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Convergence of Fourier–Padé
Approximants for Stieltjes Functions

M. Bello Hernández and J. Mı́nguez Ceniceros

Abstract. We prove convergence of diagonal multipoint Padé approximants of Stieltjes-type functions

when a certain moment problem is determinate. This is used for the study of the convergence of

Fourier–Padé and nonlinear Fourier–Padé approximants for such type of functions.

1 Introduction

Two of the most important topics in analysis are Fourier series and continued frac-

tions. The strong connection between Padé approximants and continued fractions

is well known. In this paper, we study the convergence of rational approximants

which extend the basic definitions of the classical Padé approximants of power series

to the case of series in orthogonal polynomials. In particular, we study the con-

vergence of rational approximants called Fourier–Padé approximants and nonlinear

Fourier–Padé approximants for Stieltjes functions. A Stieltjes function is an integral

of Stieltjes–Cauchy type of a measure supported on R+. Gonchar, Rakhmanov, and

Suetin studied this kind of problem when the measure involved has bounded sup-

port [6] (see also [2]). The unbounded case is more delicate and requires special

treatment. Multipoint Padé approximants play a fundamental role in the study of

these classes of rational approximants.

Multipoint Padé approximants are rational approximants which interpolate a

function at a given set of points. A systematic study of the convergence properties

of multipoint Padé approximants was initiated about 25 years ago by Gonchar and

López [4], (see also [12]). In [8], López considered multipoint Padé approximants

for Stieltjes functions. He assumed that the interpolation points and the correspond-

ing measure satisfy a Carleman type condition. If the interpolation points are only

0 and ∞, the corresponding two-point Padé approximants represent continued frac-

tions called positive T-fractions. These fractions are studied in [7], where their con-

vergence is proved when the so-called strong moment problem is determinate. We

extend the above results by proving that multipoint Padé approximants of a Stieltjes

function converge when a certain moment problem is determinate.

Multipoint Padé approximants are a useful tool for solving problems in rational

approximation. For example, Gonchar and Rakhmanov [5] proved a general result
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concerning the exact rate of best rational approximation for a large class of analytic

functions based on the construction of convenient multipoint Padé approximants.

This result had a great impact on approximation theory, in particular, on the solution

of the so-called 1/9 conjecture.

We begin by introducing some notations and the definitions of Fourier–Padé and

nonlinear Fourier–Padé approximants.

Let β be a positive Borel measure on (−∞, 0) with finite moments whose support,

supp(β), contains infinitely many points. Let {ϕn}n∈N be the sequence of orthonor-

mal polynomials with respect to β. If f is a function in L1(β), its Fourier coefficients

with respect to {ϕn} are given by

cn( f ) =

∫ 0

−∞

f (x)ϕn(x) dβ(x), n = 0, 1, . . . .

We say that the rational function Fl,m =
Sl

Tm
is a nonlinear Fourier–Padé approximant

of type (l, m) of the formal series

(1)

∞
∑

n=0

cn( f )ϕn,

if Sl and Tm are polynomials such that deg Sl ≤ l, deg Tm ≤ m, Tm 6≡ 0, the rational

function Fl,m =
Sl

Tm
is in L1(β), and

ci(Fl,m) = ci( f ), i = 0, 1, . . . , l + m.

In order to find Fl,m we have to solve a system of nonlinear equations.

This system does not always have a solution. Thus, it is possible that there does not

exist a nonlinear Fourier–Padé approximant of type (l, m). However, if a nonlinear

Padé approximant exists, it is unique.

The (linear) Fourier–Padé approximant of type (l, m) of series (1) is a rational func-

tion Φl,m = sl/tm where sl and tm are polynomials such that deg sl ≤ l, deg tm ≤ m,

tm 6≡ 0, and

(2) ci(tm f − sl) = 0, i = 0, 1, . . . , l + m.

This is a system of homogeneous linear equations on the coefficients of the poly-

nomials sl and tm. The number of equations of the system is equal to l + m + 1, and

the number of unknown parameters equals l + m + 2. Hence, there always exists a

non-trivial solution, but it may not be unique. However, if every polynomial tm 6≡ 0

determined by the system (2) has degree exactly equal to m, then there exists a unique

approximant Φl,m of series (1).

