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SUBGROUPS OF HNN GROUPS AND GROUPS
WITH ONE DEFINING RELATION

A. KARRASS AND D. SOLITAR

1. Introduction. HNN groups have appeared in several papers, e.g.,
[3; 4; 5; 6; 8]. In this paper we use the results in [6] to obtain a structure
theorem for the subgroups of an HNN group and give several applications.

We shall use the terminology and notation of [6]. In particular, if K is a group
and {¢,} is a collection of isomorphisms of subgroups {1} into K, then we call
the group

(1) G = (tl, [ Z VR K; rel K, tlthl—l = <p1(L1), t2L2t2_1 = (pg(Lz), .. )

the HNN group with base K, associated subgroups {L;, ¢,(L;)} and free part the
group generated by ¢y, ts, . . . . (We usually denote ¢;(L;) by M, or L_,;.) The
notion of a tree product as defined in [6] will also be needed.

Let H be a subgroup of (1). Then we prove (in Theorem 1) that H s itself an
HNN group (with possibly trivial free part); its base is a tree product S with
vertices of the form gKg=' M\ H and amalgamated subgroups either trivial or
conjugates of the L, intersected with H; each of its non-trivial associated subgroups
s contained in a vertex of S and either equals this containing vertex or is a conjugate
of an L, intersected with H, moreover, every conjugate of K intersected with H 1s
either trivial or is conjugate in H to a vertex of S.

Some of the results we derive from this theorem are the following:

If H has trivial intersection with each conjugate of L, then H 1is a free product
of a free group and groups of the type gKg=* (M H; in particular, if H has trivial
intersection with each conjugate of K, then H is free (see Theorem 6).

If K is a locally indicable group and each L; is cyclic, then G is locally indicable
(see Theorem 2); if K is a finitely generated torsion-free nilpotent group then G
s locally indicable.

Suppose that the base K has the property that its finitely generated subgroups are
finitely related and that L, has the property that all of its subgroups are finitely
generated (or more generally that the intersection of a finitely generated subgroup
of G with finitely many conjugates of the L, is again finitely generated), then G has
the property that all of its finitely gemerated subgroups are finitely related (see
Theorem 8).

We also determine the structure of a subgroup H which satisfies a non-trivial
law (see Theorem 4); in particular, if the L; are free and K is torsion free, then H
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is either comjugate to a subgroup of K, a countable ascending union of cyclic
groups, or a group with presentation

(r,a; rar™! = a")

(see Corollary to Theorem 4).

If H is a finitely generated normal subgroup of G, and H 1is not contained in the
intersection of all L;, then HK 1s of finite index in G (see Theorem 9).

If the base K is finite (or more generally, the subgroup generated by the associated
subgroups L;, M, is finite), then G has the finitely generated intersection property,
i.e., the intersection of two finitely generated subgroups is finitely generated (see
Theorem 10).

Results about HNN groups can be applied to groups with one defining
relation. For, as observed in [8] every infinite group G with one defining relator
isan HNN group whose free part is infinite cyclic, whose base K is a group with
one defining relator, and whose associated subgroups are free. Moreover, by
the standard Magnus embedding (see, for example, [7, § 4.4]), the group G
with one defining relation can be embedded in such an HNN group in which
the base K has a shorter relator than that of G (unless the defining relator of G
consists of a single syllable). For example, if

G = {a,0; R)
and R involves both @ and b and has zero-exponent sum on a, then
G = (t, K; Ro, tLt"' = M),

where ¢ = a, R, is the relation obtained from R by rewriting it in terms of the
conjugates b; = a’ha¢, K is the group with the single defining relation R, and
with generators b, where 7 ranges between the minimum subscript A and maxi-
mum subscript p occurring on b in Ry and L is the free groupon by, ..., b,_1.

Thus, theoretically we can describe the subgroups of a group with one
defining relator in terms of the subgroups of another group with one defining
relator of shorter length.

A direct consequence of this observation is that every finitely generated
torsion-free group with one defining relation can be obtained from an infinite cyclic
group by applying finitely often the operations of forming an amalgamated
product of two factors already obtained and taking a subgroup of a group already
obtained (this result does not hold for every finitely generated torsion-free
group, see e.g., [2]).

Using this point of view we also prove the following: suppose that G is a group
with one defining relation

2) G = {a,b,¢c,...;R)

and that H is a subgroup of G satisfying a non-trivial law. If G is torsion-free, then
H is either locally cyclic or is metabelian with presentation

’ ’ - = n’
{r, a; Tar™! = o")
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where n is some integer; if G has torsion, then H 1is cyclic or infinite dihedral
(see Theorem 5).

(This last theorem generalizes some results of [8; 9]. In [8; 9] it is proved
that an abelian subgroup of a group G with one defining relation is either
locally cyclic or free abelian of rank two. In [9] it is proved also that if G has
elements of finite order then any solvable subgroup of G is cyclic or infinite
dihedral.)

As to the other subgroups of (2) we establish: in a group with one defining
relation any subgroup mot satisfying any mon-trivial law must contain a free
subgroup of rank two (see Theorem 3).

2. The subgroup theorem and some applications. The method of proof of
the subgroup theorem for NN groups uses the standard embedding (of [5])
of the HNN group G given by (1) in the amalgamated product

3) E=Ax«B;U)=X=*G = YxgG,
where

A=X+«K,B=Y+K, U=K=*...xx;Lxi'*...=K=x*...xy My 1x...,
and X, ¥ are the free groups on x; y; respectively, and ¢; = y; 1x; for
1=12,...n.

