Can. J. Math., Vol. XXII, No. 5, 1970, pp. 984-993

MORE ON EXTENDING CONTINUOUS
PSEUDOMETRICS

H. L. SHAPIRO

1. Introduction and definitions. The concept of extending to a topological
space X a continuous pseudometric defined on a subspace S of X has been
shown to be very useful. This problem was first studied by Hausdorff for the
metric case in 1930 [9]. Hausdorff showed that a continuous metric on a closed
subset of a metric space can be extended to a continuous metric on the whole
space. Bing [4] and Arens [3] rediscovered this result independently. Recently,
Shapiro [15] and Alo and Shapiro [1] studied various embeddings. It has been
shown that extending pseudometrics can be characterized in terms of extending
refinements of various types of open covers. In this paper we continue our
study of extending pseudometrics. First we show that extending pseudo-
metrics can be characterized in terms of s-locally finite and o-discrete covers.
We then investigate when can certain types of covers be extended. We show
that P-embedding can be used to characterize concepts introduced by
Slaughter [18] and Aull [2]. Finally we give new proofs of the known facts
that a normal M-space is countably paracompact and that an F,-subset of a
collectionwise normal space is collectionwise normal.

Definitions. We will follow the notation and terminology of [8]. For the
definition of a normal cover, consult [20]. If Z = (U.)ac; is a family of sub-
sets of a space X, then by Z|S we mean the family (U, M S)ac;. We say that
U has cardinality at most v (v an infinite cardinal number) if |I| < v. We say
that the family (Uy)eer is locally finite (discrete) if for each x € X there exist
a neighbourhood G of x and a finite subset J of I (J of I such that |J| = 1)
such that G\ U, = @ for every a ¢ J. We say that % is o-locally finite
(o-discrete) in case % can be expressed as a countable union of locally finite
(discrete) families. We say that .S is an F,-set if S can be expressed as a count-
able union of closed subsets of X. When a family of subsets of a subspace
S of X is said to be open, locally finite, etc., this refers to the topology of S.

Next let X be a topological space, let S C X, let % = (U.)aecr be a cover
of X, and let ¥ = (Vj)ges be a cover of S. Then % is an extension of ¥ if
I=Jandif UyNS = V,foralla € I.

If v is an infinite cardinal number, a subset .S of a topological space X is
said to be Pv-embedded in X if every vy-separable continuous pseudometric on
S can be extended to a y-separable continuous pseudometric on X. (A pseudo-
metric d on X is y-separable if there exists a subset G of X such that |G| < y
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and such that G is dense in X relative to the pseudometric topology 7 4. A
pseudometric d is continuous if d is continuous relative to the product topology
on X X X.) We say that S is P-embedded in X if every continuous pseudo-
metric on .S can be extended to a continuous pseudometric on X. The subspace
S is T-embedded in X if every totally bounded continuous pseudometric on .S
can be extended to a totally bounded continuous pseudometric on X. We say
that S is z-embedded in X if for every zero set Z in S there is a zero set Z’
in X such that 2’7 NS = Z.

We say that X is y-collectionwise normal if for every discrete family (Fu)acr
of closed subsets of X of cardinality at most v there exists a family (Gu)acs Of
pairwise disjoint open subsets of X such that F, C G, for each o € I. We say
that X is collectionwise normal if X is vy-collectionwise normal for every
cardinal number 7.

It is known that P-embedding implies P*-embedding which implies P¥¢-
embedding which is equivalent to C-embedding which implies 7-embedding
which is equivalent to C*-embedding which implies z-embedding. See
[1;5;6;7;10;15] for some of the inter-relationships between these concepts.

2. Characterizations for extending pseudometrics. From [15] we have
the following result.

2.1. THEOREM. Suppose that S is a subspace of a topological space X and that
v 1s an infinite cardinal number. Then the following statements are equivalent:

(1) S is Pr-embedded in X ;

(2) Every normal locally finite cozero-set cover of S of cardinality at most v
has a refinement that can be extended to a normal open cover of X;

(3) Every normal open cover of S of cardinality at most v has a refinement
that can be extended to « normal locally finite cozero-set cover of cardinality at
most y.

