INVARIANT CMC SURFACES IN $\mathbb{H}^2\times\mathbb{R}$

STEFANO MONTALDO

Università degli Studi di Cagliari, Dipartimento di Matematica, Via Ospedale 72, 09124 Cagliari e-mail: montaldo@unica.it

and IRENE I. ONNIS

Instituto de Matemática, Estatistica e Computação Científica, UNICAMP – IMECC, Praça Sergio Buarque de Holanda, 651, Cidade Universitária – Barão Geraldo, Caixa Postal: 6065, 13083-859 Campinas, SP, Brasil e-mail: onnis@ime.unicamp.br

(Received 25 March, 2003; accepted 12 August, 2003)

Abstract. We explicitly classify helicoidal and translational constant mean curvature surfaces in $\mathbb{H}^2 \times \mathbb{R}$.

2000 Mathematics Subject Classification. 53C42, 53A10.

1. Introduction. Surfaces of constant mean curvature (CMC) play a special role in differential geometry. They arise in a variety of different branches. For example, the boundary of a compact domain Ω , which is a solution of the isoperimetric problem, is a CMC surface. In [2] W. T. Hsiang and W. Y. Hsiang studied solutions of the isoperimetric problem in the product of the hyperbolic space with the Euclidean space. In particular, they shown that a solution to the isoperimetric problem in $\mathbb{H}^2 \times \mathbb{R}$ is invariant under the action of an isometry subgroup of the type of $O(2) \times O(1)$ which fixes its centre of gravity. Therefore the boundary yields to a O(2)-invariant CMC surface in $\mathbb{H}^2 \times \mathbb{R}$. Due to this property, in [2], there is a description of the O(2)-invariant CMC surfaces in $\mathbb{H}^2 \times \mathbb{R}$. See also [5, Lemma 1.3].

In this note we extend the result of W. T. Hsiang and W. Y. Hsiang to include helicoidal and translational CMC surfaces in $\mathbb{H}^2 \times \mathbb{R}$; that is CMC surfaces which are invariant under the action of a 1-parameter subgroup G of the isometry group $Isom(\mathbb{H}^2 \times \mathbb{R})$ generated by:

- translations along \mathbb{R} (translational surfaces);
- composition of translations along \mathbb{R} and rotations (helicoidal surfaces).

The main ingredient is the Reduction Theorem of M. Do Carmo and W. Hsiang [1] which reduces the computation of the mean curvature of a *G*-invariant surface $\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$ to that of $\Sigma/G \subset (\mathbb{H}^2 \times \mathbb{R})/G$. Using the Reduction Theorem we find a function *J* which is constant along the profile curve of a given *G*-invariant CMC surface. We then give a qualitative description of the *G*-invariant CMC surfaces by an accurate analysis of the equation J = constant.

2. Preliminaries. Let $G \subset Isom(M)$ be a closed subgroup of the isometry group of a Riemaniann manifold (M, g). The group G is a Lie group which acts on M by

The second author was supported by INdAM.

https://doi.org/10.1017/S001708950400179X Published online by Cambridge University Press

isometries. A subset $S \subset M$ is called *G-invariant*, and *G* the symmetry group of *S*, if for any $x \in S$ and $g \in G$, with gx well defined, we have $gx \in S$.

A map $f: M \to N$ between two Riemannian manifolds is a *G*-invariant function if for any $x \in M$ and $g \in G$

$$f(gx) = f(x).$$

A *G*-invariant function $\zeta : M \to \mathbb{R}$ is simply called an *invariant* of *G*.

Let now M and N be two Riemannian manifolds with $Isom(M) \subseteq Isom(N)$ and let G be a closed subgroup of Isom(M). Suppose that $f: M \to N$ is a G-equinvariant isometric immersion and suppose that the principal orbit type is the same for both actions. Then f induces an immersion $\tilde{f}: M_r/G \to N_r/G$ between the regular points of the quotient spaces. The space M_r (respect. N_r) can be equipped with a Riemannian metric so that the quotient map $M_r \to M_r/G$ (respect. $N_r \to N_r/G$) is a Riemannian submersion.

