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Abstract
When exposed to intense electromagnetic fields, the quantum vacuum is expected to exhibit properties of a polarizable

medium akin to a weakly nonlinear dielectric material. Various schemes have been proposed to measure such vacuum

polarization effects using a combination of high- power lasers. Motivated by several planned experiments, we provide an

overview of experimental signatures that have been suggested to confirm this prediction of quantum electrodynamics of

real photon–photon scattering.
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1. Motivation

The increasing availability of multi-hundred TW and PW

lasers[1] brings the confirmation of long-predicted phenom-

ena of strong-field quantum electrodynamics (QED)[2, 3]

closer. A multitude of effects on the polarization, wavevector

and frequency of photons that probe the polarization of the

charged virtual pairs of the vacuum have been theoretically

investigated. All of these effects can be understood in

terms of the single process of ‘photon–photon scattering’.

The current best experimental limit on the predicted cross-

section for photon–photon scattering using just high-power

laser pulses lies eighteen orders of magnitude above QED[4],

but recent laser-cavity experiments such as BMV[5] and

PVLAS[6] have reduced this to six and three orders of

magnitude, respectively (or three orders of magnitude and a

factor 50, respectively, at the level of the refractive index).

Moreover, coinciding with the completion of the XFEL

laser at DESY, an experiment at the HIBEF facility[7] plans

to measure one manifestation of photon–photon scattering,

namely the birefringence of the vacuum, using the XFEL

beam and a 1 PW optical laser. This has generated much

interest in vacuum polarization effects.

The aims of this work are two-fold. First, the main an-

alytical approaches used to study photon–photon scattering

will be shown to be essentially equivalent for predictions of

planned laser experiments. Second, an overview of the pre-

dicted signatures of real photon–photon scattering in various
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Figure 1. Vacuum polarization loop in QED. Wavy and straight lines

represent photons and fermions (electrons and positrons), respectively.

experimental scenarios will be provided, which is also hoped

to be useful for the nonspecialist and, in particular, promote

discussions between theorists and experimentalists.

2. Introduction: vacuum polarization

Vacuum polarization, depicted in the Feynman diagram of

Figure 1, is a basic radiative correction that modifies the

propagation of photons in vacuum through the appearance

of virtual pairs in a ‘fermion loop’.

There are two complementary interpretations of this ef-

fect. The first is based on what is called ‘old-fashioned’

perturbation theory which emphasizes energy considerations

at the price of manifest covariance[8]. In this interpreta-

tion, Heisenberg’s uncertainty relation is invoked to show

how quantum mechanics predicts energy and momentum

conservation may be violated. The amount of this viola-

tion is inversely proportional to the space–time scale over

which it occurs. This effect is represented by short-lived

‘virtual’ particles. The second, equivalent interpretation is

manifestly covariant and regards the virtual pairs as quantum
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fluctuations. In this interpretation, at any space–time point

there is a nonvanishing probability amplitude for a photon

to fluctuate into a pair (or a pair and a photon or in fact any

number of particles allowed by the original photon quantum

numbers). In this view, energy–momentum conservation is

not violated, but the virtual particles do not obey Einstein’s

famous equation relating energy and mass.

The main physical effect of vacuum polarization is charge

renormalization due to polarization screening as explained

in any standard quantum field theory text[9]. The electric

charge of a particle increases as one ‘dives’ into its virtual

polarization cloud, hence with decreasing distance from the

particle. As a result, the electric charge becomes scale-

dependent which may be expressed in terms of a distance-

dependent fine structure constant, α = α(R). At distances

large compared to the electron Compton wavelength, R =
λ̄e = h̄/mc, the typical length scale of QED, one has α =
e2/4π h̄c � 1/137. However, at the much smaller Compton

wavelength of, say, the Z boson, R = λ̄Z = h̄/MZ c, the

QED coupling α increases to α(λ̄Z ) � 1/128.

At typical laser energies, the dominant screening particles

are indeed pairs of virtual electrons and positrons. Their

(virtual) presence may be probed by coupling them to ad-

ditional photons (see Figure 2), which may represent either

fluctuating quantum fields or classical background fields

such as provided by lasers. In either case, we are led to

consider the probing of vacuum polarization by ‘photon–

photon scattering’. When large numbers of photons are

involved, a classical metaphor of this quantum effect is

of charged vacuum pairs forming a polarizable ‘vacuum

plasma’ medium with a nonlinear susceptibility and perme-

ability. An important consequence of this quantum correc-

tion to Maxwell’s equations is the violation of the principle

of superposition for electromagnetic waves in vacuum.

3. Analytical methods

The microscopic theory describing laser–matter or laser–

laser interactions is QED described by the Lagrangian

LQED = ψ̄(i/∂ − m)ψ − 1
4 Fμν Fμν − eψ̄ /Aψ, (1)

the separate terms representing the Dirac, Maxwell and

interaction Lagrangians, respectively. The latter derives

from ‘minimal substitution’, that is the replacement of the

ordinary by the covariant derivative, i∂ → i∂ − eA ≡ iDA
in the free Dirac term, which leads to the usual coupling

of the photon field Aμ to the Dirac current jμ = eψ̄γ μψ

as eψ̄ /Aψ = Aμ jμ. An intense laser field will normally be

included as a classical, external background field Aext by the

prescription of replacing A → A + Aext in the interaction

term only. This guarantees that Aext is not altered by the

interaction because the Maxwell term will only contain the

Figure 2. Probing vacuum polarization by photon–photon scattering.

field strength tensor built from the fluctuating fields Aμ,

i.e., Fμν = ∂μ Aν − ∂ν Aμ.