A simple application of this embedding of an HNN group in an amalgamated
product and the observation in [8] mentioned in the introduction is given by
the following result: every finitely generated torsion-free group with one defining
relator can be obtained from an infinite cyclic group by applying finitely often the
operations of forming an amalgamated product of two factors already obtained and
taking a subgroup of a group already obtained.

The proof is by induction on the length of the defining relator. If the length
of the defining relator is one, then the group is a finitely generated free group
and so is obtainable from an infinite cyclic group using the allowable operations.
Clearly, if the base of an HNN group with finitely generated free part is
obtainable, then by the above embedding, the HNN group itself is obtainable.
Since a group with one defining relator is a subgroup of an HNN group with
base a group with one defining relator of shorter length, we have the result.

Similarly, a finitely generated group with one defining relator having torsion can
be obtained by starting the above process with a finite cyclic group instead of an
infinite one.

LEMMA 1. Let E be the free product of any two groups X and G, let H, K be
subgroups of G and let p be an element of E having normal form (in E)

D = S1w1gWs . . . €Wy,

where g; € G, w; € X and each g;, w; # 1 except possibly g1 or w,. If
pX «K)pPMH #1,
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then p(X * K)p' M\ H = g1Kgr '\ Hand g, . .., g, are in K.

Moreover, let Lo, ..., L, be subgroups of G, let xo,...,x, be distinct
elements of X and let U = xoLoxg™ % ... % x,Lyx,~ 1 If pUp~1 "\ H 5% 1, then
PUP_I NH= glelgf'l N H and

P = g%y %5895 W ss 4 - €45,

where 0 £ j, Smand g; € L, for2 ¢ = 7.

Proof. Let Q = p(X * K)p~' M\ H # 1. Then
p710p = X *K)Nw, g . w (g tHg)ws . . . W
Now an element (1) in the right hand side must have the form
w,lg, L wT g . L 2w,
where g1/, g2, ..., g-arein K; hence Q = g1Kgi7' M\ Hand gs, ..., grarein K.
Next suppose that R = pUp~t M H # 1. Then
p7IRp = UNw, g, L wr (g tHg)wr . . . g0,

Now the normal subgroup IV generated by G in E is the free product of the
conjugates of G by distinct elements of X; moreover, U is the free product of
subgroups from distinct factors of N. An element (1) in p~!Rp has the normal
form in (the free product) N given by

—tpy=1 —wr—1lppp_3-1 -1 we=l.,01~1 wr~lwp—_1=1 _ wr—1
gr gr—1 .o (g1 hgl) e g1 gr .

Therefore the product w; . . . w, must be x;,~1; moreover, g;isinL,,,2 < s < 7,
and g kg isin Ly,. Hence R = g1L;,g,7' M H and p has the form asserted.

THEOREM 1. Let G be the HNN group given by (1) and let H be a subgroup of G.
Then H is an HNN group (with possibly trivial free part) whose base is a tree
product S with vertices of the form gKg=1 (M H, where neighboring vertices are
joined by the identity subgroup, or have the form gKg=' (M H and gt 'Kt,g7* M H
and are joined by the amalgamated subgroup gL.g= M H = gt;"\Mt,g71 M H;
each of the non-trivial associated subgroups is contained in a vertex of S and equals
this containing vertex or has the form yL =1 M H.

Proof. Embed G in the amalgamated product E described in (3). Applying
the subgroup theorem [6, Theorem 5] to E, we have that H is an HNN group
whose base is a tree product .S with vertices of the form D(X * K)D~' M H or
D(Y x K)D-' N\ H. Employing Lemma 1 with X equal to X or ¥, we obtain
that each vertex (1) of S is of the form gKg=! M H where g € G. Moreover,
neighboring vertices of S have the form D(X * K) D'\ H,D(Y*K)D'N\ H
with amalgamated subgroup DUD~! M H. Again employing Lemma 1 with
X =X, xo =1 and L, = K, we have that if this amalgamated subgroup is
different from 1, then D has the form

4 SR TR PN L T A NN J FRN

where g, € L;,,2 < s = r.
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Replacing each x; in (4) by y¢; (where yo = ¢, = 1), and again applying
Lemma 1, it follows thatif j; = 0, DX * K)D'NH =D(Y*K)D'NH =
g1iKkgr "N H; and if ji %0, then DX« K)D'N\H = g1Kg: ' N H,
D(Y*K)D'M H = gi4;,,~'Kt; g7 ' H and DUD'NH = g;:L;g ' MH =
g1y, M b7 M H.

Clearly in any tree product a subtree consisting of equal vertices may be
replaced by a single vertex without altering the resulting group. Hence we may
write .S as a tree product in which neighboring vertices are as asserted in the
theorem.

Moreover, by [6, Theorem 5], a pair of associated subgroups of H has the
form sUs ' H (which is in §(X *K)6~'M\ H, a vertex of S) and
SUWE) TN H (which is in (Y * K)(")"' N\ H, a vertex of S). Hence if
SU™ M H # 1 and if § has the form (4), then UM H =6(X*K)é"'!M H =
g1Kgr*M H if j1 =0 and U N H = g1L;g¢77 ' M H if j; # 0. Similarly,
YUW)"MH=§Y*K)@®') " Hord U@ ) '"NH=g/M;(g/)'"NH=
g't; Lyt~ (g )~ M H. This completes the proof of Theorem 1.

