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1. Introduction. Surfaces of constant mean curvature (CMC) play a special role
in differential geometry. They arise in a variety of different branches. For example, the
boundary of a compact domain �, which is a solution of the isoperimetric problem,
is a CMC surface. In [2] W. T. Hsiang and W. Y. Hsiang studied solutions of the
isoperimetric problem in the product of the hyperbolic space with the Euclidean space.
In particular, they shown that a solution to the isoperimetric problem in �2 × � is
invariant under the action of an isometry subgroup of the type of O(2) × O(1) which
fixes its centre of gravity. Therefore the boundary yields to a O(2)-invariant CMC
surface in �2 × �. Due to this property, in [2], there is a description of the O(2)-
invariant CMC surfaces in �2 × �. See also [5, Lemma 1.3].

In this note we extend the result of W. T. Hsiang and W. Y. Hsiang to include
helicoidal and translational CMC surfaces in �2 × �; that is CMC surfaces which
are invariant under the action of a 1-parameter subgroup G of the isometry group
Isom(�2 × �) generated by:

• translations along � (translational surfaces);
• composition of translations along � and rotations (helicoidal surfaces).
The main ingredient is the Reduction Theorem of M. Do Carmo and W. Hsiang

[1] which reduces the computation of the mean curvature of a G-invariant surface
� ⊂ �2 × � to that of �/G ⊂ (�2 × �)/G. Using the Reduction Theorem we find
a function J which is constant along the profile curve of a given G-invariant CMC
surface. We then give a qualitative description of the G-invariant CMC surfaces by an
accurate analysis of the equation J = constant.

2. Preliminaries. Let G ⊂ Isom(M) be a closed subgroup of the isometry group
of a Riemaniann manifold (M, g). The group G is a Lie group which acts on M by
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isometries. A subset S ⊂ M is called G-invariant, and G the symmetry group of S, if for
any x ∈ S and g ∈ G, with gx well defined, we have gx ∈ S.

A map f : M → N between two Riemannian manifolds is a G-invariant function if
for any x ∈ M and g ∈ G

f (gx) = f (x).

A G-invariant function ζ : M → � is simply called an invariant of G.
Let now M and N be two Riemannian manifolds with Isom(M) ⊆ Isom(N) and

let G be a closed subgroup of Isom(M). Suppose that f : M → N is a G-equinvariant
isometric immersion and suppose that the principal orbit type is the same for both
actions. Then f induces an immersion f̃ : Mr/G → Nr/G between the regular points of
the quotient spaces. The space Mr (respect. Nr) can be equipped with a Riemannian
metric so that the quotient map Mr → Mr/G (respect. Nr → Nr/G) is a Riemannian
submersion.

From now on, since all will be local, we identify M with its image f (M) ⊂ N. For
a given point x ∈ Mr ⊂ Nr let H = Gx be the isotropy subgroup of x.

With respect to an AdH-invariant metric on the Lie algebra g of G we have the
following orthogonal decomposition g = h + h

⊥, where h is the Lie algebra of H.
Therefore we can define a G-invariant metric on G/H and the space h

⊥ = Te(G/H)
generates c = dim(G) − dim(H) linearly independent Killing vector fields V1, . . . ,Vc

which are tangent to the orbit space of y ∈ U , where U ⊂ N is a neighborhood of
x. Let A(y) be a matrix with entries aij = g(Vi, Vj), and let ω(y) = √

det(A(y)) be the
volume function on the orbit G(y) = {gy : g ∈ G}. The mean curvature vector of f can
be expressed in terms of the mean curvature vector of f̃ and of the function ω(y) as is
shown in the following theorem.

THEOREM 2.1 (Reduction Theorem [1]). Let H and H̃ be the mean curvature vectors
of Mr ⊂ Nr and Mr/G ⊂ Nr/G respectively. Then

H = H̃ − grad (ln ω).

If the group G is compact, the orbits are compact and the Reduction Theorem reads
as follows.