In this contribution we are interested in laser–laser inter-

actions. In this case, the centre-of-mass energy (even for

x-rays) will always be much lower than the electron rest

energy, mc2. It is thus sufficient to work with the low-energy

effective field theory obtained from the QED Lagrangian

by ‘integrating out’ the Dirac fields. This can be done by

employing the functional integral representation of the QED

vacuum persistence amplitude Z relating in and out vacua:

Z =
∫

DADψ Dψ̄ exp(iSQED[A, ψ, ψ̄])

≡
∫

DA exp(iSeff[A]). (2)

In the second step, the fermionic degrees of freedom have

been integrated out by performing a Gaussian integral result-

ing in a fermionic determinant,

exp(iSeff[A]) = exp

(
Tr ln

i /D A − m
i/∂ − m

)
, (3)

where we have re-exponentiated using Det = exp Tr ln.

The fermionic determinant depends on the photon field A
and can only be evaluated analytically for special config-

urations such as constant fields. Alternatively, one may

perform a derivative (i.e., low-energy) expansion[10, 11], the

leading order of which coincides with the constant field

evaluation. For QED this has been done long ago (using

different techniques)[12–14], the result being the celebrated

Heisenberg–Euler Lagrangian

LHE = − m4

8π2

∫ ∞

0

ds
exp(−s)

s3

×
[

s2ab cot as coth bs − 1 + s2

3
(a2 − b2)

]
, (4)
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where the dimensionless secular invariants a and b are given

by:

a = [
√
F2 + G2 + F]1/2

Ecr
; b = [

√
F2 + G2 − F]1/2

Ecr
.

These contain the two electromagnetic invariants

F = −Fμν Fμν/4 = (E2 − B2)/2, (5)

G = −Fμν F̃μν/4 = E · B = 0, (6)

with field and dual field strength tensors, electric and mag-

netic fields (Fμν , F̃μν , E and B, respectively) and the critical

field strength:

Ecr = m2c3

eh̄
≡ m2

e
. (7)

(Note that we now adopt natural units, h̄ = c = 1, for the
remainder of this section unless otherwise explicitly stated.)

The critical, ‘Sauter’[15] or ‘Schwinger’[14] field strength Ecr

is built from the fundamental constants of QED and is the

typical field-scale separating weak (E � Ecr) from strong-

field (E > Ecr) vacuum polarization phenomena.

The Heisenberg–Euler Lagrangian (Equation (4)) is equiv-

alent to QED for arbitrary values of the field strength but

at energies small compared to mc2. For the foreseeable

future, laser experiments will stay well below the critical

field strength, hence in the weak-field limit. Thus, to a very

good approximation, it is sufficient to work with the leading

order in a field strength expansion of Equation (4) given by:

L(2)
HE � c1F2 + c2G2, (8)

with dimensionless low-energy constants{
c1

c2

}
= 2α2

45m4

{
4

7

}
. (9)

These define effective vertices corresponding to the low-
energy limit of the diagram in Figure 2 with the fermion loop

no longer being resolved, see Figure 3.

The cross-section for the low-energy limit of real photon–

photon scattering depicted in Figure 3 is given by[16]:

σ = 973

10125π
α4

( ω

m

)6
λ̄2

e

[
1 + 640

2919

( ω

m

)2
]

; ω � m

whereas the high-energy limit is given by[17–19]:

σ = 4.7 α4
(m

ω

)2
λ̄2

e; ω � m.

The maximum of the cross-section is at the pair-creation

threshold of colliding photon centre-of-mass energies ω =
m.

Figure 3. The leading-order Heisenberg–Euler vertex or photon–photon

scattering at low energies.

Figure 4. A probe photon (wavy lines) scattering off a classical laser

background (dashed lines) at low energy (so that the Heisenberg–Euler

vertex can be employed).

3.1. Scattering matrix

In what follows, we will consider a modification of the

4-photon scattering amplitude at low energy by assuming

that two of the photons involved are stemming from a

high-intensity laser which is probed by a dynamical photon

‘passing through’. This is visualized in Figure 4.

We assume that an incoming probe photon with four-

momentum k and four-polarization ε scatters off a laser

background described by a field strength tensor Fμν resulting

in an outgoing photon with quantum numbers k′ and ε′.
The resulting scattering amplitude is given by the S-matrix

element

〈ε′, k′; out|ε, k; in〉 = 〈ε′, k′|Ŝ|ε, k〉 ≡ Sfi(ε′, k′, ε, k).