From now on, since all will be local, we identify M with its image $f(M) \subset N$. For a given point $x \in M_r \subset N_r$ let $H = G_x$ be the isotropy subgroup of x.

With respect to an Ad_H -invariant metric on the Lie algebra \mathfrak{g} of G we have the following orthogonal decomposition $\mathfrak{g} = \mathfrak{h} + \mathfrak{h}^{\perp}$, where \mathfrak{h} is the Lie algebra of H.

Therefore we can define a *G*-invariant metric on *G*/*H* and the space $\mathfrak{h}^{\perp} = T_e(G/H)$ generates $c = \dim(G) - \dim(H)$ linearly independent Killing vector fields V_1, \ldots, V_c which are tangent to the orbit space of $y \in U$, where $U \subset N$ is a neighborhood of *x*. Let A(y) be a matrix with entries $a_{ij} = g(V_i, V_j)$, and let $\omega(y) = \sqrt{\det(A(y))}$ be the volume function on the orbit $G(y) = \{gy : g \in G\}$. The mean curvature vector of *f* can be expressed in terms of the mean curvature vector of \tilde{f} and of the function $\omega(y)$ as is shown in the following theorem.

THEOREM 2.1 (Reduction Theorem [1]). Let H and \tilde{H} be the mean curvature vectors of $M_r \subset N_r$ and $M_r/G \subset N_r/G$ respectively. Then

$$H = \tilde{H} - \operatorname{grad}\left(\ln\omega\right).$$

If the group G is compact, the orbits are compact and the Reduction Theorem reads as follows.

COROLLARY 2.2 ([2], [4]). Let V(y) be the volume of G(y), **n** a horizontal unit normal vector field along M_r and $\tilde{\mathbf{n}}$ the corresponding normal vector field to M_r/G in N_r/G . Then

$$H(\mathbf{n}) = H(\tilde{\mathbf{n}}) - D_{\tilde{\mathbf{n}}}(\ln V).$$

Let now describe the quotient metric of the regular part of the orbit space N/G.

It is well known (see, for example [7]) that N_r/G can be locally parametrized by the invariant functions of the Killing vector fields of the Lie algebra g. Let $\{f_1, \ldots, f_d\}$, $d = \dim(N_r/G)$, be a complete set of invariant functions on a *G*-invariant subset of N_r . Denote by \tilde{g} the quotient metric in N_r/G and define $h_{ij} = \langle \nabla f_i, \nabla f_j \rangle$, where ∇ is the gradient in (N, g).

THEOREM 2.3 (Quotient Metric Theorem [2]). The quotient metric is given by $\tilde{g}_{ij} = h^{ij}$, or, equivalently, by $d\tilde{s}^2 = \sum_{i,j=1}^d h^{ij} df_i \otimes df_j$.

2.1. The isometry group of $\mathbb{H}^2 \times \mathbb{R}$. Let $\mathbb{H}^2 = \{(x, y) \in \mathbb{R}^2 : ||(x, y)||^2 < 2\}$ be the disk model of the hyperbolic plane and consider $\mathbb{H}^2 \times \mathbb{R}$ endowed with the metric

$$ds^{2} = \frac{dx^{2} + dy^{2}}{F^{2}} + dz^{2}$$

where $F = \frac{2 - x^2 - y^2}{2}$.

PROPOSITION 2.4. The Lie algebra of the infinitesimal isometries of the product $(\mathbb{H}^2 \times \mathbb{R}, ds^2)$ admits the following bases of Killing vector fields

$$X_{1} = (F + y^{2})\frac{\partial}{\partial x} - xy\frac{\partial}{\partial y}$$
$$X_{2} = -xy\frac{\partial}{\partial x} + (F + x^{2})\frac{\partial}{\partial y}$$
$$X_{3} = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$$
$$X_{4} = \frac{\partial}{\partial z}.$$

Proof. See, for example, [6].

