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DECOMPOSITION THEOREMS FOR g*-RINGS

BY

DAVID A. HILL

Let R be a ring with identity. The study of rings in which every left (right)
ideal is quasi-injective was begun by Jain, Mohamed, and Singh (3). They
called these rings left (right) gq-rings. A number of structure theorems have
been proved for q-rings. See, for example, (1), (2), and (5). A ring with the
dual property (rings in which every homomorphic image of R as a left (right)
R-module is quasi-projective) is called left (right) q*. These rings were first
studied by Koehler (4), where some results connecting q*-rings with q-rings
were obtained.

The main object of this paper is to obtain a structure theorem for semi-
perfect gq*-rings. Many of the results of (4) connecting q-rings with q*-rings
follow as natural consequences of this theorem. One important consequence
shows that any semi-perfect right q-ring is both left and right q*.

In this paper all modules are unital, and homomorphisms are R-
homomorphisms. The Jacobson radical will be denoted by J. For the radical J,
the right annhilator of J, r(J)={x € R | Jx =0} is called the left socle of R, and
is the largest semi-simple left R-module contained in R. In a similar way, one
defines the left annhilator of J as [(J)={x € R | xJ =0} which is called the right
socle of R, and is the largest semi-simple right R-module contained in R. If R
is semi-local (i.e. R/J is artinian semi-simple) and M is an R-module, the
semi-simple module M/JM, called the top of M, will be denoted by T(M). A
ring R is semi-perfect if and only if R/J is semi-local and idempotents modulo J
can be lifted. We shall say that a module K is large in M in case KN L# 0 for
every non-zero submodule L of M. The injective hull of M, denoted by E(M),
is an injective module such that there exists a monomorphism i:M — E(M)
with the property that i(M) is large in E(M).

In order to prove the main theorem of this paper, the following facts,
definitions, and lemmas are needed. A ring R is said to be left (right) duo in
case for each x € R, Rx = RxR(xR = RxR). A module M is quasi-injective in
case the natural homomorphism Homg (M, M) — Homg (K, M) is epic for all
submodules K of M. A module M is said to be projective relative to N if for
each factor module P of N the natural homomorphism Homg(M, N) —
Homg (M, P) is epic. when N = M, M is said to be quasi-projective. The class of

Received by the editors July 31, 1978.
155

https://doi.org/10.4153/CMB-1980-021-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1980-021-6

156 D. A. HILL [June

modules to which M is projective is closed under taking submodules, factors,
and finite direct sums (6). From this it is easily seen that P,@P, is quasi-
projective if and only if P, is projective relative to P, for i,j=1,2.

The following proposition is due to Koehler and first appears in (4).

ProposITION 1. Let R be a semi-perfect ring. Then R is a left q*-ring if and
only if every left ideal in the radical J of R is an ideal.

LEMMa 1. Let R be a semi-perfect left q*-ring and e and f primitive idem-
potents such that Re N Rf =0. Then eRf < r(J).

Proof. Suppose eRf# 0. Consider « € R such that eaf# 0. Then there is a
factor module of Re say Re/le such that Re/le is isomorphic to a submodule of
Rf. This isomorphism is given by right multiplication of the element af with
kernal Ie. Consider the cyclic left R-module Re/Je® Rf which is a factor
module of Re® Rf. Since Re/Je® Rf is quasi-projective, Re/Je is projective
relative to Rf by (6, Proposition 1). As Re/le is isomorphic to a submodule of
Rf, we have that Re/Je is projective to Re/le. Since Re/le#0, and Je is
maximal in Re, the natural epimorphism Re/le — Re/Je — 0 splits. But e is
primitive so Ie =Je. Thus Jeaf =0. As a is arbitrary, JeRf =0 yielding the
result.

One interesting consequence of Lemma 1 is the following corollary.

COROLLARY 1. Let R be a semi-perfect left q-ring. Then R is a q™*-ring.

Proof. By (4, Theorem 3.2), R is a right q*-ring. To show that R is a left
q*-ring, we need only show by proposition 1 that each left ideal I contained in
J is two sided. By (3, Theorem 2.3), I = Ke where K is a two sided ideal and e
is an idempotent. Thus,

ILR=KeR =KeReDKeR(1—e)=Ke=1

Here KeR(1—e)=0 follows from lemma 1 and I < J.

Let R be a semi-perfect ring. Then as a left R-module, R can be expressed
as a direct sum

R=Re,D---DRe,

where e, . .., e, represent a complete set of orthogonal idempotents and each
Re; is an indecomposable projective left ideal. Using the above decomposition,
we shall define the semi-simple left ideal K < r(J)NJ as follows: The left ideal
K consists of the direct sum of all simple left ideals {T,},. . such that T, < Je,
for some i,1=<i=n, and each T, has the property that T, T(Re;). In other
words K is the sum of all simple left ideals in r(J) N J which are not isomorphic
to the top of the indecomposable projective left ideal containing them. Of
course it is possible that K =0, as in the case of local rings and semi-simple
rings.

