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1. It is a well known theorem due to Frobenius that the number of solutions of the
equation

in a finite group G is a multiple of the greatest common divisor (w, g) of n and the order g
of G. Frobenius himself proved later that the number of solutions of the equation

where a is a fixed element of G, is a multiple of («, ga), ga being the order of the centralizer
Z(a) of a in G.

P. Hall generalised the equation to an arbitrary system of general word equations in
x and au . . . , am, where au ... ,am are fixed elements of G, and found a modulus even better
than the most natural generalisation of the above [1].

Following Hall's arguments we plan here to generalise the systems of equations to an
arbitrary system of equations in n variables.

I wish to thank Professor Hans Zassenhaus for his aid in the preparation of this paper.

2. Let / ( * ! , ... ,xn; au ... , ar) = 1 be a word equation in variables xlt ... ,xn and con-
stants au ... , ar. By the degree in xt o / / w e mean the absolute value of the sum of the ex-
ponents of Xj in / .

Let H be a subgroup of G and let A: be a natural number. We define the function
m = m(G, H, k) of Hall to be the greatest of the numbers mu m2, m3 in so far as these are
defined; where

(i) If G is finite and the Sylow p-subgroups of G are regular, then ml= pk where pPfc is
the order of Clk(J) and / is a Sylow p-subgroup of H. fik(G) = {g e G | gp" = 1};

(ii) if J is regular, then m2 = mm{pj + pk~i — 1);
J = 0

(Hi) in any case, m3 = mm{pk, k(p —1)) or k(p — 1) according as the solutions of xp" = 1
in J form a subgroup Qk(J)of order //* or do not form a subgroup.

THEOREM. Let Gbea group. Letf, g ...be a system of words in the symbols xux2, ... ,xn;
au a2, ... , where the xt are unknowns and the at are fixed elements of G. Let p be a prime
and suppose that pk< divides the degree in xt of each of the words f g, ... (1 ^ / ^ ri).

Let H be a finite subgroup of the centralizer of the at in G and let su ... ,sn be given elements
of G. Then the number of solutions (xu ... , xn) of the equations

f=g=...=i
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for which xteHstH (1 ^ / ̂  «) is divisible by pm, where m = m(G, H, k) is the function of
Hall and k = m a x ^ , ... , kn).

We observe that by taking n = 1 we get Hall's result.

3. Proof of the theorem.

3.1. We shall use induction on the order O(H) of H. When O(H) = 1, m = 0 and the
result is clear. When H is not a /7-group, we have O(J) < O(H) and m{G, J, k) = m(G, H, k).

Also, every double coset Hsfl is then the union of a certain number of double cosets of J.
So the result follows by induction. We therefore suppose that H is a />-group.

Since G can be embedded in a larger group in which H is a centralizer [1, p. 486], we may
suppose that H is the centralizer of the a; in G.

3.2. Any one of the words/ ,g, ... may be written in the form ulvlu2v2 ••• usvs, where
each Wj is an x-word and each i>, is an a-word. This may be rewritten as

u t u 2 . . . u s t > " 2 " • " • o u
2

i - " • . . . v 3 .

The transforms v"'*' "• "* which occur here are of degree 0 in each Xj. Hence the degree in Xj
of the x-word uxu2 ... us is a multiple of pkJ. Since the derived group of the group generated
by the Xj is generated by the commutators (xh x^ = x'^x'^XiXj and their transforms, it
follows that each of the words/, g, ... can be expressed in the form

J — Xj X2 ... Xn JiJ2,

where / , is a product of terms of the form

u~l(xhxj)u,

and/ 2 is a product of terms of the form

ir'af'u.

u is an x-word which may vary from term to term.

3.3. We divide the solutions (xu . . . , xn) of

f=g =...=!, X(eHsfl (IZiZn) (1)

into classes according to the values they give to the elements

xf, (x,,aj) and (x,, x,).

Consider the class for which

xfk'' = b(, (x,-, aj) = c,j, (xf, x;) = elV, (2)

where the bh ctj and etJ are fixed elements of G. Let K be the centralizer in H of these ele-
ments. lfK^H, we say that the class is of the first kind; and if K = H, we say that it is of the
second kind.

We shall prove that the number of solutions of each kind is divisible by pm.

3.4. Consider a class of solutions of the first kind, for which O(K)< O(H). The degree
in x, of each of the equations (2) is a multiple of/?*'. From the induction hypotheses applied

https://doi.org/10.1017/S2040618500034390 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034390


ON P. HALL'S GENERALISATION OF A THEOREM OF FROBENIUS 99

to the system (l) + (2), it follows that the number of solutions of this system for which x, lies
in an assigned double coset of K (1 g i g «) is a multiple of /?"•', where m\ = m(G, K, k).
Since HstH is the union of a certain number of double cosets of K, the number of solutions in
the given class will also be a multiple of/?"1'. But for any solution (xu ... , xn) of (1) and any
heH, (**, ... , x*) will also be a solution of (1). Transforming the solutions of the given class
by the elements of H, we obtain (H: K) disjoint classes each with the same number of members.
So the solutions of the first kind fall into sets of classes and in each set the total number of
solutions is a multiple of pm* (H: K). Since pm divides /?"•' (H: K) [1, p. 489], we have proved
that the number of solutions of the first kind is divisible by pm.