COROLLARY 1. Any subgroup of an HNN group (1) having trivial intersection
with each conjugate of the base K 1is a free group.

CoROLLARY 2. If a subgroup H of (1) is generated by its intersections with
conjugates of K, then H 1s the tree product S described in Theorem 1.

Proof. Since H is generated by its intersections with conjugates of K, H is
generated by its intersections with conjugates of X * K and ¥ * K, and so (by
[6, Theorem 5, Corollary 1]) the free part of H is trivial. Therefore H is the
tree product S.

CoOROLLARY 3. Under the same hypotheses as in Theorem 1, every subgroup
gKg=1 M\ H is either trivial or conjugate in H to a vertex of S.

Proof. By Lemma 1, gKg=! M H = g(X « K)g~' M H which is
hDo (X * K)D, b 1M H

(where h € H and D, is a double coset representative mod (H, X * K)), which
in turn is a conjugate in H of a vertex of S.

THEOREM 2. Let K be a locally indicable group and let the associated subgroups
L, be cyclic. Then the HNN group G given in (1) s locally indicable.

Proof. The proof is just like that of [6, Theorem 9].

Theorem 1 also allows us to prove (as in the proof of [6, Theorem 8]) that if
the base K has all its subgroups finitely presented, then all finitely generated
subgroups of the HNN group (1) are finitely related. This will be strengthened
in Theorem 8. For example, a group A = (a,b; a"b’a™ = b*) with rs % 0 s
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locally indicable and every finitely generated subgroup is finitely related. For, the
group B = ({({) x A;t = a") equals ({a) * {t, b; tb"4"1 = b®);a" = t), and the
result follows from the above and [6, Theorems 8 and 9].

COROLLARY. Let G be an HNN group as in (1). If the base K is a finitely
generated torsion-free nilpotent group, then G 1is locally indicable.

Proof. The proof is just like that of [6, Theorem 9] if one uses the following
result of [1]: the free product with amalgamated subgroup of a locally indicable
group and a finitely generated torsion-free nilpotent group is locally indicable.

The following theorem places a restriction on groups which can be embedded
in one defining relator groups.

THEOREM 3. Every subgroup of a group with one defining relation either
contains o free subgroup of rank two or is solvable.

Proof. We first observe the following: ¢f H s an HNN group whose base is a
tree product S and H contains no free subgroup of rank two, then (@) H is a vertex
of S, or (b) H is an ascending union of amalgamated subgroups of S, or (¢) H has
the form (4 = B; U) where A, B are vertices of S and U is an amalgamated sub-
group of S of index two in A and B, or (d) H has a presentation

{, S rel ', 1St = S"),

where S < S"and S', S are a pair of associated subgroups and t generates the free
part of H. This is proved by the same argument as that for [6, Theorem 7].

We next show that if the base K of an HNN group has the property that
there exists an integer s such that every subgroup of K is solvable of length <s
or has a free subgroup of rank two, then the HNN group G defined by (1) has
the same property except that s is replaced by s + 2.

For, consider a subgroup H of the HNVN group G which does not contain a
free subgroup of rank two. Then by Theorem 1, H is itself an HNN group with
base S a tree product whose vertices are conjugates of subgroups of K and with
amalgamated subgroups which are subgroups of conjugates of K. We show that
H is solvable of length =s 4 2. For, by the above observation and Theorem 1,
if possibilities (¢) or (b) hold, then H is solvable of length =s. If possibility (c)
holds, then H/ U =~ Z, x Z,, which is metabelian; hence H is solvable of length
=<s + 2. Finally, if possibility (d) holds, then the normal subgroup N of H
generated by .S’ is an ascending union of subgroups contained in conjugates of K
and hence is solvable of length =s; since H/N is cyclic, H is solvable of length
<s+4 1.

Returning to groups with one defining relation, we show by induction on the
length N\ of the relator that every subgroup is solvable of length =2\ or
contains a free subgroup of rank two. As mentioned in the introduction, a
group with one defining relator of length A > 1 can be embedded as a subgroup
of an HNN group G’ whose base K is a group with one defining relator of length
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=\ — 1. Hence by inductive hypothesis and the preceding argument every
subgroup of the HNN group G’ is solvable of length =2(A — 1) 4+ 2 = 2\ or
contains a free subgroup of rank two.

COROLLARY 1. Every subgroup of a group with one definition relation having
torsion 1s cyclic, infinite dikedral, or contains a free subgroup of rank two.

Proof. This follows from Theorem 3 by using the following result of [9]:
every solvable subgroup of a group with one defining relation having torsion is
cyclic or infinite dihedral.

We shall also sharpen Theorem 3 for torsion-free one relator groups by
showing that a solvable subgroup of such a group is metabelian of a very
special type (see Theorem 5).

COROLLARY 2. Let the base K of an HNN group have the property that there
exists a non-trivial law such that every subgroup of K either satisfies this law or
contains a free subgroup of rank two. Then the HNN group also has this property;
the law in the case of the HNN group is obtained from the law associated with K
by replacing each variable X in the law by the corresponding commutator

[[X1, Xo], [ X3, X4]].

