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MORE ON EXTENDING CONTINUOUS 
PSEUDOMETRICS 

H. L. SHAPIRO 

1. Introduction and definitions. The concept of extending to a topological 
space X a continuous pseudometric defined on a subspace 5 of X has been 
shown to be very useful. This problem was first studied by Hausdorff for the 
metric case in 1930 [9]. Hausdorff showed that a continuous metric on a closed 
subset of a metric space can be extended to a continuous metric on the whole 
space. Bing [4] and Arens [3] rediscovered this result independently. Recently, 
Shapiro [15] and Alo and Shapiro [1] studied various embeddings. It has been 
shown that extending pseudometrics can be characterized in terms of extending 
refinements of various types of open covers. In this paper we continue our 
study of extending pseudometrics. First we show that extending pseudo-
metrics can be characterized in terms of a-locally finite and (j-discrete covers. 
We then investigate when can certain types of covers be extended. We show 
that P-embedding can be used to characterize concepts introduced by 
Slaughter [18] and Aull [2]. Finally we give new proofs of the known facts 
that a normal ikf-space is countably paracompact and that an Tvsubset of a 
collection wise normal space is collection wise normal. 

Definitions. We will follow the notation and terminology of [8]. For the 
definition of a normal cover, consult [20]. If °tt = (Ua)aei ls a family of sub­
sets of a space X, then by °k\S we mean the family (Ua Pi S)aei. We say that 
°il has cardinality at most y (7 an infinite cardinal number) if | / | ^ 7. We say 
that the family (Ua)aei is locally finite (discrete) if for each x £ X there exist 
a neighbourhood G of x and a finite subset J oi I (J of / such that \J\ ^ 1) 
such that G C\ Ua = 0 for every a (? J. We say that °i/ is o-locally finite 
(a-discrete) in case can be expressed as a countable union of locally finite 
(discrete) families. We say that S is an Fa-set if 5 can be expressed as a count­
able union of closed subsets of X. When a family of subsets of a subspace 
S of X is said to be open, locally finite, etc., this refers to the topology of S. 

Next let X be a topological space, let S C X, let % = (Ua)aa be a cover 
of X, and let 'V = (Vp)$<ij be a cover of S. Then °U is an extension of ^ if 
/ = J and if Ua H S = Va for all a £ I. 

If 7 is an infinite cardinal number, a subset S of a topological space X is 
said to be Py-embedded in X if every 7-separable continuous pseudometric on 
S can be extended to a 7-separable continuous pseudometric on X. (A pseudo-
metric d on X is 7-separable if there exists a subset G of X such that \G\ ^ 7 
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and such that G is dense in X relative to the pseudometric topology 3/~d. A 
pseudometric d is continuous if d is continuous relative to the product topology 
on X X X.) We say that S is P-embedded in X if every continuous pseudo-
metric on S can be extended to a continuous pseudometric on X. The subspace 
.S is T-embedded in X if every totally bounded continuous pseudometric on S 
can be extended to a totally bounded continuous pseudometric on X. We say 
that S is z-embedded in X if for every zero set Z in S there is a zero set Z' 
in X such that Z' C\ S = Z. 

We say that X is y-collectionwise normal if for every discrete family (P a) a € / 

of closed subsets of X of cardinality at most 7 there exists a family (Ga)aa ol 
pairwise disjoint open subsets of X such that Fa C Ga for each a £ I. We say 
that X is collectionwise normal if X is 7-collectionwise normal for every 
cardinal number 7. 

It is known that P-embedding implies P7-embedding which implies PX o-
embedding which is equivalent to C-embedding which implies P-embedding 
which is equivalent to C*-embedding which implies z-embedding. See 
[1; 5; 6; 7; 10; 15] for some of the inter-relationships between these concepts. 