COROLLARY 2.2 ([2], [4]). Let V (y) be the volume of G(y), n a horizontal unit normal
vector field along Mr and ñ the corresponding normal vector field to Mr/G in Nr/G. Then

H(n) = H(ñ) − Dñ(ln V ).

Let now describe the quotient metric of the regular part of the orbit space N/G.
It is well known (see, for example [7]) that Nr/G can be locally parametrized by

the invariant functions of the Killing vector fields of the Lie algebra g. Let { f1, . . . , fd},
d = dim

(
Nr/G

)
, be a complete set of invariant functions on a G-invariant subset of

Nr. Denote by g̃ the quotient metric in Nr/G and define hij = 〈∇fi,∇fj〉, where ∇ is the
gradient in (N, g).

THEOREM 2.3 (Quotient Metric Theorem [2]). The quotient metric is given by
g̃ij = hij, or, equivalently, by ds̃2 = ∑d

i,j=1 hijdfi ⊗ dfj.
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2.1. The isometry group of �2 × �. Let �2 = {(x, y) ∈ �2 : ‖(x, y)‖2 < 2} be the
disk model of the hyperbolic plane and consider �2 × � endowed with the metric

ds2 = dx2 + dy2

F2
+ dz2

where F = 2−x2−y2

2 .

PROPOSITION 2.4. The Lie algebra of the infinitesimal isometries of the product
(�2 × �, ds2) admits the following bases of Killing vector fields

X1 = (F + y2)
∂

∂x
− xy

∂

∂y

X2 = −xy
∂

∂x
+ (F + x2)

∂

∂y

X3 = −y
∂

∂x
+ x

∂

∂y

X4 = ∂

∂z
.

Proof. See, for example, [6]. �
DEFINITION 2.5. A one-dimensional subgroup G of Isom(�2 × �) is called

helicoidal if it is generated by linear combinations

bX3 + aX4 a, b ∈ �.

In particular, if b = 0 the group is translational, while if a = 0 the group is rotational.
The surfaces invariant under the action of helicoidal subgroups are called helicoidal
surfaces.

Let G be a one-dimensional subgroup of Isom(�2 × �) of translational or
helicoidal type. Since the action of G on �2 × � is free then (�2 × �)r = �2 × �.
Let � ⊂ �2 × � be a G-invariant surface. Then the orbit space B = (�2 × �)/G, can
be parametrized by the G-invariant functions u, v and endowed with the quotient
metric ds̃2. The projection of � in B is a curve γ , generally called the profile curve
of �. Parametrising γ (s) = (u(s), v(s)) by arc length s we can define σ (s) as the angle
between the tangent vector of γ and the positive direction of the u-axes.

3. CMC surfaces invariant under translations along the z-axes. Let G be the 1-
parameter group of isometries generated by translations along the z-axes, that is by
the Killing vector field X4 = ∂

∂z . In this case we can choose the following G-invariant
functions:

u = x and v = y.

In cylindrical coordinates (r, θ, z) the metric of the ambient space takes the form

ds2 = dr2 + r2 dθ2

F2
+ dz2,
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where F = 2 − r2

2 . The matrix h and its inverse take the form

(hij) =
(

F2 0
0 F2

)
(hij) =

(
1

F2 0

0 1
F2

)
.

Thus the invariant metric in the orbit space B = (�2 × �)/G = �2 is

d s̃ 2 = du2 + dv2

F2
.

Let γ (s) = (u(s), v(s)) be a curve parametrized by arc length in B and let � ⊂ �2 × �

be the surface generated by the action of G on the curve γ . Then the unit tangent
vector field to γ (s) is

t = (u̇, v̇) = (F cos σ, F sin σ ),

and the unit normal vector field is

n = (−F sin σ, F cos σ ).

The geodesic curvature of γ can be expressed as a function of σ by

kg = 1

2
√

g̃11g̃22
((g̃22)uv̇ − (g̃11)v u̇) + σ̇

= 2(uv̇ − vu̇)
(2 − u2 − v2)

+ σ̇

= u sin σ − v cos σ + σ̇ .