3. Subgroups satisfying a law.

LEMMA 2. Let A be the free product X * K of two groups X and K and let
xo = 1, %1, ..., %, bedistinct elements of X such that xx;1 5% xyx, unlessi = j
or i = p, where 0 = 4, j, p, q, =n. Suppose that Ly = K, Ly, ..., L, are sub-
groups of K, and that U = xoLoxg~! *...* x,L,x,"t, and let a1 € A — U. If
aUay ' N\ U # 1, then

Uiy 'M U = ax; L e N U = wx;(L; N Lk )x; u™?
for some 0 = 4,7 = n, and a1 = auy, u and uy are in U,and k € K; moreover,

e =uxkx; k= 1lork @ L;andi = 0orj=0.

Proof. We first note that the given condition on the {x;} is equivalent to
requiring that if 1 &£ x € X, then {x;} M {«xx;} contains at most one element.

It is convenient to denote an element of X by x, where ¢ ranges over some
index set containing {0, 1, . . ., #}. Using this notation, the normal subgroup NV
of A generated by K is the free product of the conjugates K#. Moreover, the
element a¢; may be written in the form

5) a1 = X . 1™ L RS uy = auy,

where %, %,; € X,k € K, 0, % o441, u1 € U, and if ¢, € {0,1,...,n} then
k, ¢ L,,. Clearly, a1Ua;* N\ U = aUa 1M U.
Now an element d(1) of D = UM a~'Ua can be written in the form

d = szn . .Csz",
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wherer; € {0,1,...,n},¢; € L.;and 7; # 7,.1. We first show thats = 1. For,
suppose that s = 2. Then

y ada™! = k"% kST Tt | g Fot el Teer || Byt

isin U. Itis easy to see that x,x.,, . . . , X:%,, will occur as exponents when ada™!
is written in reduced form as an element of V. Since s = 2 and all exponents on
elements in U are in {xy, . . ., %}, it follows (from the given condition on the
{x:) that x, = 1 and so r = 1. But this implies that ada=! ¢ U; for, the
reduced form (as an element of N) of ada—! will contain the factor &,%r if
o, # r1and the factor (k,¢;)" if ¢, = 7;. Hences = 1 and each elementd (1)
of D must have the form

d = c*,

where 7 € {0,1,...,n} and ¢ € L;; clearly (since D is a subgroup), all
elements of D must have the same exponent x;. Hence

aUa N\ U =aDa*MN U = ax;Lx;a 1M U.
Moreover, a can also be written in the form
(6) a = uky"™ .. k5 %,

where u € U, %,, %, € X, k; € K, 0, ¥ 0441, and if o1 € {0,...,#n} then
k1 @ L, (0,04 k7 in (6) need not be the same as those in (5)). Now if
1 # c 6 Ll and

ac®iat = uky™t .. kS BT R L Ryt
isin U, then x,x; = x, where j € {0, ..., n}; moreover, since k;"* ¢ U, either
r =0,orr=1and o; # 0. Ilf r =0, then ¢ = ux;x;71,j #£ ¢, and so
axLaxia M U = ux;(L; N L)x;uL
If » = 1, then x,, = %,%; = x;and ¢ = uxkw; ' and so ax,Lx; e * N U =
ux;(Ly M k1L ky~Y)x w1, This completes the proof of Lemma 2.

LEMMA 3. Suppose that G is the HNN group (1); embed G in the amalgamated
product E defined by (3). Letxo = yo = landlet Ly = My = K. Ifp € E — U,
then pUp~ M\ U is trivial or the intersection of finitely many conjugates of the
associated subgroups L;(1 # 0); finally, of p € E— K and H < G, then
pKp~1 M\ K M H is trivial or the intersection of H with finitely many conjugates
of the associated subgroups L;(z #= Q).

Proof. 1f p @ U, then p has a reduced form in (4 = B; U), say,

P = bwl PSP b,a,,
where the factors alternate from A4 and B and are not in U. Now if
pUp~™t M U # 1, then

pUP TN U =by...b,(a,;Ua, N\ U)o, ..ot M UL
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By Lemma 2,
a,Ua,—'l NU= anxiL,-xfla”“l N U,
where ¢, = a,, . 41, 41 € U. Hence

(7) PUP—I NU= P1xiL1xi—1P1_lm U,
where p; = puy™L

Now we prove by induction on the syllable length of p; that the right hand
side of (7) is the intersection of finitely many conjugates of the associated
subgroups. If p; has syllable length one, say, p = a1 € 4, then by Lemma 2,

(8) a1 L e M U = ux;(Ly N ELEVx w1,

wherew € U,k ¢ Lyunlessk = 1and 7 % QOorj 5 0. If 2 = 0, then the right
hand side of (8) reduces to ux,Lx;'u™, j#0;if j = 0, then the right hand
side of (8) reduces to uL.u~1, 1 # 0.

If p has the form ga where ¢ has shorter syllable length than $ and, say,
a € A, then by Lemma 2

9) gax;Lx'a"ig ' M U = qux;(L; N\ ELEYDxu"gt N U
which is qux,Lx; ' (qu)' N\ Uif ¢ = 0, and is
qux;Lpe i (qu)=* M U N qux kL k™ x;lu"1g™!

if 2 5% 0. Using the inductive hypothesis, we have that the left hand side of (9)
is the intersection of finitely many conjugates of the associated subgroups.