In the present paper we deal with Padé approximants of orthogonal expansions

on (−∞, 0) of Stieltjes functions, that is, functions of the form

(3) ρ̂(z) =

∫ ∞

0

dρ(x)

z − x
,
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where ρ is a finite positive Borel measure in (0,∞) with an infinite number of points

on its support and zi ρ̂(z) ∈ L1(β), i ∈ Z+ = {0, 1, . . . }. Such functions are analytic

in C \ supp(ρ).

Sequences of the form

(4) {Fn+ j,n}, {Φn+ j,n}, n ∈ N,

where j is a fixed integer, are called diagonal approximants. The main result of the

present paper is valid for arbitrary sequences of type (4) whenever j ≥ −1. For

simplicity, we restrict our attention to the case j = −1 and write

Fn = Fn−1,n, Φn = Φn−1,n, n ∈ N.

It will be shown below that given ρ̂(z), Fn and Φn exist, and they are uniquely deter-

mined for all n ∈ N.

The main result of this paper is the following:

Theorem 1.1 If the Stieltjes moment problems for ρ and xdρ(x−1) are determinate,

then

(5) lim
n∈N

Fn(z) = ρ̂(z)

and

(6) lim
n∈N

Φn(z) = ρ̂(z),

uniformly on each compact subset of C \ [0,∞).

This theorem will be proved in Sections 4 and 5. The key ingredient in the proof

is a result on the convergence of multipoint Padé approximants which is obtained in

Section 3. Section 2 contains some auxiliary results.

2 Auxiliary Results

Let M be the class of all finite positive Borel measures on R with an infinite num-

ber of points on its support. There is a one-to-one correspondence between an-

alytic functions f : {z ∈ C : ℑ(z) > 0} → {w ∈ C : ℑ(w) > 0} such that

supy≥1 |y f (i y)| < ∞ and functions which may be represented as in (3), see [1, Chap.

3]. Using the Stieltjes–Perron inversion formula (see [9, p. 74]), we can recover the

measure µ ∈ M from µ̂.

If x j ∈ L1(µ) it is said that µ (µ ∈ M) has moment c j(µ) of order j ∈ Z where

c j(µ) =

∫

x j dµ(x).

Let M+ (respectively, M− and M±) denote the class of all measures µ in M with

supp(µ) ⊂ [0,∞) such that {c j(µ) < ∞ : j ≥ 0} (respectively, {c j(µ) < ∞ : j <
0} and {c j(µ) < ∞ : j ∈ Z}).
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The Stieltjes moment problem is said to be determinate for µ ∈ M+ if there

does not exist any other measure in M+ which has the same moments as those of

µ. Analogously, one defines determinate Stieltjes moment problems for µ ∈ M−

and µ ∈ M±. The bilateral case is usually called the strong Stieltjes moment prob-

lem. A sufficient condition for the Stieltjes moment problem to be determinate for

µ ∈ M+ is Carleman’s condition

∞
∑

j=0

1

2 j
√

c j

= ∞.

Of course, the strong moment problem for µ ∈ M± is determinate if either the

Stieltjes moment problem for µ or the Stieltjes moment problem for tdµ(t−1) are

determinate in M+.

Let S be a topological space. We denote C(S) the space of all continuous functions

on S and C0(S) the space of functions in C(S) which vanish at infinity. Let C0(S)∗ be

the dual space of C0(S).

Let {βn}n∈N and β be real Borel measures on S. It is said that βn converges to β in

the weak star topology of C0(S)∗ if for all f ∈ C0(S)

lim
n→∞

∫

f d(βn − β) = 0

holds.

Hereafter |β| denotes the total variation of the real Borel measures β. The next

lemma seems to be known but we could not find a reference to its proof, so for com-

pleteness we present it here.

Lemma 2.1 Let S be a locally compact space in which every open set is σ-compact.

Let {βn}n∈N be a sequence of real Borel measures on S which converges to a real Borel

measure β in the weak star topology of C0(S)∗. Let g ∈ C(S) be such that g ∈ L1(|β|) ∩
L1(|βn|), for all n ∈ N, and for each ǫ > 0 there exist a compact set K ⊂ S and N0 ∈ N

such that

(7) ∀n ≥ N0

∫

Kc

|g| d|βn| < ǫ,

then

lim
n→∞

∫

g d(βn − β) = 0.

