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Abstract. Let M be a manifold of X = C", 4 a small analytic disc attached to M, z° a point of 94
where A is tangent to M, z! another point of 34 where M extends to a germ of manifold M; with
boundary M. We prove that CR functions on M which extend to M; at z!' also extend at z° to
anew manifold M>. The directions M| and M, point to, are related by a sort of connection associ-
ated to 4 which is dual to the connection obtained by attaching ‘partial analytic lifts’ of 4 to the
co-normal bundle to M in X.
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1. Introduction

Let X = C" and let M be a real submanifold of X of codimension / in a neighbor-
hood of a point z°. We assume that M is generic that is (TM + iTM)., = CV.
We can then take coordinates z = (Z, z) in C" with z = x + iy such that z° =0
and M is defined by y; = hi(x',2"), j=1,..., 1, with h;(0) = 0 and 9k;(0) = 0. Let
M be a germ of a manifold of codimension / — 1 with boundary M possibly at
a point different from z°. This can be described for example by y; = ;(x', 2", 1)
for 1 € RT U {0} with (3,4;); # 0. We set r; = Vi —hj, r=(rj), h=(hj). We assume
that M and M, have a suitable regularity, take an analytic disc 4 regular up to
the boundary, parametrized by 4 = {A(7), T € A} (where A is the standard disc
of C) with z2 = A(1) e M, z' = A(—1) e M;\ M. We assume that the boundary
dA4 of A is contained in M, UM with 94 C M at z, and 94 C M, \ M at z'. Let
d.r be the / x [ Jacobian matrix of r = (r;) with respect to 9. = (3, ..., d-/). Some-
times we also write 8'r instead of d.r. Associated to A4 there is an / x / real matrix
G(t), T € 0A, with G(1) = id;x;, such that G.(9.r o A) extends holomorphically from
dA to A. Such G, which is a small perturbation of the identity, can be easily found
by the implicit function theorem. We will write G.i instead of G(—1) (due to
z! = A(—1)) all through this paper. At last we observe that according to [B-T],
we can find an open domain V' C M; U M such that CR functions over M; UM
are approximated on V' by polynomials. We also assume that 04 C V, suppose that
TA.. C T“M.., and let v': = id,h(z"). Then for any ¢ we can find a germ M, of a
manifold with boundary M at z°, which ‘points’ to a direction v* € /R’ normal
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to M at z° verifying |v? + G.1v!| < ¢, such that CR functions f on M; U M extend as
CR to M;. Here for z € M, we identify T/ X, the normal space to M at z, with
iR by [v] = i(Re(or;(2), v))/. and if M, (or M) is a manifold with boundary M,
we say that Ty, M, (or Ty, M>) are the directions to which it points. We can rephrase
the above statement in terms of propagation. If 94 C M and if f extends as CR
at z' to a manifold M; which points to the normal vector v', then for any ¢, f extends
at z° to a manifold M, which points to v? verifying [V — G.iv'| < e. In particular we
regain the classical theorem by Hanges and Treves [H-T] on propagation of
holomorphic extendibility along complex curves in M.

The geometry of our propagation is closely related to [T2]. Assume that M is
‘non-minimal’ in the sense that there is S € M such that T“S =T“M|, (T*
denoting the complex tangent bundle), and put

TX|g

E*=THX|<NiTiX, E=— 28
uXls NiTs X, TM|s + iTS

Then a partial connection is defined in [T2] by E.i — E.., vi— G(z')v. By this, CR
extendibility at z' to v! € E.i implies CR extendibility at z° to directions arbitrarily
close to G,iv'. Note that to prove this result Tumanov uses the essential fact, which
is bypassed in the present paper, that when a covector {,dr(z°) belongs to EZ,, then
the full vector function {,G(t)(dro A(tr)), and not only its component
{,G(1)(d'r o A(7)), extends holomorphically to A. (As a representative of a form,
{, 1s here a row [-vector.) Hence, propagation of extendibility in the only
E-directions can be treated by his method, whereas the automatic extension in
the complementary directions of TM|g + iTS must be handled by the techiques
of his earlier paper [T1].