(10)

Using the leading-order Lagrangian (Equation (8)), using

Sfi(q) to denote S f i (ε
′, k′, ε, k), the S-matrix element takes

on the simple form of a Fourier integral

Sfi(q) = −i

∫
d4x eiq·x Sfi(x), (11)
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where q = k′ − k is the momentum transfer and

Sfi(x) = c1(k′, Fε′)(k, Fε) + c2(k′, F̃ε′)(k, F̃ε), (12)

employing the abbreviated scalar products (k, Fε) ≡
kμFμνεν , etc. Hence, one may introduce an intensity form
factor,

W μα,νβ(q) ≡ −i

∫
d4x eiq·x (c1 FαμFβ,ν + c2 F̃αμ F̃β,ν),

(13)

which is the Fourier transformation of the background in-
tensity distribution. In terms of the latter, the scattering

amplitude may be written as

Sfi(q) = ε′
αk′

μW μα,νβ(q)kνεβ. (14)

The results above are reminiscent of elastic electron nucleus

scattering, where the scattering amplitude is proportional

to the nuclear charge form factor which is nothing but

the Fourier transform of the nuclear charge distribution.

In photon–photon scattering, one is naturally probing an

intensity, rather than a charge, distribution. To proceed, one

has to choose a suitable laser background field, Fμν(x), and

calculate its intensity form factor (Equation (13)).

3.2. Polarization operator

An equivalent representation is obtained in terms of a quan-

tity aptly called the polarization operator, denoted Πμν . In

its simplest incarnation it is just the mathematical expression

for the Feynman diagram of Figure 1, namely

Πμν = −ie2 trγ

∫
d4 p

(2π)4
γ μ 1

/p − m
γ ν 1

(/p − /k − m)
, (15)

where the trace trγ extends over the Dirac matrices γ μ. One

may generalize this to the polarization tensor in an external

field Aext, where one trades the free fermion propagators for

interacting ones through the standard minimal substitution

p → p−eAext. Indeed, this method has a long history[20–23]

as reviewed by Ref. [24]. For our purposes it is sufficient

to just employ the first-order weak-field Heisenberg–Euler

Lagrangian (Equation (8)) once again and rewrite it as

L(2)
HE = 1

2 AμΠμν[Aext]Aν, (16)

with the polarization tensor thus defining the second-order

term. From Equation (8) one can straightforwardly read off

that

Πμν[Aext] = c1

2
kα FαμFβνkβ + c2

2
kα F̃αμ F̃βνkβ, (17)

where the background field strength Fμν = ∂μ Aν
ext−∂ν Aμ

ext.

To connect this approach with the S matrix formalism

we specialize to forward scattering by setting k = k′ in

Equation (12) which yields the relation

Sfi,fwd(k) = ε′
μ(k)Πμν(k)εν(k). (18)

This makes the link between the polarization operator and

scattering matrix approaches manifest.

3.3. Modified Maxwell equations

In standard quantum field theory notion[9], the total Heisenberg–

Euler action, Seff = ∫
d4x Leff, is nothing but the one-

loop effective (or quantum) action of QED evaluated at low

energies where there are no external electron lines. The

associated effective Lagrangian is the sum of the classical

Maxwell term LM = (E2 − B2)/2 and the first quantum

correction:

Leff = LM + LHE. (19)

By variation of the quantum action, one can derive the

corresponding modified Maxwell equations[25]:

∇ · E = ρvac; ∇ ∧ B = Jvac + ∂t E, (20)

in which:

ρvac = ∇ · Pvac; Jvac = ∇ ∧ Mvac + ∂t Pvac (21)

and the vacuum polarization and magnetization are:

Pvac = ∂LHE

∂E
; Mvac = ∂LHE

∂B
. (22)

The wave equations:

∂2
t E − ∇2E = −∇ρvac[E, B] − ∂t Jvac[E, B], (23)

∂2
t B − ∇2B = ∇ ∧ Jvac[E, B], (24)

can be solved using, for example, the method of Green’s

functions.

4. Signatures of vacuum polarization

The most general vacuum polarization diagram represents

an elastic scattering amplitude that relates an incoming

ensemble of photons |k1, . . . , kn〉, which interact in some

experimental scenario, to an outgoing ensemble of photons

|k′
1, . . . , k′

n′ 〉. In this review, we concentrate on processes

that could be measured using high-power lasers. The fields

of these lasers are included in calculations in various ways.

A ‘monochromatic plane wave’ will refer to an infinitely
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Figure 5. Photons from the pump (dashes) interact with those from the

probe to produce a pump-dependent vacuum index of refraction.

extended wave with no transverse structure, a ‘beam’ will

refer to some inclusion of structure, e.g., a cylinder of

radiation is a ‘beam’, a ‘focused beam’ will imply some

approximation to a real beam with focal width as a parameter

and a ‘pulse’ to a field localized in time with pulse duration

as a parameter. Since laser pulse wavelengths are much

larger than the Compton wavelength, and since expected

electric field strengths are much less than the critical Sauter

field, equivalent to an intensity of the order of 1029 W cm−2,

the interaction of laser pulses with virtual electron–positron

pairs can be expanded in terms of weak fields. Starting at

n = 2 as in Equation (8), each perturbative order describes a

vacuum 2n-wave mixing process. It is noteworthy that unlike

when real electrons and positrons interact with intense laser

fields, for virtual electron–positron pairs, the number of laser

photons involved is typically small[26], which is why the

discussion is mostly in terms of four-wave mixing processes

such as in Figure 5. This means the vacuum is often

compared to a nonlinear optical material with a Kerr-like

response[27]. Although there is a large overlap with nonlinear

optics, a major difference is the way the polarization of the

dielectric (here, the vacuum) can be shaped by the pump

laser pulse.

