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SUBGROUPS OF HNN GROUPS AND GROUPS 
WITH ONE DEFINING RELATION 

A. KARRASS AND D. SOLITAR 

1. Introduction. HNN groups have appeared in several papers, e.g., 
[3; 4; 5; 6; 8]. In this paper we use the results in [6] to obtain a structure 
theorem for the subgroups of an HNN group and give several applications. 

We shall use the terminology and notation of [6]. In particular, if K is a group 
and {ipi} is a collection of isomorphisms of subgroups {Lt} into K, then we call 
the group 

(1) G = (h, t2, . . . , K\ rel K, hUtr1 = *>i(£i), hUtr1 = <p2(L2), • • •) 

the HNN group with base K, associated subgroups {Lu <pi(Li)} and free part the 
group generated by h, h, . . . . (We usually denote <Pi(Lt) by Mt or £_*.) The 
notion of a tree product as defined in [6] will also be needed. 
Let H be a subgroup of (1). Then we prove (in Theorem 1) that H is itself an 

HNN group (with possibly trivial free part) ; its base is a tree product S with 
vertices of the form gKg~l C\ H and amalgamated subgroups either trivial or 
conjugates of the Lt intersected with H; each of its non-trivial associated subgroups 
is contained in a vertex of S and either equals this containing vertex or is a conjugate 
of an Li intersected with H\ moreover, every conjugate of K intersected with H is 
either trivial or is conjugate in H to a vertex of S. 

Some of the results we derive from this theorem are the following: 
If H has trivial intersection with each conjugate of Lu then H is a free product 

of a free group and groups of the type gKg~x C\ H; in particular, if H has trivial 
intersection with each conjugate of K, then H is free (see Theorem 6). 

If K is a locally indicable group and each Li is cyclic, then G is locally indicable 
(see Theorem 2); if K is a finitely generated torsion-free nilpotent group then G 
is locally indicable. 

Suppose that the base K has the property that its finitely generated subgroups are 
finitely related and that Lf has the property that all of its subgroups are finitely 
generated (or more generally that the intersection of a finitely generated subgroup 
of G with finitely many conjugates of the Lt is again finitely generated), then G has 
the property that all of its finitely generated subgroups are finitely related (see 
Theorem 8). 

We also determine the structure of a subgroup H which satisfies a non-trivial 
law (see Theorem 4) ; in particular, if the Lt are free and K is torsion free, then H 
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is either conjugate to a subgroup of K, a countable ascending union of cyclic 
groups, or a group with presentation 

(r, a] rar"1 —a11) 

(see Corollary to Theorem 4). 
If H is a finitely generated normal subgroup of G, and H is not contained in the 

intersection of all Lu then HK is of finite index in G (see Theorem 9). 
If the base K is finite (or more generally, the subgroup generated by the associated 

subgroups Lu Mt is finite), then G has the finitely generated intersection property, 
i.e., the intersection of two finitely generated subgroups is finitely generated (see 
Theorem 10). 

Results about HNN groups can be applied to groups with one defining 
relation. For, as observed in [8] every infinite group G with one defining relator 
is an HNN group whose free part is infinite cyclic, whose base K is a group with 
one defining relator, and whose associated subgroups are free. Moreover, by 
the standard Magnus embedding (see, for example, [7, §4.4]), the group G 
with one defining relation can be embedded in such an HNN group in which 
the base K has a shorter relator than that of G (unless the defining relator of G 
consists of a single syllable). For example, if 

G = (a,b;R) 

and R involves both a and b and has zero-exponent sum on a, then 

G = (t,K',Ro,tLlrl = M), 

where t = a, R0 is the relation obtained from R by rewriting it in terms of the 
conjugates bt = a^ar1, K is the group with the single defining relation R0 and 
with generators bt where i ranges between the minimum subscript X and maxi­
mum subscript JU occurring on b in RQ and L is the free group on b\, . . . , &M_i. 

Thus, theoretically we can describe the subgroups of a group with one 
defining relator in terms of the subgroups of another group with one defining 
relator of shorter length. 

A direct consequence of this observation is that every finitely generated 
torsion-free group with one defining relation can be obtained from an infinite cyclic 
group by applying finitely often the operations of forming an amalgamated 
product of two factors already obtained and taking a subgroup of a group already 
obtained (this result does not hold for every finitely generated torsion-free 
group, see e.g., [2]). 

Using this point of view we also prove the following: suppose that G is a group 
with one defining relation 

(2) G = (a,bfc,...;R) 

and that H is a subgroup of G satisfying a non-trivial law. If G is torsion-free, then 
H is either locally cyclic or is metabelian with presentation 

(T, a; TOUT 1 = an), 
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where n is some integer] if G has torsion, then H is cyclic or infinite dihedral 
(see Theorem 5). 

(This last theorem generalizes some results of [8; 9]. In [8; 9] it is proved 
that an abelian subgroup of a group G with one defining relation is either 
locally cyclic or free abelian of rank two. In [9] it is proved also that if G has 
elements of finite order then any solvable subgroup of G is cyclic or infinite 
dihedral.) 

As to the other subgroups of (2) we establish: in a group with one defining 
relation any subgroup not satisfying any non-trivial law must contain a free 
subgroup of rank two (see Theorem 3). 

2. The subgroup theorem and some applications. The method of proof of 
the subgroup theorem for HNN groups uses the standard embedding (of [5]) 
of the HNN group G given by (1) in the amalgamated product 

(3) E = (A *B; U) = X * G = Y*G, 

where 

A = X*K,B = Y*K, U = K*...*xiLixr1*...= K * . . ^ytMtyr1 * . . . , 
and X, Y are the free groups on xu yt respectively, and tt = y^Xi for 
i = 1,2, . . .n . 