Another significant difference is that our theorem is indeed a theorem of automatic
extension (rather than propagation) by discs which are attached to M; U M (rather
than M). Also the argument of our proof is independent.

2. Automatic CR Extension and Propagation of CR Extendibility

In X = C" we take coordinates z = (Z,7"), z=x+iywithz € Cl, 27 e C¥ Let
z° = 0 and define an / codimensional submanifold M C X by

V=), j=1,.1 (1)

with 7;(0) = 0, 9h;(0) = 0. We also use the notations r; = y_; —hj, r=(r), h=(hy).
Let M| be a manifold with boundary M, possibly in a neighborhood of a point dif-
ferent from z°, of codimension / — 1. This is defined, e.g., by introducing a new par-
ameter € RTU{0}, and extending the domain of /4 from R/ x CN to
R/ x CV'x (RTU{0})) with 8 #0. Hence, M; will be defined by y =
h(x',z", 1), t € RT U{0}. We shall consider analytic discs 4 in X ‘attached’ to
My UM that is verifying 04 C M; UM and containing z° in their boundaries.
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We will denote by A both the discs themselves and their parametrizations
A(t), te A, where A is the standard disc of C. We also write
A(t) = (u(t) + iv(t), w(t)) and assume z° = A(1). We call w(r) the ‘z components’
of A and define the ‘¢ components’ #(t) by the equation A(u(r),
w(t), #(t)) — v(t) = 0. Hence, the condition ‘A(t) € M| \ M’ is equivalent to ‘#(7) > 0’.
We shall also let the function #(t) depend on a small parameter n € R* U {0}, and
denote it by 7(z).

For k> 1 integer, and 0 < o < 1 fractional, we denote by C%* the class of
functions whose derivatives up to order k are a-Holder continuous. Existence of
attached discs with prescribed components w(t) and #'(7) is assured by the following
statement due to Tumanov (cf. [T2]).

LEMMA 1. Let h belong to C** k> 1, 0 < o < 1, and let w = w(t) (resp. t = (7))
be Ck* in t (resp. in t, n) and small (in C**-norm). We also suppose w(l) =0,
(1) = 0 and take w, € CNand s € R! small. Then we can find an unique solution
u=u'(t) in C**(dA) of the equation

u=—=T1(h(u, w+ w,, t") + ). 2)

Moreover, if we put V! = T1(u") + h(s, w,) and A"(t) = (u'"(z) + iV'(), w(t) + w,), we
have that A" is C** and 3, A" is C*=* with respect to n, s for any o < o.

The proof can be found in [T4, Propositions 1.1 and 1.2].

For a fixed z! € M; U M, we denote by ¢! the value of ¢ which corresponds to z!,
and define M, ={r=0, t =¢'}. In particular for z! € M we have ¢! =0 and
M, = M. Using the basis o.r;, j=1,...,/, for T}, X, we can identify Ty, X (the
normal bundle to M,) to M, x iR/ by [v]i— i(me(ézrj, v))j where [v] is the equival-
ence class modulo TM,. If ze M, with ¢! >0, we have clearly (TM;). =
(TM,). + Ry! where v' = i(8,h(z2)) € iR!(~ (T, X).). When z € M we have clearly
TM,.=TM .+ R*%Y!; in this case we say that M, is ‘attached’ to M at (z,v!)
or that M, is an extension of M which ‘points’ to the normal direction v! at z.

We assume now that we are given a small analytic disc 4 with z° € 4 which
contains another point z' in its boundary with z! € M|\ M. Let z' = A(-1), let
t=1t">0at = —1, and denote by w(r) and #(r) the ‘z and ¢ components’ of 4
respectively. Let d.r be the square / x / Jacobian matrix of r with respect to the
7 =(zy,...,z) variables. It is easy to find a real / x / matrix G(z), T € A, with
G(1) =1id;x; and such that G.(d.ro A) extends holomorphically from A to A.
To prove this we only need to solve the integral (Bishop’s) equation G(r) =
T1(G(z)(3 h(u(z), w(t), t(1)))) +id;x; on 9A where 7; is the Hilbert transform
normalized by the condition Ti(-)|,.; =0. By means of G we can define an
isomorphism (T, X).1 — (TyX)., which is defined, in the bases dual to
azrj(zl), j=1,...,0 and 0.r}(z°), j=1,...,1, by vim> G,v (where G, stands, as
always, for G(—1)).
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Let y(t) be a real positive smooth function on dA with y(—1) =1 and whose
support supp(y) is contained in a small neighborhood of —1 for which
94 C M\ M holds. Define #'(t) = #(t) — ny(z) for small n so that ¢'(r) > 0. Let
A" be the family of discs of Lemma 1 for such a data w(tr) and #/(r) and for
s =0, and let 4 be the derivative in natn=0.

