
Canad. J. Math. Vol. 61 (2), 2009 pp. 241–263

Operator Integrals, Spectral Shift, and
Spectral Flow

N. A. Azamov, A. L. Carey, P. G. Dodds, and F. A. Sukochev

Abstract. We present a new and simple approach to the theory of multiple operator integrals that ap-

plies to unbounded operators affiliated with general von Neumann algebras. For semifinite von Neu-

mann algebras we give applications to the Fréchet differentiation of operator functions that sharpen

existing results, and establish the Birman–Solomyak representation of the spectral shift function of

M. G. Krein in terms of an average of spectral measures in the type II setting. We also exhibit a surpris-

ing connection between the spectral shift function and spectral flow.

1 Introduction

In the seminal paper of Yu. L. Daletskii and S. G. Krein [16], the theory of multiple
operator integrals emerged as an important tool in the differentiation theory of oper-

ator functions and in perturbation theory. On the other hand, an important concept

in the theory of perturbations is the spectral shift function, which first arose in the
work of I. M. Lifshits [28] in solid state theory and was put on a firm mathematical

basis by M. G. Krein [25].

An important connection between these two theories was made by M. Sh. Birman

and M. Z. Solomyak [4], who showed that the theory of double operator integrals

led naturally to a new representation for the spectral shift function as an average of
spectral measures.

A principal aim of this paper is to present a new approach to the theory of multiple
operator integrals, which provides a coherent path to the theory of differentiation of

operator functions, the spectral shift function, and the theory of spectral flow, in the

setting of type II von Neumann algebras. Our approach is conceptually simpler than
those of [29, 30], although it applies to a somewhat narrower class of functions. On

the other hand, since our approach does not depend on the vector-valued integration
theory against a finitely additive measure as in [5,29,30], it is also suitable for general

(non-semifinite) von Neumann algebras (see Section 4). Our approach to the theory

of multiple operator integrals is quite different from earlier approaches to be found
in [16, 31, 39, 40].

During the final stages in the preparation of this paper, the authors became aware
of a preprint by V. V. Peller [32], where a similar approach to the theory of multiple

operator integrals is presented in the setting of type I von Neumann algebras. While

Peller’s approach in the type I case applies to the class of integral projective tensor
products, the present paper in the more general type II setting restricts attention to
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the natural Wiener classes and thus permits us to show Fréchet differentiability rather
than Gateaux differentiability. In particular, we strengthen the differentiation results

of [29] by showing that Gateaux differentiability can be replaced by Fréchet differen-
tiability, and we show the existence of higher order Fréchet derivatives of operator-

valued functions.

Our present approach also allows us to consider perturbations of self-adjoint op-
erators which are affiliated with semifinite von Neumann algebras. This is a sub-

stantial difference with [29, 30], which treated the more special case of (so-called)

τ-measurable operators [21]. The necessity of avoiding the latter restriction is espe-
cially clear in the applications. An important ingredient is the recent extension to

the type II setting of the Krein spectral shift function [2]. When combined with our

development of multiple operator integration together with the ideas of [4], we es-
tablish a (type II) extension of the important Birman–Solomyak formula, concerning

spectral averaging (see Section 6).

Perhaps the most surprising connection in our study is with the theory of spectral
flow, which is presented in Section 7. While the theory of spectral shift function (see

the lectures [26] and the survey [3]) is a part of operator theory, the theory of spectral
flow, which originated in the work of M. Atiyah, V. Patodi, and I. M. Singer [1] on a

generalization of the Atiyah–Singer index theorem, finds its proper analytic setting

in the framework of non-commutative geometry created by A. Connes [14]. One of
the main results of the latter theory is the odd local index theorem of A. Connes and

H. Moscovici [15] which has recently been developed in the type II setting [11, 12].

This latter work inspired our result (in Section 7) that the theory of the spectral shift
function and that of spectral flow coincide in the case of trace class perturbations.

2 Notations and Preliminaries

We denote by H a separable complex Hilbert space, by N a von Neumann algebra

acting on H, by B(H) the algebra of all bounded linear operators acting on H, and
by Tr the standard trace on H. In the case where N is semifinite, we denote by τ a

faithful normal semifinite trace on N, by L1(N, τ) the set of τ-trace class operators
affiliated with N, by L1(N, τ) = L1(N, τ) ∩ N the set of all bounded τ-trace class

operators, and by K(N, τ) the set of all τ-compact operators (see [21]) from N. If

S is a measure space, we denote by B(S) the set of all bounded measurable complex-
valued functions on S. The so-topology and so∗-topology denote, respectively, the

strong operator topology and the strong∗ operator topology. We denote the uniform

norm on B(H) by ‖ · ‖ .

If E is a ∗-ideal in a von Neumann algebra N which is complete in some norm

‖ · ‖
E

, then we will call E an invariant operator ideal (see [13, Definition 1.8]) if

(1) ‖S‖
E

> ‖S‖ for all S ∈ E,
(2) ‖S∗‖

E
= ‖S‖

E
for all S ∈ E,

(3) ‖ASB‖
E

6 ‖A‖ ‖S‖
E
‖B‖ for all S ∈ E and A, B ∈ N .

We say that an operator ideal E has property (F) if, for all nets {Aα} ⊂ E such that

there exist A ∈ N for which Aα → A in the so∗-topology and ‖Aα‖E
6 1 for all α, it

follows that A ∈ E and ‖A‖
E

6 1.
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If E = N ∩ E(N, τ) for some rearrangement invariant Banach function space E

(see [19]) with the Fatou property (that is, if 0 6 fα↑ is an increasing net in E,

supα ‖ fα‖E < ∞ then supα fα exists in E and ‖ fα‖E ↑ ‖ f ‖E), then [19, Proposi-
tion 1.6] together with Lemma 2.5 below show that E has the property (F).

Every von Neumann algebra with the uniform norm is an invariant operator ideal

with property (F). If N is a semifinite von Neumann algebra with a faithful normal
semifinite trace τ , then the spaces Lp(N, τ), Lp,+∞(N, τ) are invariant operator ide-

als with the property (F) (see [18, 27]).

For any C1-function f : R → C, we denote by f [1] the continuous function

f [1](λ0, λ1) =
f (λ1) − f (λ0)

λ1 − λ0
,

and for any Cn+1-function f : R → C,

f [n+1](λ0, . . . , λn+1) =
f [n](λ0, . . . , λn−1, λn+1) − f [n](λ0, . . . , λn−1, λn)

λn+1 − λn
.

It is well known that f [n] is a symmetric function.

We denote by Wn(R) the set of functions f ∈ Cn(R), such that the j-th derivative
f ( j), j = 0, . . . , n, is the Fourier transform of a finite measure m f on R.

The next lemma introduces a finite measure space that will be used in our defini-

tion of multiple operator integrals in Section 4 below.

Lemma 2.1 If

Π
(n)

= {(s0, s1, . . . , sn) ∈ R
n+1 : |sn| 6 · · · 6 |s1| 6 |s0| ,

sign(s0) = · · · = sign(sn)},

and if f ∈ Wn(R), ν(n)
f (s0, . . . , sn) =

in
√

2π
m f (ds0) · · · dsn, then (Π(n), ν(n)

f ) is a finite

measure space.

Proof The total variation of the measure ν(n)
f on the set Π

(n) (up to a constant) is

equal to

∫

Π(n)

∣∣m f (ds0)
∣∣ ds1 · · · dsn =

∫

R

∆s0

∣∣m f (ds0)
∣∣

=
1

n!

∫

R

sn
0

∣∣m f (ds0)
∣∣

=
1

n!

∫

R

∣∣m f (n) (ds0)
∣∣ =

1

n!

∥∥m f (n)

∥∥ ,

where ∆s0
is the volume of the n-dimensional simplex of size s0.