We will now show that either or both of the covers in (2) and (3) being
o-locally finite or o-discrete give necessary and sufficient conditions for
Pr-embedding. We will then investigate when can we characterize P7-
embedding in terms of extending covers rather than extending a refinement.
First we need some preliminary results. The proof of Proposition 2.2 is im-
mediate, Proposition 2.3 is part of the folklore in this area, and Theorem 2.4
is due to Morita and can be found in [12, Theorem 1.2].

2.2. PROPOSITION. Suppose that X is a topological space and that (Uy)aer 15 a
locally finite family of cozero-sets of X. Then U = Uqer U s @ cozero-set of X.

2.3. PROPOSITION. If (U,)nen %S @ countable cozero-set cover of a topological
space X, then there exists a locally finite cozero-set cover (Vy,)nen of X such that
Vo C U, for all n € N.

2.4. THEOREM. If % 1is an open cover of a topological space X, then the following
statements are equivalent:

https://doi.org/10.4153/CJM-1970-112-x Published online by Cambridge University Press


file:///Jaei
https://doi.org/10.4153/CJM-1970-112-x

986 H. L. SHAPIRO

1) U is normal;

(2) There exist a metric space Y, a continuous map f from X into YV, and an
open cover V" of Y such that f~1(¥") is a refinement of U ;

(3) U has a locally finite cozero-set refinement.

2.5. THEOREM. Suppose that X is a topological space and that v is an infinite
cardinal number. If U is a o-locally finite cozero-set cover of cardinality at most v,
then U admits a locally finite cozero-set refinement of cardinality at most .

Proof. Suppose that % is a o-locally finite cozero-set cover of X. Thus
Y = Unen U, where each U, = (Us")acr, is a family of locally finite cozero-
sets of X. For each n € N, let

Un = U Uan

agln

and note that by Proposition 2.2, each U, is a cozero-set in X. Therefore
(Un)nen is a countable cozero-set cover of X and hence, by Proposition 2.3,
there exists a locally finite cozero-set cover (V,),en of X such that ¥V, C U,
for each # € N. Now let M = {(n,a): #» € N and « € I,} and for each
(n,a) € M, let

Wye = Vi O U

We assert that A = (Wya)mwear is a locally finite cozero-set cover of X that
refines %. To see that 4 is locally finite, let x € X. Since (V,)nex is locally
finite, there exist a neighbourhood G, of x and a finite subset F of N such that
GoN\V, =0 if n ¢ F. Moreover, since %, is locally finite, for each # € F,
there exist a neighbourhood G, of x and a finite subset K, of I, such that
GNUS=0ifa ¢ K,.Let G = Go M (Nper G,) and let

N={na)e M:n€F and «a€ K,}.

Clearly G is a neighbourhood of x and N is a finite subset of M and one easily
verifies that G\ W, = 0 if (n,a) ¢ N. Note that the cover .4 has car-
dinality at most N -y = v. Since the other assertions are obvious, the proof
is now complete.

2.6. LEMMA. Suppose that f is a continuous function from a topological space
X into a topological space Y. If U is a discrete collection of cozero-subsets of Y,
then f~Y(U) = {f~1(U): U € U} is a discrete collection of cozero-subsets of X.

The proof, which is straightforward, is omitted.

2.7. THEOREM. Suppose that X is a topological space and that v is an infinite
cardinal number. If U is a locally finite cozero-set cover of cardinality at most v,
then U admits a o-discrete cozero-set refinement of cardinality at most ~.

Proof. Suppose that % is a locally finite cozero-set cover of X of cardinality
at most v. By Theorem 2.4, there exist a metric space (Y, d), a continuous
function f from X into (Y, d), and an open cover ¥~ of cardinality at most
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v of (¥, d) such that f~1(¥") refines %. Now an open cover in a metric space
has a o-discrete cozero-set refinement and this refinement has cardinality at
most v (see for example [11, p. 129]). Therefore, there exists a cover A of ¥V
such that A = Upen Ay, each A, is a collection of discrete cozero-sets in 7,
and A refines ¥". Note that f~1(A4) = Usenf~'(A%), and by Lemma 2.6,
each f~1(./,) is a discrete collection of cozero-sets of X. Since f~1(4) clearly
refines %, the proof is now complete.