Proof Define the set function σ(E) =
∫

E
g dβ where E denotes any measurable set

contained in S. Since g ∈ L1(|β|), σ defines a regular measure which is absolutely

continuous with respect to β, see [3, pp. 84, 210]. Let ǫ > 0 be fixed. Then there

exists a compact set J such that

(8)

∫

Jc

|g| d|β| < ǫ.
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On the other hand, according to our assumptions there exists a compact set K such

that (7) takes place. Choose an open set U such that (K ∪ J) ⊂ U . By Urysohn’s

lemma (see [10, p. 39]), there exists a continuous function f : S → [0, 1] such that

f ≡ 1 on K ∪ J and f ≡ 0 on U c. Since g f ∈ C0(S) and βn converges weakly to β
there exists N1 ≥ N0 such that

(9)
∣

∣

∣

∫

g f d(βn − β)
∣

∣

∣
< ǫ

for all n ≥ N1. Combining (7), (8), and (9) we get

∣

∣

∣

∫

g d(βn − β)
∣

∣

∣
≤

∣

∣

∣

∫

g (1 − f ) d(βn − β)
∣

∣

∣
+

∣

∣

∣

∫

g f d(βn − β)
∣

∣

∣

≤
∫

(K∪ J)c

|g| d|βn| +

∫

(K∪ J)c

|g| d|β| + ǫ < 3ǫ

for all n ≥ N1.

Remark 2.2 We only use this lemma for S = (0,∞).

3 Multipoint Padé Approximants

Consider an arbitrary table An = {zn,1, zn,2, . . . , zn,2n} where n ∈ N, zn,k ∈ C\ (0,∞)

and they are symmetric with respect to the real axis. We assume that |zn,1| ≥ |zn,2| ≥
· · · ≥ |zn,2n| and we denote

wn(z) =

∏

|zn,i |<1

(z − zn,i)
∏

|zn,i |≥1

(

1 − z

zn,i

)

,

where the first product is over all zn,i such that |zn,i | < 1 and the second one is over

the rest of zn,i . By convention, if zn,i = ∞, the corresponding factor equals 1.

Let ρ be a measure on M±, and let {An}n∈N be as above. The multipoint Padé

approximant of order n that interpolates ρ̂ in An is a rational function πn =
pn

qn
where

pn and qn are polynomials such that:

• deg(pn) ≤ n − 1, deg qn ≤ n, and qn 6≡ 0;
•

qn(z)ρ̂(z) − pn(z)

wn(z)

is an analytic function in C \ [0,∞);
• if λn points zn,i equal zero, then

lim
z→0−

qn(z)ρ̂(z) − pn(z)

zλn
= 0;

• if γn points zn,i equal ∞, then

lim
z→∞,

z<0

zγn (qn(z)ρ̂(z) − pn(z)) = 0.
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The last three conditions are equivalent to saying that πn interpolates ρ̂ at {zn,1, zn,2,
. . . , zn,2n}. Moreover, these conditions determine pn and qn up to a constant factor.

So the multipoint Padé approximant of order n is unique.

Lemma 3.1 With the above notations, the polynomial qn is the n-th orthogonal poly-

nomial with respect to the varying measure dρ(x)

wn(x)
, that is,

∫ ∞

0

xk qn(x)
dρ(x)

wn(x)
= 0, k = 0, 1, . . . , n − 1.

Consequently, as wn is positive on (0,∞), all the zeros of qn are simple and lie on (0,∞).

This result is well known and its proof can be found, for example, in [8].

Using Lemma 3.1, the numerator can be expressed by

pn(z) =

∫

wn(x)qn(z) − wn(z)qn(x)

z − x

dρ(x)

wn(x)
,

and the remainder equals

(10) ρ̂(z) − πn(z) =
wn(z)

q2
n(z)

∫

q2
n(x)

z − x

dρ(x)

wn(x)
.