For simplicity we write Π = Π
(1) and ν f = ν(1)

f .
The next two lemmas provide concrete representations (see Section 4) for divided

differences f [n] of functions belonging to the class Wn(R) (see Section 4).
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Lemma 2.2 If f ∈ W1(R), then

f [1](λ0, λ1) =

∫∫

Π

α0(λ0, σ)α1(λ1, σ) dν f (σ),

where σ = (s0, s1), α0(λ0, σ) = ei(s0−s1)λ0 , α1(λ1, σ) = eis1λ1 , s0, s1 ∈ R.

Proof We have

∫∫

Π

α0(λ0, σ)α1(λ1, σ) dν f (σ)

=
i√
2π

∫

R

m f (ds0)

∫ s0

0

eis0λ0−is1λ0+is1λ1 ds1

=
1

(λ0 − λ1)
√

2π

∫

R

m f (ds0)(eis0λ0 − eis0λ1 )

=
1

λ0 − λ1
( f (λ0) − f (λ1)) = f [1](λ0, λ1),

where the repeated integral can be replaced by the double integral by Fubini’s theo-

rem and Lemma 2.1.

Lemma 2.3 If f ∈ Wn(R), then, for all λ0, . . . , λn ∈ R,

f [n](λ0, . . . , λn) =

∫

Π(n)

ei((s0−s1)λ0+···+(sn−1−sn)λn−1+snλn) dν(n)
f (s0, . . . , sn).

Proof By Lemma 2.2 and induction, we have

∫

Π(n+1)

ei((s0−s1)λ0+···+(sn−sn+1)λn+sn+1λn+1) dν(n+1)
f (s0, . . . , sn+1)

=

∫

Π(n)

ei((s0−s1)λ0+···+snλn)

(∫ sn

0

ieisn+1(λn+1−λn) dsn+1

)
dν(n)

f (s0, . . . , sn)

=
1

λn+1 − λn

∫

Π(n)

ei((s0−s1)λ0+···+snλn)
(
eisn(λn+1−λn) − 1

)
dν(n)

f (s0, . . . , sn)

=
1

λn+1 − λn

(
f [n](λ0, . . . , λn−1, λn+1) − f [n](λ0, . . . , λn−1, λn)

)

= f [n+1](λ0, . . . , λn+1).

Lemma 2.4 If f ∈ Wn+1(R), then, for all λ0, . . . , λn+1 ∈ R,

f [n+1](λ0, . . . , λn+1) = i

∫

Π(n)

∫ s j−s j+1

0

ei((s0−s1)λ0+···+uλn+1+(s j−s j+1−u)λ j+···+snλn

× du dν(n)
f (s0, . . . , sn).

https://doi.org/10.4153/CJM-2009-012-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-012-0


Operator Integrals, Spectral Shift, and Spectral Flow 245

Proof The right-hand side is equal to

i

∫

Π(n)

ei((s0−s1)λ0+···+(s j−s j+1)λ j+···+snλn)

∫ s j−s j+1

0

eiu(λn+1−λ j ) × du dν(n)
f (s0, . . . , sn)

=
1

λn+1 − λ j

∫

Π(n)

ei((s0−s1)λ0+···+(s j−s j+1)λ j +···+snλn)

(
e(s j−s j+1)(λn+1−λ j ) − 1

)
dν(n)

f (s0, . . . , sn)

=
1

λn+1 − λ j

∫

Π(n)

(
ei((s0−s1)λ0+···+(s j−s j+1)λn+1+···+snλn)

− ei((s0−s1)λ0+···+(s j−s j+1)λ j+···+snλn)
)

dν(n)
f (s0, . . . , sn)

=
1

λn+1 − λ j

(
f [n](λ0, . . . , λ j−1, λn+1, λ j+1, . . . , λn)

− f [n](λ0, . . . , λ j−1, λ j , λ j+1, . . . , λn)
)

= f [n+1](λ0, . . . , λn+1).

Lemma 2.5 Let (N, τ) be a semifinite von Neumann algebra. If Aα ∈ N, α ∈ I,
is a uniformly bounded net converging in the so-topology to an operator A ∈ N and if

V ∈ L1(N, τ), then the net {AαV}α∈I converges to AV in L1(N, τ).

Proof Without loss of generality, we can assume that A = 0. Since the net {Aα}α∈I is
uniformly bounded, we have Aα → 0 in the σ-strong operator topology (see e.g., [6,

Proposition 2.4.1]). Since the σ-strong topology does not depend on representation

[6, Theorem 2.4.23], it can be assumed that N acts on L2(N, τ) in the left regular
representation, in particular ‖Aαy‖2 → 0 for every y ∈ L2(N, τ). Without loss of

generality, we may suppose that V > 0. Let y = V 1/2 ∈ L2(N, τ). Then

τ
(
|AαV |

)
= τ

(
uαAαy2

)
= τ

(
Aαy(u∗

α y)∗
)

6 ‖Aα y‖2 · ‖u∗
αy‖2 → 0,

where u∗
α is the partial isometry from the polar decomposition of AαV.

Lemma 2.6 Let A, B ∈ N and suppose that one of these operators is τ-trace-class.

If T = T∗ is affiliated with N and if T =
∫

R
λ dEλ if the spectral resolution of T,

then the (complex) measure µ(a, b) := τ(AE(a,b)B) is countably additive (and has finite

variation).

Proof Since the spectral resolution of a self-adjoint operator is strong operator σ-

additive (see e.g., [36, VIII.3]), the assertion of the lemma follows from Lemma 2.5.

3 Integration of Operator-Valued Functions

Lemma 3.1 An invariant operator ideal E has property (F) if and only if the unit ball

of E endowed with so∗-topology is a complete separable metrisable space.
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Proof The ”if” part is evident. Since H is separable, the unit ball (B(H)1, so∗) of
B(H) is a metrisable space [17, Proposition I.3.1]. Hence, the unit ball (E1, so∗) of

E is also metrisable. Since H is separable the unit ball (B(H)1, so∗) is also separable.
Thus, every subset of (B(H)1, so∗) is separable [20, I.6.12], and in particular E1.
Since the unit ball (B(H)1, so∗) is complete [6, Prop. 2.4.1], the property (F) of E

implies that (E1, so∗) is also complete.

Let (S, Σ, ν) be a finite measure space and E be an invariant operator ideal with

property (F). A bounded function f : (S, ν) → E will be called

(i) weakly measurable if, for any η, ξ ∈ H, the function 〈 f (·)η, ξ〉 is measurable;

(ii) ∗- measurable if, for all η ∈ H, the functions f (·)η, f (·)∗η : (S, ν) → H are

Bochner measurable from S into H;
(iii) so∗-measurable if there exist a sequence of simple (finitely-valued) measurable

functions fn : S → E such that fn(σ) → f (σ) in the so∗-topology for a. e. σ ∈ S.

Proposition 3.2 If E has property (F), then, for any E-bounded function f : (S, ν) →
E, the following conditions are equivalent.

(i) f is weakly measurable,

(ii) f is ∗- measurable,

(iii) f is so∗-measurable.

Proof The implications (iii) ⇒ (ii) ⇒ (i) are evident (and do not depend on prop-

erty (F)). That (i) ⇒ (iii) follows from Lemma 3.1 and [41, Propositions 1.9 and

1.10].

We denote the set of all ‖ · ‖-bounded ∗- measurable functions f : S → E by

Lso∗

∞ (S, ν; E). Examples of such functions are bounded ‖ · ‖-Bochner-measurable
functions and, in the case that S is a locally compact space, all so∗-continuous

bounded functions.

The following lemma is a simple consequence of the previous proposition (cf.
[29, Lemmas 5.5 and 5.6]).

Lemma 3.3 [29]

(i) The set Lso∗

∞ (S, ν; E) is a ∗-algebra;

(ii) if φ ∈ BR(R), f ∈ L
so∗

∞ (S, ν; B(H)sa), then φ( f ) ∈ L
so∗

∞ (S, ν).