We can now state and prove the main result.

2.8. THEOREM. Suppose that S is a subset of a topological space X and that v
is an wnfinite cardinal number. Then the following statements are equivalent:

(1) S is Pr-embedded in X;

(2) Every normal locally finite cozero-set cover of S of cardinality at most v
has a refinement that can be extended to a o-discrete cozero-set cover of X ;

(3) Every a-locally finite cozero-set cover of S of cardinality at most v has a
refinement that can be extended to a locally finite cozero-set cover of X of cardinality
at most vy,

(4) Every o-locally finite cozero-set cover of S of cardinality at most v has a
refinement that can be extended to a o-discrete cozero-set cover of X ;

(5) Every o-discrete cozero-set cover of S of cardinality at most v has a refine-
ment that can be extended to a o-locally finite cozero-set cover of X of cardinality
at most y.

Proof. (1) implies (2). If % is a normal locally finite cozero-set cover of S of
cardinality at most v, then, by Theorem 2.1, % has a refinement that extends
to a normal open cover ¥". By Theorem 2.4, every normal open cover has a
locally finite cozero-set refinement .4/ and by Theorem 2.7, 4 has a o-discrete
refinement .27, Clearly .&7|S refines %, hence (2) holds.

(2) implies (4). This implication follows from the facts that every o-locally
finite cozero-set cover of cardinality at most v has a locally finite cozero-set
refinement of cardinality at most v and that every locally finite cozero-set
cover is normal. (See Theorems 2.5 and 2.4.)

(4) implies (1). If % is a normal locally finite cozero-set cover of .S of
cardinality at most v, then clearly % is c-locally finite and therefore by (4)
there exists a o-discrete cozero-set cover ¥~ of .S such that #7|S refines %.
By Theorem 2.5, ¥~ has a locally finite cozero-set refinement 4 and clearly
./ViS refines % . Therefore by Theorem 2.1, S is P"-embedded in X. The proof
that (1), (3), and (5) are equivalent proceeds in a similar manner and we
omit it.

Since a subspace S of a topological space X is P-embedded in X if and only
if it is Pr-embedded in X for all infinite cardinal numbers v, we obtain the
following as an immediate corollary.

2.9. COoROLLARY. If S s a subset of a topological space X, then the following
statements are equivalent:
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(1) S is P-embedded in X;

(2) Every normal locally finite cozero-set cover of S has a refinement that can
be extended to a o-discrete cozero-set cover of X;

(8) Every a-locally finite cozero-set cover of S has a refinement that can be
extended to a locally finite cozero-set cover of X ;

(4) Every o-locally finite cozero-set cover of S has a refinement that can be
extended to a o-discrete cozero-set cover of X ;

(5) Every o-discrete cozero-set cover of S has a refinement that can be extended
to a a-locally finite cozero-set cover of X.

Of course, as with most cardinality definitions, the most interesting case of
Pr-embedding is when v = Xy. As a corollary of Theorem 2.8 we obtain that
a subspace .S of X is PXo-embedded in X if and only if every countable cozero-
set cover of S has a refinement that can be extended to a countable cozero-set
cover of X. Actually we proved this in [15] as well as showed that .S is PXo-
embedded in X if and only if every countable star-finite cozero-set cover of S
has a refinement that can be extended to a star-finite cozero-set cover of X.
In [6], Gantner has shown that .S is PXo-embedded in X if and only if S is
C-embedded in X. Our next result shows that in the case of PXo-embedding
we can extend the cover rather than require a refinement.

2.10. ProPOSITION. If S is a subset of a topological space X, then the following
statements are equivalent:

(1) S s PRo-embedded in X;

(2) Every countable cozero-set cover of S extends to a cozero-set cover of X.

Proof. (1) implies (2). Suppose that % = (U,).en is a countable cozero-set
cover of S. By hypothesis, .S is C-embedded in X and hence for each n € N,
there exists a cozero-set I/, in X such that VV, NS = U,. Let V' = U,en Va
and note that V is a cozero-set of X (Proposition 2.2), hence X — 1" is a
zero-set in X disjoint from S. Again, since S is C-embedded in X, there exists
a cozero-set G such that (X — V) C Gand GN S = @. Define A = (W,)nen
as follows: let W; = V1 \U G; and let W, = V, for n # 1. Then 4 is a count-
able cozero-set cover of X such that A4S = %.