A simple application of this embedding of an HNN group in an amalgamated 
product and the observation in [8] mentioned in the introduction is given by 
the following result: every finitely generated torsion-free group with one defining 
relator can be obtained from an infinite cyclic group by applying finitely often the 
operations of forming an amalgamated product of two factors already obtained and 
taking a subgroup of a group already obtained. 

The proof is by induction on the length of the defining relator. If the length 
of the defining relator is one, then the group is a finitely generated free group 
and so is obtainable from an infinite cyclic group using the allowable operations. 
Clearly, if the base of an HNN group with finitely generated free part is 
obtainable, then by the above embedding, the HNN group itself is obtainable. 
Since a group with one defining relator is a subgroup of an HNN group with 
base a group with one defining relator of shorter length, we have the result. 

Similarly, a finitely generated group with one defining relator having torsion can 
be obtained by starting the above process with a finite cyclic group instead of an 
infinite one. 

LEMMA 1. Let E be the free product of any two groups X and G, let H, K be 
subgroups of G and let p be an element of E having normal form (in E) 

P = glWig2W2 • • • gTWTl 

where gj € G,Wj £ X and each gj} Wj ^ I except possibly gi or wT. If 

p(X*K)p-lC\H * 1, 
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then p(X * K)p~l C\ H = giKgf1 C\ H and g2 , . . . , gr are in K. 
Moreover, let L0} . . . , Ln be subgroups of G, let be distinct 

elements of X and let U = XQLOXQ"1 * • • • * xnLnxn~~l. If pUp"1 C\ H 9^ 1, then 
pUp~l C\ H = giLj.gr1 r\ H and 

P = glXjr1Xj2g2pCj2-
1Xj9g3 . . . grXjr"1, 

where 0 ^ j t ^ n and gt G Lu for 2 ^ i ^ r. 

Proof. Let Q = p(X * i ^ - 1 C\ H ^ I, Then 

£_1(?£ = (X * j&) n wr1^"1 . . . wr^r^gijze;! • • • g^r. 
Now an element ( F ^ I ) in the right hand side must have the form 

Wr^gr1 • • • WrlgiWi . . . gTWr 

where gi, £2, . . • , gr are in K\ hence Q = giifgf1 C\ i J and g2, . . . , gT are in K. 

Next suppose that 2? = pUp~l C\ H ^ 1. Then 

^ i ? ^ = UP\ Wr-
lgr~

l . . . W / r ^ r W g i ) ^ ! . . . grWr. 

Now the normal subgroup N generated by G in £ is the free product of the 
conjugates of G by distinct elements of X; moreover, U is the free product of 
subgroups from distinct factors of N. An element (5^ 1) in p~1Rp has the normal 
form in (the free product) N given by 

gr g r -1 • • • U?l " g l j • • • gr-1 gr 

Therefore the product ws. . . wr must be xJ8~
l\ moreover, gs is in LJ81 2 ^ s ^ r, 

and grlhgx is in Z/;1. Hence R = giLj.gi ^ C\ H and p has the form asserted. 

THEOREM 1. Let G be the HNN group given by (1) and let H be a subgroup ofG. 
Then H is an HNN group {with possibly trivial free part) whose base is a tree 
product S with vertices of the form gKg~l C\ H, where neighboring vertices are 
joined by the identity subgroup, or have the form gKg~l C\ H and gti~

1Ktig~1 f~\ H 
and are joined by the amalgamated subgroup gLtg~l C\ H = gtflMitig~l C\ H; 
each of the non-trivial associated subgroups is contained in a vertex of S and equals 
this containing vertex or has the form yLiy~1 C\ H. 

Proof. Embed G in the amalgamated product E described in (3). Applying 
the subgroup theorem [6, Theorem 5] to £ , we have that H is an HNN group 
whose base is a tree product 5 with vertices of the form D (X * K)D~l C\ H or 
D{Y * K)D"1 C\ H. Employing Lemma 1 with X equal to X or Y, we obtain 
that each vertex ( T ^ I ) of 5 is of the form gKg~l C\ H where g Ç G. Moreover, 
neighboring vertices of S have the form D(X * K^'1 C\ H,D(Y* K)D~l C\ H 
with amalgamated subgroup DUD~1 C\ H. Again employing Lemma 1 with 
X = X, x0 = 1 and L0 = K, we have that if this amalgamated subgroup is 
different from 1, then D has the form 

(4) glXj^Xj&Xj^Xjt . . . grXJr-\ 

where gt G Ljtt 2 ^ s ^ r. 
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Replacing each xt in (4) by y^i (where y0 = t0 = 1), and again applying 
Lemma 1, it follows that if j i = 0, D(X * K)D~l C\H = D(Y*K)D~l C\ H = 
giKgr1 r\ H; and if j i ^ 0, then D(X * K)D~l C\ H = giKgr1 C\ H, 
D{Y*K)D~ir\ H = gihrlKtSlgi-ir\H and DUD~ir\H = giLjlgr

l H H = 
git^Mnt^C^H. 

Clearly in any tree product a subtree consisting of equal vertices may be 
replaced by a single vertex without altering the resulting group. Hence we may 
write 5 as a tree product in which neighboring vertices are as asserted in the 
theorem. 