DEFINITION 2.5. A one-dimensional subgroup G of $Isom(\mathbb{H}^2 \times \mathbb{R})$ is called *helicoidal* if it is generated by linear combinations

$$bX_3 + aX_4 \quad a, b \in \mathbb{R}.$$

In particular, if b = 0 the group is *translational*, while if a = 0 the group is *rotational*. The surfaces invariant under the action of helicoidal subgroups are called *helicoidal* surfaces.

Let *G* be a one-dimensional subgroup of $Isom(\mathbb{H}^2 \times \mathbb{R})$ of translational or helicoidal type. Since the action of *G* on $\mathbb{H}^2 \times \mathbb{R}$ is free then $(\mathbb{H}^2 \times \mathbb{R})_r = \mathbb{H}^2 \times \mathbb{R}$. Let $\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$ be a *G*-invariant surface. Then the orbit space $\mathcal{B} = (\mathbb{H}^2 \times \mathbb{R})/G$, can be parametrized by the *G*-invariant functions *u*, *v* and endowed with the quotient metric $d\tilde{s}^2$. The projection of Σ in \mathcal{B} is a curve γ , generally called the *profile curve* of Σ . Parametrising $\gamma(s) = (u(s), v(s))$ by arc length *s* we can define $\sigma(s)$ as the angle between the tangent vector of γ and the positive direction of the *u*-axes.

3. CMC surfaces invariant under translations along the *z*-axes. Let *G* be the 1-parameter group of isometries generated by translations along the *z*-axes, that is by the Killing vector field $X_4 = \frac{\partial}{\partial z}$. In this case we can choose the following *G*-invariant functions:

$$u = x$$
 and $v = y$.

In cylindrical coordinates (r, θ, z) the metric of the ambient space takes the form

$$ds^{2} = \frac{dr^{2} + r^{2} d\theta^{2}}{F^{2}} + dz^{2},$$

 \square

where $F = \frac{2-r^2}{2}$. The matrix *h* and its inverse take the form

$$(h_{ij}) = \begin{pmatrix} F^2 & 0\\ 0 & F^2 \end{pmatrix}$$
 $(h^{ij}) = \begin{pmatrix} \frac{1}{F^2} & 0\\ 0 & \frac{1}{F^2} \end{pmatrix}$

Thus the invariant metric in the orbit space $\mathcal{B} = (\mathbb{H}^2 \times \mathbb{R})/G = \mathbb{H}^2$ is

$$d\widetilde{s}^2 = \frac{du^2 + dv^2}{F^2}.$$

Let $\gamma(s) = (u(s), v(s))$ be a curve parametrized by arc length in \mathcal{B} and let $\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$ be the surface generated by the action of *G* on the curve γ . Then the unit tangent vector field to $\gamma(s)$ is

$$\mathbf{t} = (\dot{u}, \dot{v}) = (F \cos \sigma, F \sin \sigma),$$

and the unit normal vector field is

$$\mathbf{n} = (-F\sin\sigma, F\cos\sigma).$$

The geodesic curvature of γ can be expressed as a function of σ by

$$k_{g} = \frac{1}{2\sqrt{\tilde{g}_{11}\tilde{g}_{22}}} ((\tilde{g}_{22})_{u}\dot{v} - (\tilde{g}_{11})_{v}\dot{u}) + \dot{\sigma}$$
$$= \frac{2(u\dot{v} - v\dot{u})}{(2 - u^{2} - v^{2})} + \dot{\sigma}$$
$$= u\sin\sigma - v\cos\sigma + \dot{\sigma}.$$

Now, since the volume function of the principal orbit is

$$\omega(\xi) = \sqrt{\langle X_4, X_4 \rangle} = \sqrt{\langle E_3, E_3 \rangle} = 1,$$

from Theorem 2.1 we have $H = k_g$. Thus γ generates a translational surface if u and v satisfy the following system

$$\begin{cases} \dot{u} = F \cos \sigma \\ \dot{v} = F \sin \sigma \\ \dot{\sigma} = H - u \sin \sigma + v \cos \sigma. \end{cases}$$
(3.1)

PROPOSITION 3.1. If H is constant on the surface Σ , then the function

$$J(s) = \frac{\dot{\sigma}}{2F}$$

is constant along any curve $\gamma(s)$ which is a solution of system (3.1). Thus the solutions of (3.1) are given by J(s) = k, for some $k \in \mathbb{R}$.