We note in passing that the left ideal K depends on the decomposition
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Re,, ..., Re,. That is to say, for another set of indecomposable projective left
ideals Rf;,..., Rf, such that R=Rf,®---®Rf, we may have, using the
above definition, a different value for K. However, throughout this paper, only
one decomposition of R into indecomposable projective left ideals will be
specified making our definition of K unambiguous.

The following lemma shows that modulo K, left q*-rings have a nice
decomposition.

LeEMMA 2. Let R be a semi-perfect left q*-ring. Then R/K is a ring direct sum
of left duo local rings and a semi-simple ring T where T is the direct sum of all
Re; such that Je; =0.

Proof. Let {¢;}'_ ; be a set of primitive orthogonal idempotents such that
e, +---+e,=1. First consider ¢; such that Je;#0. Define R=R/K and ¢, =
e, + K.

By lemma 1,
(1—¢)Re, =r(J)
eR(1—e) < r(J).

Also (1—e¢;)Re; < Je; since Je; is the unique maximal left ideal contained in Re;.
Thus (1—¢)Re, =r(J)NJ. Now if Re; =Re; for some j#i, then ¢Re; = r(J).
This implies that Re; is simple, a contradiction. So we actually have that
(1—¢,)Re; = K. Therefore, (_1—~-c7i)lie'i =0.

Now suppose that ¢R(1—e¢;) 2 J. Then there exists ¢;(j# i) such that Re; is
simple and ¢;Re; #0. This implies that T(Re;)= Re,. Since R is semi-perfect,
we have Re,=Re; a contradiction to Je;#0. Thus ¢R(1—¢)< K, so that
&R(1—e¢;,)=0. Therefore, Ré, = Re,R and ﬁ(l——ei) = Ii(lTei)R. Thus R¢, is a
local ring direct summand of R.

Now let T be the sum of all Re,, (1=k =n) such that Re, is simple. For
each ¢ such that Je;#0, e.Re, e¢Re, < K by the preceding remarks. This
implies that T is an ideal direct summand of R.

Finally note that for each Re; such that Je, # 0, we have for x € Je;,, Rx = RxR
by proposition 1. Thus RxX = RxR so Rg, is left duo.

LemMa 3. Let R be a semi-perfect left q*-ring and f a primitive idempotent
such that fI(1—f)#0. Then J*f=0 and Jf=1-f)Jf=rJ)f.

Proof. Suppose Jf has a composition factor isomorphic to T(Rf). This means
that there exists an x, € Jf such that fx;f = x,f# 0. By hypothesis there exists an
idempotent e orthogonal to f and an element x, # 0, x, € Je such that fx,e#0,
(1-1)x,e =0. Consider x = x; +x,. Thus,

xf = fxf, (1—7)xe=0, x = fx.
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By proposition 1, Rx(e+f)=Rx(e+f)R. Thus x(e+f)e=ax(e+f)(aeR).
Therefore, xe =axe+axf, which implies xe =axe and oaxf=fafxf=0. By
lemma 1, xe € r(J). thus af € Jf, otherwise xe = axe = fafxe =0, a contradiction.
Thus faf is a unit. So axf =0 implies that xf = fx,f = x,f =0, a contradiction.
Therefore Jf has no composition factors isomorphic to T(Rf). Thus fJf=0.
Hence applying lemma 1, we have Jf=(1—-f)Jf=r(J)f. Likewise, J*f=
Jr(Hf=0.

For the following theorem, we shall assume that e;,...,e, is a set of
primitive orthogonal idempotents such that e;+---+e, =1, and K as previ-
ously defined with respect to the decomposition R = Re; +- - - + Re,.

THEOREM 1. Let R be a semi-perfect ring. Then R is left q* if and only if the
left ideal K is two sided and such that

(1) R/K is the ring direct sum of left duo local rings and a semi-simple ring T
where T is the direct sum of all Re; such that Je, = 0.

(2) If for some e, (1=i=n), we have eJ(1—¢;)#0 then Je, = Ke, =r(J)e; and
J?e, =0.

(3) eR(1—¢)<=r(J), (1=i=n) and xR < Rx for all xe K.

Proof. Assume R is left ¢*. Conditions (1), (2), and (3) follow from lemmas
1, 2, 3, proposition 1, and the definition of K.