Furthermore, as the zeros xn,1, xn,2, . . . , xn,n of the orthogonal polynomial qn, are

simple and lie on (0,∞), the multipoint Padé approximant is given by

πn(z) =

n
∑

j=1

λn, j

z − xn, j

,

where λn, j are the Christophel–Darboux coefficients given by

λn, j =
wn(xn, j)

q ′
n(xn, j)

∫

qn(x)

x − xn, j

dρ(x)

wn(x)
=

wn(xn, j)

q ′
n(xn, j)2

∫
(

qn(x)

x − xn, j

)2
dρ(x)

wn(x)
.

See [4] and [12, Chap. 6] for the proof of the above formula. The last identity is

a consequence of the following result that is a transformation of the Gauss–Jacobi

lemma, see [13, Theorem 3.4.1].

Lemma 3.2 Set dρn =
∑n

j=1 λn, jdδxn, j
, where δxn, j

is the Dirac measure at xn, j . We

have

(11)

n
∑

j=1

λn, j

h(xn, j)

wn(xn, j)
=

∫

h(x)

wn(x)
dρn(x) =

∫

h(x)

wn(x)
dρ(x)

for each polynomial h of degree less than or equal to 2n − 1.
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With this notation, πn can be rewritten as

(12) πn(z) =

∫

1

z − x
dρn(x).

Given z0 ∈ C \ (0,∞), n ∈ N, and ǫ > 0, let In,ǫ(z0) denote the number of points

zn,1, zn,2, . . . , zn,2n in {z : |z − z0| < ǫ}. Analogously In,ǫ(∞) is the number of points

zn,1, zn,2, . . . , zn,2n in {z : |z − z0| > ǫ}.

The next result presents a nice refinement of results in [8]. The results in [8]

are based on Carleman’s condition which is sufficient for the determination of the

moment problem. We manage to prove those results in terms of the determination

of the moment problem itself. Moreover, the interpolation points can approach the

support of the measure through the complex plane.

Theorem 3.3 Assume that the set of interpolation points {An}n∈N has no limit points

on (0,∞).

(i) If there exist z0 ∈ C\[0,∞) and a sequence of indices Λ such that limn∈Λ In,ǫ(z0) =

∞ for all ǫ > 0, then

(13) lim
n→∞
n∈Λ

πn(z) = ρ̂(z),

uniformly on compact subsets of C \ [0,∞).

(ii) If the Stieltjes moment problem for ρ is determinate, there exists K > 0 such that

(14)
∣

∣

∣
1 − x

zn, j

∣

∣

∣
≥ K,

for each j ∈ N, for all x ∈ (0,∞) and n ∈ Λ, and limn∈Λ In,ǫ(∞) = ∞ for all

ǫ > 0, then (13) holds.

(iii) If the Stieltjes moment problem for xdρ(x−1) is determinate, there exists L > 0

such that

(15) |1 − x zn,n− j | ≥ L

for each j ≥ 0, x ∈ (0,∞) and n ∈ Λ, and if limn∈Λ In,ǫ(0) = ∞ for all ǫ > 0,

then (13) holds.

(iv) If the strong Stieltjes moment problem for ρ is determinate, limn∈Λ In,ǫ(0) = ∞
and limn∈Λ In,ǫ(∞) = ∞ for all ǫ > 0, and both conditions (14) and (15) are

satisfied, then (13) holds.

Remark 3.4 Conditions (14) and (15) mean that the interpolation points converge

to ∞ and 0, respectively, nontangentially to (0,∞).

Proof First, we are going to see that (i) and (ii) hold. We begin proving that the se-

quence of multipoint Padé approximants {πn}n∈Λ is uniformly bounded on compact

subsets of C \ [0,∞).
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Let E be a compact subset of (C \ [0,∞))∩ ({|z| < r}), where r is a fixed number,

0 < r < +∞. In the case that there exists zn,k = ∞, we can put h(x) = wn(x)

(deg h ≤ 2n − 1) in formula (11) and we obtain

n
∑

j=1

λn, j =

∫ +∞

0

dρn(x) =

∫ +∞

0

dρ(x) = |ρ| < +∞.

Therefore,

|πn(z)| =

∣

∣

∣

∣

n
∑

j=1

λn, j

z − xn, j

∣

∣

∣

∣

≤
n

∑

j=1

|λn, j |
|z − xn, j |

≤ 1

d
|ρ|, z ∈ E,

where d = inf{|z − x| : z ∈ E, x ∈ [0,∞)}. So {πn} is uniformly bounded on

compact subsets of C \ [0,∞).