Moreover, by [6, Theorem 5], a pair of associated subgroups of H has the 
form ôUô^r^H (which is in d(X * i£)5_1 C\ H, a vertex of S) and 
à'IHô'^niH (which is in ô,{Y*K)(à')-ir\H9 a vertex of S). Hence if 
5 WT1 H i f F* l and if <5 has the form (4), t h e n ô f / ^ H i J = « ( Z * ^ ) ^ 1 / ^ ! i f = 
gi i fgr 1 H H if jfx = 0 and ôUô'1 HH = giLj.gr1 Hi H il ji ^ 0. Similarly, 
8' Uiô')-1^!! = Ô' (Y* K)^')-1 n H or Ô'UW)-1 (^ H = gx

f M ^(g^)'1 C\ H = 
gitjlLjltjl~

1(gi)~l ^ ^ This completes the proof of Theorem 1. 

COROLLARY 1. Any subgroup of an HNN group (1) having trivial intersection 
with each conjugate of the base K is a free group. 

COROLLARY 2. If a subgroup H of (I) is generated by its intersections with 
conjugates of K, then H is the tree product S described in Theorem 1. 

Proof. Since H is generated by its intersections with conjugates of K, H is 
generated by its intersections with conjugates of X * K and Y * K1 and so (by 
[6, Theorem 5, Corollary 1]) the free part of H is trivial. Therefore H is the 
tree product S. 

COROLLARY 3. Under the same hypotheses as in Theorem 1, every subgroup 
gKg~l C\ H is either trivial or conjugate in H to a vertex of S. 

Proof. By Lemma 1, gKg-1 C\ H = g(X * K)g~l H H which is 

hDa(X*K)Da-
llrir\H 

(where h G H and Da is a double coset representative mod (if, X * K)), which 
in turn is a conjugate in H of a vertex of S. 

THEOREM 2. Let K be a locally indicable group and let the associated subgroups 
Li be cyclic. Then the HNN group G given in (1) is locally indicable. 

Proof. The proof is just like that of [6, Theorem 9]. 

Theorem 1 also allows us to prove (as in the proof of [6, Theorem 8]) that if 
the base K has all its subgroups finitely presented, then all finitely generated 
subgroups of the HNN group (1) are finitely related. This will be strengthened 
in Theorem 8. For example, a group A = {a,b\ anbrarn = bs) with rs ^ 0 is 
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locally indicable and every finitely generated subgroup is finitely related. For, the 
group B = «*> * A ; t = an) equals ((a) * (/, b; tô'r1 = bs); an = 0 , and the 
result follows from the above and [6, Theorems 8 and 9]. 

COROLLARY. Let G be an HNN group as in (1). If the base K is a finitely 
generated torsion-free nilpotent group, then G is locally indicable. 

Proof. The proof is just like that of [6, Theorem 9] if one uses the following 
result of [1]: the free product with amalgamated subgroup of a locally indicable 
group and a finitely generated torsion-free nilpotent group is locally indicable. 

The following theorem places a restriction on groups which can be embedded 
in one defining relator groups. 

THEOREM 3. Every subgroup of a group with one defining relation either 
contains a free subgroup of rank two or is solvable. 

Proof. We first observe the following: if H is an HNN group whose base is a 
tree product S and H contains no free subgroup of rank two, then (a) H is a vertex 
of S, or (b) H is an ascending union of amalgamated subgroups of S, or (c) H has 
the form (A * B; U) where A, B are vertices of S and U is an amalgamated sub­
group of S of index two in A and B, or (d) H has a presentation 

{ttS'wdS'itS'lr1 = S">, 

where S" < S' and S', S" are a pair of associated subgroups and t generates the free 
part of H. This is proved by the same argument as that for [6, Theorem 7], 

We next show that if the base K of an HNN group has the property that 
there exists an integer 5 such that every subgroup of K is solvable of length ^s 
or has a free subgroup of rank two, then the HNN group G defined by (1) has 
the same property except that 5 is replaced by s + 2. 

For, consider a subgroup H of the HNN group G which does not contain a 
free subgroup of rank two. Then by Theorem 1, H is itself an HNN group with 
base S a tree product whose vertices are conjugates of subgroups of K and with 
amalgamated subgroups which are subgroups of conjugates of K. We show that 
H is solvable of length ^s + 2. For, by the above observation and Theorem 1, 
if possibilities (a) or (b) hold, then H is solvable of length ^s. If possibility (c) 
holds, then H/ U ̂  Z2* Z2, which is metabelian; hence H is solvable of length 
^s + 2. Finally, if possibility id) holds, then the normal subgroup N of H 
generated by S' is an ascending union of subgroups contained in conjugates of K 
and hence is solvable of length ^s; since H/N is cyclic, H is solvable of length 
^s+ 1. 

Returning to groups with one defining relation, we show by induction on the 
length X of the relator that every subgroup is solvable of length ^2X or 
contains a free subgroup of rank two. As mentioned in the introduction, a 
group with one defining relator of length X > 1 can be embedded as a subgroup 
of an HNN group G' whose base K is a group with one defining relator of length 
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^X — 1. Hence by inductive hypothesis and the preceding argument every 
subgroup of the HNN group G' is solvable of length S2(X - 1) + 2 = 2X or 
contains a free subgroup of rank two. 

COROLLARY 1. Every subgroup of a group with one definition relation having 
torsion is cyclic, infinite dihedral, or contains a free subgroup of rank two. 

Proof. This follows from Theorem 3 by using the following result of [9]: 
every solvable subgroup of a group with one defining relation having torsion is 
cyclic or infinite dihedral. 

We shall also sharpen Theorem 3 for torsion-free one relator groups by 
showing that a solvable subgroup of such a group is metabelian of a very 
special type (see Theorem 5). 

COROLLARY 2. Let the base K of an HNN group have the property that there 
exists a non-trivial law such that every subgroup of K either satisfies this law or 
contains a free subgroup of rank two. Then the HNN group also has this property; 
the law in the case of the HNN group is obtained from the law associated with K 
by replacing each variable X in the law by the corresponding commutator 

[[XUX2],[X„X,]]. 