Now, since the volume function of the principal orbit is

ω(ξ ) =
√

〈X4, X4〉 =
√

〈E3, E3〉 = 1,

from Theorem 2.1 we have H = kg. Thus γ generates a translational surface if u and v

satisfy the following system 
u̇ = F cos σ

v̇ = F sin σ

σ̇ = H − u sin σ + v cos σ.

(3.1)

PROPOSITION 3.1. If H is constant on the surface �, then the function

J(s) = σ̇

2F

is constant along any curve γ (s) which is a solution of system (3.1). Thus the solutions of
(3.1) are given by J(s) = k, for some k ∈ �.

Proof.

J̇(s) = σ̈2F + 2σ̇ (uu̇ + vv̇)
4F2
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(from (3.1)) = 2F(−u̇ sin σ + v̇ cos σ − uσ̇ cos σ − vσ̇ sin σ )
4F2

+ 2F σ̇ (u cos σ + v sin σ )
4F2

(from (3.1)) = (−u̇ sin σ + v̇ cos σ )
2F

= 0.

�
THEOREM 3.2. The CMC surfaces in �2 × � invariant under the action of the

subgroup G generated by the Killing vector field X4 = ∂
∂z are:

(1) part of minimal vertical planes through the origin (if k = 0);
(2) part of right cylinders of radius 1/2k otherwise.

Proof. If k = 0, from Proposition 3.1, σ is constant and from (3.1) we get that
v = (tan σ )u and H = 0. The corresponding surface � is a part of a minimal vertical
plane.

If k �= 0, from Proposition 3.1, F = σ̇ /2k and from (3.1) we find, after integration,
that

u = 1
2k

sin σ + c1, and v = − 1
2k

cos σ + c2, c1, c2 ∈ �.

The corresponding surface � is clearly part of a right cylinder of radius 1/2k. �

4. Helicoidal CMC surfaces in �2 × �. Let G be the subgroup of isometries
generated by X3 + aX4 = ∂

∂θ
+ a ∂

∂z . The G-invariant functions are the solution of the
equation

∂ζ

∂θ
+ a

∂ζ

∂z
= 0,

that is

a dθ = dz,

where (r, θ, z) are cylindrical coordinates. Thus the invariant functions are

u = r v = z − aθ,

and the orbit space is B= {(u, v) ∈ �2 : 0 ≤ u <
√

2}. The gradient of u and v are

∇u = F2 ∂

∂r

∇v = −F2a
r2

∂

∂θ
+ ∂

∂z

with F = (2−r2)
2 . Therefore the matrix h (defined in Theorem 2.3) and its inverse take

the form

(hij) =
F2 0

0
r2 + F2a2

r2

 (hij) =


1

F2
0

0
r2

r2 + F2a2


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and the quotient metric is

ds̃2 = du2

F2
+ r2

r2 + F2a2
dv2.

The tangent and normal unit vector fields to the curve γ (s) are

t =
(

F cos σ,

√
u2 + F2a2

u
sin σ

)
n =

(
−F sin σ,

√
u2 + F2a2

u
cos σ

)
.

Then, after calculation of the volume function of a principal orbit

ω(ξ ) =
√

〈X3 + aX4, X3 + aX4〉 =
√(

u2

F2
+ a2

)
,

from Theorem 2.1 the mean curvature H of � can be written as

H = σ̇ + (2u)−1(u2 + 2) sin σ.

This means that the curve γ (s) is a solution of the system
u̇ = F cos σ

v̇ =
√

(u2 + F2a2)
u

sin σ

σ̇ = H − (u2 + 2)
2u

sin σ

(4.1)

with F = 2 − u2

2 .

REMARK 4.1. Reflection of a solution curve for (4.1) across a line v = c is a solution
curve for (4.1).

PROPOSITION 4.2. If H is constant on the surface �, then the function

J(s) = u sin σ − H
u2 − 2

. (4.2)

is constant along any solution of (4.1).