Proof.

$$\dot{J}(s) = \frac{\ddot{\sigma}\,2F + 2\dot{\sigma}(u\dot{u} + v\dot{v})}{4F^2}$$

 \square

$$(\text{from } (3.1)) = \frac{2F(-\dot{u}\sin\sigma + \dot{v}\cos\sigma - u\dot{\sigma}\cos\sigma - v\dot{\sigma}\sin\sigma)}{4F^2} + \frac{2F\dot{\sigma}(u\cos\sigma + v\sin\sigma)}{4F^2}$$
$$(\text{from } (3.1)) = \frac{(-\dot{u}\sin\sigma + \dot{v}\cos\sigma)}{2F} = 0.$$

THEOREM 3.2. The CMC surfaces in $\mathbb{H}^2 \times \mathbb{R}$ invariant under the action of the subgroup G generated by the Killing vector field $X_4 = \frac{\partial}{\partial z}$ are:

(1) part of minimal vertical planes through the origin (if k = 0);

(2) part of right cylinders of radius 1/2k otherwise.

Proof. If k = 0, from Proposition 3.1, σ is constant and from (3.1) we get that $v = (\tan \sigma)u$ and H = 0. The corresponding surface Σ is a part of a minimal vertical plane.

If $k \neq 0$, from Proposition 3.1, $F = \dot{\sigma}/2k$ and from (3.1) we find, after integration, that

$$u = \frac{1}{2k}\sin\sigma + c_1$$
, and $v = -\frac{1}{2k}\cos\sigma + c_2$, $c_1, c_2 \in \mathbb{R}$.

The corresponding surface Σ is clearly part of a right cylinder of radius 1/2k.

4. Helicoidal CMC surfaces in $\mathbb{H}^2 \times \mathbb{R}$. Let *G* be the subgroup of isometries generated by $X_3 + aX_4 = \frac{\partial}{\partial \theta} + a\frac{\partial}{\partial z}$. The *G*-invariant functions are the solution of the equation

$$\frac{\partial \zeta}{\partial \theta} + a \frac{\partial \zeta}{\partial z} = 0,$$

that is

 $a d\theta = dz$,

where (r, θ, z) are cylindrical coordinates. Thus the invariant functions are

$$u = r$$
 $v = z - a\theta$,

and the orbit space is $\mathcal{B} = \{(u, v) \in \mathbb{R}^2 : 0 \le u < \sqrt{2}\}$. The gradient of u and v are

$$\nabla u = F^2 \frac{\partial}{\partial r}$$
$$\nabla v = -\frac{F^2 a}{r^2} \frac{\partial}{\partial \theta} + \frac{\partial}{\partial z}$$

with $F = \frac{(2-r^2)}{2}$. Therefore the matrix *h* (defined in Theorem 2.3) and its inverse take the form

$$(h_{ij}) = \begin{pmatrix} F^2 & 0\\ 0 & \frac{r^2 + F^2 a^2}{r^2} \end{pmatrix} \qquad (h^{ij}) = \begin{pmatrix} \frac{1}{F^2} & 0\\ 0 & \frac{r^2}{r^2 + F^2 a^2} \end{pmatrix}$$

and the quotient metric is

$$d\tilde{s}^2 = \frac{du^2}{F^2} + \frac{r^2}{r^2 + F^2 a^2} \, dv^2.$$

The tangent and normal unit vector fields to the curve $\gamma(s)$ are

$$\mathbf{t} = \left(F\cos\sigma, \frac{\sqrt{u^2 + F^2 a^2}}{u}\sin\sigma\right)$$
$$\mathbf{n} = \left(-F\sin\sigma, \frac{\sqrt{u^2 + F^2 a^2}}{u}\cos\sigma\right).$$