For any bounded function f ∈ Lso∗

∞ (S, ν; E), we define the integral
∫

S
f (σ) dν(σ)

by the formula

(∫

S

f (σ) dν(σ)

)
η =

∫

S

f (σ)η dν(σ),(3.1)

where the last integral is a Bochner integral. Evidently, such an integral exists and it

is a bounded linear operator with (uniform) norm less or equal to |ν| ‖ f ‖∞ .

Lemma 3.4 If E has property (F), and if the sequence fn ∈ Lso∗

∞ (S, ν; E), n = 1, 2, . . .
is E-bounded and ν-a. e. converges to f : S → B(H) in the so∗-topology, then f ∈
Lso∗

∞ (S, ν; E).
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Proof We have that, for any η ∈ H, the sequence fn(σ)η converges to f (σ)η for
ν-a.e. σ ∈ S. Since the H-valued functions fn(·)η are Bochner measurable and since

the pointwise limit of a sequence of Bochner measurable functions is a Bochner mea-
surable function, we have that f ∈ Lso∗

∞ (S, ν). That f (σ) ∈ E for a. e. σ ∈ S follows

from property (F).

Lemma 3.5 If E has property (F), f ∈ Lso∗

∞ (S, ν; E) and if f is uniformly E-bounded,

then
∫

S
f dν ∈ E.

Proof By Proposition 3.2, we can choose a sequence of simple functions fn ∈
Lso∗

∞ (S, ν; E) converging a. e. in so∗-topology to f . Evidently, An :=
∫

S
fn dν ∈ E for

all n ∈ N. By the definition of operator-valued integral (3.1), the sequence {An}∞n=1

converges to
∫

S
f dν in the so∗-topology by the Lebesgue Dominated Convergence

Theorem for the Bochner integral. That
∫

S
f dν ∈ E now follows from the property

(F) of E.

Corollary 3.6 Under the assumptions of Lemma 3.4, we have

∫

S

fn dν →
∫

S

f dν

in the so∗-topology.

Lemma 3.7 For any A ∈ B(H) and B ∈ L
so∗

∞ (S, ν; E)

A

∫

S

B(σ) dν(σ) =

∫

S

AB(σ) dν(σ)

The lemma follows directly from [43, Corollary V.5.2].

Lemma 3.8 If (Si, Σi , νi), i = 1, 2 are two finite measure spaces and if f ∈ Lso∗

∞ (S1×
S2, ν1×ν2), then f ( · , t) ∈ Lso∗

∞ (S1, ν1) for almost all t ∈ S2 and

∫

S2

∫

S1

f (s, t) dν1(s) dν2(t) =

∫

S1×S2

f (s, t) d(ν1×ν2)(s, t).(3.2)

Proof Since f ( · , · ) is integrable, for any η ∈ H there exists a ν2-measure zero set

Aη ⊂ S2 such that for all t /∈ Aη the function f ( · , t)η is Bochner integrable (see
[20, Theorem III.11.13]). If {ξ j}∞j=1 is an orthonormal basis in H and A =

⋃∞
j=1 Aξ j

,

then ν2(A) = 0 and, for any η ∈ H and t /∈ A, we have

f ( · , t)η =

∞∑

j=1

cn f ( · , t)ξn,

where η =
∑∞

j=1 cnξn. Since linear combinations and uniformly bounded pointwise
limits of sequences of Bochner integrable functions on the measure space (S, ν) are

Bochner integrable (by the Lebesgue Dominated Convergence Theorem), it follows

that f ( · , t)η is integrable for t /∈ A. Similarly, there exists a ν2-measure zero set
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A ′ such that f ( · , t)∗η is integrable for all η ∈ H and t /∈ A ′. Hence, f ( · , t) is
integrable for all t /∈ A∪A ′ and the operator-valued function g(t) :=

∫
S1

f (s, t) dν1(s)

is well defined. Now, the integral g(t)η =
∫

S1
f (s, t)η dν1(s) exists and is equal to∫

S1×S2
f (s, t)η d(ν1×ν2)(s, t) by Fubini’s theorem for the Bochner integral of H-valued

functions [20, Theorem III.11.13]. The latter means that the equality (3.2) holds.

Lemma 3.9 If f ∈ L
so∗

∞ (S, ν; N), then

(i) X :=
∫

S
f (σ) dν(σ) belongs to N;

(ii) X as an element of the W ∗-algebra N does not depend on any representation of N.

Proof (i) Let A ′ ∈ N
′. Then by Lemma 3.7

A ′Xη =

∫

S

A ′ f (σ)η dν(σ) =

∫

S

f (σ)A ′η dν(σ) =

∫

S

f (σ) dν(σ)A ′η = XA ′η

for any η ∈ H. Hence, X ∈ N.
(ii) This follows from the fact that two representations of a von Neumann algebra

can be obtained from each other by ampliation, reduction, and spatial isomorphism
[17], since for each of these isomorphisms the claim is evident.

Lemma 3.10 If (N, τ) is a semifinite von Neumann algebra, if

f ∈ L
so∗

∞ (S, ν; L1(N, τ))

and if f is uniformly L1(N, τ)-bounded, then X :=
∫

S
f (σ) dν(σ) ∈ L1(N, τ), the

function τ( f (·)) is measurable and

τ

(∫

S

f (σ) dν(σ)

)
=

∫

S

τ
(

f (σ)
)

dν(σ).

Proof Lemma 3.5 implies that X ∈ L1(N, τ), so that the left hand side of the equality

above makes sense.
By [29, Lemma 5.9], the function τ( f (·)) is measurable.

By linearity and by Lemma 3.3(i), we can assume that f (·) > 0. By Lemma 3.9(ii),

we can assume that N acts on L2(N, τ) in the left regular representation. Let E be an
arbitrary τ-finite projection from N. Then E ∈ L2(N, τ) and by the definition of the

operator-valued integral (3.1),

XE =

∫

S

f (σ)E dν(σ),

where the right hand side is a Bochner integral in L2(N, τ). Since E is τ-finite, the

convergence in L2(N, τ) of the Bochner integral implies convergence in L1(N, τ), so

that we have

τ(XE) =

∫

S

τ( f (σ)E) dν(σ).

Now, normality of the trace τ and the dominated convergence theorem imply that

τ(X) =

∫

S

τ( f (σ)) dν(σ).
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4 Multiple Operator Integrals

In this section, we define multiple operator integrals of the form

∫

Rn+1

φ(λ0, . . . , λn) dEB0

λ0
V1 dEB1

λ1
V2 dEB2

λ2
· · ·Vn dEBn

λn
.

We denote by B(R
n+1) the set of all bounded Borel functions on R

n+1. Throughout

this section, we consider the set of those functions φ ∈ B(R
n+1) which admit a repre-

sentation of the form

φ(λ0, λ1, . . . , λn) =

∫

S

α0(λ0, σ) · · ·αn(λn, σ) dν(σ),(4.1)

where (S, ν) is a finite measure space and α0, . . . , αn are bounded Borel functions on
R × S. Similar representations (for the case n = 1) were discussed in [29].

Definition 4.1 For arbitrary self-adjoint operators B0, . . . , Bn on the Hilbert space
H, bounded operators V1, . . . ,Vn on H and any function φ ∈ B(R

n+1) that admits

a representation given by (4.1), the multiple operator integral T
B0,...,Bn

φ (V1, . . . ,Vn) is

defined as

T
B0,...,Bn

φ (V1, . . . ,Vn) :=

∫

S

α0(B0, σ)V1 · · ·Vnαn(Bn, σ) dν(σ),(4.2)

where the integral is taken in the sense of definition (3.1).

Remark 4.2. By [29, Lemma 5.13] and Lemma 3.3(i) applied to E = B(H), the

function σ 7→ α0(B0, σ)V1 · · ·Vnαn(Bn, σ) is ∗- measurable and therefore the inte-

gral above exists.