Proof. Deriving equation (4.2) and taking into account (4.1) we get immediately
J̇(s) = 0. �

Thus, the helicoidal CMC surfaces are solutions of the equation

u sin σ − H
u2 − 2

= k, (4.3)

for all k ∈ �. Setting C = k − H/2, equation (4.3) becomes

u sin σ =
(

H
2

+ C
)

u2 − 2C. (4.4)
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u

u

C > 0 C = 0 C < 0

Figure A. Profile curves for H >
√

2

v

u u u

v
v

C > 0 C = 0 C < 0

Figure B. Profile curves for H = √
2

From now on we shall assume that H ≥ 0, and according to its value the curve γ ,
which is a solution of (4.1), can be of three types. In fact when u → √

2, from (4.4), we
have that sin σ → H√

2
; this means that:

(I) if H >
√

2 the curve γ does not reach the line u = √
2;
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u

v

u

v

u

v

C > 0 C = 0 C < 0

Figure C. Profile curves for H <
√

2

(II) if H = √
2 the curve γ tends asymptotically to the line u = √

2;
(III) if H <

√
2 the curve γ tends to the line u = √

2 with an angle σ < π
2 .

We are now ready to prove the main result.

THEOREM 4.3. Let � ⊂ �2 × � be a CMC helicoidal surface and let γ = �/G be
the profile curve in the orbit space. Then we have the following characterization of γ

according to the value of H.
(I) (H >

√
2) – The profile curve is of Delaunay type. Moreover if

• C > 0 it is of nodary-type
• C = 0 it is of circle-type
• C < 0 it is of undulary-type or a vertical straight line

(II) (H = √
2) – The profile curve is,

• for C > 0, of folium-type
• for C = 0, of conic-type
• for C < 0, of bell-type

(III) (H <
√

2) – The profile curve is,
• for C > 0, of bounded folium-type
• for C = 0, of helicoidal-type or a horizontal straight line for H = 0
• for C < 0, of catenary-type.

In the Figures (A, B, C) there is a plot of all profiles.

Proof. We shall prove the theorem in three steps: C > 0, C = 0 and C < 0.
Step 1 – C > 0. By solving the quadratic equation (4.4) we have

u1,2 = sin σ ±
√

sin2 σ + 4C(2C + H)
(2C + H)

. (4.5)

In this case it is easy to check that um ≤ u ≤ uM , where

um = −1 + √
1 + 4C(2C + H)
(2C + H)

, and uM = 1 + √
1 + 4C(2C + H)
(2C + H)

.
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Choosing initial conditions u(0) = um and v(0) = 0, we have:

σ (0) = 3π/2, σ̇ (0) = H + u2
m + 2
2um

> 0.

Thus the angle σ (s) turns in the positive direction. Moreover uM satisfies the equation
u = ( H

2 + C)u2 − 2C and, combining with (4.4), we find sin σ (s2) = 1 (i.e. σ (s2) = π/2),
where u(s2) = uM for some s2 > 0.

Now, from the third equation of (4.1), σ̇ (s) = 0 when sin σ (s) = 2u(s)H
2 + u(s)2 , or, using

(4.4), when the function u(s) satisfies the equation

(H + 2C)u4 − 2Hu2 − 8C = 0. (4.6)

The latter equation does not admit real solutions in [0,
√

2), thus σ (s) is always
increasing. This means that there exists an s1 ∈ (0, s2) so that σ (s1) = 2π . Therefore in

u(s1) =
√

4C
2C + H there is a local minimum.

Now if H >
√

2, uM <
√

2 and, according to Remark 4.1, we can reflect the curve
infinitely many times. The resulting curve is of nodary-type.

If H = √
2, the profile curve tends asymptotically to the line u = √

2 and it can be
reflected only one time. The curve together with its reflection is called of folium-type.