Now, we study the case zn,k 6= ∞, for all k = 1, . . . , 2n. Under the assumptions in

(i) and (ii), we can choose l > 0 and zn,i such that |zn,i | ≥ l, for large enough n ∈ Λ.

From (12)

|πn(z)| =

∣

∣

∣

∣

∫ +∞

0

1 − x
zn,i

z − x

dρn(x)

1 − x
zn,i

∣

∣

∣

∣

≤
∫ +∞

0

∣

∣

∣

∣

1 − x
zn,i

z − x

∣

∣

∣

∣

dρn(x)
∣

∣1 − x
zn,i

∣

∣

.

If z0 is a limit point of the set {zn,1, . . . , zn,2n}, n ∈ Λ, and ǫ > 0 is a fixed number,

there exists zn,i with n ∈ Λ such that

∣

∣

∣

1

1 − x
zn,i

∣

∣

∣
=

|zn,i |
|zn,i − x| ≤

|z0| + ǫ

m
,

where m = inf{|z − x| : x ∈ (0, +∞), |z − z0| ≤ ǫ}.

When we are in the case (ii), ∞ is a limit point, and from (14) we have

∣

∣

∣

1

1 − x
zn,i

∣

∣

∣
≤ 1

K
.

Hence, in both cases, the sequence of positive Borel measures

{ dρn

1 − x
zn,i

}

n∈Λ

is uniformly bounded.

Thus, it is sufficient to see that

∣

∣

∣

1 − x
zn,i

z − x

∣

∣

∣

is uniformly bounded on each compact subset E of C \ [0,∞).
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If x ≥ 2r, z ∈ E

∣

∣

∣

∣

1 − x
zn,i

z − x

∣

∣

∣

∣

=

∣

∣

∣

∣

1
x
− 1

zn,i

1 − z
x

∣

∣

∣

∣

≤
1
x

+ 1
|zn,i |

1 −
∣

∣

z
x

∣

∣

≤ 2
( 1

2r
+

1

l

)

= A1.

If x < 2r, z ∈ E
∣

∣

∣

∣

1 − x
zn,i

z − x

∣

∣

∣

∣

≤ 1

d

(

1 +
2r

l

)

= A2.

Then
∣

∣

∣

∣

1 − x
zn,i

z − x

∣

∣

∣

∣

≤ max{A1, A2} = A.

Therefore, the sequence of multipoint Padé approximants {πn}n∈Λ is uniformly

bounded on compact subsets of C \ [0,∞).

In order to prove (i), according to Montel’s theorem it is sufficient to prove point-

wise convergence of πn to ρ̂. This follows since the assumptions of (i) and (10) hold,

and so any partial limit of {ρ̂ − πn}n∈Λ has zeros with a limit point in C \ [0,∞).

Now, we prove (ii). Here we use the notation

wn, j(x) =

(

1 − x

zn,1

)(

1 − x

zn,2

)

· · ·
(

1 − x

zn,2 j

)

.

Observe that An is symmetric with respect to the real axis, so we can assume that

wn, j(x) > 0, x ∈ (0,∞). Moreover, for all j ≥ 1 and 0 ≤ i ≤ 2 j, we have

(16) lim
n→∞
n∈Λ

zn,i = ∞.

Then, using Lemma 3.2 with

h(x) =
xiwn(x)

wn, j(x)
,

(14), and the dominated convergence theorem, we obtain

(17) lim
n∈Λ

∫ +∞

0

xi dρn(x)

wn, j(x)
= lim

n∈Λ

∫ +∞

0

xi dρ(x)

wn, j(x)
=

∫ +∞

0

xi dρ(x).