3. Subgroups satisfying a law. 

LEMMA 2. Let A be the free product X * K of two groups X and K and let 
Xo = 1, Xi, . . . , xn be distinct elements of X such that X jX n y*~ XJJXQ ~1 unless i = / 
or i = p, where 0 ^ i, j , p, q, ^n. Suppose that L0 = K, L\, . . . , Ln are sub-
groups of K, and that U = XoL0x0~

1 * . . . * xnLnxn~
l, and let a\ £ A — U. If 

aiUarir\ U 7*1, then 

axUar1 C\ U — aXiLiX^ar1 C\ U — uXj(Lj P\ kL ik~l)x flu~l 

for some 0 ^ i,j ^ n, and a\ — au\, u and U\ are in U, and k £ K; moreover, 
a = uxjkxf1, k 9* 1 or k g Lh and i ^ 0 or j ^ 0. 

Proof. We first note that the given condition on the {xt} is equivalent to 
requiring that if 1 9* x 6 X, then {x*} P\ {xxj contains at most one element. 

It is convenient to denote an element of X by xa where a ranges over some 
index set containing {0, 1, . . . , n). Using this notation, the normal subgroup N 
of A generated by K is the free product of the conjugates KXff. Moreover, the 
element a\ may be written in the form 

(5) ax = xa . ki°l . . . kr
x"r. u\ = aux, 

where xai xffi G X, kt £ K, (rt 9* (ri+i, ui £ U, and if ar 6 {0, 1, . . . , n) then 
kr g Lar. Clearly, a^Uar1 C\ U = aUa'1 Pi U. 

Now an element d ( ^ l ) of D = UC\ a~lUa can be written in the form 

d = ci*r i . . .cs
XT°, 
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where ri G {0, 1, . . . , » } , c< 6 L^-andr* ^ ri+i. We first show that 5 = 1. For, 
suppose that s ^ 2. Then 

^ ada-1 = &1*"*"1 . . . k/^'c/**^ . . . cs
x*XT*kr-

x°X("- . . . krx°x*1 

is in [/. It is easy to see that xffxTl1 . . . , x„xTa will occur as exponents when adar1 

is written in reduced form as an element of N. Since s ^ 2 and all exponents on 
elements in U are in {x0l . . . , xn}, it follows (from the given condition on the 
{Xi}) that xff = 1 and so r ^ 1. But this implies that adar1 $ U; for, the 
reduced form (as an element of N) of adar1 will contain the factor kr

X(Tr if 
<rr 9e ri and the factor (&rCi)Xri if o> = n . Hence 5 = 1 and each element d(^1) 
of D must have the form 

d = cx\ 

where i 6 {0, 1, . . . , n\ and c £ L2-; clearly (since D is a subgroup), all 
elements of D must have the same exponent xt. Hence 

aUa-1 P U = aDa~l P U = aXiL&^ar1 P £/. 

Moreover, a can also be written in the form 

(6) a = «jfe/*1 . . . &/""• . x„ 

where u £ Uy xff, xai £ Xy kt Ç i£, o-* ^ o-i+i, and if ai 6 {0, . . . , w} then 

&i $ Lai((T, ai, kt, r in (6) need not be the same as those in (5)). Now if 

1 ?£ c G Li and 

is in £/, then xaXi = a^ where j G {0, . . . , n) ; moreover, since kiai $ U, either 

r = 0, or r = 1 and cri ^ 0. If r = 0, then a = uXjXi~l,j ^ i, and so 

axiLtxr1a~l PU — uxj(LjP Li)x3~
lu~l. 

If r = 1, then x9l = xaXi — Xj and a = uxjkxxf1 and so aXiLiXClarl P U = 
uxj(Lj P kiLiki~1)xf1u~1, This completes the proof of Lemma 2. 

LEMMA 3. Suppose that G is the HNN group (1); embed G in the amalgamated 
product E defined by (3). Let x0 = y0 = 1 and let L0 = M0 = K. If p G E — U, 
then p Up"1 P U is trivial or the intersection of finitely many conjugates of the 
associated subgroups Lt(i 9e 0); finally, if p G E — K and H < G, then 
pKp~l C\ K C\ H is trivial or the intersection of H with finitely many conjugates 
of the associated subgroups Lt(i ^ 0). 

Proof. If p g U, then p has a reduced form in (A * B; U)y say, 

P = b\a\. . . brart 

where the factors alternate from A and B and are not in U. Now if 
pUp-1 Pi U y* 1, then 

pUp"x PU = ô i . . . briarUar1 P U^r1. . . br1 P U. 
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By Lemma 2, 

where aT = ari . Wi, wi G £7. Hence 

(7) pE#-i r\u = piXiLixr'pr1 n £/, 
where £i = pu-rx. 

Now we prove by induction on the syllable length of p\ that the right hand 
side of (7) is the intersection of finitely many conjugates of the associated 
subgroups. If pi has syllable length one, say, p = a\ £ A, then by Lemma 2, 

(8) a\xtLixc1a'i~l r\ U — uXj(Ljr\ kLikrl)xflu~l, 

where u £ U, k & Lj unless k — 1 and i ^ O o r j ^ 0. If i — 0, then the right 
hand side of (8) reduces to uxjLjXf1^"1, jVO; if j = 0, then the right hand 
side of (8) reduces to uL^ur1, i ?± 0. 

If p has the form qa where q has shorter syllable length than p and, say, 
a Ç A, then by Lemma 2 

(9) qaxtLipcrla~lq~l C\ U = quXj(Lj r\ kLikrl)xflu~lq~l C\ U 

which is quxjLjXf1 (qu)~l C\ U if i = 0, and is 

quxjLjX f1 (qu)~l C\ U (~\ quxikLih~lxflu~1q~x 

if i IA 0. Using the inductive hypothesis, we have that the left hand side of (9) 
is the intersection of finitely many conjugates of the associated subgroups. 