2. Characterizations for extending pseudometrics. From [15] we have 
the following result. 

2.1. THEOREM. Suppose that S is a subspace of a topological space X and that 
7 is an infinite cardinal number. Then the following statements are equivalent: 

(1) S is Py-embedded in X; 
(2) Every normal locally finite cozero-set cover of S of cardinality at most 7 

has a refinement that can be extended to a normal open cover of X; 
(3) Every normal open cover of S of cardinality at most 7 has a refinement 

that can be extended to a normal locally finite cozero-set cover of cardinality at 
most 7. 

We will now show that either or both of the covers in (2) and (3) being 
o--locally finite or or-discrete give necessary and sufficient conditions for 
P7-embedding. We will then investigate when can we characterize P7-
embedding in terms of extending covers rather than extending a refinement. 
First we need some preliminary results. The proof of Proposition 2.2 is im­
mediate, Proposition 2.3 is part of the folklore in this area, and Theorem 2.4 
is due to Mori ta and can be found in [12, Theorem 1.2]. 

2.2. PROPOSITION. Suppose that X is a topological space and that (Ua)aei is a 
locally finite family of cozero-sets of X. Then U = \Jaei Ua is a cozero-set of X. 

2.3. PROPOSITION. / / (Un)neN is a countable cozero-set cover of a topological 
space X, then there exists a locally finite cozero-set cover (Vn)n^ of X such that 
Vn C Un for all n e N. 

2.4. THEOREM. Iffy is an open cover of a topological space X, then the following 
statements are equivalent: 
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(1) fyl is normal; 
(2) There exist a metric space F, a continuous map f from X into F, and an 

open cover ^ of Y such that f~l(^) is a refinement of % ; 
(3) tfl has a locally finite cozero-set refinement. 

2.5. THEOREM. Suppose that X is a topological space and that y is an infinite 
cardinal number. If % is a a-locally finite cozero-set cover of cardinality at most y, 
then °tt admits a locally finite cozero-set refinement of cardinality at most y. 

Proof. Suppose that ^ is a cr-locally finite cozero-set cover of X. Thus 
% — Un<EN %n where each tyln = (Ua

n)a^in is a family of locally finite cozero-
sets of X. For each n G N, let 

Un = U Ua 
a(LIn 

and note that by Proposition 2.2, each Un is a cozero-set in X. Therefore 
(Un)nçs is a countable cozero-set cover of X and hence, by Proposition 2.3, 
there exists a locally finite cozero-set cover (Vn)n^ of X such that Vn C Un 

for each n G N. Now let M — {(n, a): n G N and a G In] and for each 
0 , a) G M, let 

Wna = Vn C\ Ua
n. 

We assert th&tJV = (Wna) &,<*)£ M is a locally finite cozero-set cover of X that 
refines °tt. To see XhdXJV is locally finite, let x £ X. Since (Vn)neN is locally 
finite, there exist a neighbourhood GQ of x and a finite subset F of N such that 
Go r\ Vn = 0 if n G -F. Moreover, since $ ^ is locally finite, for each n G T7, 
there exist a neighbourhood Gw of x and a finite subset Kn of /„ such that 
Gn C\ Ua

n = 0 if a g 2Tn. Let G = G0 H ( f W Gn) and let 

i V = j ( w , a ) 6 i k f : ^ Ç J p and a G 2f„}. 

Clearly G is a neighbourhood of x and N is a finite subset of M and one easily 
verifies that G P\ Wna = 0 if (n,a) Q N. Note that the cover JV has car­
dinality at most Ko * 7 = 7- Since the other assertions are obvious, the proof 
is now complete. 

2.6. LEMMA. Suppose that f is a continuous function from a topological space 
X into a topological space Y. If & is a discrete collection of cozero-subsets of F, 
then f~l(&) = {f~l(U): U G %} is a discrete collection of cozero-subsets of X. 

The proof, which is straightforward, is omitted. 

2.7. THEOREM. Suppose that X is a topological space and that y is an infinite 
cardinal number. If % is a locally finite cozero-set cover of cardinality at most 7, 
then & admits a o-discrete cozero-set refinement of cardinality at most 7. 