Clearly (2) implies (1).

In [1], Alo and Shapiro defined 7-embedding. Similar to Theorem 2.1,
T-embedding is characterized in terms of finite normal cozero-set covers. We
now show that 7-embedding can be characterized in terms of extending finite
covers.

2.11. ProrposITION. If S is a subspace of a topological space X, then the
following statements are equivalent:

(1) S is T-embedded in X;

(2) Every finite cozero-set cover of S extends to a finite cozero-set cover of X.

Proof. (1) implies (2). Let % = (U, ..., U,) be a finite cozero-set cover
of S. By (1), % has a refinement that can be extended to a finite cozero-set
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cover of X and one can choose the indices so that they agree. We thus have a
finite cozero-set cover ¥~ = (Vy,..., V,) of X such that V,\S = U, for
1=1,...,n Also, since a T-embedded subset is z-embedded, for each
12 =1,...,n, there exists a cozero-set W, in X such that W; N\ S = U,. For
eachi=1,...,n,let A, = W; N\ V,. Then (44,...,4,) is a finite cozero-
set cover of X such that A, N\ S = U;forz=1,...,n.

From [1, Theorem 2.7] and Theorem 2.4, it follows that S is 7-embedded in
X if and only if every finite cozero-set cover of S has a refinement that can be
extended to a finite cozero-set cover of X. The implication (2) implies (1) is
now immediate.

Remark. Imler [10] has recently shown that a subspace S of a topological
space X is P-embedded in X if and only if every normal cozero-set cover of S of
cardinality at most v can be extended to a mormal open cover of X. It seems
unlikely that if @ > N, and if S is P-embedded in X, then every locally finite
cozero-set cover of S of cardinality at most v can be extended to a locally
finite cozero-set cover of X.

3. Applications of P-embedding. In [2] Aull studied five types of
collectionwise normal subsets of a topological space. He defined a subspace
S of a topological space X to be a-collectionwise normal if for every discrete
(in X) family (Fu)aer of closed subsets of S, there exists a family (Gy)ac; Of
pairwise disjoint open subsets of X such that F, C G, for all « € I. In [18],
Slaughter defined a closed set .S of a topological space X to satisfy condition
¥m (m a cardinal number) if for any discrete family (Fy,)ae; of at most m
closed subsets of .S there exists a pairwise disjoint open family (Gs)ac; of X
such that F, C U, for all @ € I. (Note that in the above definition, (Fa).e; is
discrete in S if and only if (Fy)aes is discrete in X.) If S satisfies condition v,,
for all cardinal numbers m, we say that S satisfies condition v. It is clear that a
closed subspace S of a topological space X is a-collectionwise normal if and
only if S satisfies condition vy. Slaughter proved that if f is a closed continuous
function from a topological space X onto a paracompact space V, then X is
collectionwise normal if and only if X satisfies condition v at f~!(y) for all
y € Y. We will show that a closed subset .S of a normal space X satisfies
condition v at S if and only if .S is collectionwise normal and P-embedded in
X. We can then show that every normal M-space is countably paracompact.
Finally we give a new proof of the fact that an F,-subset of a collectionwise
normal space is collectionwise normal.

3.1. LEMMA. Let X be a normal space and suppose that (Fy)aer s a family of
closed discrete subsets in X. If there exists a pairwise disjoint family (Uy)acr of
open subsets of X such that Fy C U, for every a € I, then there exists a discrete
family (Ga)acr of cozero-subsets of X such that Fy C Gy for all o € 1.

Proof. Let V = {x € X: (U,)acs is discrete at x} and observe that V is an
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open subset of X. If ¥ € Uger Fo, then x € Fg C Us for some B € I. Set
K = {8} and note that Uj is a neighbourhood of x such that Us M U, = @ if
a ¢ K. Thusx € 7 and we conclude that Uesc; Fo C V. Since X is normal and
Uaer Fa is closed, there exists a cozero-set W such that

Uaer Fe CW CcdWC V.