Finally, if p g K and pKp~l C\ K C\ H ^ 1, then p $. U. Now 
pKp~l C\ K C\ H = PXQLQXQ~1P~1 C\ U C\ H, which by the preceding result is 
the intersection of H with finitely many conjugates of the associated subgroups. 
This completes the proof of Lemma 3. 

COROLLARY. Under the same hypotheses as in Lemma 3, if r, s £ E, s~h $ Uf 

and 1 T^ rUr~l C\ H < sUs~l C\ H, thenrUr*1 C\ H is the intersection of H with 
finitely many conjugates (by elements of G) of the associated subgroups Lt(i ^ 0). 

Proof. By Lemma 3, s~lrUr~ls C\ U (and therefore rUr~l C\ sUs~l) is the 
intersection of finitely many conjugates (by elements of E) of the associated 
subgroups Li(i T6- 0). Moreover, since E = X * G and H, Lt < G, we have that 
cLiC1 r\ H y£ 1 implies that c is in G. 

THEOREM 4. Let G be the HNN group (1). Then any subgroup H of G which 
satisfies a non-trivial law is one of the following: 

(10) a subgroup of a conjugate of K; 
(11) a countable ascending union of subgroups of conjugates of the Lt; 
(12) an HNN group with presentation 

(t,S';relS',tS't-1 = S">, 
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where S" < S' and S' is the intersection of H with finitely many conjugates of the 
associated subgroups Lt; 

(13) an amalgamated product (C * D; V) where C, D are each the intersection 
of H with a conjugate of K, V is of index two in C and D, and V is the intersection 
of H with a conjugate of some Lt or V = 1. 

Proof. Embed G in the amalgamated product E denned by (3). According to 
[6, Theorem 7], H is one of the following: 

(10') a subgroup of a conjugate of X * K or Y*K and therefore, by 
Lemma 1, a subgroup of gKg~l for some g £ G; 

(11') a countable ascending union DiUDf1 C\ H where HDiU ^ HDi+iU, 
and hence DiUDr1 C\ His contained in a conjugate of Ln (by the Corollary to 
Lemma 3) ; thus H is a countable ascending union of subgroups of conjugates of 
the Lt) 

(12') an HNN group with presentation 

(t,S';relS',tUH't-i = UH
8'), 

where S' = gp(UH
8, UH

br), 5 ends in an a-symbol which is not in U, <5' ends in a 
0-symbol not in U, and UH

8 < UH
bf or vice versa. Since 8U ^ ô'U, UH

8' (as 
well as UH

h) is the intersection of H with finitely many conjugates of the 
associated subgroups Lt; 

(13') an amalgamated product (C * D; V) where V is of index two in C and 
D. Moreover, the proof of [6, Theorem 7] shows that C and D are vertices in 
the tree product S given in Theorem 1 and that V is an amalgamated subgroup 
of S; hence, C and D are conjugates of K intersected with H and F is a con­
jugate of some Lt intersected with H or V = 1. 

COROLLARY 1. The conclusions of Theorem 4 hold if in the hypothesis we replace 
"satisfies a non-trivial law'1 by ucontains no free subgroup of rank two'1. 

Proof. See the first remark in the proof of Theorem 3. 

COROLLARY 2. Let G be an HNN group given by (1). Suppose that each Lt has 
the property that the only subgroups satisfying a non-trivial law are cyclic. Let H 
be a subgroup of G satisfying a non-trivial law. If H is torsion-free then H is one 
of the following: 

(14) a subgroup of a conjugate of K; 
(15) a countable ascending union of cyclic groups; 
(16) a group with presentation (r, a; TOLT~1 = an), where n is an integer. 
If H is allowed to have torsion, then one has the additional possibilities given by 
(16') H = (r, a; ar, TOT"*"1 = an) where r,n are integers; 
(17) H = (C*Z>; V) where V is cyclic and of index two in both C and D, and 

C, D are subgroups of conjugates of K. 

Proof. In the face of the additional hypothesis on Lu (10), (11), (12), and 
(13) reduce to (14), (15), (16'), and (17) respectively. 
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Suppose further that H is torsion-free; then (16') clearly reduces to (16). 
Moreover, in (17), V = gp{v) is infinite cyclic. Since V is of index two in C, 

C = (Y, V\ 7 2 = Vs, yvy~l = Vn). 

Therefore vs = yv^-1 = vsn and hence, since 5 9^ 0, n = 1 and so C is infinite 
cyclic; similarly for D. Thus, 

H = (c, d; c* = d*) = (r, a; Tar"1 = a"1) 

with c = T,d = OIT; this group is included under (16). 

Remark. The following remark (suggested by a result of [9]) further restricts 
the groups that can occur in (15) and (16) above: let G be an HNN group given 
by (1). Suppose that for some prime p, each Lt{i > 0 or i < 0) is p-pure in K 
{i.e., kpT 6 Lt implies that kpT = kipT with ki G Li) and that each element k^l) 
of K is divisible by only finitely many powers of p {i.e., xpT = k has a solution x in 
K for only finitely many r). Then each element g ( ^1 ) of G is divisible by only 
finitely many powers of p. 

For, embed G in the amalgamated product E described in (3). We first show 
that U is £-pure in A (and B). Since A = X * K and U < KA where KA is the 
normal closure of K in A, any root of an element of U is in KA ; it therefore 
suffices to show that U is £-pure in KA. But KA is the free product of the 
conjugates xKx~l where x ranges over X and U is a free product of subgroups 
of such conjugates which are £-pure in their respective factors; it easily 
follows then that U is £-pure in KA. Consequently, A, B, and hence E have the 
property that each of its elements (^1 ) is divisible by only finitely many 
powers of p (see [9, Lemma 1.13]). 