Proof. Suppose that fy is a locally finite cozero-set cover of X of cardinality 
at most 7. By Theorem 2.4, there exist a metric space (F, d), a continuous 
function/ from X into (F, d), and an open cover "V of cardinality at most 
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y of (F, d) such t h a t / " 1 ^ ) refines °U'. Now an open cover in a metric space 
has a (j-discrete cozero-set refinement and this refinement has cardinality at 
most 7 (see for example [11, p. 129]). Therefore, there exists a c o v e r t of F 
such that JV — U B Ê N ^ » » each , 7 ^ is a collection of discrete cozero-sets in F, 
and JV refines ^ . Note t h a t / " 1 ^ ) = U g N f 1 ^ ) , and by Lemma 2.6, 
e a c h / - ^ * / ^ ) is a discrete collection of cozero-sets of X. Since f~~l (jV) clearly 
refines ^ , the proof is now complete. 

We can now state and prove the main result. 

2.8. THEOREM. Suppose that S is a subset of a topological space X and that y 
is an infinite cardinal number. Then the following statements are equivalent: 

(1) S is Py-embedded in X; 
(2) Every normal locally finite cozero-set cover of S of cardinality at most y 

has a refinement that can be extended to a a-discrete cozero-set cover of X; 
(3) Every a-locally finite cozero-set cover of S of cardinality at most y has a 

refinement that can be extended to a locally finite cozero-set cover of X of cardinality 
at most y; 

(4) Every a-locally finite cozero-set cover of S of cardinality at most y has a 
refinement that can be extended to a a-discrete cozero-set cover of X; 

(5) Every a-discrete cozero-set cover of S of cardinality at most y has a refine­
ment that can be extended to a a-locally finite cozero-set cover of X of cardinality 
at most y. 

Proof. (1) implies (2). If °tt is a normal locally finite cozero-set cover of 5 of 
cardinality at most y, then, by Theorem 2.1, ^ has a refinement that extends 
to a normal open cover i^. By Theorem 2.4, every normal open cover has a 
locally finite cozero-set re f inement^ and by Theorem 2.7, ^¥ has a o--discrete 
refinement se. Clearly s/\S refines ^ , hence (2) holds. 

(2) implies (4). This implication follows from the facts that every cr-locally 
finite cozero-set cover of cardinality at most y has a locally finite cozero-set 
refinement of cardinality at most y and that every locally finite cozero-set 
cover is normal. (See Theorems 2.5 and 2.4.) 

(4) implies (1). If °tt is a normal locally finite cozero-set cover of S of 
cardinality at most 7, then clearly fy is cr-locally finite and therefore by (4) 
there exists a cr-discrete cozero-set cover ^ oî S such that i^\S refines °tt. 
By Theorem 2.5, 'f has a locally finite cozero-set refinement ^V and clearly 
JV\S refines °tt. Therefore by Theorem 2.1, S is PT-embedded in X. The proof 
that (1), (3), and (5) are equivalent proceeds in a similar manner and we 
omit it. 

Since a subspace 5 of a topological space X is P-embedded in X if and only 
if it is P7-embedded in X for all infinite cardinal numbers 7, we obtain the 
following as an immediate corollary. 

2.9. COROLLARY. / / 5 is a subset of a topological space X, then the following 
statements are equivalent: 
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(1) S is P-embedded in X; 
(2) Every normal locally finite cozero-set cover of S has a refinement that can 

be extended to a a-discrete cozero-set cover of X; 
(3) Every a-locally finite cozero-set cover of S has a refinement that can be 

extended to a locally finite cozero-set cover of X; 
(4) Every a-locally finite cozero-set cover of S has a refinement that can be 

extended to a a-discrete cozero-set cover of X; 
(5) Every a-discrete cozero-set cover of S has a refinement that can be extended 

to a a-locally finite cozero-set cover of X. 