Then, after calculation of the volume function of a principal orbit

$$\omega(\xi) = \sqrt{\langle X_3 + aX_4, X_3 + aX_4 \rangle} = \sqrt{\left(\frac{u^2}{F^2} + a^2\right)},$$

from Theorem 2.1 the mean curvature H of Σ can be written as

$$H = \dot{\sigma} + (2u)^{-1}(u^2 + 2)\sin\sigma$$

This means that the curve $\gamma(s)$ is a solution of the system

$$\begin{cases} \dot{u} = F \cos \sigma \\ \dot{v} = \frac{\sqrt{(u^2 + F^2 a^2)}}{u} \sin \sigma \\ \dot{\sigma} = H - \frac{(u^2 + 2)}{2u} \sin \sigma \end{cases}$$
(4.1)

with $F = \frac{2 - u^2}{2}$.

REMARK 4.1. Reflection of a solution curve for (4.1) across a line v = c is a solution curve for (4.1).

PROPOSITION 4.2. If H is constant on the surface Σ , then the function

$$J(s) = \frac{u \sin \sigma - H}{u^2 - 2}.$$
 (4.2)

is constant along any solution of (4.1).

Proof. Deriving equation (4.2) and taking into account (4.1) we get immediately $\dot{J}(s) = 0$.

Thus, the helicoidal CMC surfaces are solutions of the equation

$$\frac{u\sin\sigma - H}{u^2 - 2} = k,\tag{4.3}$$

for all $k \in \mathbb{R}$. Setting C = k - H/2, equation (4.3) becomes

$$u\sin\sigma = \left(\frac{H}{2} + C\right)u^2 - 2C.$$
(4.4)

316

Figure B. Profile curves for $H = \sqrt{2}$

From now on we shall assume that $H \ge 0$, and according to its value the curve γ , which is a solution of (4.1), can be of three types. In fact when $u \to \sqrt{2}$, from (4.4), we have that $\sin \sigma \to \frac{H}{\sqrt{2}}$; this means that:

(I) if $H > \sqrt{2}$ the curve γ does not reach the line $u = \sqrt{2}$;

Figure C. Profile curves for $H < \sqrt{2}$

(II) if
$$H = \sqrt{2}$$
 the curve γ tends asymptotically to the line $u = \sqrt{2}$;
(III) if $H < \sqrt{2}$ the curve γ tends to the line $u = \sqrt{2}$ with an angle $\sigma < \frac{\pi}{2}$.
We are now ready to prove the main result.

THEOREM 4.3. Let $\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$ be a CMC helicoidal surface and let $\gamma = \Sigma/G$ be the profile curve in the orbit space. Then we have the following characterization of γ according to the value of H.

- (I) $(\mathbf{H} > \sqrt{2})$ The profile curve is of Delaunay type. Moreover if
 - C > 0 it is of nodary-type
 - C = 0 it is of circle-type
- C < 0 it is of undulary-type or a vertical straight line
- (II) $(\mathbf{H} = \sqrt{2}) The profile curve is,$
 - for C > 0, of folium-type
 - for C = 0, of conic-type
 - for C < 0, of bell-type
- (III) $(\mathbf{H} < \sqrt{2}) The profile curve is,$
 - for C > 0, of bounded folium-type
 - for C = 0, of helicoidal-type or a horizontal straight line for H = 0
 - for C < 0, of catenary-type.

In the Figures (A, B, C) there is a plot of all profiles.

Proof. We shall prove the theorem in three steps: C > 0, C = 0 and C < 0. Step 1 - C > 0. By solving the quadratic equation (4.4) we have

$$u_{1,2} = \frac{\sin\sigma \pm \sqrt{\sin^2\sigma + 4C(2C+H)}}{(2C+H)}.$$
(4.5)

In this case it is easy to check that $u_m \le u \le u_M$, where

$$u_m = \frac{-1 + \sqrt{1 + 4C(2C + H)}}{(2C + H)}$$
, and $u_M = \frac{1 + \sqrt{1 + 4C(2C + H)}}{(2C + H)}$.