For example, the group G — {t, a; taTt~l — as) cannot contain a copy of the 
additive subgroup of rationals whose denominators are powers of a prime p 
where p \ rs. 

THEOREM 5. Let G be a group with one defining relator R, and let H be a 
subgroup satisfying a non-trivial law. If G is torsion-free, then H is metabelian and 
is either locally cyclic or has the presentation 

H = (r, a; r a r - 1 = an). 

If G has elements of finite order, then H is either cyclic or infinite dihedral. 

Proof. Unless R has only one syllable (in which case the result follows easily 
from the Kurosh subgroup theorem), G can be embedded in an HNN group 
with cyclic free part; its base K is a group on one defining relator whose length 
is shorter than that of R; K is torsion-free if and only if G is torsion-free; and 
each of the pair of associated subgroups is free. Hence by induction and the 
Corollary to Theorem 4, it follows that if G is torsion-free then H is as asserted. 

If G has torsion, the result follows directly from Corollary 1 of Theorem 3. 
This completes the proof of Theorem 5. 
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Thus, in particular, any subgroup H of a group G with one defining relation 
must intersect non-trivially every verbal subgroup ( ̂  1 ) of G unless H is locally 
cyclic^ infinite dihedral, or metabelian with a presentation (r, a; TOLT~1 = an). 

4. Subgroups which are free products. 

THEOREM 6. Let G be the HNN group (1). If H is a subgroup of G with trivial 
intersection with the conjugates of each Lu then H is the free product of a free group 
and the intersections of H with certain conjugates of K. 

Proof. By Theorem 1 (since the intersections of H with the conjugates of each 
Lt is trivial), H is an HNN group whose base S is a free product of vertices 
( ^1 ) of the type gKg~l C\ H. Moreover, two subgroups which are associated 
are either both trivial or both vertices. Let n , r2, . . . be the free generators of 
the free part of H. Those n whose associated subgroups are trivial generate a 
free group which is a free factor of H; we may factor this out of H. 

We next construct a graph whose vertices are the vertices of S; the edge TJ 
joins the vertex V n to the vertex Vj2 if TjV^rf1 = Vj2. Now a connected 
component of this graph must be a tree. For, a simple closed path in the graph 
corresponds to a freely reduced word T{9£1) in the rt which conjugates a 
vertex gKg~l C\ H ( ^ 1) back into itself. But by Lemma 3, since r cannot be in a 
vertex, rgKg~1r~1 C\ gKg~l C\ H is contained in the intersection of a conjugate 
of some Lt with H and hence is trivial. 

If we choose one vertex from each component of the graph just constructed, 
H will be the free product of these vertices and the free group on n , r2, . . . . 
Indeed, if Vu V2, . . . are the vertices in a given component, then 

(18) Vj = djVJr1, 

where ôj is a freely reduced word in the rt. Hence, if in the relation THV^T*"1 = 
Vj2 (involving vertices in the component of Vi) we make the substitution (18) 
for Vh and Vn we obtain, 

(àjr^jJVi&r1^)-1 = VÙ 

hence 5j2~
1Tk8jl must be freely equal to 1 in the rt. This completes the proof of 

Theorem 6. 

5. Finitely generated subgroups. 

THEOREM 7. Let G be the HNN group (1), and let H be a finitely generated 
subgroup whose free part (according to the description of Theorem 1) has rank n. 
Then H can be presented by 

(19) H = <ri, . . . ,rn, 5';rel 5 ' , n L / r r 1 = M / , . . . , r ^ V " 1 = Mn'>, 

where S' is a tree product whose vertices are conjugates of K intersected with H and 
each of whose amalgamated subgroups is trivial or the intersection of H with a 
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conjugate of an associated subgroup Lt; moreover, L/ and M/ are in the subgroup 
Hj-i of H with presentation 

(20) HH1 = (TU . . . , r ^ i , S' ; r^Urr1 = J I 4 7 , . . . , r ^ L ^ V r 1 = M , - / ) 

aw d are both either trivial, or the intersection of finitely many subgroups of the form 

(21) giLjigi-
ir\H, 

or the subgroup generated by finitely many of the subgroups in (21); n , . . . , rn 

freely generate the free part of H ; finally, every subgroup gKg~l C\ H is conjugate 
within H to a vertex of S'. 

Proof. By Theorem 1, H is an HNN group with free pa r t finitely generated 
by, say, r / , . . . , rn

r (possibly empty) with base 5* a tree product of finitely 
many vertices ( ^ 1 ) , say, Vu . . . , VT (by [6, Lemma 3]), each Vt being of the 
form gKg~l C\ H and whose amalgamated subgroups ( ^ 1 ) are of the form 
gLig"1 C\ H. Moreover, a pair of associated subgroups are either both con­
jugates of some Lf intersected with H or are both vertices of S. Let 
r'p+i, • • • » Tn be those r / whose associated subgroups are the intersections of H 
with finitely m a n y conjugates of the L*. Then clearly H can be regarded as an 
HNN group with free pa r t generated by TP+I = T'P+1, . . . , rn = rn

r and base Hp 

which is the HNN subgroup of H generated by T / rv
r and S. 

Now the associated subgroups of Hv are those vertices of S which are 
associated subgroups of H bu t are no t intersections of H with finitely many 
conjugates of the Lt. I t follows from Lemma 3 (since the vertices of 5 are of the 
form gKg~l r\ H) t h a t the normalizer of any associated subgroup of Hp h a s 
trivial intersection with the free pa r t of Hv. 