Of course, as with most cardinality definitions, the most interesting case of 
PT-embedding is when y = Xo. As a corollary of Theorem 2.8 we obtain that 
a subspace S of X is PKo-embedded in X if and only if every countable cozero-
set cover of 5 has a refinement that can be extended to a countable cozero-set 
cover of X. Actually we proved this in [15] as well as showed that S is PN o-
embedded in X if and only if every countable star-finite cozero-set cover of 5 
has a refinement that can be extended to a star-finite cozero-set cover of X. 
In [6], Gantner has shown that S is PK°-embedded in X if and only if S is 
C-embedded in X. Our next result shows that in the case of PKo-embedding 
we can extend the cover rather than require a refinement. 

2.10. PROPOSITION. If S is a subset of a topological space X, then the following 
statements are equivalent: 

(1) Sis PK('-embedded in X; 
(2) Every countable cozero-set cover of S extends to a cozero-set cover of X. 

Proof. (1) implies (2). Suppose that °ll = (Un)n^N is a countable cozero-set 
cover of S. By hypothesis, 5 is C-embedded in X and hence for each n G N, 
there exists a cozero-set Vn in X such that Vn C\ S = Un. Let V = L W N Vn 

and note that F is a cozero-set of X (Proposition 2.2), hence X — V is a 
zero-set in X disjoint from S. Again, since S is C-embedded in X, there exists 
a cozero-set G such that (X — V) C G and G C\ S = 0. D e f i n e d = (Wn)n^ 
as follows: let W\ = V\\J G\ and let Wn = Vn for n j* 1. Then JV is a count­
able cozero-set cover of X such that J/\S = °tt. 

Clearly (2) implies (1). 

In [1], Alo and Shapiro defined P-embedding. Similar to Theorem 2.1, 
P-embedding is characterized in terms of finite normal cozero-set covers. We 
now show that P-embedding can be characterized in terms of extending finite 
covers. 

2.11. PROPOSITION. If S is a subspace of a topological space X, then the 
following statements are equivalent: 

(1) S is T-embedded in X; 
(2) Every finite cozero-set cover of S extends to a finite cozero-set cover of X. 

Proof. (1) implies (2). Let °ti = (Z7i, . . . , Un) be a finite cozero-set cover 
of S. By (1), & has a refinement that can be extended to a finite cozero-set 
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cover of X and one can choose the indices so t ha t they agree. We thus have a 
finite cozero-set cover i^ = (Vi, . . . , Vn) of X such t h a t Vi C\ S = Ut for 
i — 1, . . . , n. Also, since a P-embedded subset is ^-embedded, for each 
i — 1, . . . ,n, there exists a cozero-set W* in X such t h a t TF< P\ 5 = £/*. For 
each i = 1, . . . , n, let A t = Wt C\ Vi. Then (^4i, . . . , ^4W) is a finite cozero-
set cover of X such t h a t At C\ S = Ut for i = 1, . . . , n. 

From [1, Theorem 2.7] and Theorem 2.4, it follows t ha t S is P-embedded in 
X if and only if every finite cozero-set cover of S has a refinement t h a t can be 
extended to a finite cozero-set cover of X. T h e implication (2) implies (1) is 
now immediate . 

Remark. Imler [10] has recently shown tha t a sub space S of a topological 
space X is P1'-embedded in X if and only if every normal cozero-set cover of S of 
cardinality at most y can be extended to a normal open cover of X. I t seems 
unlikely t h a t if a > Xo and if £ is P 7 -embedded in X, then every locally finite 
cozero-set cover of 5 of cardinali ty a t most 7 can be extended to a locally 
finite cozero-set cover of X. 