The majority of suggested signals of vacuum polarization

can be described by considering how the photons from a

probe laser change due to interaction with a more intense

pump laser. The pump laser will also be referred to as the

‘background’ or the ‘strong field’ where appropriate. The

probe laser quantities will often be denoted with subscript

p and the pump or strong laser quantities with the subscript

s. The source of probe photons will mostly be a high-power

laser, which, satisfying E/Ecr � √
α(ω/m)2, often allows

the external field concept to be invoked for the probe[28].

Therefore, the discussion will include interchangeably ef-

fects on probe photons and on the probe electromagnetic

field, which assumes the photon-scattering process can be

summed incoherently over the probe photon distribution. We

begin by reviewing the consequence of real photon–photon

scattering at the level of probe laser photons:

γ (ω, k, ε(k)) → γ (ω′, k′, ε′(k′)). (25)

Three measurable quantities have been highlighted – the

effect on the probe’s frequency ω, its wavevector k and its

polarization ε(k) and these will be discussed in turn.

4.1. Effects on probe photon polarization

Vacuum birefringence refers to the prediction that the re-

fractive index experienced by a probe propagating through

regions of intense, but weakly varying strong fields of

amplitude Es is of the form[20, 29]:

n‖,⊥
vac = 1 + (11 ∓ 3)α

45π

E2
s

E2
cr

, (26)

where the ‖ (⊥) indices apply to a probe polarized parallel

(perpendicular) to the strong background. This result may

be derived from the Heisenberg–Euler quantum equation of

motion,

(∂λ∂
λgμν − ∂μ∂ν + Πμν)Aν = 0. (27)

A plane-wave ansatz for Aν implies two secular equations or

dispersion relations,

k2 − Π1,2(k) = (gμν − c1,2T μν)kμkν = 0, (28)

where Π1,2 = c1,2(k, T k) are the two nontrivial eigenvalues

of the polarization tensor (Equation (17)), expressed in

terms of the background energy–momentum tensor T μν =
Fμ

α Fαν . The dispersion relations (Equation (28)) describe

the change in light propagation caused by the energy–

momentum density stored in the background field and have

been referred to as modified light-cone conditions[30, 31].

They imply group velocities different from the vacuum speed

of light, c, and hence the refractive indices (Equation (26))

different from unity, which can be rewritten as n‖,⊥
vac = 1 +

Π1,2/2ω2
p, ωp = k0c being the probe frequency.

The result for the refractive indices has been shown

to hold to all perturbative orders using the polariza-

tion operator[20, 31, 32] and Heisenberg–Euler Lagrangian

numerically[33, 34] and analytically[34]. When the pump field

is space–time-dependent as is the case for laser pulses, the

effect on the probe is calculated by integrating over the

inhomogeneous refractive index of the pump background[35].

There has also been recent work indicating finite-time effects

in an inhomogeneous background may leave a detectable

signal[36].

Polarization flip is the underlying physical mechanism

of vacuum birefringence. The term is used when an

incoming photon’s polarization vector εμ is ‘flipped’ to an

orthogonal one ε′ μ due to real photon–photon scattering.

Linearly polarized probe photons can flip if the background

contains some ellipticity and circularly polarized probe
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photons if the background contains some linear polarization.

The flip amplitude (for a head-on collision of probe and

background) after a propagation distance z can be found

from the Heisenberg–Euler forward scattering amplitude

(Equation (18)) and coincides with the birefringence-

induced ellipticity[37],

e ≡ 〈ε′, k|S|ε, k〉 = 2E2
s ωpz(c2 − c1), (29)

where ε · ε′ = 0. Note the dependence on the difference
of the low-energy constants. This implies that a confirma-

tion of vacuum birefringence would rule out other versions

of electrodynamics popular in beyond-the-standard-model

physics such as Born–Infeld theory, which has c1 = c2
[38–40].

From Equation (26), the flip amplitude or ellipticity (Equa-

tion (29)) has the equivalent representation

e = ωpz
n⊥

vac − n‖
vac

2
, (30)

which is proportional to the difference in refractive indices,

hence the phase shift between different polarizations.

Detailed calculations have been performed for photons

propagating in an arbitrary plane-wave background[22, 37],

and the kinematic low-energy limit relevant for laser-based

experiments was found to be consistent with use of the

Heisenberg–Euler approach for calculating birefringence

and ellipticity[41]. A study of the dependency of the flip

and nonflip amplitude on spatial and timing jitter and angle

of incidence[42] was performed, with the results also being

consistent with a previous similar study in the low-energy

limit[43]. Both studies[42, 43] found that modelling the

background as a focused paraxial Gaussian beam without

taking into account the finite pulse duration led to an order of

magnitude discrepancy in the number of scattered photons.