3.5 Let us now consider a class of solutions of the second kind, for which K= H.
(a) We claim that, for any solution of this class, x'^HXi — H (1 ^ j ^ n).
Since H is the centralizer of the aj, x^Hx; will be the centralizer of the elements

x~ iaJx, (j = 1, 2, ...). But H commutes elementwise with the (x,, aj) and therefore also with
the xt"

1ajxi. Since H is finite, it follows that x^HXi = H.
The double coset HstH which contains xt reduces to an ordinary coset Hs( = stH.
(b) We prove next that the original equations (1) are now irrelevant. This is because

every solution of (2) for which x{eHs, (1 ^ / ^ ri) automatically satisfies (1) as well, so that
the given class consists precisely of all such solutions of (2).

To see this, let (xu ... , xn) be any solution of (1), (2) and let (x'v ... ,x'n) be any solution
of (2) for which x'. — htx, with A,e/^ (1 ^ / ^ ri). Consider the effect of the substitution
x, -* x't on one of the words / , which we take in the form given in §3.2. Since xf — (x')pl" = bh

the factors xj"^" are unaffected. If u is any x-word and u' is the corresponding x'-word, we
have u' = hu for some heH, by (a). But (x'p x'j) = e{j = (xh Xj) and h commutes with etJ.
Hence (u')'i(x'i, x')u' = u'1(xi, Xj)u. Since h also commutes with a,-, we have

So the factors of/i and/ 2 are also unaffected by the substitution. It follows that (x\, ..., x'J
is a solution of (1).

(c) We remark that the equations (xh a}) = ctJ of (2) are also irrelevant for the same
reason, namely that (x't, aj) = (x(, aj).

3.6. We have now only to prove the following:
If the bt and the eti centralize H and the s, normalize H, then the number of solutions

(*!, . . . , *„ ) Of

xf = bb (x,,*j) = ey, x,eHs, (l£i,jgn) (3)

is divisible by pm, where m = m{G, H, k).
We take up the three cases of the definition of m separately and suppose without loss of

generality that k = kn = m a x ^ , k2, •••, kn).
Case (i). Here G is finite and its Sylow /7-subgroups are regular. We recall that, if

xpk = b, where b commutes with every element of H, and x'1Hx = H, then (xh)pk = b for
heHtf and only if he Slk(H) [1, pp. 490, 491]

Put two solutions of (3) in the same class if and only if there is an element h0 e H such
that x'. = h^Xjhg (1 ^ / ^ n— 1). In the class containing a given solution (xu ... , xn), the
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first n — 1 unknowns can be chosen in (H: C) ways, where C is the centralizer of xlt ... , xn_ t

in H. Fixing xx, ..., xn _ x, we may replace xn by Ax,, with h e H if and only if h e Slk (H) and
(x,, xn) = (x,, hxn) for 1 g J g « - 1 , i.e. if and only if ft e C n Qk(H). Hence this class contains
just

Q ( C n Sik(H) : 1) = (/7: Cnk(H))(Cnk(H) : C)(Cn Q*
= {H: Cfi t ( / /))(n4(/0 : 1) = P"<H • CQk(H))

members and this number is a multiple of pPk = p"".
Case (ii). Here H = / is a regulars-group and there exists a normal subgroup Mm of H,

of orderpm\ such that x / " = bn implies that ( X ^ P " = bn for all /; e Mn. [1, p. 491]. The desired
result now follows as in case (i), with Mm in place of ilk(H).

Case (iii). In the general case too, there exists a normal subgroup Lk of H, of order p"1*,
such that x/" = bn implies that (jCn/i)"" = bn for all AeZ,*, [1, p. 492]. In this case the result
follows by taking Lk in place of Clk(H).

COROLLARY 1. The number of solutions (xu ... , xn) of

f=g= ... =1; (*„*,) =1 ( l ^w^n)

with xt e HSJH is divisible by pm.

COROLLARY 2. Suppose that Nj divides the degree in x,- of each of the words f, g, ... and
let N = p"1

t ... p*r be the prime factorization of the l.c.m. N of the Nt (1 ^ / ̂  n). Then the
number of solutions off=g= ... = 1 with x ,e / / j ,7 / ( l ^ / ̂  n) is divisible by p™1 ...p™r,
where m( = m(G, H, a,).

(This result was stated by A. N. Prokofyev [2].)
Here it is supposed as before that su ..., sn are given elements of G and that H is a finite

subgroup which commutes elementwise with all the constants as occurring in the given words.
I would like to express to the referee, Professor Philip Hall, my appreciation of his sug-

gestions for the improvement of the presentation of this paper.
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