In particular, for i = 0 the above relation means that the sequence

{ dρn(x)

wn, j(x)

}

n∈Λ

is bounded. Then, from Alaoglu’s theorem there exists a subsequence Λ1 ⊂ Λ, and a

measure α j ∈ M such that

(18) lim
n∈Λ1

dρn(x)

wn, j(x)
= α j(x)

https://doi.org/10.4153/CJM-2006-010-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-010-7


258 M. Bello Hernández and J. Mı́nguez Cenicero

in the weak star topology of C0[0,∞)∗.
Furthermore, for each i such that 0 ≤ i ≤ 2 j − 1 and N > 1 we have

lim
N→∞

lim
n∈Λ1

∫

(N,∞)

xi dρn(x)

wn, j(x)
≤ lim

N→∞
lim

n→∞

1

N

∫ +∞

0

xi+1 dρn(x)

wn, j(x)
= 0.

Thus, from Lemma 2.1 and (18), we obtain

lim
n∈Λ1

∫ +∞

0

xi dρn(x)

wn, j(x)
=

∫ +∞

0

xi dα j(x)

and according to (17)

(19)

∫ +∞

0

xi dρ(x) =

∫ +∞

0

xi dα j(x).

Using (16), (17), and (18), we have

lim
n∈Λ1

πn(z) = lim
n∈Λ1

∫ +∞

0

wn, j(x)

z − x

dρn(x)

wn, j(x)

= lim
n∈Λ1

∫ +∞

0

( 1

z − x
−

j
∑

i=1

∏

1≤k1<···<ki≤ j

(−1)i−1

zn,k1
zn,k2

· · · zn,ki

xi

z − x

) dρn(x)

wn, j(x)

=

∫ +∞

0

dα j(x)

z − x
.

This means that

lim
n∈Λ1

πn(z) = α̂ j(z), for all j ≥ 1,

and α̂1 = α̂ j in C \ [0,∞) for all j ≥ 1. Futhermore, the Stieltjes–Perron inversion

formula implies that α1 = α j for all j ≥ 1. From (19) it follows that

∫ +∞

0

xi dα1(x) =

∫ +∞

0

xi dρ(x), for all i ≥ 0.

Finally, since the Stieltjes moment problem for ρ is determinate, α1 = ρ and (13)

holds.

We see now that (iii) follows from (ii). Indeed, changing variables z by 1/ζ and x

by 1/t we obtain

ρ̂(z) − πn(z) = ρ̂(1/ζ) − πn(1/ζ) = −ζβ̂(ζ) − ζn pn(1/ζ)

ζnqn(1/ζ)
= −ζ

(

β̂(ζ) − Pn(ζ)

Qn(ζ)

)

,

where dβ(t) = t dρ(t−1), Pn(ζ) = ζn−1 pn(ζ−1), and Qn(ζ) = ζnqn(ζ−1). Observe

that π̃n =
Pn

Qn
is the multipoint Padé approximant of type [n−1, n] that interpolates β̂

in the set of points Ãn = {z−1
n,1 , z−1

n,2 , . . . , z−1
n,2n}, and the hypothesis in (iii) transforms

into the corresponding hypothesis (ii) for this new rational interpolant π̃n of β̂.

In order to prove (iv) it is sufficient to observe that if the strong Stieltjes moment

problem for ρ is determinate, the result can be obtained combining the ideas used in

proving (ii) and (iii).
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Remark 3.5 An analogous result can be obtained for positive Borel measures λ
whose support is contained in the interval [−1, 1], when the interpolation points

lie in C \ (−1, 1) and they are symmmetric with respect to the real axis, doing the

changes of variables:

z =
1 + ζ

1 − ζ
, z ∈ C \ [0, +∞), ζ ∈ C \ [−1, 1],

x =
1 + t

1 − t
, x ∈ (0, +∞), t ∈ (−1, 1).

4 Nonlinear Fourier–Padé Approximants

First, we need to prove that there exists a unique nonlinear Fourier–Padé approxi-

mant for every n ∈ N. In this case we will have to find a rational function Fn such

that

ci(ρ̂ − Fn) = 0, k = 0, 1, . . . , 2n − 1.

This is equivalent to

(20)

∫ 0

−∞

(ρ̂(t) − Fn(t))t j dβ(t) = 0, j = 0, 1, . . . , 2n − 1.