Induced ellipticity is a consequence of birefringence as

pointed out in the previous subsection, see Equations (29)

and (30). The polarization of a linearly polarized probe plane

wave can be described with the vector:(
ε‖
ε⊥

)
= cos ϕ

(
cos θ

sin θ

)
, (31)

where ϕ is the probe phase. If, over some probe phase ωpz
the ‖ and ⊥ components experience a different refractive

index, then when the phase shift δϕ‖,⊥ = n‖,⊥ωpz � 1, the

polarization changes to:(
ε‖
ε⊥

)
=

[
cos θ −cos θ δϕ‖
sin θ −sin θ δϕ⊥

] (
cos ϕ

sin ϕ

)
, (32)

and the originally linearly polarized probe is now elliptically

polarized. If the background is constant, the ellipticity can

be written[44]:

e = ωpz
n⊥

vac − n‖
vac

2
sin 2θ, (33)

which generalizes Equation (30). The induced ellipticity in

the interaction of an x-ray probe plane wave of wavelength

λp = 0.4 nm counterpropagating with a Gaussian pump

beam of intensity 1023 W cm−2 and wavelength λs =
745 nm focused to 8 μm was calculated[44] to experience an

ellipticity of e ≈ 5×10−9 rad when measured at a distance of

0.25 m from the pump–probe collision. By considering the

same pump energy distributed over two pump Gaussian laser

beams counterpropagating with a Gaussian probe beam, a

modest improvement of around
√

2 was found, and the near-

field-induced ellipticity[45]

e = 2πα

15

Is

Icr

zeff.

λp
sin 2θ; zeff. = zr,pzr,s

zr,p + zr,s
, (34)

with the effective interaction length between the two

Gaussians zeff. depending on the probe zr,p and pump

zr,s Rayleigh lengths. This agrees with the expressions

calculated for a monochromatic probe plane wave counter-

propagating with a Gaussian pump[46] in the limit zr,p → ∞.

Polarization rotation is the macroscopic consequence of

coherent polarization flipping at the photon level. The effect

on the transverse photon polarization states in Equations (31)

and (32) has the consequence that the polarization angle θ

will rotate as the initially linearly polarized probe acquires

an ellipticity. The ellipse traced out by the probe field vector

can be seen to be[47]:

x2 − 2xy cos(δϕ⊥ − δϕ‖) + y2 = sin2(δϕ⊥ − δϕ‖), (35)

where x cos θ = ε‖ and y sin θ = ε⊥. For an x-ray

probe counterpropagating with an optical Gaussian pump

beam, the rotation angle was found to be the same order of

magnitude as the induced ellipticity[44, 45].

4.2. Effects on probe photon wavevector

On the photon level, four-wave mixing as depicted in Fig-

ure 5 can be understood as two incoming photons, one from

the probe and one from the pump, being scattered to two

outgoing photons, one being back into the pump field and

the other being the signal of the vacuum interaction. Conser-

vation of momentum permits the scattered photons having

a wider transverse distribution than the probe and strong

background, hence allowing one to spatially separate the

photon–photon scattering signal from the large background

of pump and probe laser photons.

On the classical level, a refractive index nvac different from

unity, implies altered transmitted wavevectors via Snell’s

law, and altered transmission T and reflection coefficient R
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Figure 6. Predicted diffracted electric field in a collision of two

counterpropagating Gaussian beams. Adapted from [47].

via Fresnel’s law at perpendicular incidence[48]:

T = 4 nvac

(1 + nvac)2
; R =

(
1 − nvac

1 + nvac

)2

. (36)

If the vacuum refractive index is written as nvac = 1 + δnvac,

the effect on probe transmission ∼O(δnvac) whereas the

effect on reflection ∼O(δn2
vac).

If the probe beam is considered to be much wider than

the pump background, the region of polarized vacuum can

be considered to ‘diffract’ the probe. An example of such

a ‘single-slit’ diffraction pattern is given in Figure 6. It is

well known that the far-field diffracted field is related to

the Fourier transform of the aperture function[49], and via

Babinet’s principle, this can be related to an integral over the

region of refractive index different from unity. We underline

the connection of this classical analogue to the intensity form

factor of the scattering matrix approach Equation (13).

Vacuum diffraction was considered in the collision of a

plane probe and a focused Gaussian pump beam[44], and

extended to the collision of focused Gaussian probe and

pump beams[50]. The advantage of this signal is that for

increasing scattering angle, while the focused laser back-

ground is exponentially suppressed, the scattered photon

vacuum signal is power-law suppressed. In the detector

plane then, the number of scattered photons can be cal-

culated in ‘measurable’ regions, where the signal-to-noise

ratio is much larger than unity. One interesting scenario

was calculated of colliding two parallel, highly focused

Gaussian pump beams with a wide weakly focused Gaussian

probe beam, such that the photons scattered in the two

slit-like polarized regions around the pump beams would

interfere and hence together form an all-optical double-slit

experiment[50]. For the case of two colliding Gaussian

pulses, the dependency of the diffracted photon signal on

experimental parameters such as the total beam power,

spatial and timing jitter, angle of collision, pulse duration,

probe wavelength and focal width has been carried out[43].

With 10 PW total laser power split into pump and probe

focused optical pulses, of the order of a few photons were

predicted to be diffracted into measurable regions on a

detector place 1 m from the interaction centre. These

results were verified in a study by different authors[51], who

used a different beam model. The diffraction paradigm

was extended from single and double slits to a ‘diffraction

grating’ of having a probe beam diffract off a regular series

of pump beams[52]. Only on positions of the detector where

the Bragg condition:

nq = 2kp sin
θ

2
,

for integer n, probe wavenumber kp, wavenumber of the

pump beam structure q and angle between incoming and

diffracted probe θ , is there constructive interference of the

signal of scattered photons. Since the addition of diffracted

waves occurs at the level of the field, and since the number

of photons scattered depends upon the total diffracted field

squared, there is an enhancement in such a setup propor-

tional to the square of the number of modulation periods.