Lemma 4.3 The multiple operator integral in Definition 4.1 is well defined in the

sense that it does not depend on the representation (4.1) of φ.

Proof We first prove that if the operators V1, . . . ,Vn are all one-dimensional, then
the right hand side of (4.2) does not depend on the representation of φ given by (4.1).

For η, ξ ∈ H, we denote by θη,ξ the one-dimensional operator defined by formula
θη,ξζ = 〈η, ζ〉 ξ, ζ ∈ H. It is clear that Tr(θη,ξ) = 〈η, ξ〉 , Aθη,ξ = θη,Aξ for any

A ∈ B(H) and that θη1,ξ1
· · · θηn,ξn

= 〈η1, ξ2〉 · · · 〈ηn−1, ξn〉 θηn,ξ1
.

Let V j = θη j ,ξ j
, j = 0, . . . , n. Then

E : = Tr

(
V0

∫

S

α0(B0, σ)V1 · · ·Vnαn(Bn, σ) dν(σ)

)

= Tr

∫

S

V0α0(B0, σ)V1 · · ·Vnαn(Bn, σ) dν(σ)

= Tr

∫

S

θη0,ξ0
α0(B0, σ)θη1,ξ1

· · · θηn,ξn
αn(Bn, σ) dν(σ)
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=

∫

S

Tr
(
θη0,ξ0

α0(B0, σ)θη1,ξ1
· · · θηn,ξn

αn(Bn, σ)
)

dν(σ)

=

∫

S

Tr
(
α0(B0, σ)θη1,ξ1

· · · θηn,ξn
αn(Bn, σ)θη0,ξ0

)
dν(σ)

=

∫

S

Tr
(
θη1,α0(B0,σ)ξ1

· · · θηn,αn−1(Bn−1,σ)ξn
θη0,αn(Bn,σ)ξ0

)
dν(σ)

=

∫

S

〈η0, α0(B0, σ)ξ1〉 〈η1, α1(B1, σ)ξ2〉 · · · 〈ηn, αn(Bn, σ)ξ0〉 dν(σ).

Now, since 〈η, α(B)ξ〉 =
∫

R
α(λ)

〈
η, dEB

λξ
〉
, we have that

E =

∫

S

∫

R

α0(λ0, σ)
〈
η0, dEB0

λ0
ξ1

〉
· · ·

∫

R

αn(λn, σ)
〈
ηn, dEBn

λn
ξ0

〉
dν(σ).

Since the measure 〈η, dEλξ〉 has finite total variation, Fubini’s theorem implies

E =

∫

S

(∫

Rn+1

α0(λ0, σ) · · ·αn(λn, σ)
〈
η0, dEB0

λ0
ξ1

〉
· · ·

〈
ηn, dEBn

λn
ξ0

〉)
dν(σ)

=

∫

Rn+1

(∫

S

α0(λ0, σ) · · ·αn(λn, σ) dν(σ)

) 〈
η0, dEB0

λ0
ξ1

〉
· · ·

〈
ηn, dEBn

λn
ξ0

〉

=

∫

Rn+1

φ(λ0, . . . , λn)
〈
η0, dEB0

λ0
ξ1

〉
· · ·

〈
ηn, dEBn

λn
ξ0

〉
.

We recall that, if A, B are bounded operators, then A = B if and only if the equality

Tr(VA) = Tr(V B) holds for all one-dimensional operators V. It now follows immedi-
ately that the multiple operator integral does not depend on the representation (4.1)

of φ in the case that the operators V1, . . . ,Vn are one-dimensional.

By linearity, it follows that the definition of multiple operator integral does
not depend on the representation (4.1) in the case of finite-dimensional operators

V1, . . . ,Vn. Since every bounded operator is an so-limit of a sequence of finite-
dimensional operators, the claim follows from Proposition 4.9.

Lemma 4.4 If N is a von Neumann algebra, if B0, . . . , Bn are self-adjoint operators

affiliated with N and if V1, . . . ,Vn ∈ N, then TB0,...,Bn

φ (V1, . . . ,Vn) ∈ N.

This follows from Lemma 3.9.

The following observation is a direct consequence of Lemma 2.3 and Defini-
tion 4.1.

Lemma 4.5 If f ∈ Wn(R), then

T
B0,...,Bn

f [n] (V1, . . . ,Vn) =

∫

Π(n)

ei(s0−s1)B0V1ei(s1−s2)B1V2 · · ·VneisnBn dν(n)
f (s0, . . . , sn).
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Lemma 4.6 If E is an invariant operator ideal with property (F) and if one of the

operators V1, . . . ,Vn belongs to E, then

T
B0,...,Bn

φ (V1, . . . ,Vn) ∈ E.

If n = 2, this yields ∥∥∥T
B1,B2

φ

∥∥∥
E→E

6 ‖φ‖ ,

where (see [29])

‖φ‖ = inf
{ ∫

S

‖α( · , σ)‖∞ ‖β( · , σ)‖∞ dν(σ) : φ(λ, µ)

=

∫

S

α(λ, σ)β(µ, σ) dν(σ)
}

.

Proof This follows from Lemmas 3.3(i) and 3.5.

Remark 4.7. If V ∈ L2(N, τ) and if n = 2, then the preceding definition coincides

with the definition of double operator integral as a spectral integral given in [5] and
[29].

Corollary 4.8 If V1, . . . ,Vn ∈ N, V j ∈ L1(N, τ) for some j = 1, . . . , n, B0, . . . , Bn

are self-adjoint operators affiliated with N, φ ∈ B(R
n+1) and φ(λ0, . . . , λn) admits the

representation (4.1), then

τ
(

TB0,...,Bn

φ (V1, . . . ,Vn)
)

=

∫

S

τ (α0(B0, σ)V1α1(B1, σ) · · ·Vnαn(Bn, σ)) dν(σ).

Proof It is enough to note that the operator-valued function

σ 7→ α0(B0, σ)V1α1(B1, σ) · · ·Vnαn(Bn, σ)

is ∗- measurable by [29, Lemma 5.11] and Lemma 3.3(i), so that we can apply

Lemma 3.10.

Proposition 4.9 (i) If a sequence of self-adjoint operators V
(k j )

j ∈ B(H), j =

1, . . . , n, converges to V j ∈ B(H) in the so-topology (respectively, norm topology) as

k j → ∞, then

T
B0,...,Bn

φ (V (k1)
1 , . . . ,V (kn)

n ) → T
B0,...,Bn

φ (V1, . . . ,Vn)

in the so-topology (respectively, norm topology) as k1, . . . , kn → ∞.

(ii) If a sequence of self-adjoint operators B
(k j)

j , j = 0, . . . , n resolvent strongly con-

verges to B j as k j → ∞ and V1, . . . ,Vn ∈ B(H), then

T
B

(k0)

0 ,...,B(kn)
n

φ (V1, . . . ,Vn) → T
B0,...,Bn

φ (V1, . . . ,Vn)

in the so-topology as k0, . . . , kn → ∞.
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Proof We prove only part (ii); the proof of part (i) is similar (and simpler). Suppose
that

φ(λ0, . . . , λn) =

∫

S

α0(λ0, σ) · · ·αn(λn, σ) dν(σ)

is a representation of φ given by (4.1). Since α( · , σ) is a bounded function for every

σ ∈ S, the operators α(B
(k j )

j , σ) converge to α(B j , σ) in the so-topology [36, The-

orem VIII.20(b)]. Since multiplication of operators is jointly continuous in the so-
topology on the unit ball of N [6, Proposition 2.4.1], the operator

α(B(k0)
0 , σ)V1 · · ·Vnα(B(kn)

n , σ)

converges in the so-topology to α(B0, σ)V1 · · ·Vnα(Bn, σ), σ ∈ S. Now, an applica-

tion of the Dominated Convergence Theorem for the Bochner integral of H-valued
functions [20, Corollary III.6.16] completes the proof.