Also by the normality of X, for each a € I, there exists a cozero-set I, in X
such that Fy, C Vo, C U,. For each « € I, set G, = Vo, /M W and note that
G, is a cozero-set containing F,. Consider any x € X. If x € V, then (Uy)aer
is discrete at x and therefore (Gu)ae; is discrete at x. And if x ¢ V, then
X — cl W is a neighbourhood of x such that (X — cl W) N G, = @ for all
a € I, and so again (Ga)ac; is discrete at x.

3.2. THEOREM. Suppose that S is a closed subspace of « normal topological
space X. If S satisfies condition vy, then S is P-embedded in X.

Proof. Suppose that % is a o-discrete cozero-set cover of S so that
U = Upex U, and each U, = (Us")acr, is a discrete family of cozero-sets in
S. For each natural number # note that (cly Uy")aer, is discrete. For if x € .S,
then there exist a neighbourhood G of x and a subset K of I, with |[K| £ 1
such that GN U =0 if « ¢ K. Now if y € G M cly Uy, then G is a neigh-
bourhood of v, and y is in cl; U,”; hence G M U, # @, a contradiction.
Furthermore, since S is closed, cl; U = cly U Therefore by condition 7,
there exists a pairwise disjoint open (in X) family (Vo")ac;, such that
Ul Ccly U C V" By Lemma 3.1 there exists a discrete family (H,")acz,
of cozero-subsets of X such that U,” C H," for every a € I,. Furthermore,
since .S is a closed subset of a normal space, it is C-embedded, and hence for
each a € I, there exists a cozero-set W,* in X such that W,* N\ S = U,*. For
ecach o € I,, set

G = W M H,

Then %, = (Gi")acsn is still discrete. Now G = U,en Uaer, Go* is open and
hence there exists a cozero-set Gy in X such that (X — G) C Gy, and
GoNS =0. Let &, = {Go} and let N, = Z,_; for n € N, n > 1. Then
one easily shows that A = U,en A, is a o-discrete cozero-set cover of X
such that A/|.S refines %. To see that A4|S is indeed a cover of .S, observe
that (U A,) NS = U %,_1 for n > 1. The proof is now complete.

3.3. THEOREM. Suppose that S is a closed subspace of « normal space X. If
S is collectionwise normal and P-embedded in X, then S satisfies condition .

Proof. Suppose that (Fu)aes is a family of closed discrete subsets of S.
Since S is collectionwise normal, there exists a discrete family (G)aes Of open
subsets of S such that F, C G, for every a € I. In [12, Theorem 2.7], it is
shown that .S is P-embedded in X if and only if for every locally finite family
(Ga)aer of open subsets of S and every closed family (F,).cr of subsets of S
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such that F, C G, for each @ € I we have a locally finite family (H,)ac; of
open subsets of X such that F, C H. NS C G, for each a € I. Let (Ha)aer
be such a family and note that for each a € I there exist an open set U, and
a closed set V, such that ¥, C U, C V., C H,.

For each (a,8) € I X I witha # 8, let Wog = Vo Vp. Let

N = {Wag: (@,8) € I X I,a 5B}

and note that if x € X, then there exist a neighbourhood G of x and a finite
subset F of I such that GN V, =0 if « ¢ F. Clearly F X F is finite and
GN\ We =0if (@,8) ¢ F X F. Thus. /4 is a closed locally finite family in X
and therefore 4 is closure-preserving, whence W = \U 4 is a closed subset
of X. Note that WNS =6 for if x € WNS, then x € W, for some
(o, B) € I X I with @ 5 8. Therefore x € V.M VM S; thus x € G, N Gp,
a contradiction. Therefore there exist disjoint open sets 4; and 4, such that
W C Ayand S C 4.,.

For each o € I, let By = As M U, and let & = (Ba)ac;. Clearly & is a
family of open subsets of X such that F, C B,. To see that & is pairwise
disjoint, note that x € B,/ Bg implies that x € 4.\ U, M Uz so that
X € As and x € U N\ Ug C Vo Vg = Woe C W C A1, a contradiction.
Therefore S satisfies condition 7.

From Theorems 3.2 and 3.3 and the observation that if S satisfies condition
v then clearly .S is collectionwise normal, we have the following.