W e next show the following: suppose t h a t HP is an HNN group with free p a r t 
generated by r / , . . . , r / , whose base 5 is a tree product of finitely many-
vertices Vu • • • i Vri^l); suppose tha t the associated subgroups of Hp a re 
certain vertices of S; and suppose tha t the normalizer of each of these associated 
subgroups has trivial intersection with the free pa r t of Hp. Then Hp has a 
presentation 

(22) HP = (ru • • • , r „ S ' ; rel 5 ' , T^UT^ = M i ' , . . . , TPLP'TP~I = Mp
f), 

where S' is a tree product whose vertices are certain vertices of 5 ; two vertices of 
S* which are neighbors in 5 have the same amalgamated subgroup joining them 
as in 5 and otherwise two neighboring vertices of Sf are joined by the ident i ty 
subgroup; moreover, both Lf and M/ are subgroups generated by finitely 
m a n y conjugates of the amalgamated subgroups of S and are both in the 
subgroup Hj-i of HP defined by (20) ; n , . . . , TP freely generate the free pa r t 
of Hp\ and every vertex of S is conjugate in H to a vertex of S'. 

W e prove this result by induction on p, the rank of the free pa r t of Hp. If 
p — 0, then the free par t of HP is trivial, and we may take S' = S. Otherwise, 
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renumbering the vertices (if necessary) we may assume that Vi, V2 are 
associated with rp — rp and that 

Vx = TPV2TP~\ 

Using this relation we may eliminate Vi from the presentation for Hp as an 
HNN group with base S. This replacement will only affect those relators which 
involve generators from Vi. The relators in V\ alone become conjugates by TV 

of relators in V2 alone and hence may be deleted. The relators of the form 
Vi = TijV/nf1 (where n;- is either a r / or its inverse) become 

V2 = Tp'~1rijVjTlj~1Tp'} 

if for each j 5̂  2 we replace TP~1TIJ by T2J (this is just a Nielsen transformation 
on the free part of Hp), we obtain the relators 

The relators Un = Un amalgamating a subgroup of Vi with a subgroup of Vt 

become 

TpUuTp"1 = Ua, 

where Ui/ is the subgroup TP~1UHTP of V2. Thus, if Lv' is the subgroup of 5 
generated by all the Ui/, and Mp is the subgroup of S generated by all Un, 
then Hp is an HNN group 

Hv = (TP, Hp-!; rel i ^ - i , TpLpTp"1 = Mv') 

with free part generated by TP, with associated subgroups Lp', MP\ Moreover, 
the base HP-i of this HNN representation for Hv is an HNN group whose free 
part is a free factor of rank p — 1 of the free part of Hp ; the base of Hp-i is a 
tree product whose vertices are V2, . . . , VT and whose amalgamated subgroups 
are trivial or amalgamated subgroups of S\ and the associated subgroups of 
Hp-i are among V2, . . . , Vr. Thus, Hp-\ satisfies the same conditions as HP 

except that its free part has smaller rank. Hence by inductive hypothesis, Hp-i 
and therefore Hp has the form asserted in (22). Moreover, each vertex 
Vi, . . . , Vr of 5 is conjugate in Hp to a vertex in Hp-i, and hence to a vertex 
in S'. 

Consequently, H has the presentation asserted in the theorem. Finally, 
gKg~l C\ H is trivial, or conjugate to a vertex of 5 (Corollary 3 to Theorem 1) 
and therefore to a vertex of Sr. 

COROLLARY. Let H be a finitely generated subgroup of the HNN group G given 
by (1) and suppose that the intersection of H with finitely many conjugates of the 
associated subgroups Lt is finitely generated. Then gKg~x C\ His finitely generated 
for each g Ç G. 

Proof. By the above theorem gKg~l C\ H is conjugate to some vertex of S'. 
Moreover, each of the groups L/ is finitely generated. Now Hj is an HNN 
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group with base H3-i and associated subgroups L/, M/ ; hence by [6, Lemma 3] 
it follows that ifw_i, iJw_2, . . . , Hi, H0 = S' are finitely generated and the 
vertices of S' are finitely generated (by [6, Theorem 4]). 

THEOREM 8. Let G be the HNN group defined by (1). Suppose that K has the 
property that all its finitely generated subgroups are finitely related and each Lt has 
the property that all of its subgroups are finitely generated. Then G has the property 
that all of its finitely generated subgroups are finitely related. 

Proof. Let H be a finitely generated subgroup of G. Then in the HNN 
representation of H given by Theorem 1, the free part of H is finitely generated 
and the tree product S has finitely many vertices, each of which is finitely 
generated (by the preceding corollary) ; hence these vertices are finitely related. 
Moreover, the amalgamated subgroups of S and the associated subgroups of H 
are finitely generated. Consequently, H is finitely related. 

COROLLARY. Let G be the HNN group defined by (1). Suppose that each finitely 
generated subgroup of the base K is finitely related and that each associated 
subgroup Lt is finitely generated. Let H be a finitely generated subgroup of G. If G 
has the finitely generated intersection property (or, more generally, if the intersection 
of H with finitely many conjugates of the Lt is finitely generated), then H is finitely 
related. 

THEOREM 9. Let G be the HNN group defined by (1) and let H be a finitely 
generated subgroup containing a normal subgroup N of G where N is not contained 
in the intersection of all the associated subgroups Lu Mt. Then the double coset 
index of (H, K) in G is finite; in particular, H is of finite index in G if and only 
if the intersection of K with each conjugate of H is of finite index in K. 