THEOREM 2. Let M be C**, 4 be C** in A, small in C** norm, attached to M, UM,
and let z°, z' € 34 with z° € M, z' € M\ \ M. We also assume 34 C M at z° and
TA» CTM . Let v = i(3h(z")),€ iR, v = G.iv' € iR, Then

8. 4], = 0’| <&, 3)

where ¢ > 0 and ¢ is an error vector which can be made arbitrarily small if we cor-
respondingly shrink supp ().
Proof. We have for any i =1, ...,/, and with z = z(7)

Zg,j‘}tearjoAA Zg,ja,]/,

) L ’ y .
E J gj 3 ‘/ (¢] A A> eXtendS hOlon’lOI’phlcall from 8 A tO A

The first can be checked directly. The second follows from the fact that
(0:rj 0 A, A) = (drjo A, A), since the z” components of each A" are constant in .
Recall that ia,hj(zl) =v!, and that supp(y) is contained in a arbitrarily small
neighborhood of —1. Hence, applying Hopf’s Lemma to the harmonic function
whose boundary value is (Z giie(o.rjo A, A)),, and recalling that (gU)U(l)_
id;y;, we get that 1((8}3 o0A,d A)|1) has direction arbitrarily close to G.iv' provided
that supp(y) is small. (Note that ( (drjo A, 0 A) )1); is real because 94" C M at z°
and therefore for © = ¢/ we have 34|, € TM -.) O

We recall the conclusions of Lemma 1. The Taylor expansion of 9, 4" with respect
to n gives

Re(drj o 4,9, A")|; = nNe(dr;o A, 311;1>|1 + o(n), (%)

where we have used the basic hypothesis 74.. ¢ T“M... Here 3. A satisfies the con-
clusions of Theorem 2. It follows

(We(@uri(="), B 1), = (+eGa (k=) +e )1 + o), ©6)

where ¢ is small if supp(y) is small. Hence, the vector v in the right hand side of (6)
verifies v = +¢'n(v’ + &) where ¢ is small when 7 and supp(y) are so (and c is possibly
a new constant). As we have already seen, we have om((ar] 0d,o A)|1) =0 or,
equivalently, for 1 = e’ € 9A

(Se(dr; o 4, 9p4")]1),= 0. (7)
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We then choose a plane X in 7M. transversal to id, A"|, e.g.
=R, x---x Ry, x cN ¢ ™., = R x CN7,

and let w(t) and #(t) = #(r) — ny(r) be the ‘CR’ and ‘normal’ components of A"
respectively. (Note that the CR components w(t) are the same for 4" and the initial
disc A.) We consider the Bishop equations

u=—-T1(hu,w+w,, 1"y +s) VY(s,w,) €Z, tedA.

We denote by u = u{,, (7) the solutions of the above equation. Let v = Tu + h(s, w,).
Then u + iv extends holomorphically from 9A to A and form the z' components of a
disc A, (1) = (u(zr) +iv(r), w(r) + w,) which verifies 94}, C M;. Note that

s SWo

AL, ls=0.w,—0 = A". We define

M, = UA;’WU (8)

SWo

and denote by D: X x A — M>, (s, w,, 7)1~ Al () the parametric representation of
M. We have

rankRaﬂvaers:O, Ww,=0, 1=1) = 2N —1+1

o=

due to

(Se(dr; o 4, 3. AM)];) # 0,
(e (ar; o 4, agAﬂ)h)'/.: 0. ©)
Because of (5) the first of the vectors in (9) has nearly the direction of v*: = G, v! that
is we can find a vector v parallel to it such that [v* +1°| < &. Here ¢ is arbitrarily
small provided that we correspondingly shrink n and supp(y). Hence M; is a germ
of a submanifold at z° with boundary M and codimension / — 1 which points to
the normal direction v? which verifies |v? +1°| < e.