Choosing initial conditions $u(0) = u_m$ and v(0) = 0, we have:

$$\sigma(0) = 3\pi/2, \qquad \dot{\sigma}(0) = H + \frac{u_m^2 + 2}{2u_m} > 0.$$

Thus the angle $\sigma(s)$ turns in the positive direction. Moreover u_M satisfies the equation $u = (\frac{H}{2} + C)u^2 - 2C$ and, combining with (4.4), we find $\sin \sigma(s_2) = 1$ (i.e. $\sigma(s_2) = \pi/2$), where $u(s_2) = u_M$ for some $s_2 > 0$.

Now, from the third equation of (4.1), $\dot{\sigma}(s) = 0$ when $\sin \sigma(s) = \frac{2u(s)H}{2+u(s)^2}$, or, using (4.4), when the function u(s) satisfies the equation

$$(H+2C)u^4 - 2Hu^2 - 8C = 0. (4.6)$$

The latter equation does not admit real solutions in $[0, \sqrt{2})$, thus $\sigma(s)$ is always increasing. This means that there exists an $s_1 \in (0, s_2)$ so that $\sigma(s_1) = 2\pi$. Therefore in $u(s_1) = \sqrt{\frac{4C}{2C+H}}$ there is a local minimum.

Now if $H > \sqrt{2}$, $u_M < \sqrt{2}$ and, according to Remark 4.1, we can reflect the curve infinitely many times. The resulting curve is of *nodary-type*.

If $H = \sqrt{2}$, the profile curve tends asymptotically to the line $u = \sqrt{2}$ and it can be reflected only one time. The curve together with its reflection is called of *folium-type*.

Finally if $H < \sqrt{2}$, $u_M > \sqrt{2}$ and the curve tends, bounded from above, to the line $u = \sqrt{2}$.

Step 2 – C = 0. Since $u \sin \sigma = Hu^2/2$, we can choose initial conditions $u(0) = u_m = 0$ and v(0) = 0. In s = 0 the value of σ is not determined while in $s = s_1$, with $u(s_1) = u_M = 2/H$, $\sigma(s_1) = \pi/2$. Moreover $\dot{\sigma}(s) > 0$ in $(0, \sqrt{2})$. Then, as in the case C > 0, we have the following three subcases.

If $H > \sqrt{2}$, $u_M < \sqrt{2}$ and, according to Remark 4.1, we can reflect the curve infinitely many times. The resulting curve is of *circle-type*.

If $H = \sqrt{2}$, the profile curve tends asymptotically to the line $u = \sqrt{2}$ and it can be reflected only one time. The curve together with its reflection is called of *conic-type*.

Finally if $H < \sqrt{2}$, $u_M > \sqrt{2}$ and the curve tends, bounded from above, to the line $u = \sqrt{2}$. When H = 0 we have that $\sigma = 0$ for all u, thus the profile curve is a horizontal line and the resulting helicoidal surface is the standard helicoid. For this reason we shall call this type *helicoidal*.

Step 3 - C < 0. Differently from the first two steps in this case we have to check that the discriminant of (4.5) is positive; this is the case when:

(3a)
$$C \leq -\frac{H}{2}$$
,
(3b) $-\frac{H}{2} < C < \frac{-H - \sqrt{H^2 - 2}}{4}$, with $H \geq \sqrt{2}$,
(3c) $\frac{-H + \sqrt{H^2 - 2}}{4} < C < 0$, with $H \geq \sqrt{2}$,
(3d) $C = \frac{-H \pm \sqrt{H^2 - 2}}{4}$, with $H \geq \sqrt{2}$.
In (3a) we have $u_m \leq u \leq u_M$ where:
 $u_m = \frac{1 - \sqrt{1 + 4C(2C + H)}}{(2C + H)}$, and $u_M = \frac{-1 - \sqrt{1 + 4C(2C + H)}}{(2C + H)}$.

First note that $u_m < \sqrt{2}$ if and only if $H < \sqrt{2}$.

Choosing initial conditions $u(0) = u_m$ and v(0) = 0, and observing that u_m satisfies the equation $u = (\frac{H}{2} + C)u^2 - 2C$, from (4.4) we deduce that $\sin \sigma(0) = 1$ (i.e. $\sigma(0) = \frac{\pi}{2}$). Moreover $\dot{\sigma}(0) = H - \frac{u_m^2 + 2}{2u_m} < 0$, thus $\sigma(s)$ turns in the negative direction.