3. A p p l i c a t i o n s of P - e m b e d d i n g . In [2] Aull studied five types of 
collectionwise normal subsets of a topological space. He defined a subspace 
5 of a topological space X to be a-collectionwise normal if for every discrete 
(in X) family (Fa)a^i of closed subsets of S, there exists a family (Ga)aei of 
pairwise disjoint open subsets of X such t h a t Fa C Ga for all a Ç L In [18], 
Slaughter defined a closed set 5 of a topological space X to satisfy condition 
ym (m a cardinal number) if for any discrete family (Fa)aei of a t most m 
closed subsets of S there exists a pairwise disjoint open family (G a ) a € / of X 
such t ha t Fa C Ua for all a £ I. (Note t ha t in the above definition, (Pa)a (E / is 
discrete in 5 if and only if (Fa)aa is discrete in X.) If 5 satisfies condition ym 

for all cardinal numbers m, we say t h a t 5 satisfies condition y. I t is clear t h a t a 
closed subspace 5 of a topological space X is a-collectionwise normal if and 
only if 5 satisfies condition 7. Slaughter proved t h a t if / is a closed continuous 
function from a topological space X onto a paracompact space F, then X is 
collectionwise normal if and only if X satisfies condition 7 a t / - 1 ^ ) for all 
y G Y. W e will show tha t a closed subset 5 of a normal space X satisfies 
condition 7 a t 5 if and only if 5 is collectionwise normal and P-embedded in 
X. W e can then show t h a t every normal ikf-space is countably paracompact . 
Finally we give a new proof of the fact t ha t an i v s u b s e t of a collectionwise 
normal space is collectionwise normal. 

3.1. LEMMA. Let X be a normal space and suppose that (Fa)aei is a family of 
closed discrete subsets in X. If there exists a pairwise disjoint family (Ua)a^i of 
open subsets of X such that Fa C Ua for every a £ 7, then there exists a discrete 
family (G a) a € 7 of cozero-subsets of X such that Fa C Ga for all a G I. 

Proof. Le t V = {x Ç X: (Ua)ati is discrete a t x} and observe t h a t V is an 
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open subset of X. If x £ U«er Fa, then x Ç ^ C ^ for some (3 Ç / . Set 
i£ = {/3} and note t h a t C/jg is a neighbourhood of # such t h a t Up P \ K* = 0 if 
a (t K. T h u s x 6 F and we conclude t h a t U«6/ ^« C F . Since X is normal and 
U«€7 P« is closed, there exists a cozero-set W such t h a t 

Also by the normal i ty of X, for each a £ / , there exists a cozero-set F« in X 
such t h a t /<« C Va C K*. For each a £ / , set Ga = F« P\ IF and note t h a t 
Ga is a cozero-set containing 7 v Consider any x Ç J . If x Ç F , then {Ua)a^i 
is discrete a t x and therefore (G a) a € 7 is discrete a t x. And if x (2 F , then 
X — cl IF is a neighbourhood of # such t h a t (X — cl IF) C\ Ga = 0 for all 
a £ / , and so again (Ga)aei is discrete a t x. 

3.2. T H E O R E M . Suppose that S is a closed subspace of a normal topological 
space X. If S satisfies condition 7, then S is P-embedded in X. 

Proof. Suppose t h a t °U is a cr-discrete cozero-set cover of S so t h a t 
% = Uw€N %n and each %n = (Ua

n)aein is a discrete family of cozero-sets in 
S. For each natura l number n note t h a t (cls Ua

n)aein is discrete. For if x £ 5", 
then there exist a neighbourhood G of x and a subset i£ of 7W with \K\ ^ 1 
such t h a t GC\ Ua

n = 0 H a & K. Now if 3/ £ G H cl5 £/«*, then G is a neigh­
bourhood of y, and y is in cl5 Ua

n; hence G Pi Ua
n ^ 0, a contradict ion. 