Finally if H <
√

2, uM >
√

2 and the curve tends, bounded from above, to the line
u = √

2.
Step 2 – C = 0. Since u sin σ = Hu2/2, we can choose initial conditions u(0) =

um = 0 and v(0) = 0. In s = 0 the value of σ is not determined while in s = s1, with
u(s1) = uM = 2/H, σ (s1) = π/2. Moreover σ̇ (s) > 0 in (0,

√
2). Then, as in the case

C > 0, we have the following three subcases.
If H >

√
2, uM <

√
2 and, according to Remark 4.1, we can reflect the curve

infinitely many times. The resulting curve is of circle-type.
If H = √

2, the profile curve tends asymptotically to the line u = √
2 and it can be

reflected only one time. The curve together with its reflection is called of conic-type.
Finally if H <

√
2, uM >

√
2 and the curve tends, bounded from above, to the line

u = √
2. When H = 0 we have that σ = 0 for all u, thus the profile curve is a horizontal

line and the resulting helicoidal surface is the standard helicoid. For this reason we
shall call this type helicoidal.

Step 3 – C < 0. Differently from the first two steps in this case we have to check
that the discriminant of (4.5) is positive; this is the case when:

(3a) C ≤ −H
2

,

(3b) −H
2

< C <
−H − √

H2 − 2
4

, with H ≥ √
2,

(3c)
−H + √

H2 − 2
4

< C < 0, with H ≥ √
2,

(3d) C = −H ± √
H2 − 2

4
, with H ≥ √

2.

In (3a) we have um ≤ u ≤ uM where:

um = 1 − √
1 + 4C(2C + H)
(2C + H)

, and uM = −1 − √
1 + 4C(2C + H)
(2C + H)

.

First note that um <
√

2 if and only if H <
√

2.

https://doi.org/10.1017/S001708950400179X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950400179X


320 STEFANO MONTALDO AND IRENE I. ONNIS

Choosing initial conditions u(0) = um and v(0) = 0, and observing that um satisfies
the equation u = ( H

2 + C)u2 − 2C, from (4.4) we deduce that sin σ (0) = 1 (i.e. σ (0) = π
2 ).

Moreover σ̇ (0) = H − u2
m + 2
2um

< 0, thus σ (s) turns in the negative direction.

Since the Equation (4.6) does not admit real solution in (um,
√

2) the function σ

is always decreasing and the curve γ tends to the line u = √
2 under an angle H/

√
2.

The profile curve, after reflection, is then of catenary-type.
In (3b) um ≤ u ≤ uM where

um = 1 − √
1 + 4C(2C + H)
(2C + H)

, and uM = 1 + √
1 + 4C(2C + H)
(2C + H)

.

An easy computation shows that um >
√

2 for all H and C, thus in this case we don’t
have solution.

In the case (3c) um ≤ u ≤ uM , where

um = 1 − √
1 + 4C(2C + H)
(2C + H)

, and uM = 1 + √
1 + 4C(2C + H)
(2C + H)

.

Easily we can see that

sin σ = (H + 2C)u2 − 4C
2u

> 0,

thus 0 < σ (s) < π . Choosing initial conditions u(0) = um and v(0) = 0 we find σ (0) =
π/2 and

σ̇ (0) = H[1 + 4C(2C + H)] + (4C + H)
√

1 + 4C(2C + H)
4C(2C + H)

< 0.

This means that the angle σ (s) turns in the negative direction. Note that for u(s2) = uM ,

σ (s2) = π/2. Moreover Equation (4.6) admits the real solution u(s1) = 2
√

−C
2C + H , for

some s1 ∈ (0, s2). This implies that in s1 there is a local minima of σ (s) and the curve
γ , for s > s1, turns in the positive direction. If H >

√
2 the curve γ can be reflected

infinitely many times and is of undulary-type. While if H = √
2 the curve γ tends

asymptotically to the line u = √
2 and can be reflected only one time giving a bell-type

profile.
In the last case (3d) sin2 σ = 1, and from u = sin σ

2C + H and 2C + H > 0, we must
have σ = π/2. Thus we find a vertical straight line that, after the action of the helicoidal
group, gives the right cylinder of radius r = 1

2C + H . Note that r <
√

2 if and only if

C = −H +√
H2 − 2

4 < 0. �
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