Alternatively, rather than using many beams, a single, wide-

angle beam diffracting with itself at the focus has also been

studied[53], with the conclusion that the number of diffracted

photons increases exponentially with the angular aperture.

Since only the near-field signal was presented, more work is

required to determine measurability in this scheme.

The idea of using the diffracted photons’ flipped polariza-

tion as well as their altered wavevector in an experimental

measurement was explored for the wide-angled single-beam

setup[53], a single propagating Gaussian beam taking into

account higher orders in a Hermite–Gauss expansion[54] and

has been most recently applied to the upcoming HIBEF

experiment[55].

Vacuum reflection refers to the back-scattering of photons

in real photon–photon scattering. Static magnetic inhomo-

geneities of the form of a Lorentzian, Gaussian and oscillat-

ing Gaussian have been studied[56] and more recently static

electromagnetic inhomogeneities but most significantly scat-

tering in a Gaussian beam[57], although calculations for

pulses of a finite duration are still to be performed.

4.3. Effects on probe photon frequency

The frequency of probe photons can change via interac-

tion with the polarized vacuum. However, this effect is

much more difficult to measure experimentally because of

the limited range of energy and momenta for which it is

permitted. Suppose via the four-photon interaction, two
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Figure 7. Parametric frequency upshifting (left) and downshifting (right)

can occur between pump and probe through the vacuum interaction.

photons from the strong pump background merge with a

probe photon as depicted in Figure 7. Then via energy–

momentum conservation:

ωp + ωs,1 + ωs,2 = ω′; kp + ks,1 + ks,2 = k′, (37)

but at the same time, the photon must be real to propagate to

the detector so ω′2 = k′ · k′. This constrains the allowed fre-

quencies, momenta and angles that can be combined. Similar

relations occur for Raman and Brillouin scattering[58], except

all the waves here are electromagnetic.

Vacuum parametric frequency shifting has been calcu-

lated for special beam configurations. Combining three

monochromatic plane waves at right angles, whose wave-

lengths are 800, 800 and 400 nm, was predicted to produce

a signal that is spatially and frequentially (at 267 nm)

separated from the background[59]. For respective beam

powers 0.1, 0.1 and 0.5 PW, taking the interaction region to

be cuboidal, on average 0.07 photons would be frequency-

upshifted per collision of the beams, which is predicted to be

larger than the Compton-scattering background. A signature

of the frequency-shifting four-wave mixing process on

the number of total measurable diffracted photons for a

collision of two ultra-short focused Gaussian pulses was also

calculated[43]. For 10 PW total beam power split into a probe

with wavelength 228 nm and duration 2 fs, as the duration

of the 910 nm pump is reduced to 1 fs, the total number of

diffracted photons is predicted to change by around 20%,

equal to one photon per shot. Calculations beyond the

paraxial approximation recently performed[60] for two co-

propagating beams of different frequencies incident on a

parabolic mirror suggest 1–10 PW laser beams are required

to observe vacuum frequency mixing, although the method

of detecting the signal needs to be given more attention.

Vacuum high-harmonic generation can take place if the

colliding laser pulses have the same frequency. Then via the

four-wave mixing process in Equation (37), if ωp = ωs,1 =
ωs,2 = ω, the signal of the vacuum process has a frequency

ω′ = 3ω and so is at the third harmonic of the probe. By

considering six-, eight- and in general 2n-wave mixing as

depicted in Figure 8, it can be seen that a harmonic spectrum

for the vacuum interaction can be produced. As each extra

interaction between the virtual pair and a laser photon is

weighted at the amplitude level with a factor E/Ecr � 1,

Figure 8. Vacuum high-harmonic generation of the nth harmonic of the

probe via 2n-photon scattering.

Figure 9. Vacuum high-harmonic generation of the nth harmonic of the

probe via a chain of six-photon scattering.

higher harmonics are in general exponentially suppressed.

Nevertheless, the harmonic spectrum produced by a standing

wave formed of two monochromatic pump laser beams was

calculated for subcritical (E < Ecr) strengths where higher

harmonic orders j were found[61] to follow the hierarchy

(E/Ecr)
4 j . In a setup involving three beams, the minimum

power of each laser required to scatter one photon was found

to be:

Pmin ≈ 33.5
λ

1 nm

w0

1 nm

(
1 fs

τ

)1/3 (
1 fs

τc

)2/3

GW, (38)

for typical beam cross-sectional dimension w0, interaction

duration τ and coherence time τc. The most likely fre-

quency of the scattered photon is, however, the fundamental

harmonic. The intensity at which a single focused laser

pulse will begin to produce harmonics via self-interaction

has been studied[62], with the conclusion that a pulse of

1000 nm photons focused within a cone of angle 0.1 rad

will produce one photon per period at 5 × 1027 W cm−2.

A recent calculation of an alternative route to high-harmonic

generation through having many scattering events involving

low numbers of photons[63–68] (as in Figure 9) has recently

been suggested to be more efficient. For the collision

of a Gaussian probe at much higher frequency than the

background, if the parameter (64α/105π)(E3
s E p/E4

cr)ωpτs ,

where τs is the duration of the pump, can be made close to

unity, harmonic generation will dominate, with the spectrum

displaying a power-law behaviour and the appearance of a

corresponding electromagnetic shock[34].