3.4. THEOREM. If S is a closed subspace of a normal space X, then the following
statements are equivalent:

(1) The subspace S satisfies condition v,

(2) The subspace S is collectionwise normal and P-embedded in X .

Imler also observed this result and has an entirely different proof in
[10, Theorem 4.12].

In [16] we defined a map f from a topological space X onto a topological
space Y to be paraproper in case f is closed continuous and f~(y) is para-
compact and P-embedded in X for every y € Y. It was then shown that if
X is a regular topological space and if f: X —— Y is paraproper, then ¥ para-
compact implies X is paracompact. With minor modification in the proof of
the aforementioned theorem one can prove (see [17, Theorem 12.18]) the
following.

3.5. THEOREM. Suppose that X and Y are topological spaces, that v is an
infinite cardinal number, and that f: X — Y is a closed continuous map such
that f~1(y) is y-paracompact and Pr-embedded in X for each y € Y. If L is a
paracompact subset of YV, then f~1(L) is y-paracompact.

As an application of the above we obtain the following.

3.6. THEOREM [13, Theorems 6.3 and 3.10]. Every mnormal M-space is
countably paracompact.
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Proof. By [13, Theorem 6.1] there exists a metric space ¥ and a closed
continuous function f from X onto Y such that f~1(y) is countably compact
for all ¥ € Y. Since every discrete collection in f~1(y) is finite, f~1(y) satisfies
condition v for all y € ¥ and therefore, by Theorem 3.4, f~1(y) is P-embedded
in X. Since f~1(y) is countably paracompact for all y € ¥, Theorem 3.5 now
yields the result.

In [19], Smirnov has shown that every F,-set in a normal space is normal.
In [5], Blair showed that X is normal if and only if every closed subset of X is
z-embedded in X. Blair also proved that every F,-set in a normal space is
g-embedded. Since X is collectionwise normal if and only if every closed
subset is P-embedded in X, it is natural to wonder about the analogies to the
above concerning collectionwise normality and P-embedding. It turns out
that an F,-set in a metric space need not be P-embedded (in fact, it need not
even be C-embedded). For if X is the real line and if .S is the open unit interval,
then S is an F,-set that is not C-embedded in X. On the other hand, it is
known (see [14, p. 53]) that an F,-subset of a collectionwise normal space is
collectionwise normal. We now prove that an F,-subset of a y-collectionwise
normal space is y-collectionwise normal.

3.7. THEOREM. Suppose that v is an infinite cardinal number and that X s a
y-collectionwise normal topological space. If S is an F,-set in X, then S is
v-collectionwise normal.

Proof. Suppose that S = U,en F, where each F, is a closed subset of X.
Note that .S is normal and z-embedded in X. To prove that .S is y-collectionwise
normal we show that every closed subset of .S is P-embedded in S. Let K be a
closed subset of S and let % = (U.)acr be a locally finite cozero-set cover of
K of cardinality at most v. Let # be a natural number and note that K N F,
is a closed subset of the <y-collectionwise normal space X and is therefore
Pr-embedded in X. Therefore there exists a locally finite cozero-set cover
YV = (Vaaer, of X such that V,» N\ (K N F,) C U,. Moreover, since S is
z-embedded in X, for all « € I there exists a cozero-set U,* in X such that
U*NS = U, For each « €I, let W= V,»MN U* and note that
Ny = (Wa")aer, is a locally finite cozero-set family in X such that W,"N\SC U,.
For each a € I, let A." = WM S, let 11 = (44)acr, and note that
&/, 41is a locally finite cozero-set family in .S such that 4" N\ K C U,.

Let G = U,en Uaer, 4" and note that K and .S — G are disjoint closed
sets in .S such that (S — G) C H and HN K = 0. Set &/, = {H} and ob-
serve that &7 = U,enZ, is a o-locally finite cozero-set cover of .S such that
A |K refines %. Therefore by Theorem 2.8, K is Pr-embedded in S and
therefore S is y-collectionwise normal.

3.8. CorROLLARY [14]. If X 4s colleciionwise normal and if S is an F,-subspace
of X, then S is collectionwise normal.
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