Proof. Now N < K; for otherwise, N < K H tc'KU* = Lti for each i. If the 
free part of G has rank two or more, G may be written as a proper amalgamated 
product of two factors with K as an amalgamated subgroup (see the remark 
preceding Lemma 2 in [6]). Hence it follows from [6, Theorem 10] that (H, K) 
is of finite index in G. 

We may therefore assume that the free part of G is infinite cyclic generated by 
t. Embed G in the amalgamated product E described in (3) ; we show that every 
coset of (H, U) in E is double ended (and therefore as in the proof of [6, 
Theorem 10] that (H, U) is of finite index in E) or {H, K) has finite index in G. 

To show that every coset of (H, U) is double ended it suffices (as in the proof 
of [6, Theorem 10]) to show that N contains an element of E which begins and 
ends with an a-syllable (not in U) and one which begins and ends with a 
^-syllable (not in U). 

Now an element g of G which is not in K has the form 

(23) g = kltalk2t
ffi . . . kTt'rkr+l, 

where kt Ç K, ai ^ 0, and if sgn at-i = e and sgn at = — e then kt $ L€. 
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Moreover, if g is written in a reduced form as an element of the amalgamated 
product E, then the initial syllable of G will be kiy1 if <n > 0 and will be 
k\X~l if (7i < 0; in a similar manner we can describe the terminal syllable of g 
in E. 

Let g as in (23) be an element of N — K such that the sum of the absolute 
values of the cr̂  is minimum. Since N is normal in G, we may assume that 
kr+i = 1 and that if sgn ar — e and sgn <n = — e then ki (? L€. 

Suppose that in g there exist i, j such that at > 0 and <rj < 0. Then there 
exist p, q such that <rp > 0, <rp+i < 0, aq < 0 and aq+i > 0 (where the subscript 
r + 1 is replaced by 1); hence 

and 

Kq+V' • • • tZqt 

are in N and begin and end in an a-syllable and in a /3-syllable, respectively. 
We may therefore assume that all <r* have the same sign and in fact all are 

positive. If K ^ L, then choosing k so that kTkrl € L, we have that N contains 

tkt'rh&i... krk-n-\ 

which begins and ends in a /5-syllable. Similarly, if K ^ ilf, then iV contains 

t^kkit'i . . . krt*rk-H, 

which begins and ends in an a-syllable. 
Suppose then that K equals one of the associated subgroups, say, K = L. 

Then letting a = ai + . . . + o> we have that t9gt~* is in N and equals 
t*kr, kf € X. Hence N contains frk/, where i is any integer and k/ Ç A .̂ Thus 
iVA contains ti<rKt~icr and the union of these over all negative i yields KG, the 
normal subgroup generated by K in G. Hence if g' G G, then Hg'K = Hg'NK = 
ff^iViC = ^ X A , where 0 ^ X < o-; thus, (iJ, X) is of finite index in G. 

We may therefore assume that (H, U) has finite index in E. Let 
HgiU, . . . , HgsUbe the (ff, f/) cosets containing elements of G, and let g Ç G. 
Then g = Ag*w, h £ H,u £ U. Hence u £ G r\ U = K. Consequently, g G HgtK 
and so (H, A) is of finite index in G. 

THEOREM 10. Let G be an HNN group as in (1) and suppose that its base K 
has the finitely generated intersection property. If the subgroup KJ of K generated 
by all the associated subgroups Lu Mt is finite, then G has the finitely generated 
intersection property. In particular, if the base K of an HNN group is finite, then 
the HNN group satisfies the finitely generated intersection property. 

Proof. Let Hi, H2 be finitely generated subgroups of G, and suppose that K 
is finite. Embed G in the amalgamated product E described in (3). Since Hi, Hi 
are finitely generated, [6, Lemma 8, Corollary] implies that the number of 
double ended (Hi, U) and (H2, U) cosets is finite. Moreover, it follows as in the 
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proof of [6, Theorem 11] that if the number of double ended (Hi H H2, U) 
cosets is finite, then Hi P\ H2 is finitely generated. 

We show that there are only finitely many double ended (Hi P\ H2, U) 
cosets by showing that the intersection of an (Hi, U) coset and an (H2, U) 
coset contains only finitely many (Hi C\ H2, U) cosets. Suppose then that 
(Hi r\ H2)qU < HipTJC\ H2pU where p is a fixed element. We show that 
(Hi C\ H2)qU = (Hi H H2)gpU where g is one of a finite set of elements 
(which depends upon p). Indeed, q = hipui = h2pu2, ht G Ht, Ui, u2 £ U. If 
Ui = u2, then hi — h2 and we may choose g = 1. Otherwise, 1 9^ h2~%i — 
pu2urlp~l 6 G C\ pUp'1 = giL^gc1 (by Lemma 1 with H = G), 0 ^ j i g 
w, L0 = i£. Since i^ is finite, g' = pu2ui~1p~1 ranges over a finite set. Moreover, 
pu2 = g'pwi so q(pui)~l £ HiC\ (H2g

f) = (iJi H i ^ g ; since gf ranges over a 
finite set, we may restrict g to range over a finite set. Thus (Hi C\ H2)q = 
(Hi C\ H2)gpui and (Hi C\ H2)qU = (Hi H H2)gpU, where g ranges over a 
finite set. This completes the argument for the case when K is finite. 

If now we merely assume that K has the finitely generated intersection prop­
erty and that K' is finite, then G is an amalgamated product of K and an HNN 
group with base Kr and the same associated subgroups as G, with the subgroup 
Kf amalgamated. Since each of the factors has the finitely generated intersec­
tion property and K* is finite, [6, Theorem 11] implies that G has the finitely 
generated intersection property. 

A similar argument shows that it suffices to assume that each pair Lu Mt 

generates a finite group. 
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