Fur thermore , since 5 is closed, cls Ua
n = c\x Ua

n. Therefore by condition 7, 
there exists a pairwise disjoint open (in X) family (Va

n)aein such t h a t 
Ua

n C cls Ua
n C Va

n. By L e m m a 3.1 there exists a discrete family (Ha
n)a(zIn 

of cozero-subsets of X such t h a t Ua
n C ft^ for every a £ /w- Fur thermore , 

since S is a closed subset of a normal space, i t is C-embedded, and hence for 
each a £ In there exists a cozero-set Wa

n in X such t h a t Wa
n H 5 = K / \ For 

each a £ In, set 

Ga» = wa
n r\ Ha\ 

Then ^ w = (G«n) a € / n is still discrete. Now G = UWGN U«<E/n G«w is open and 
hence there exists a cozero-set Go in X such t h a t (X — G) C G0 and 
Go Pi 5 = 0. Le t «yKx = {GoJ and let JVn = &?

w_1 for « G N , n > 1. Then 
one easily shows t h a t ^ F = U ^ N ^ K is a (r-discrete cozero-set cover of X 
such t h a t JV\S refines °tt. T o see t h a t JV\S is indeed a cover of 5 , observe 
t h a t ( U -^w) P\ S = U ^ n - i for n > 1. T h e proof is now complete. 

3.3. T H E O R E M . Suppose that S is a closed subspace of a normal space X. If 
S is collectionwise normal and P-embedded in X, then S satisfies condition 7 . 

Proof. Suppose t h a t (Fa)ael is a family of closed discrete subsets of 5 . 
Since 5 is collectionwise normal, there exists a discrete family (G a) a € 7 of open 
subsets of S such t h a t Fa C Ga for every a £ / . In [12, Theorem 2.7], i t is 
shown t h a t 5 is P-embedded in X if and only if for every locally finite family 
(Ga)aei of open subsets of S and every closed family (Fa)aei of subsets of 5 
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such that Fa C Ga for each a G / we have a locally finite family (Ha)aeT of 
open subsets of X such that Fa C HaC\S C Ga for each a £ I. Let (Ha)aa 

be such a family and note that for each a G / there exist an open set [/« and 
a closed set Va such that Fa (Z Ua G Va C #<*. 

For each (a, P) £ I X I with a ^ 0, let T7aj8 = 7 a H 7^. Let 

^ = {T7a/3: (a,0) G / X / , a ^ £} 

and note that il x £ X, then there exist a neighbourhood G ol x and a finite 
subset F of 7 such that G C\ Va = Q 'il a Q F. Clearly F X F is finite and 
G r\ Wap = 0 if (a, p) £ FX F. Thus ^ is a closed locally finite family in X 
and therefore ^V is closure-preserving, whence W = U « ^ is a closed subset 
of X. Note that IF H 5 = 0 for if x G W C\ S, then x G IFa/? for some 
(a, (3) £ I X I with a ^ 0. Therefore x G F« H F,* H 5; thus x É ^ H G„, 
a contradiction. Therefore there exist disjoint open sets ^4i and A2 such that 
W CA1 and 5 C ^ 2 . 

For each a G / , let Ba = A2 H Î7a and let ^ = (Ba)aei. Clearly 38 is a 
family of open subsets of X such that j ^ C Ba. To see that 3S is pairwise 
disjoint, note that x G BaC\B$ implies that x £ A2C\ Ua (~^ Up so that 
x G A2 and x G J7a Pi Up C 7 a H Vp = Wap C 17 C Au a contradiction. 
Therefore S satisfies condition 7. 

From Theorems 3.2 and 3.3 and the observation that if S satisfies condition 
7 then clearly S is collection wise normal, we have the following. 

3.4. THEOREM. If S is a closed subspace of a normal space X, then the following 
statements are equivalent: 

(1) The subspace S satisfies condition 7; 
(2) The subspace S is collectionwise normal and P-embedded in X. 

Imler also observed this result and has an entirely different proof in 
[10, Theorem 4.12]. 

In [16] wTe defined a map / from a topological space X onto a topological 
space F to be paraproper in c a s e / is closed continuous and f~l(y) is para-
compact and P-embedded in X for every y G F. It was then shown that if 
X is a regular topological space and if / : X —*-» F is paraproper, then Y para-
compact implies X is paracompact. With minor modification in the proof of 
the aforementioned theorem one can prove (see [17, Theorem 12.18]) the 
following. 