Finally, if p ¢ K and pKp'"NKNH #1, then p & U. Now
pKp ' M KN H = pxoLoxo™'p~ M UM H, which by the preceding result is
the intersection of H with finitely many conjugates of the associated subgroups.
This completes the proof of Lemma 3.

COROLLARY. Under the same hypotheses as tn Lemma 3,if r,s € E, s™r ¢ U,
and 1l # rUr ' M H < sUs™ M H, then r Ur—* M H is the intersection of H with
finttely many conjugates (by elements of G) of the associated subgroups L;(z % 0).

Proof. By Lemma 3, s~ Ur~'s M\ U (and therefore »Ur—1 M sUs™!) is the
intersection of finitely many conjugates (by elements of E) of the associated
subgroups L;(z # 0). Moreover, since E = X * Gand H, L; < G, we have that
cLi 7'M H # 1 implies that ¢ is in G.

THEOREM 4. Let G be the HNN group (1). Then any subgroup H of G which
satisfies a nmon-trivial law is one of the following:

(10) @ subgroup of a conjugate of K;

(11) a countable ascending union of subgroups of conjugates of the L;;

(12) an HNN group with presentation

4, S rel 8,151 = ST,
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where " < S and S’ is the intersection of H with finitely many conjugates of the
associated subgroups L,

(13) an amalgamated product (C * D; V) where C, D are each the intersection
of H with a conjugate of K, V is of index two in C and D, and V is the intersection
of H with a conjugate of some L;or V = 1.

Proof. Embed G in the amalgamated product E defined by (3). According to
[6, Theorem 7], H is one of the following:

(10’) a subgroup of a conjugate of X * K or Y * K and therefore, by
Lemma 1, a subgroup of gKg™! for some g € G;

(11") a countable ascending union D;UD ;M H where HD,U % HD U,
and hence D;UD ! M H is contained in a conjugate of L;; (by the Corollary to
Lemma 3); thus H is a countable ascending union of subgroups of conjugates of
the L;;

(12") an HNN group with presentation

¢, S";rel &', tURM = Ug®),

where S’ = gp(Ux?®, Ux?), 8 ends in an a-symbol which isnotin U, 8’ ends in a
B-symbol not in U, and Ugx® < Ux¥ or vice versa. Since §U # 8’ U, Ugx” (as
well as Ug®) is the intersection of H with finitely many conjugates of the
associated subgroups L;

(13’) an amalgamated product (C * D; V) where V is of index two in C and
D. Moreover, the proof of [6, Theorem 7] shows that C and D are vertices in
the tree product S given in Theorem 1 and that V' is an amalgamated subgroup
of S; hence, C and D are conjugates of K intersected with H and V is a con-
jugate of some L; intersected with H or V = 1.

CoROLLARY 1. The conclusions of Theorem 4 hold if in the hypothesis we replace
“satisfies a non-trivial law" by “‘contains no free subgroup of rank two'.

Proof. See the first remark in the proof of Theorem 3.

COROLLARY 2. Let G be an HNN group given by (1). Suppose that each L, has
the property that the only subgroups satisfying a non-trivial law are cyclic. Let H
be a subgroup of G satisfying a non-trivial law. If H is torsion-free then H is one
of the following:

(14) a subgroup of a conjugate of K;

(15) a countable ascending union of cyclic groups;

(16) a group with presentation (r,a; rar~! = o), where n is an integer.

If H is allowed to have torsion, then one has the additional possibilities given by

(16’) H = (7, a;a", rar™! = o) where r,n are integers;

(17) H = (C* D; V) where V s cyclic and of index two in both C and D, and
C, D are subgroups of conjugates of K.

Proof. In the face of the additional hypothesis on L;, (10), (11), (12), and
(13) reduce to (14), (15), (16’), and (17) respectively.
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Suppose further that H is torsion-free; then (16’) clearly reduces to (16).
Moreover, in (17), V = gp(v) is infinite cyclic. Since V is of index two in C,

C= (v,v;9% =05, yoy~t = o").

Therefore v* = yv*y~! = v** and hence, since s % 0, #» = 1 and so C is infinite
cyclic; similarly for D. Thus,

H = {¢,d;c* =d?) = (r,a;rar™! = a~1)
with ¢ = 7,d = ar; this group is included under (16).

Remark. The following remark (suggested by a result of [9]) further restricts
the groups that can occur in (15) and (16) above: let G be an HNN group given
by (1). Suppose that for some prime p, each L;(z > 0 or © < 0) is p-pure in K
(i.e., k?" € L, implies that k" = k?" with ky € L) and that each element k(5%£1)
of K is divisible by only finitely many powers of p (i.e.,x*" = k has a solution x in
K for only finitely many r). Then each element g(#1) of G s divisible by only
Sfinitely many powers of p.

For, embed G in the amalgamated product E described in (3). We first show
that U is p-purein 4 (and B). Since 4 = X * K and U < K4 where K4 is the
normal closure of K in 4, any root of an element of U is in K4; it therefore
suffices to show that U is p-pure in K4. But K4 is the free product of the
conjugates xKx~! where x ranges over X and U is a free product of subgroups
of such conjugates which are p-pure in their respective factors; it easily
follows then that U is p-pure in K4. Consequently, 4, B, and hence E have the
property that each of its elements (1) is divisible by only finitely many
powers of p (see [9, Lemma 1.13]).