Photon splitting as depicted in Figure 10, is sometimes

thought of as the opposite of high-harmonic generation,

but unlike harmonic generation, the emitted photons can

have a continuum of energies. If one considers splitting
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Figure 10. An incoming probe photon can split into k outgoing ones, due

to interaction with the background.

to two photons via four-wave mixing then via energy and

momentum conservation, one possibility is:

ωp + ωs = ω′
1 + ω′

2; kp + ks = k′
1 + k′

2, (39)

where now two constraints on these equations are (ω′
1,2)

2 =
k′

1,2 · k′
1,2. The continuum of allowed energies and the

possibility for a wide angular distribution of emitted photons

makes this process worthy of study. The process has been

comprehensively studied for a probe photon propagating

through a plane-wave background of arbitrary form and

polarization[69], which was found to depend on the two

parameters η = ωpωs/m2 and χ = (ωp/m)(E/Ecr). Two

events per hour were predicted using 108 250 MeV tagged

photons per second almost counterpropagating with 100 fs

1015 W cm−2 1 keV XFEL beams separated by 93 ns.

Alternatively, two events per hour were also predicted using

108 100 MeV tagged photons counterpropagating with a

1 Hz 1 eV optical pump of intensity 1025 W cm−2. The

conclusion was that a different experimental setup must

be considered if this effect is to be observed in the near

future[69].

4.4. Effects on probe pulse form

In addition to the effects on single photons, one can consider

the consequence of real photon–photon scattering on the

propagation of an ensemble of photons. A probe laser pulse

can be understood as a superposition of photons with a range

of frequencies and phases. From the study of nonlinear

dispersive media, it is well known that a refractive index that

depends on a probe’s intensity directly or indirectly can lead

to pulse shape effects[58]. In particular, for the interaction

with vacuum, probe pulse effects can occur if the next-to-

leading-order effect of a probe-dependent refractive index is

taken into account.

Nonlinear phase shift is a term used to denote the relative

difference in phases between parts of a probe beam that

have experienced different vacuum refractive indices. For

a constant refractive index, the relative phase difference

compared to a unitary refractive index is:

δφ = (nvac − 1)ωpz,

where ωpz is the phase over which δφ has been accrued.

For two counterpropagating initially monochromatic plane

waves, with the envisaged ELI parameters of 800 nm wave-

length, 1025 W cm−2 intensity, 10 fs duration and 10 μm

focal spot diameter, a phase shift of the order of δφ ≈
10−7 rad has been calculated[33, 70]. This nonlinear phase

shift can be enhanced by using multiple crossings of the

interacting beams. For Nr reflections from plasma mirrors

of reflectivity Rmir of two beams crossing each other at an

angle θc, the gain factor has been calculated to be[71]:

sin4

(
θc

2

) Nr +1∑
n=0

Rn
mir.

The measurement of this phase shift using Fourier imaging

has also been explored[72].

Vacuum self-focusing is an analogue to the well-known

plasma self-focusing or ‘Benjamin–Weir’ instability[58] in

which there is positive feedback between a refractive index

increasing the intensity of a pulse via focusing, and a higher

intensity resulting from that focusing in turn increasing the

refractive index. Mutual channelling of counterpropagating

laser pulses and large-scale focusing have been considered,

but either YW powers are predicted as necessary[66] or inten-

sities above critical[73], before which vacuum pair-creation

would have set in. In considering the idealized geometry of

a Gaussian plane-wave probe pulse counterpropagating and

interacting via six-wave mixing with a much slower varying

pump, the probe-dependent refractive index:

n‖
vac = 1 + α

π

E2
s

E2
cr

[
8

45
+ 64

105

Es

Ecr

E p

Ecr

]
(40)

was predicted to lead to the generation of a shock wave, a

signature of self-focusing, when the phase difference due

to the probe-dependent refractive index tended to a quarter

wavelength[34]. The mutual attraction between two photons

due to mutual exchange of virtual photons on two vacuum

loops has also been considered[74], and a self-focusing angle

of θ = √
157/16π3(α2/180m4 R4) for photon separation R.

Pulse collapse is predicted to occur for high-intensity probe

pulses propagating through an even higher-intensity back-

ground. The wave equation for the probe can be recast as

a nonlinear Schrödinger equation[58] with the consequence

that the pulse envelope becomes space–time-dependent, even

if assumed initially homogeneous. Unlike typical optically

nonlinear dispersive media, the nonlinearity of the vacuum

is ‘formed’ by the pump laser background, which is then

probed by a second pulse. Even when the leading-order

effect on the probe is a nonlinear refractive index that is

independent of the probe pulse, because of its effect on the

pump’s evolution, it can indirectly effect the probe’s propa-

gation. This interplay between a Gaussian probe distribution
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Figure 11. Cerenkov-like radiation (right) generated by pulse collapse into photon bullets (left) against longitudinal z and transverse r co-ordinates of an

initially Gaussian pulse of central wavenumber k0. Reproduced with permission[75].

propagating through a radiation gas has been demonstrated

to lead to self-focusing and collapse of the probe into ‘photon

bullets’, thereby driving acoustic waves[75] as demonstrated

in Figure 11. Depending on initial parameters, probe col-

lapse can occur before or after the critical Schwinger limit is

reached[76].