We recall now that, according to the celebrated Baouendi-Treves approximation
Theorem ([B-T]), there exists a neighborhood M of z° in M such that any
f € CR(M) is uniformly approximated by polynomials over M. Also, for any germ
of manifold M, with boundary M (at some other point of M), we can shrink
M, to M; so that any f € CR(M;UM) is approximated by polynomials in
V:= M; UM. We summarize our hypotheses and state our main theorem which
is just a rearrangement of what has already been proved. Let M be a generic
C** manifold in a neighborhood of z°, M| a germ of C** manifold at z! with
boundary M. Let 4 be a small disc, C** in A, attached to M; UM with
2° = A(1) and z' = A(—1) such that 94 ¢ M at z° and 94 C M\ M at z'. Let
t=1t"at z!, let M, be the submanifold of M, defined by ¢ =1¢', and let v' be
the normal direction to M, in M, at z' with the orientation induced by that of
M, with respect to M.
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THEOREM 3. Let 0A € M| U M withdA C M at z°, 0A C M, \ M at z! and assume
that TA.. C TM... Let V be the open domain of M, U M in which CR functions are
approximated by polynomials, and assume 94 C V. Then for any ¢ there is M>,
manifold with boundary M at z°, which points to an additional direction v* with

WV 4+1°| <& for v: = G(z'W!, (10)

such that any f € CR(M, U M) extends as CR to M.
Proof. We approximate f over V' by a sequence of polynomials P,. Since 04 C V,
then V' is a neighborhood of 947, Vs, w,. Hence by maximum principle there exists

a subsequence P, which converges in M> = | J,, A4, toananalytic function which is
the desired extension of f. OJ

We can restate the above extension result in terms of propagation. For this we
need discs which are indeed attached to M and not to M; U M. We also need to
define what a ‘wedge’ W with ‘edge’ M is. In a coordinate system in X = CV
and for an open cone iI' C (T X).., a wedge W with edge M and profile i, is
an open set which contains VI" cC I' and for a suitable neighborhood V of z°
the set (M NV)+il)NV.

THEOREM 4. (i) Let 94 C M, TA .. C T“M .., Asmall. Let v' be the normal to M at
zV which points to My, and put v’ = G, v'. Then for any ¢ there is M, which points at z°
to a direction v* satisfying |v* —V°| < ¢, such that any CR function f on M which
extends to My at z! also extends to M at z°.

(ii) In particular if f extends to a full wedge W with profile iUy at z', then for any ¢, it
extends to a wedge W, at z° with profile il'y which verifies (I'2),D G.i(I'y). (Here (I'y),
denotes the ¢ conical neighborhood of T'.)

Proof. (i): We make a deformation of M in the v'-direction at z!, that we still call
M, which is contained in the region where f has CR extension, and such that
04 ¢ M at z'. With this new M, we have that f extends now from M to a manifold
M, which points to the —v!-direction, and such that 94 c M, \ M at z'. (We
can also assume that the condition for the approximation neighborhood V' is
fulfilled.) Then the conclusion follows from Theorem 3.

(i1): We can find a set of / manifolds M{ j=1,...,1 of the type described in (i),
which are contained in W, at z! and point to / directions whose convex hull is
an approximation of the cone iI';. Then f will extend to the corresponding manifolds
Mg at z°. Finally we conclude by the Ayrapetian-Henkin edge of the wedge
theorem. O

COROLLARY 5. (Hanges—Treves [H-T]). Let y<—> M be a complex curve, let

f € CR(M) and assume that f extends holomorphically at a point z' € y. Then it
extends at any other point z° € .
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Proof. Easy consequence of Theorem 4 (ii) for il ', = iR!, il = iR/, by a classical

compactness argument. O
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