For example, the group G = (i, a; ta’t"! = a*) cannot contain a copy of the
additive subgroup of rationals whose denominators are powers of a prime p
where p { 7s.

THEOREM 5. Let G be a group with one defining relator R, and let H be a
subgroup satisfying a non-trivial law. If G is torsion-free, then H is metabelian and
is either locally cyclic or has the presentation

H = {r,a; ar™! = a").
If G has elements of finite order, then H 1s either cyclic or infinite dihedral.

Proof. Unless R has only one syllable (in which case the result follows easily
from the Kurosh subgroup theorem), G can be embedded in an HNN group
with cyclic free part; its base K is a group on one defining relator whose length
is shorter than that of R; K is torsion-free if and only if G is torsion-free; and
each of the pair of associated subgroups is free. Hence by induction and the
Corollary to Theorem 4, it follows that if G is torsion-free then H is as asserted.

If G has torsion, the result follows directly from Corollary 1 of Theorem 3.
This completes the proof of Theorem 5.

https://doi.org/10.4153/CJM-1971-070-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-070-x

638 A. KARRASS AND D. SOLITAR

Thus, in particular, any subgroup H of a group G with one defining relation
must intersect non-trivially every verbal subgroup (#1) of G unless H is locally
cyclic, infinite dihedral, or metabelian with a presentation {r,a; rar™! = o).

4. Subgroups which are free products.

THEOREM 6. Let G be the HNN group (1). If H is a subgroup of G with trivial
intersection with the conjugates of each L, then H 1s the free product of a free group
and the intersections of H with certain conjugates of K.

Proof. By Theorem 1 (since the intersections of H with the conjugates of each
L, is trivial), H is an HNN group whose base S is a free product of vertices
(5%£1) of the type gKg—! M H. Moreover, two subgroups which are associated
are either both trivial or both vertices. Let 74, 72, . . . be the free generators of
the free part of H. Those 7; whose associated subgroups are trivial generate a
free group which is a free factor of H; we may factor this out of H.

We next construct a graph whose vertices are the vertices of .S; the edge 7,
joins the vertex V; to the vertex V,, if 7,V 7,/ = V. Now a connected
component of this graph must be a tree. For, a simple closed path in the graph
corresponds to a freely reduced word 7(541) in the 7; which conjugates a
vertex gKg~ 1M H (5£1) back intoitself. But by Lemma 3, since  cannot beina
vertex, TgKg—17=1 M gKg=' M H is contained in the intersection of a conjugate
of some L; with H and hence is trivial.

If we choose one vertex from each component of the graph just constructed,
H will be the free product of these vertices and the free group on 71, 73, . . . .
Indeed, if Vi, Vs, ... are the vertices in a given component, then

(18) Vy=208;Vid;7,
where §, is a freely reduced word in the r,. Hence, if in the relation 7,V ;7! =

V,, (involving vertices in the component of V1) we make the substitution (18)
for V; and V,, we obtain,

(852 110 5,) Va(8sa 26 )~ 1 = Vi
hence 8;,~'7:8;, must be freely equal to 1 in the 7,. This completes the proof of
Theorem 6.
5. Finitely generated subgroups.

THEOREM 7. Let G be the HNN group (1), and let H be a finitely generated
subgroup whose free part (according to the description of Theorem 1) has rank n.
Then H can be presented by

(19) H = <T1, ey Thy S’; rel Sl, miLyr7t = Mlly e ,TnLn’Tn_l = Mn,>;

where S’ is a tree product whose vertices are conjugates of K intersected with H and
each of whose amalgamated subgroups is trivial or the intersection of H with a
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conjugate of an associated subgroup L;; moreover, L/ and M, are in the subgroup
H, , of H with presentation

(20) Hj——l = <7'11 ey Tj—lyS,; TlLllfl—l = M1I, P ,Tj_],Lj_l/T]_]—l = Mj_1’>
and are both either trivial, or the intersection of finitely many subgroups of the form
(21) gLug M H,

or the subgroup gemerated by finitely many of the subgroups in (21); 71, ..., s
freely generate the free part of H; finally, every subgroup gKg=' M H is conjugate
within H to a vertex of S'.

Proof. By Theorem 1, H is an HNN group with free part finitely generated
by, say, 71, ..., 7.’ (possibly empty) with base S a tree product of finitely
many vertices (#1), say, Vi, ..., V, (by [6, Lemma 3]), each V, being of the
form gKg=' M H and whose amalgamated subgroups (1) are of the form
gL.,g~' M H. Moreover, a pair of associated subgroups are either both con-
jugates of some L; intersected with H or are both vertices of S. Let
7'p+1y - . - , T’ be those 7,/ whose associated subgroups are the intersections of A
with finitely many conjugates of the L;. Then clearly H can be regarded as an
HNN group with free part generated by 7541 = 7'p41, . . . , 7» = 7," and base H,
which is the HNN subgroup of H generated by ., ..., 7, and S.

Now the associated subgroups of H, are those vertices of .S which are
associated subgroups of H but are not intersections of H with finitely many
conjugates of the L,. It follows from Lemma 3 (since the vertices of S are of the
form gKg—' M H) that the normalizer of any associated subgroup of H, has
trivial intersection with the free part of H,.