Assume the above conditions are satisfied by R. Let L be a left ideal of R
such that L =J. By proposition 1 we need only show that L is two sided.
Assume the e; are ordered so that ey, . . ., ¢ satisfy condition (2), that is to say
eJ(1—e)#0, 1=i=<k with k<n. Also let Re;, k+1=i=m be the Re; such
that Je;#0 and ¢J(1—¢,)=0, m=n.

Clearly L < J implies that L= Le;,, 1=i=m. We first show that L= Le,.
Let xe L, then x = xe, +- - - + xe,,. Using condition 2, xe; € K for all i =k. For
k+1=i=m, we have ex(1—¢;)=0, so that e;x = e;xe; € L. Now consider the
following equation:

m m k
(D X — Z exe;, = Z (1—e)xe; + Z xe;.
i=k+1 i=k+1 i=1
An easy consequence of condition 3 shows that Y, ., (1—e;)xe, € K. Hence
the right side of the equation is contained in K and the left side of the equation
is contained in L. Setting z =Y+, xe; +Y" ., (1—¢;)xe; and using condition 3,
we have Rz=RzR<KNLcL. Thus ze;,=xe;€L, for i<k, and ze =
(1—¢)xe;e L, k+1=<i=<m. Using these observations, we see that Le, < L.
Whence L =Y Le,.
Now we show that L is two sided. Consider xe L, re R. Since xe; € L for
each i =m, it suffices to show that xe;re L for all i =m. By condition 3, we
have that ¢,R(1—e¢;) = r(J), for all i=m. As x € J, we have xe;r(1—e,)=0. Thus
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xe;r = xe;re;. To show that xe;re; € L, we first observe that
xere; = (1—e)xere;, + exere,.
Using condition 3 we have that (1 —e;)xe; € K. Thus applying condition 3 again,
2 (1—¢)xe; - re; = B(1—e¢)xe; forsome PBeR.
By condition 1,
exe; - ere; = eae; - exe; +ke; where ke eK.

Noting that e;ke; =0 and multiplying the above equation by e; on the left we
obtain,
3) exe; - ere; = eae; * e;xe;.

Combining (2) and (3), we obtain
xe; - re; = (e;ae; + B(1—e¢;))xe,.

Thus xe, - re; € Le; = L for all i =m as desired. So L is an ideal which completes
the proof.

We make the following observation: The left ideal K was defined to
determine when R is left g*. Clearly we may define the right analogue of K
which we shall call K'. Now suppose R is a q*-ring. Then K=K’ as the
following argument shows: Let T< K be a simple left ideal. Then Te;# 0 for
some i <n. By theorem 1, we have T < Je,. Hence T# T(Re;). Thus ¢,T =0. So
T<(1—¢)Je,< K' applying the right handed version of theorem 1. Hence
K c K'. By a symmetric argument K'< K.

We have the following structure theorem for g*-rings.

ProPOSITION 2. Let R be a semi-perfect q*-ring. Then R is a ring direct sum of
the following three types of rings:

(1) A semi-simple ring.
(2) A semi-primary ring S with J(S)*=0 and J(S)=K.
(3) Local duo rings.

Proof. We shall assume that the e¢; are ordered so that
eJ(1—¢)#0, or (1—¢)Je#0 for 1=i=<k, (k=n)

whenever some of the e; satisfy the above equation.

Set e=e,+- - +¢. Then it is easy to show that eR(1—e)=0 and (1 —e)Re =
0. Thus Re=ReR and R(1-e)=R(1—e)R. Hence Re is an ideal direct
summand of R. By theorem 1 we have that eJe; =0 for i =k. Hence,

(1) eJe=) eJe,c K.

iF=j
As Kcr(J), it is clear that JeJe =0. Hence J*(Re)=0 (as a ring).

3
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Now suppose T is a left simple direct summand of K. Then Te; # 0 for some
i =n. Since T is two sided, T < Je; and T'= T(Re;) for some j# i. Thus eJe; # 0.
Therefore, T < Je, < Re. As T was arbitrary we have that K < Je. This state-
ment together with (1) imply that Je = K. Using this result and theorem 1, we
see that R(1—e) is a direct sum of local duo rings and a semi-simple ring.

COROLLARY 2. Let R be a semi-perfect left q-ring. Then R is a ring direct sum
of the following three types of rings:

(1) A semi-simple ring.
(2) An artinian q-ring S with J(S)*=0.
(3) Local duo left q-rings.

Proof. By corollary 1, R is g*. So using proposition 2, we need only show
that the semi-primary ring S with J(S)*>=0 is artinian. This follows from the
left injectivity of R and the fact that the socle of R must then be finitely
generated. That S is a right gq-ring follows from (4, Theorem 3.5).
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