3.5. THEOREM. Suppose that X and Y are topological spaces, that 7 is an 
infinite cardinal number, and that f: X —> F is a closed continuous map such 
that f~1(y) is 7-paracompact and Py-embedded in X for each y G Y. If L is a 
paracompact subset of F, thenf~l{L) is 7-paracompact. 

As an application of the above we obtain the following. 

3.6. THEOREM [13, Theorems 6.3 and 3.10]. Every normal M-space is 
countably paracompact. 
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Proof. By [13, Theorem 6.1] there exists a metric space F and a closed 
continuous f u n c t i o n / from X onto F such t h a t / - 1 (y) is countably compact 
for all y Ç F . Since every discrete collection i n / - 1 (3/) is finite, f~l(y) satisfies 
condition 7 for all y G F and therefore, by Theorem 3.4, / _ 1 (y) is P-embedded 
in X. S i n c e / - 1 (y) is countably paracompact for all y G F, Theorem 3.5 now 
yields the result. 

In [19], Smirnov has shown t h a t every Fa-set in a normal space is normal . 
In [5], Blair showed t h a t X is normal if and only if every closed subset of X is 
2-embedded in X. Blair also proved t h a t every Fa-set in a normal space is 
^-embedded. Since X is collectionwise normal if and only if every closed 
subset is P-embedded in X, i t is na tura l to wonder abou t the analogies to the 
above concerning collectionwise normal i ty and P-embedding . I t tu rns ou t 
t ha t an Fff-set in a metric space need no t be P-embedded (in fact, it need no t 
even be C-embedded). For if X is the real line and if S is the open uni t interval , 
then S is an Pff-set t h a t is no t C-embedded in X. On the other hand, it is 
known (see [14, p . 53]) t h a t an / v s u b s e t of a collectionwise normal space is 
collectionwise normal . W e now prove t h a t an iv-subset of a 7-collectionwise 
normal space is 7-collectionwise normal . 

3.7. T H E O R E M . Suppose that 7 is an infinite cardinal number and that X is a 
y-collectionwise normal topological space. If S is an Fa-set in X, then S is 
y-collectionwise normal. 

Proof. Suppose t h a t S = UWÇN Fn where each Fn is a closed subset of X. 
Note t h a t S is normal and z-embedded in X. T o prove t h a t S is 7-collectionwise 
normal we show t h a t every closed subset of 5 is PT -embedded in S. Le t K be a 
closed subset of 5 and let °ll = (Ua)aei be a locally finite cozero-set cover of 
K of cardinal i ty a t most 7. Le t n be a na tura l number and note t h a t K C\ Fn 

is a closed subset of the 7-collectionwise normal space X and is therefore 
P 7 -embedded in X. Therefore there exists a locally finite cozero-set cover 
i^n = (Va

n)aein of X such t h a t Va
n C\ (K Pi Fn) C Ua. Moreover, since 5 is 

2-embedded in X, for all a £ I there exists a cozero-set Ua* in X such t h a t 
Ua* H S = Ua. For each a G In let Wa

n = Va
n H Ua* and note t h a t 

^n = (Wa
n)aein is 2, locally finite cozero-set family in X such t h a t Wa

nC\S(Z. Ua. 
For each a G /„ , let Aa

n = Wa
n H 5 , let s/n+1 = (Aa

n)aein and note t h a t 
s/n+i is a locally finite cozero-set family in S such t h a t Aa

n C\ K C Ua. 

Let G = UKÇN Ua6/n^4«w and note t h a t K and S — G are disjoint closed 
sets in S such t h a t (5 - G) C H" and H Pi i£ = 0. Set s/x = {H\ and ob­
serve t h a t sé = UWÇN - 3 ^ is a c-locally finite cozero-set cover of 5 such t h a t 
s/\K refines °ll. Therefore by Theorem 2.8, K is P 7 -embedded in 5 and 
therefore 5 is 7-collectionwise normal . 

3.8. COROLLARY [14]. If X is collectionwise normal and if S is an Fa-subspace 
of X, then S is collectionwise normal. 
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