This new definition of multiple operator integral enables us to give a simple proof

of the following.

Proposition 4.10 The multiple operator integral has the properties:

(i) if φ1 and φ2 admit a representation of the type given in (4.1), then so does φ1 + φ2

and

T
B1,...,Bn

φ1+φ2
= T

B1,...,Bn

φ1
+ T

B1,...,Bn

φ2
;(4.3)

(ii) in the case of double operator integrals, if φ1 and φ2 admit a representation of the

type given in (4.1), then so does φ1φ2 and

T
B1,B2

φ1φ2
= T

B1,B2

φ1
T

B1,B2

φ2
.

Proof (i) If we take representations of the form (4.1) with (S1, ν1) and (S2, ν2) for

φ1 and φ2 and put (S, ν) = (S1, ν1) ⊔ (S2, ν2) for φ1 + φ2 with evident definition of
α1, α2, . . . , then the equality (4.3) follows from Definition 4.1. Here ⊔ denotes the

disjoint sum of measure spaces.

(ii) If

φ j(λ1, λ2) =

∫

S1

α j(λ1, σ1)β j(λ2, σ1) dν j(σ1), j = 1, 2,

set

φ(λ1, λ2) =

∫

S

α(λ1, σ)β(λ2, σ) dν(σ),

where

(S, ν) = (S1, ν1)×(S2, ν2)

and

α(λ, σ) = α1(λ, σ1)α2(λ, σ2), β(λ, σ) = β1(λ, σ1)β2(λ, σ2).
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Consequently,

T
B1,B2

φ1

(
T

B1,B2

φ2
(V )

)
=

∫

S1

α1(B1, σ1)T
B1,B2

φ2
(V )β1(B2, σ1) dν1(σ1)

=

∫

S1

α1(B1, σ1)

(∫

S2

α2(B1, σ2)Vβ2(B2, σ2) dν2(σ2)

)
β1(B2, σ1) dν1(σ1).

Now, Lemma 3.7 and Fubini’s theorem (Lemma 3.8) imply

T
B1,B2

φ1

(
T

B1,B2

φ2
(V )

)
=

∫

S1×S2

α1(B1, σ1)α2(B1, σ2)V

× β2(B2, σ2)β1(B2, σ1) d(ν1×ν2)(σ1, σ2) = T
B1,B2

φ1φ2
(V ).

5 Higher Order Fréchet Differentiability

We note that, by Stone’s theorem [36, Theorem VIII.7] and joint continuity of mul-
tiplication of operators (from the unit ball) in the so-topology [6, Proposition 2.4.1],

all operator-valued integrals occurring in this and subsequent sections are defined as

in Section 3.

Lemma 5.1 If A is a self-adjoint (possibly unbounded) operator on a Hilbert space H

and if f is a function on R such that f ∈ W1(R), then

f (A) = (2π)−1/2

∫

R

eisA m f (ds).

The proof is a simple application of Fubini’s theorem. See [6, Theorem 3.2.32].

Lemma 5.2 (Duhamel’s formula). If B is an unbounded self-adjoint operator on

a Hilbert space H, if V is a bounded self-adjoint operator on H and if A = B + V,
then

eisA − eisB
=

∫ s

0

ei(s−t)Ai(A − B)eitB dt.(5.1)

Proof Let F(t) = eitAe−itB. Taking the derivative of F(t) in the so-topology gives

F ′(t) = iAeitAe−itB + eitA(−iB)e−itB
= eitAi(A − B)e−itB.

So, ∫ s

0

eitAi(A − B)e−itB dt = F(s) − F(0) = eisAe−isB − 1.

Multiplying the last equality by eisB from the right gives (5.1).
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Theorem 5.3 Let N be a von Neumann algebra. Suppose that B = B∗ is affiliated

with N, that V ∈ N is self-adjoint and set A = B + V. If f ∈ W1(R), then

f (A) − f (B) = T
A,B
f [1] (V ).

Proof It follows from Lemma 5.1 that

f (A) − f (B) =
1√
2π

∫

R

(eisA − eisB) m f (ds).

Hence, by Lemma 5.2,

f (A) − f (B) =
i√
2π

∫

R

m f (ds)

∫ s

0

ei(s−t)AVeitB dt.

Since f ∈ W1(R), by Lemma 2.1 and Fubini’s theorem (Lemma 3.8), the repeated

integral can be replaced by a double integral, so that

(5.2) f (A) − f (B) =
i√
2π

∫∫

Π

ei(s−t)AVeitB m f (ds) dt =

∫∫

Π

ei(s−t)AVeitB dν f (σ).

It now follows from Lemma 4.5 that f (A) − f (B) = T
A,B
f [1] (V ).

Remark 5.4. The preceding formula is due to Birman and Solomyak [5]. It is similar

to [30, Corollary 7.2], which applies to a wider class of functions but is restricted to
bounded operators in a semifinite von Neumann algebra N.

Let X be a topological vector space, E be a normed space embedded in X. Let x ∈ X

and f : x + E → f (x) + E. The function f is called affinely Fréchet differentiable at x

along E if there exists a (necessarily unique) bounded operator L : E → E such that

f (x + h) − f (x) = L(h) + r(x, h),

where ‖r(x, h)‖
E

= o(‖h‖
E

). We write L = DE f (x).

Theorem 5.5 Let N be a von Neumann algebra, acting in a Hilbert space H. Let

B = B∗ be affiliated with N and let V ∈ Esa, where E is an invariant operator ideal

over N with property (F). If f ∈ W2(R), then the function f : B ′ ∈ B + Esa 7→ f (B ′) ∈
f (B) + Esa is affinely Fréchet differentiable along Esa and DE f (B) = T

B,B
f [1] . The function

X 7→ DE f (B + X) is continuous in the norm of E and satisfies the estimate

(5.3) ‖DE f (B + X)(V ) − DE f (B)(V )‖
E

6 ‖m f ′ ′‖ ‖V‖
E
‖X‖

E
, X,V ∈ E.

Proof By (5.2) we have, following [42],

f (B+V ) − f (B)

=

∫∫

Π

ei(s−t)(B+V )VeitB dν f (s, t)

=

∫∫

Π

ei(s−t)BVeitB dν f (s, t) +

∫∫

Π

(
ei(s−t)(B+V ) − ei(s−t)B

)
VeitB dν f (s, t)

= (I) + (II).
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(I) is equal to T
B,B
f [1] (V ) and represents a continuous linear operator on E (see Lem-

mas 4.5 and 4.6), so that it will be a Fréchet derivative of f : B + E → f (B) + E

provided it is shown that the second term is o(‖V‖
E

). Applying Duhamel’s formula

(5.1) yields

(II) =

∫∫

Π

(∫ s−t

0

ei(s−t−u)(B+V )iVeiuB du

)
VeitB dν f (s, t).(5.4)

Since f ∈ W2(R), Lemmas 2.4, 4.3, and 4.5 enable us to rewrite (5.4) as

(II) =

∫∫∫

Π(2)

ei(s−t)(B+V )Vei(t−u)BVeiuB dν(2)
f (s, t, u),

where (Π(2), ν(2)
f ) is the finite measure space defined in Lemma 2.1. The E-norm of

the last expression is estimated by |ν(2)
f | ‖V‖ ‖V‖

E
6 |ν(2)

f | ‖V‖2
E

. So, the function

f : B + E → f (B) + E is Fréchet differentiable and DE f (B) = T
B,B
f [1] .

The norm continuity of this derivative and the estimate (5.3) follow by a similar
argument using Duhamel’s formula (5.1).

Remark 5.6. It follows, in particular, from the preceding theorem via Lemma 4.6 that

the operator T
B,B
f [1]

∣∣∣
E

is a bounded linear operator on E.

