F
(I1,...,Is). We prove the reverse inclusion. For s= 1 this is

clearly true since them-tuple (1, . . . , 1) ∈ S and S is closed under scalar multiplication.
Now we let s≥ 2. By renaming and omitting repeated coordinates it is sufficient to prove the

case when m= s and Ii = {i}. Let S′ = {(c2, . . . , cs) | ∃c1 ∈ F, (c1, c2, . . . , cs) ∈ S} be the projec-
tion of S to F

s−1. Clearly S′ is a subalgebra of Fs−1, and by induction S′ = F
s−1. Thus for some

b1, . . . , bs−1 ∈ F, all s− 1 row vectors of the following (s− 1)× smatrix B belong to S,

B=

⎡⎢⎢⎢⎢⎢⎢⎣
b1 1 0 . . . 0

b2 0 1 . . . 0
...

...
...

. . .
...

bs−1 0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.5)

If all bi = 0, we let v= (1, 1, . . . , 1) ∈ S. Otherwise we may assume b1 �= 0. By the definition of I1
and I2 and by the closure of S under scalar product and possibly adding (1, 1, . . . , 1), for some
c1 �= 1 and for some c3, . . . , cs ∈ F, we have v′ = (c1, 1, c3, . . . , cs) ∈ S. Then multiplying v′ with
the first row in (A.5) we get v= (b1c1, 1, 0, . . . , 0) ∈ S. Here b1c1 �= b1. In either case, we obtain a
matrix A of rank s by appending v as the last row to B. Thus for all row vectors d ∈ F

s the linear
system xA= d has a solution x ∈ F

s. This shows that d ∈ S. �
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