We next show the following: suppose that H, isan HNN group with free part
generated by 7.,...,7,/, whose base S is a tree product of finitely many
vertices Vi, ..., V;(51); suppose that the associated subgroups of H, are
certain vertices of S; and suppose that the normalizer of each of these associated
subgroups has trivial intersection with the free part of H,. Then H, has a
presentation

(22) H,, = (7'1, ceny Tp,SI; rel S/, 7'1L1lT1_'1 = Mll, ‘e ,T,L,,’Tp—l = Mp/>,

where .S’ is a tree product whose vertices are certain vertices of S; two vertices of
S’ which are neighbors in S have the same amalgamated subgroup joining them
as in S and otherwise two neighboring vertices of .S’ are joined by the identity
subgroup; moreover, both L/ and M, are subgroups generated by finitely
many conjugates of the amalgamated subgroups of S and are both in the
subgroup H,_ of H, defined by (20); 74, ..., 7, freely generate the free part
of H,; and every vertex of S is conjugate in H to a vertex of .S’.

We prove this result by induction on p, the rank of the free part of H,. If
p = 0, then the free part of H, is trivial, and we may take .S’ = S. Otherwise,
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renumbering the vertices (if necessary) we may assume that Vi, V, are
associated with 7, = 7,’ and that

Vi = 1,Vor,™ L

Using this relation we may eliminate V; from the presentation for H, as an
HNN group with base S. This replacement will only affect those relators which
involve generators from V. The relators in V; alone become conjugates by 7,
of relators in V, alone and hence may be deleted. The relators of the form
Vi = 11,V;r1;7! (where 7y, is either a 7,/ or its inverse) become

Vo = 1,7 Vg

if for each j # 2 we replace 7,771, by 72, (this is just a Nielsen transformation
on the free part of H,), we obtain the relators

Vz = szVszf-l, ] # 2,

The relators Uy; = Uy amalgamating a subgroup of V; with a subgroup of V,
become

[
o Uri'ty™ = Uq,

where U,/ is the subgroup 7,71U1r, of V,. Thus, if L, is the subgroup of S
generated by all the U/, and M,’ is the subgroup of S generated by all U,
then H, is an HNN group

Hl’ = <pr Hp—l; rel HP—I! TprlTp_l = Mpl)

with free part generated by r,, with associated subgroups L,’, M,’. Moreover,
the base H,_; of this HNN representation for H, is an HNN group whose free
part is a free factor of rank p — 1 of the free part of H,; the base of H,_;isa
tree product whose vertices are Vs, ..., V,and whose amalgamated subgroups
are trivial or amalgamated subgroups of .S; and the associated subgroups of
H,_, are among Vs, ..., V,. Thus, H,_; satisfies the same conditions as H,
except that its free part has smaller rank. Hence by inductive hypothesis, H,_;
and therefore H, has the form asserted in (22). Moreover, each vertex
Vi, ..., V,of Sis conjugate in H, to a vertex in H,_;, and hence to a vertex
in S,

Consequently, H has the presentation asserted in the theorem. Finally,
gKg=' M H is trivial, or conjugate to a vertex of S (Corollary 3 to Theorem 1)
and therefore to a vertex of S'.

COROLLARY. Let H be a finitely generated subgroup of the HNN group G given
by (1) and suppose that the intersection of H with finitely many conjugates of the
associated subgroups L, is finitely generated. Then gKg=' (M H is finitely generated
for each g € G.

Proof. By the above theorem gKg~! M H is conjugate to some vertex of .5’.
Moreover, each of the groups L, is finitely generated. Now H, is an HNN
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group with base H ,_; and associated subgroups L/, M/ ; hence by [6, Lemma 3]
it follows that H, 1, H,—s, ..., H1, Hy = S are finitely generated and the
vertices of .S’ are finitely generated (by [6, Theorem 4]).

THEOREM 8. Let G be the HNN group defined by (1). Suppose that K has the
property that all its finitely generated subgroups are finitely related and each L; has
the property that all of its subgroups are finitely generated. Then G has the property
that all of its finitely generated subgroups are finitely related.

Proof. Let H be a finitely generated subgroup of G. Then in the HNN
representation of H given by Theorem 1, the free part of H is finitely generated
and the tree product S has finitely many vertices, each of which is finitely
generated (by the preceding corollary); hence these vertices are finitely related.
Moreover, the amalgamated subgroups of .S and the associated subgroups of H
are finitely generated. Consequently, H is finitely related.

COROLLARY. Let G be the HNN group defined by (1). Suppose that each finitely
generated subgroup of the base K s finitely related and that each associated
subgroup L, is finitely generated. Let H be a finitely generated subgroup of G. If G
has the finitely generated intersection property (or, more generally, if the intersection
of H with finitely many conjugates of the L, is finitely generated), then H is finitely
related.

THEOREM 9. Let G be the HNN group defined by (1) and let H be a finitely
generated subgroup containing a normal subgroup N of G where N is not contained
in the intersection of all the associated subgroups L, M ;. Then the double coset
index of (H, K) in G is finite; in particular, H is of finite index in G if and only
if the intersection of K with each conjugate of H is of finite index in K.