Theorem 5.7 Let N be a von Neumann algebra on a Hilbert space H, let B = B∗

be affiliated with N and let V1, . . . ,Vn ∈ Esa. If f ∈ Wn+1(R), then the function

f : B ′ ∈ B + Esa 7→ f (B ′) ∈ f (B) + Esa is n-times affinely Fréchet differentiable along

Esa and

Dn
E f (B)(V1, . . . ,Vn) =

∑

σ∈Pn

T
B,...,B
f [n] (Vσ(1), . . . ,Vσ(n)) ∈ E,(5.5)

where Pn is the standard permutation group.

Proof If n = 1 then this theorem is exactly Theorem 5.5. Set B̃ = B + Vn+1. By

induction we have

Dn f (B̃; V1, . . . ,Vn) − Dn f (B; V1, . . . ,Vn)

=

∑

σ∈Pn

(
T

eB,eB,...,eB
f [n] (Vσ(1), . . . ,Vσ(n)) − T

B,B,...,B
f [n] (Vσ(1), . . . ,Vσ(n))

)
.

A single term of this sum is

T
eB,eB,...,eB
f [n] (Vσ(1), . . . ,Vσ(n)) − TB,B,...,B

f [n] (Vσ(1), . . . ,Vσ(n))

=

n∑

j=0

(
T

eB,...,
( j)

eB ,B,...,B
f [n] (Vσ(1), . . . ,Vσ(n)) − T

eB,...,eB,
( j)

B ,...,B
f [n] (Vσ(1), . . . ,Vσ(n))

)
.
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Now, the j-th summand is (Lemma 4.5)

T
eB,...,

( j)

eB ,B,...,B
f [n] (Vσ(1), . . . ,Vσ(n)) − T

eB,...,eB,
( j)

B ,...,B
f [n] (Vσ(1), . . . ,Vσ(n))

=

∫

Π(n)

ei(s0−s1)eBVσ(1) · · ·Vσ( j)e
i(s j−s j+1)eBVσ( j+1)e

i(s j+1−s j+2)BVσ( j+2)

· · ·Vσ(n)e
isnB dν(n)

f (s0, . . . , sn)

−
∫

Π(n)

ei(s0−s1)eBVσ(1) · · ·Vσ( j−1)e
i(s j−1−s j )eBVσ( j)e

i(s j−s j+1)BVσ( j+1)

· · ·Vσ(n)e
isnB dν(n)

f (s0, . . . , sn)

=

∫

Π(n)

ei(s0−s1)eBVσ(1) · · ·Vσ( j)

(
ei(s j−s j+1)eB − ei(s j−s j+1)B

)
Vσ( j+1)

· · ·Vσ(n)e
isnB dν(n)

f (s0, . . . , sn).

By Duhamel’s formula (Lemma 5.2), we have

T
eB,...,

( j)

eB ,B,...,B
f [n] (Vσ(1), . . . ,Vσ(n)) − T

eB,...,eB,
( j)

B ,...,B
f [n] (Vσ(1), . . . ,Vσ(n)) =

∫

Π(n)

ei(s0−s1)eBVσ(1) · · ·Vσ( j)

(∫ s j−s j+1

0

eiueBiVn+1ei(s j−s j+1−u)B du

)

Vσ( j+1) · · ·Vσ(n)e
isnB dν(n)

f (s0, . . . , sn).

Applying Fubini’s theorem (Lemma 3.8) we get

(5.6) T
eB,...,

( j)

eB ,B,...,B
f [n] − T

eB,...,eB,
( j)

B ,...,B
f [n] = i

∫

Π(n)

∫ s j−s j+1

0

ei(s0−s1)eBVσ(1)

· · ·Vσ( j)e
iueBVn+1ei(s j−s j+1−u)BVσ( j+1) · · ·Vσ(n)e

isnB du dν(n)
f (s0, . . . , sn).

Hence, it follows from formula (5.6), Lemma 2.4, and the fact that multiple operator

integral is well-defined (Lemma 4.3) that

T
eB,...,

( j)

eB ,B,...,
(n)

B
f [n] (Vσ(1), . . . ,Vσ(n)) − T

eB,...,eB,
( j)

B ,...,
(n)

B
f [n] (Vσ(1), . . . ,Vσ(n))

= T
eB,...,

( j)

eB ,B,...,
(n+1)

B
f [n+1] (Vσ(1), . . . ,Vσ( j),Vn+1,Vσ( j+1), . . . ,Vσ(n)).

Since the multiple operator integral on the right hand side minus the same multiple
operator integral with the last B̃ replaced by B has the order of o((max

∥∥V j

∥∥)n+2) by

Duhamel’s formula, we see that the theorem is proved.

That the value of the derivative (5.5) belongs to E follows from Lemma 4.6.
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The argument of the last proof and Lemma 4.5 implies the following.

Corollary 5.8 Let N be a von Neumann algebra on a Hilbert space H. If B = B∗ is

affiliated with N, if V ∈ Esa and if f ∈ Wn+1(R), then

f (B + V ) − f (B) = T
B,B
f [1] (V ) + T

B,B,B
f [2] (V,V ) + · · ·+ T

B,...,B
f [n] (V, . . . ,V ) + O(‖V‖n+1

E
).

Proof This corollary is a consequence of Theorem 5.7 and Taylor’s formula [38,
Theorem 1.43].

6 Spectral Shift and Spectral Averaging

The aim of this section is to prove a semifinite extension of a formula for spectral
averaging due to Birman and Solomyak [4].

We first recall the following extension of the spectral shift formula of M. G. Krein

from [2, Theorem 3.1].

Theorem 6.1 If B = B∗ is affiliated with N and V = V ∗ ∈ L1(N, τ), then there

exists a unique function ξ = ξB+V,B(·) ∈ L1(R) such that

‖ξ‖1 6 ‖V‖1 ,

∫ ∞

−∞
ξ(λ) dλ = τ(V ),

−τ(supp(V−)) 6 ξ(λ) 6 τ(supp(V+)) for a.e. λ ∈ R,

and for any function f ∈ C1(R) whose derivative f ′ admits the representation

f ′(λ) =

∫ ∞

−∞
e−iλt dm(t), λ ∈ R

for some finite (complex) Borel measure on R, the operator f (B + V ) − f (B) is τ-trace

class and

τ
(

f (B + V ) − f (B)
)

=

∫ ∞

−∞
f ′(λ)ξ(λ) dλ.

The function ξB+V,B(·) is called the Krein spectral shift function for the pair

(B + V, B).

Lemma 6.2 If (N, τ) is a semifinite von Neumann algebra, B = B∗ is affiliated with

N, and V ∈ L
1(N, τ), then the function γ(λ, r) = τ

(
V EBr

λ

)
is measurable, where

Br := B + rV, r ∈ [0, 1].

Proof Let φλ,ε be a smooth approximation of χ(−∞,λ]. We note that φλ,ε(B) =

φ0,ε(B − λ), and that the unbounded-operator valued function (λ, r) ∈ R
2 7→

Br −λ is resolvent uniformly continuous [36, VIII.7]. It follows from [36, Theorem

VIII.20(b)] that the function (λ, r) 7→ φλ,ε(Br) is so-continuous, so that Lemma 2.5
implies that the function (λ, r) 7→ τ

(
Vφλ,ε(Br)

)
is continuous. Now, since φλ,ε →

χ(−∞,λ] pointwise as ε → 0, the operator φλ,ε(Br) → χ(−∞,λ](Br) in so-topology.

Hence, again by Lemma 2.5, the function τ
(
Vχ(−∞,λ](Br)

)
is measurable.
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Theorem 6.3 Let (N, τ) be a semifinite von Neumann algebra on a Hilbert space

H with a faithful normal semifinite trace τ. Let B = B∗ be affiliated with N and let

V = V ∗ ∈ L1(N, τ). If f ∈ W2(R), then f (B + V ) − f (B) ∈ L1(N, τ) and

τ( f (B + V ) − f (B)) =

∫

R

f ′(λ) dΞ(λ),

where the measure Ξ is given by

Ξ(a, b) =

∫ 1

0

τ(V EBr

(a,b)) dr, a, b ∈ R.