Consider an arbitrary set of 2n points of [−∞, 0]

Zn = {zn,1, zn,2, . . . , zn,2n}

with zn,k ≤ zn,k+1. This set of points forms a simplex in the space [−∞, 0]2n. It

is denoted by K2n. Set πn to be the multipoint Padé approximant that interpolates

the function ρ̂ at Zn. In accordance with Section 3, we have πn =
pn

qn
, where from

Lemma 3.1, the polynomial qn(x) = xn + · · · is uniquely determined by the orthog-

onal relations
∫ ∞

0

qn(t)t j dρ(t)

Wn(t)
= 0, j = 0, 1, . . . , n − 1,

with Wn(x) =
∏2n

i=1(x− zn,i), where x− zn,i = 1 if zn,i = ∞. Now, we define a monic

polynomial Ωn, deg(Ωn) = 2n by the relations

(21)

∫ 0

−∞

Ωn(t)t j
( 1

q2
n(t)

∫ ∞

0

q2
n(x)

x − t

dρ(x)

Wn(x)

)

dβ(t) = 0, j = 0, 1, . . . , 2n − 1.

This is possible because 1
q2

n(t)

∫ ∞

0

q2

n(x)

x−t
dρ(x)

Wn(x)
has a constant sign in (−∞, 0) since all

the zeros of qn lie on (0,∞). Thus (21) determines a unique polynomial Ωn that

has 2n simple zeros Yn = {yn,1, yn,2, . . . , yn,2n} on the interval (−∞, 0). The corre-

spondence Zn → Yn defines a mapping of the simplex K2n into itself. This mapping

is continuous and therefore, by Brouwer’s theorem (see [11, p. 730]), it has a fixed
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point. Keeping the same notation Zn for the fixed point, we get Ωn = Wn and (21)

can be rewritten as

∫ 0

−∞

Wn(t)t j
( 1

q2
n(t)

∫ ∞

0

q2
n(x)

x − t

dρ(x)

Wn(x)

)

dβ(t) = 0, j = 0, 1, . . . , 2n − 1.

Taking into account formula (10) with πn the multipoint Padé approximant of ρ̂
associated with Zn, we get

∫ 0

−∞

(ρ̂(t) − πn(t))t j dβ(t) = 0, j = 0, 1, . . . , 2n − 1.

Setting Fn = πn, we obtain that relations in (20) hold for this function. Since all zeros

of Tn = qn lie on (0,∞), Fn is a nonlinear Fourier–Padé approximant of ρ̂ and thus

it is unique.

Note that together with the existence of Fn, we have proved that the sequence

{Fn}n∈N is a sequence of multipoint Padé approximants of ρ̂ corresponding to the

table {Zn}n∈N. From this fact it follows that the denominator Tn of the rational func-

tion Fn satisfies the orthogonal relations

∫ ∞

0

Tn(x)x j dρ(x)

Wn(x)
= 0, j = 0, 1, . . . , n − 1,

and all the zeros of Tn lie on (0,∞).

Taking into account what has been said above, (5) of Theorem 1.1 follows from

Theorem 3.3.

5 Fourier–Padé approximants

Let us rewrite relation (2) which determines the polynomials sn and tn in Φn = sn/tn

in the following equivalent form:

(22)

∫ 0

−∞

(

tn(t)ρ̂(t) − sn(t)
)

t j dβ(t) = 0, j = 0, 1, . . . , 2n − 1.

This system always has a non-trivial solution. Fix an arbitrary pair of polynomials sn,

tn 6≡ 0, satisfying (22) with tn monic. Then the function tnρ̂− sn has at least 2n zeros

on (−∞, 0). Choose an arbitrary set

Zn = {zn,1, zn,2, . . . , zn,2n}

of zeros of tnρ̂ − sn in (−∞, 0). Set Wn(x) = (x − zn,1)(x − zn,2) · · · (x − zn,2n),

then πn = sn/tn is a multipoint Padé approximant of ρ̂ corresponding to Zn. Then

(see Section 3), tn satisfies orthogonal relations, has degree n, and all its zeros lie in

(0,∞). From this it follows (see Section 1) that there exists a unique approximant

Φn = sn/tn of ρ̂. Also, it is easy to show that the number of zeros of tnρ̂ − sn on

(−∞, 0) is precisely equal to 2n. Thus, the polynomial Wn is also uniquely defined.

Now, (6) of Theorem 1.1 follows from Theorem 3.3.
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