Proof. Now N 4 K;for otherwise, N < K N t;/<Kt;¢ = L. for each . If the
free part of G has rank two or more, G may be written as a proper amalgamated
product of two factors with K as an amalgamated subgroup (see the remark
preceding Lemma 2 in [6]). Hence it follows from [6, Theorem 10] that (H, K)
is of finite index in G.

We may therefore assume that the free part of G is infinite cyclic generated by
t. Embed G in the amalgamated product E described in (3); we show that every
coset of (H, U) in E is double ended (and therefore as in the proof of [6,
Theorem 10] that (H, U) is of finite index in £) or (H, K) has finite index in G.

To show that every coset of (H, U) is double ended it suffices (as in the proof
of [6, Theorem 10]) to show that IV contains an element of E which begins and
ends with an a-syllable (not in U) and one which begins and ends with a
B-syllable (not in U).

Now an element g of G which is not in K has the form

(23) g = kitorkotes . . . krt’rk,_,_l,
where k, € K,0, # 0, and if sgno;; = ¢ and sgno; = —e then %2; ¢ L..
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Moreover, if g is written in a reduced form as an element of the amalgamated
product E, then the initial syllable of G will be %y~ if o1 > 0 and will be
kix~1if 03 < 0; in a similar manner we can describe the terminal syllable of g
in E.

Let g as in (23) be an element of N — K such that the sum of the absolute
values of the ¢; is minimum. Since N is normal in G, we may assume that
ko1 = 1 and thatif sgn ¢, = e and sgn ¢y = —e then k; ¢ L..

Suppose that in g there exist ¢, j such that o, > 0 and ¢; < 0. Then there
exist p, g such that g, > 0, 0,41 < 0, 0, < 0 and g,437 > 0 (where the subscript
r + 1is replaced by 1); hence

kit LRt
and
Bott™* Lkt

are in N and begin and end in an a-syllable and in a $8-syllable, respectively.
We may therefore assume that all ¢; have the same sign and in fact all are
positive. If K 5 L, then choosing % so that k,k~! ¢ L, we have that V contains

thtorkator . . . R,
which begins and ends in a B-syllable. Similarly, if K £ M, then N contains
t=lkkytor . .. R tork,

which begins and ends in an a-syllable.

Suppose then that K equals one of the associated subgroups, say, K = L.
Then letting ¢ = o1 4+ ...+ o, we have that t7gt~> is in N and equals
tk’, k' € K. Hence N contains “k;/, where ¢ is any integer and k£, € K. Thus
NK contains 2Kt~ and the union of these over all negative 7 yields K¢, the
normal subgroup generated by K in G. Henceif g’ € G, then Hg'K = Hg'NK =
HNK = H*K, where 0 £ \ < ¢; thus, (H, K) is of finite index in G.

We may therefore assume that (H, U) has finite index in E. Let
Hg,U,...,Hg,Ube the (H, U) cosets containing elements of G, and let g € G.
Then g = hga,h € H,u € U.Henceu € G U = K. Consequently, g € Hg,K
and so (H, K) is of finite index in G.

ToEOREM 10. Let G be an HNN group as in (1) and suppose that its base K
has the finitely generated intersection property. If the subgroup K’ of K generated
by all the associated subgroups L;, M, is finite, then G has the finitely generated
intersection property. In particular, if the base K of an HNN group is finite, then
the HNN group satisfies the finitely generated intersection property.

Proof. Let Hy, H, be finitely generated subgroups of G, and suppose that K
is finite. Embed G in the amalgamated product E described in (3). Since H;, H,
are finitely generated, [6, Lemma 8, Corollary] implies that the number of
double ended (Hy, U) and (H3, U) cosets is finite. Moreover, it follows as in the
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proof of [6, Theorem 11] that if the number of double ended (H; M H,, U)
cosets is finite, then H; M H, is finitely generated.

We show that there are only finitely many double ended (H; M H,, U)
cosets by showing that the intersection of an (Hi, U) coset and an (H,, U)
coset contains only finitely many (H; /M H,, U) cosets. Suppose then that
(HiMN Hp)qU < HipU N HppU where p is a fixed element. We show that
(Hi N\ Hp)qU = (Hi M Hy)gpU where g is one of a finite set of elements
(which depends upon p). Indeed, ¢ = kipuy = hopus, by € H;, u1, us € U. If
U1 = Uy, then h; = hy and we may choose g = 1. Otherwise, 1 # Ay~ =
pusu™p € GN pUp~! = g1L;g7! (by Lemma 1 with H =G), 021 =
n, Ly = K. Since K is finite, g’ = pu.,u,—'p~! ranges over a finite set. Moreover,
pus = g'pus so q(pui)~t € Hi M (Hog') = (H1 M H,)g; since g’ ranges over a
finite set, we may restrict g to range over a finite set. Thus (H1 M H;)q =
(Hy M H3)gpuy and (H1 M Hp)qU = (Hi M Hy)gpU, where g ranges over a
finite set. This completes the argument for the case when K is finite.

If now we merely assume that K has the finitely generated intersection prop-
erty and that K’ is finite, then G is an amalgamated product of K and an HNN
group with base K’ and the same associated subgroups as G, with the subgroup
K’ amalgamated. Since each of the factors has the finitely generated intersec-
tion property and K’ is finite, [6, Theorem 11] implies that G has the finitely
generated intersection property.

A similar argument shows that it suffices to assume that each pair L;, M,
generates a finite group.
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