Here Br := B + rV, r ∈ [0, 1] and dEBr

λ is the spectral measure of Br.

Due to Lemma 6.2, the measure Ξ is well defined.

Proof If φ(λ, µ) = α(λ)β(µ), where α, β are continuous bounded functions on
R, then by the definition of the multiple operator integral TB,B

φ (V ) = α(B)Vβ(B).

Hence,

τ
(

T
B,B
φ (V )

)
= τ(α(B)Vβ(B)) = τ(α(B)β(B)V ).

Since the function α(·)β(·) is bounded, the simple spectral approximations to the

bounded operator α(B)β(B) converge uniformly and so, after multiplying by V , con-
verge in norm of L1(N, τ). This implies that

τ(α(B)β(B)V ) = τ

(∫

R

α(λ)β(λ) dEB
λ V

)
=

∫

R

α(λ)β(λ)τ
(
dEB

λ V
)
.

Hence, for functions of the form φ(λ, µ) = α(λ)β(µ), it follows that

τ
(

T
B,B
φ (V )

)
=

∫

R

φ(λ, λ)τ
(
dEB

λ V
)
.(6.1)

Let (S, Σ, ν) be a finite (complex) measure space, let α( · , · ), β( · , · ) be bounded
continuous functions on R × S and suppose that

φ(λ, µ) =

∫

S

α(λ, σ)β(λ, σ) dν(σ) for all (λ, µ) ∈ R
2

is a representation of φ given by (4.1). Let φσ(λ, µ) := α(λ, σ)β(µ, σ). It then follows

from the definition of the multiple operator integral that

T
B,B
φ (V ) =

∫

S

T
B,B
φσ

(V ) dν(σ),

and hence by Corollary 4.8

τ
(

T
B,B
φ (V )

)
=

∫

S

τ
(

T
B,B
φσ

(V )
)

dν(σ).
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It follows from (6.1) that

τ
(

T
B,B
φ (V )

)
=

∫

S

∫

R

φσ(λ, λ)τ
(
dEB

λ V
)

dν(σ)(6.2)

=

∫

R

∫

S

φσ(λ, λ) dν(σ)τ
(
dEB

λ V
)

=

∫

R

φ(λ, λ)τ
(
dEB

λ V
)
.

The interchange of integrals in the second equality is justified by Lemma 2.6 and

Fubini’s theorem. Further, since f ∈ W2(R), it follows from Theorem 5.5 applied

to E = L1(N, τ) that the Fréchet derivative DL1 f (Br) = T
Br ,Br

f [1] exists for all r ∈
[0, 1]. By the continuity of the Fréchet derivative given by the estimate (5.3) and the

Newton–Leibnitz formula for the Fréchet derivative (see e.g., [38, Theorem 1.43]) it

follows that
∫ 1

0

T
Br ,Br

f [1] (V ) dr =

∫ 1

0

DL1 f (Br)(V ) dr = f (B + V ) − f (B).

By Corollary 4.8 and taking traces it follows that

∫ 1

0

τ
(

T
Br,Br

f [1] (V )
)

dr = τ( f (B + V ) − f (B)).(6.3)

Since f [1] is continuous, f [1](λ, λ) = f ′(λ), so that (6.3) and (6.2) imply

τ( f (B + V ) − f (B)) =

∫ 1

0

∫

R

f [1](λ, λ)τ
(
dEBr

λ V
)

dr

=

∫ 1

0

∫

R

f ′(λ)τ
(
dEBr

λ V
)

dr

=

∫

R

f ′(λ)

∫ 1

0

τ
(
dEBr

λ V
)

dr,

the interchange of the integrals in the last equality being justified by Fubini’s theorem
[24, VI.2] via Lemma 2.6 and the fact that f ′ is a bounded function.

The next corollary in the case that N = B(H) and τ = Tr was established in [4].

Corollary 6.4 The measure Ξ is absolutely continuous, and the equality dΞ(λ) =

ξ(λ) dλ holds, where ξ(t) is the spectral shift function for the pair (B + V, B).

Proof From Theorems 6.1 and 6.3, it follows that
∫

R

f ′(λ) dΞ(λ) =

∫

R

f ′(λ)ξ(λ) dλ

for all f ∈ C∞
c (R). Consequently, the measures dΞ(λ) and ξ(λ) dλ have the same

derivative in the sense of generalized functions. By [22, Ch. I.2.6] there exists a

constant c such that dΞ(λ)−ξ(λ) dλ = c ·dλ. Since the measures dΞ(λ) and ξ(λ) dλ
are finite, it follows immediately that c = 0.
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7 Spectral Shift and Spectral Flow

The second author and J. Phillips have established various analytic formulae for spec-

tral flow along a path of self-adjoint unbounded Breuer–Fredholm operators affili-
ated with a semifinite von Neumann algebra. For special choices of path suggested by

the theory of the Krein spectral shift function, one may study a spectral flow function

on the real line µ 7→ sf(µ, D0, D1), µ ∈ R, where D1 and D0 differ by a τ-trace class
operator and the function measures spectral flow from D0 − µ to D1 − µ. We now

show that under these circumstances the spectral flow function actually coincides
with the Krein spectral shift function.

Let us first recall preliminary material about spectral flow. For more details see

[9, 33, 34]. In these papers the notion of type II spectral flow is introduced and an
analytic approach is developed starting from ideas of Getzler [23]. The new approach

of these papers allows the study of spectral flow between certain unbounded Breuer–

Fredholm operators affiliated with a general semifinite von Neumann algebra [9]. We
summarize the main features.

Let N be a semifinite von Neumann algebra with a faithful normal semifinite trace

τ and P, Q ∈ N be two infinite projections. Let kerQ T := ker T∩Q(H). An operator
T ∈ PNQ is said to be (P, Q) τ-Fredholm if the subspaces kerQ T and kerP T∗ are

τ-finite and there exists a projection P1 ∈ N such that P1 ≤ P, τ(P − P1) < ∞ and
P1(H) ⊂ T(H). In this case (P, Q)-index of the operator T is defined to be a number

τ-indP-Q(T) := τ[kerQ T] − τ[kerP T∗].

Here [K] denotes the projection onto the subspace K ⊆ H. If P = Q = 1 we call T

just τ-Fredholm. For details see [7, 8, 35].

Now, let F : t ∈ [a, b] 7→ Ft ∈ N be a norm continuous path of τ-Fredholm
operators and Pt =

1
2
(1 + sign(Ft)). If a partition t0 = a < t1 < · · · < tn = b of

the segment [a, b] is sufficiently small, then the operators P j−1P j : P jH → P j−1H,
P j−1P j ∈ P j−1NP j , are (P j−1, P j) τ-Fredholm for j = 1, . . . , n (P j := Pt j

), so that

the number

sf({Ft}) :=

n∑

j=1

τ-indP j−1-P j
(P j−1P j)

is well defined and does not depend on the partition
{

t j, j = 1, . . . , n
}

. Further,

if two paths {Ft} and {Gt} with the same ends points are norm homotopic, then

sf({Ft}) = sf({Gt}), so that the spectral flow sf(F0, F1) depends only on the end-
points.

We recall the definition of a semifinite spectral triple (see e.g,. [10]).

Definition 7.1 A semifinite spectral triple (A, N, D) is given by a Hilbert space H,
a ∗-algebra A ⊂ N where N is a semifinite von Neumann algebra acting on H, and a

densely defined unbounded self-adjoint operator D affiliated to N such that

(1) [D, a] is densely defined and extends to a bounded operator for all a ∈ A;

(2) (λ − D)−1 ∈ K(N, τ) for all λ /∈ R, where K(N, τ) is the set of all τ-compact

operators.
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A spectral triple (A, N, D) is said to be θ-summable if for all t > 0 the operator

e−tD2

is τ-trace class.
Let (A, N, D) be a θ-summable semifinite spectral triple, let V ∈ L1(N, τ) and let

Dr = D + rV, r ∈ [0, 1].