Since the Equation (4.6) does not admit real solution in $(u_m, \sqrt{2})$ the function σ is always decreasing and the curve γ tends to the line $u = \sqrt{2}$ under an angle $H/\sqrt{2}$. The profile curve, after reflection, is then of *catenary-type*.

In (3b) $u_m \le u \le u_M$ where

$$u_m = \frac{1 - \sqrt{1 + 4C(2C + H)}}{(2C + H)}$$
, and $u_M = \frac{1 + \sqrt{1 + 4C(2C + H)}}{(2C + H)}$.

An easy computation shows that $u_m > \sqrt{2}$ for all *H* and *C*, thus in this case we don't have solution.

In the case (3c) $u_m \le u \le u_M$, where

$$u_m = \frac{1 - \sqrt{1 + 4C(2C + H)}}{(2C + H)}$$
, and $u_M = \frac{1 + \sqrt{1 + 4C(2C + H)}}{(2C + H)}$.

Easily we can see that

$$\sin\sigma = \frac{(H+2C)u^2 - 4C}{2u} > 0,$$

thus $0 < \sigma(s) < \pi$. Choosing initial conditions $u(0) = u_m$ and v(0) = 0 we find $\sigma(0) = \pi/2$ and

$$\dot{\sigma}(0) = \frac{H[1 + 4C(2C + H)] + (4C + H)\sqrt{1 + 4C(2C + H)}}{4C(2C + H)} < 0$$

This means that the angle $\sigma(s)$ turns in the negative direction. Note that for $u(s_2) = u_M$, $\sigma(s_2) = \pi/2$. Moreover Equation (4.6) admits the real solution $u(s_1) = 2\sqrt{\frac{-C}{2C+H}}$, for some $s_1 \in (0, s_2)$. This implies that in s_1 there is a local minima of $\sigma(s)$ and the curve γ , for $s > s_1$, turns in the positive direction. If $H > \sqrt{2}$ the curve γ can be reflected infinitely many times and is of *undulary-type*. While if $H = \sqrt{2}$ the curve γ tends asymptotically to the line $u = \sqrt{2}$ and can be reflected only one time giving a *bell-type* profile.

In the last case (3d) $\sin^2 \sigma = 1$, and from $u = \frac{\sin \sigma}{2C+H}$ and 2C + H > 0, we must have $\sigma = \pi/2$. Thus we find a vertical straight line that, after the action of the helicoidal group, gives the right cylinder of radius $r = \frac{1}{2C+H}$. Note that $r < \sqrt{2}$ if and only if $C = \frac{-H + \sqrt{H^2 - 2}}{4} < 0$.

REFERENCES

1. A. Back, M. P. do Carmo and W. Y. Hsiang, On the fundamental equations of equivariant geometry (unpublished manuscript).

2. W. T. Hsiang and W. Y. Hsiang, On the uniqueness of isoperimetric solutions and embedded soap bubbles in non-compact symmetric spaces, *Invent. Math.* **89** (1989), 39–58.

3. W. T. Hsiang and W. Y. Hsiang, On the existence of codimension one minimal spheres in compact symmetric spaces of rank 2, *J. Diff. Geom.* **17** (1982), 583–594.

4. W. Y. Hsiang and H. B. Lawson Jr., Minimal submanifold of low cohomogeneity, *J. Diff. Geom.* **5** (1971), 1–38.

5. R. H. L. Pedrosa and M. Ritoré, Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems, *Indiana Univ. Math. J.* **48** (1999), 1357–1394.

6. P. Piu, Sur les flots riemanniens des espaces de D'Atri de dimension 3, *Rend. Sem. Mat. Univ. Politec. Torino* 46 (1988), 171–187.

7. P. Tompter, Constant mean curvature surfaces in the Heisenberg group, *Proc. Symp. Pure Math.* **54** (1993), 485–495.