4.5. Finite-time effects

Similar to the case for regular plasmas, there are effects on

the probe when propagating through regions of the polarized

‘vacuum plasma’ that do not persist long enough to be

directly detected.

Photon acceleration is well known from plasma physics[77]

and corresponds to the frequency downshift (upshift) as

probe photons traverse an increasing (decreasing) plasma

gradient. The possibility of measuring this effect in vacuum

has been considered for a probe photon propagating almost

parallel with a pump pulse[78], with a frequency up (down)

shift occurring at the rear (front) of the pump beam.

High-harmonic generation can also occur due to the in-

homogeneity of the pump pulse background, in an effect

distinct from standard vacuum high-harmonic generation.

For a probe pulse counterpropagating with a slowly varying

background, this is predicted to occur at finite time during

overlap of the probe and pump pulses at an order earlier (via

four-photon scattering), than for those photons that reach

a detector (via six-photon scattering)[79]. This finite-time

signal disappears when the probe and pump pulses are well

separated again, but is calculated to dominate the signal of

frequency-shifted photons when the pulses overlap in this

setup if (Es/Ecr)
2ωpτs � 1 for strong-pulse duration τs .

Gradient-dependent vacuum refractive index is a way to

describe the addition to the standard predicted vacuum re-

fractive index that occurs when the pump laser is time

varying. This has been calculated for a probe propagating

through the electric/magnetic antinode of a pump standing

wave[36]. The change in vacuum refractive index Δnvac can

be written in the form:

Δn‖,⊥
vac (ϕ) = E p

E ′
p

n‖,⊥ ′
vac (ϕ). (41)

In a setup of two colliding plane waves with no transverse

structure, it was shown that this term is a surface term and

is zero initially and finally, when the probe and background

are well separated[79]. The contact term was also noted

in a recent study of polarization flipping in arbitrary plane

waves[37]. Although it has been suggested that this part

of the interaction could be a useful probe of dark matter

particles[36], a consistent finite-time calculation has yet to be

performed to establish the nature of this effect.

4.6. Nonperfect vacua

In any realistic experiment, the vacuum will be synthetic and

hence imperfect. Residue particles in interaction chambers

will also be affected by intense laser pulses and can produce

a source of background that may obscure the measurement of

real photon–photon scattering. The Cotton–Mouton effect,

in which a dilute gas becomes birefringent in the presence

of an electromagnetic wave is just one such example[80].

In light of this, various proposals have been considered

that instead use an altered vacuum to enhance the signal of

vacuum polarization.

Resonant cavities can be employed in order to increase the

sensitivity of whatever eigenfrequencies are resonant for that

particular cavity[48]. For example, a cavity can be designed

such that the frequency that is generated by vacuum four-

wave mixing of two modes of the cavity, is resonant. This

idea has been studied for the TE01 modes of such a cavity

and the growth of the mixing signal in the form of the

longitudinal standing-wave magnetic field, found to increase

linearly with time[81] as

B3(t) = i tV
2ω3

B2
1 B∗

2 ,
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for source magnetic standing-wave strengths B1, B2 and

coupling constant V . The vacuum signal was predicted to

be detectable if an electric field 2 × 10−8 times the criti-

cal Schwinger field was employed with a superconducting

cavity with a resistance of 1 n� and a resonant, vacuum-

mixing frequency of 13.2 μeV. This idea was refined[82]

and the prediction made that 18 photons can be produced by

a magnetic field of around 0.28 T in a cylindrical cavity of

length 2.5 m, radius 25 cm and quality factor 4 × 1010.

Real plasmas already have a refractive index different from

unity, and this can combine with the shift of the refractive

index due to vacuum polarization and lead to an enhance-

ment. The system of equations by Akhiezer and Polovin[83]

for the propagation of a circularly polarized plane wave

through a cold collisionless plasma was updated to include

the vacuum current in Maxwell’s equations and also take

into account collisions[84]. For the collisionless case, the

modified refractive index of the combined system was found

to be:

n =
√

n2
pl + 1

4δn⊥
vac(1 − n2

pl)
2

with npl the plasma refractive index and δn⊥
vac = n⊥

vac − 1

as defined in Equation (26). Another detectable signal of

photon–photon scattering has been calculated to exist when

an overdense plasma channel is subjected to an intense laser

beam[85]. In addition, the altered dispersion relation for elec-

tromagnetic waves due to vacuum polarization effects in a

strongly magnetized cold plasma has been calculated[86–88],

which is particularly relevant for the dynamics of strongly

magnetized neutron stars.

5. Summary

There has been a proliferation of labels to describe polar-

ization effects of the quantum vacuum due to intense laser

pulses. However, as we have discussed, all of these are mani-

festations of the QED prediction that real photons can scatter

off one another. The commonality of the main approaches

of describing real photon–photon scattering, through cal-

culation of the polarization operator, scattering matrix ele-

ments and Heisenberg–Euler-modified Maxwell equations,

has been made manifest. Many signals of this long-predicted

phenomenon, whether at the level of individual photons or

at the level of electromagnetic fields, have been calculated

and found measurable in experiments using high-intensity

laser pulses. This implies that the first measurement of real

photon–photon scattering will finally be performed in the

near future.
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