The Carey–Phillips formula [9] for spectral flow between D0 = D and D1 = D + V

is given by

sf(D0, D1) =

√
ε

π

∫ 1

0

τ
(

Ve−εDr
2
)

dr +
1

2
(ηε(D1) − ηε(D0))

+
1

2
τ ([ker(D1)] − [ker(D0)]) ,

where the ηε-invariant of an unbounded self-adjoint operator D, such that e−tD2

is

τ-trace class for all t > 0, is defined as [9, Definition 8.1]

ηε(D) :=
1√
π

∫ ∞

ε

τ
(

De−tD2
)

t−1/2 dt.

Spectral flow may be interpreted as the “net amount” of spectrum crossing zero
while moving from D0 to D1. So, it is natural to define the function sf(λ; D0, D1) :=

sf(D0 − λ, D1 − λ) as spectral flow at a point λ.
It follows from the Carey–Phillips formula that

(7.1)

sf(µ; D0, D1) =

√
ε

π

∫ 1

0

τ
(

Ve−ε(Dr−µ)2
)

dr +
1

2
(ηε(D1 − µ) − ηε(D0 − µ))

+
1

2
τ ([ker(D1 − µ)] − [ker(D0 − µ)]) , µ ∈ R.

The following theorem establishes a connection between the spectral shift function

for the pair (D0 + V, D0) and the spectral flow function sf( · , D0, D0 + V ).

Theorem 7.2 If V ∈ N belongs to the τ-trace class, then

sf(µ; D0, D1) = ξD1,D0
(µ) +

1

2
τ ([ker(D1 − µ)] − [ker(D0 − µ)])

for almost all µ ∈ R.

Proof The spectral theorem and Lemma 2.5 imply

√
ε

π
τ

(
Ve−ε(Dr−µ)2

)
=

√
ε

π
τ

(
V

∫

R

e−ε(λ−µ)2

dEDr

λ

)

=

∫

R

jε(λ − µ) τ
(
V dEDr

λ

)
,
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where jε(x) =
√

ε
π e−εx2

, x ∈ R. By Corollary 6.4 and using the fact that the system
{ jε} is an approximate identity, we obtain that

∫ 1

0

∫

R

jε(λ − µ) τ
(
V dEDr

λ

)
dr =

∫

R

jε(λ − µ)
d

dλ

∫ 1

0

τ
(
V EDr

λ

)
dr dλ

= jε ∗ ξD1,D0
(µ)

L1

−→ ξD1 ,D0
(µ) when ε → ∞.

The convergence in the last line can be justified by [37, Chapter 3, Section 5.6].

Since ηε(D j −µ) → 0, j = 0, 1, when ε → ∞, it follows from the Carey–Phillips
formula (7.1) that

sf(µ; D0, D1) = ξD1 ,D0
(µ) +

1

2
τ ([ker(D1 − µ)] − [ker(D0 − µ)]) , µ ∈ R.
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339(1993), no. 2, 717–750.

[19] P. G. Dodds, T. K. Dodds, B. de Pagter, and F. A. Sukochev, Lipschitz continuity of the absolute value
and Riesz projections in symmetric operator spaces. J. Funct. Anal. 148(1997), no. 1, 28–69.

[20] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General theory. John Wiley and Sons, Inc.,
New York, 1988.

[21] T. Fack and H. Kosaki, Generalised s-numbers of τ -measurable operators. Pacific J. Math. 123(1986),
no. 2, 269–300.

https://doi.org/10.4153/CJM-2009-012-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-012-0


Operator Integrals, Spectral Shift, and Spectral Flow 263

[22] I. M. Gelfand and G. E. Shilov, Generalized functions. Vol. 1. Properties and operations. Academic
Press, New York-London, 1964.

[23] E. Getzler, The odd Chern character in cyclic homology and spectral flow. Topology 32(1993), no. 3,
489–507.

[24] K. Jacobs, Measure and integral. Probability and mathematical statistics. Academic Press, New
York-London, 1978.

[25] M. G. Krein, On the trace formula in perturbation theory. Mat. Sbornik N.S. 33(75)(1953), 597–626.
[26] , Some new studies in the theory of perturbations of self-adjoint operators. First Math. Summer

School, Part I, Izdat Naukova Dumka, Kiev, 1964, pp. 103–187.
[27] S. G. Krein, J. I. Petunin, and E. M. Semenov, Interpolation of linear operators. Translations of

Mathematical Monographs 54, American Mathematical Society, Providence, RI, 1982.
[28] I. M. Lifshits, On a problem in the theory of perturbations connected with quantum statistics. Uspekhi

Mat. Nauk 7(1952), 171–180.
[29] B. de Pagter and F. A. Sukochev, Differentiation of operator functions in non-commutative Lp-spaces.

J. Funct. Anal. 212(2004), no. 1, 28–75.
[30] B. de Pagter, H. Witvliet, and F. A. Sukochev, Double operator integrals. J. Funct. Anal. 192(2002),

no. 1, 52–111.
[31] B. S. Pavlov, Multidimensional operator integrals. Problems of Math. Anal. 2: Linear operators and

operator equations, Izdat. Leningrad. Univ., Leninegrad, 1969, pp. 99–122.
[32] V. V. Peller, Multiple operator integrals and higher operator derivatives. J. Funct. Anal. 233(2006),

no. 2, 515–544.
[33] J. Phillips, Self-adjoint Fredholm operators and spectral flow. Canad. Math. Bull. 39(1996), no. 4,

460–467.
[34] , Spectral flow in type I and type II factors—a new approach. In: Cyclic cohomology and

noncommutative geometry, Fields. Inst. Commun. 17, American Mathematical Society, Providence,
RI, 1997, pp. 137–153.

[35] J. Phillips and I. Raeburn, An index theorem for Toeplitz operators with noncommutative symbol
space. J. Funct. Anal. 120(1994), no. 2, 239–263.

[36] M. Reed and B. Simon, Methods of modern mathematical physics: 1. Functional analysis. Academic
Press, New York, 1972.

[37] H. Reiter, Classical harmonic analysis and locally compact groups. Clarendon Press, Oxford, 1968.
[38] J. T. Schwartz, Nonlinear Functional Analysis. Notes on Mathematics and its Applications, Gordon

and Breach Science Publishers, New York-London-Paris, 1969.
[39] M. Z. Solomyak and V. V. Stenkin, On a class of multiple operator Stieltjes integrals. Problems of

mathematical analysis, Leningrad University Publ. 2, 1969, 122–134.
[40] V. V. Stenkin, Multiple operator integrals. Izv. Vyss. Ucebn. Zaved. Matematika 4(1977), 102–115.
[41] N. N. Vakhaniya, V. I. Tarieladze, and S. A. Chobanyan, Probability distributions in Banach spaces.

Nauka. Moscow, 1985.
[42] H. Widom, When are differentiable functions are differentiable? In: Linear and Complex Analysis

Problem Book 3, Part 1, Lecture Notes in Mathematics 1573, Springer-Verlag,
Berlin-Heidelberg-New York, 1994, pp. 266–271.

[43] K. Yosida, Functional analysis. Fundamental Principles of Mathematical Sciences 123,
Springer-Verlag, Berlin-New York, 1980.

(Azamov, Dodds) School of Computer Science, Engineering and Mathematics, Flinders University of South
Australia, Bedford Park, 5042, SA, Australia
e-mail: azam0001@csem.flinders.edu.au

peter@csem.flinders.edu.au

(Carey) Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia
e-mail: acarey@maths.anu.edu.au

(Sukochev) School of Mathematics and Statistics, University of New South Wales, Kensington, NSW 2052,
Australia
e-mail: f.sukochev@unsw.edu.au

https://doi.org/10.4153/CJM-2009-012-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-012-0

