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O N T H E I N E Q U A L I T Y 

BY 

PETER KARDOS 

1. Introduction. In this paper, we are concerned with the functional 
inequality 

(i) f A i 

where 0 < P i < l , 0 < q ( < l , ft(p)ïO, for 0 < P < 1 , (i = 1 ,2 , . . . , n) Ir=iPi = 
£"=i Hi = 1, and n is a fixed positive integer, n > 2 . 

Inequality (1) was studied by Rényi and Fischer, (see [1], [3]) in the special 
case 

(2) y P i ^ < i 

and this provided a characterization of Rényi's entropy. Aczél considered a 
similar generalization of a similar but simpler and more fundamental inequality 
in [4]. 

Fischer has shown [1] that the general positive solution of (2) for n > 3 has 
the form 

f(p) = dpc where d>0 and - l < c < 0 

and he also investigated (2) for / which may change signs. For n = 2 in (2), 
Fischer proved that the general positive solution is monotone decreasing and 
continuous and in this case he also gave the general monotone decreasing 
solution with non-constant sign. 

In this article, we give the general solution, with constant sign, to inequality 
(1) for fixed n > 2 and to inequality (2) when n = 2. No regularity assumptions 
will be imposed on the functions. 

2. The case n > 3 . Our first theorem extends the results in [1] and [2]. 

THEOREM 1. Let r G (0,1] be fixed and let ft : (0,1) -» R, i = 1, 2, satisfy the 
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inequality 

(3) pmHr-p)i&z£*r 
fi(q) f2(r-q) 

for ail p G (0, r) and q e (0, r). If f do not change signs, then each of the following 
hold: 

(i) f is monotonie decreasing (increasing) on (0, r) if f is positive (negative) 
on (0,1). 

(ii) p —> pf(p) is increasing (decreasing) on (0, r) ifft is positive (negative) on 
(0,1). 

(iii) f is locally absolutely continuous on (0, r)*. 
(iv) if ft is differentiate at p then f2 is differentiate atr — p and the following 

relation is valid: 

fi(P) fiie-p) 

Proof. We interchange p and q in (3) and obtain 

(5) qmHr.q)fJizÉur. 
flip) f2ir~p) 

We can write (3) and (5) in the forms 

/2 ( r -p )^ r - [p / 1 (p ) / / 1 (q ) ] /2 ( r -q )^ r - [q f 1 (q ) / / 1 (p ) ] 

hir-q) r-p f2ir~p) r-q 

When we multiply these two inequalities, we get 

. [ r f i (q)-p/ i (p)I?i(p)-qf i (q)] 
( r -p) ( r -q) / 1 (p) / 1 (q) 

or, as / i does not change signs, that 

rtfifa) - / i (p)Iqfifo) " p/i(p)] =s 0. 
Hence, 

(6) [£ (q) - /, ( p ) ] ^ (q) - pf, (p)] =s 0 

for i = 1, and by symmetry, for i = 2. We shall now show (i), (ii), and (iii) in the 
case when f is positive. If fiip)<fiq) for some p<q<r then the left-hand side 
of (6) would be positive. The contradiction implies that f is decreasing on 
(0, r). Moreover, if p<q then fiip)>ftiq) and hence, by (6), pfiip)^qfiq). 

We prove that f is locally absolutely continuous on (0, r) in the case when f 

* We wish to express our thanks to Prof. W. Walter for the simplification of the proof of (iii). 
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is positive, i = 1, 2. Let a, b, 8 be fixed, 0<e<a<b<r, and let s, £ G [a, b] be 
any two numbers, s < I It follows from the monotonicity of p —» pf{p) and f that 

0^tf i( t)-sf i(s) = (t-s)/ i(t) + sK(0- / i (s) ] 

^(*-s)/,(0 
=s(*-s)/;(e). 

Hence 

(7) | t f i (0-s / i (s ) l^ | t - s | / i (e) for all a < s < f < b 

and, by symmetry, (7) also holds for all t<s. Thus, p —>p/i(p) is Lipschitz on 
[a, b] and therefore £ is locally absolutely continuous on (0, r). 

We prove (iv) in the case when / 2 > 0 on (0,1). We may write (3) and (5) as 

, J2(r-p)~f2(r-q)^ fi(q)-fi(p) 
0 - p ) 77 \ -P 7T~\ 

f2(r-q) h(q) 
and 

, J2(r-q)~f2(r-p)^ f1(p)-f1(q) 
(r-q) 77 v ^q JT\ 

f2(r~p) fi(p) 
respectively. We deduce from these inequalities, if r>q>p, that 

f2(r~p) q h(q)-fi(p)J2(r-q)-f2(r-p) 

flip) r-q q-p (r-q)-(r-p) 

J2(r-q) P fi(q)-fi(p) 
fiiq) r-p q-p 

Now, (iv) can be derived by letting q->p+. The case q<p<r, q-*p~~ leads 
similarly to the desired result. 

We give the general solution to (1) when each f has constant sign and n > 3 
in 

THEOREM 2. If f (i = 1, 2 , . . . , n) do not change signs, then the general 
solution to (1) for fixed n > 3 has the form 

(8) fi(p) = biP
a, i = l , 2 , . . . , n 

where - l < a < 0 and bt>0 (<0) if f>0 (<0) . 

Proof. Put pt =qt (i = 3 , 4 , . . . , n) into (1). With 

Pi + P2 = qi + q2 = r,p1 = p, qi = q,p2 = r-p, q2 = r-q, 

(1) goes over into (3). Inequality (3) holds for all p G (0, r), q e (0, r), and each 
r G (0,1). But then Theorem 1 (iv) means the following. If fx were not 
differentiable at a point p0, then f2 would not be difïerentaible at any r-p0 
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(re(p0 ,1)) , that is, on the interval (0, l - p 0 ) . Since f2 is monotonie, f2 is 
differentiate almost everywhere on (0,1). Hence ft and, by symmetry, also f2 

are difïerentiable on (0,1) and (4) implies that 

flip) fiiv) - n / n ^ 
P77—= P7—r = a for all pe (0 ,1 ) . 

flip) hip) 
By solving for ft we obtain (8), i = 1, 2. Similarly, we can pair /a in turn with fh 

i = 3 , 4 , . . . , n and find that all £ are given by (8). Also, by Holder's inequality, 

n a n / n \ a + l / n \ -a 

for — 1 < a < 0 and in fact the opposite inequality holds when a < — 1 or a > 0. 

3. The case n =2. In this section we give the general solution to (1) and (2) 
for n = 2, when the functions do not change signs. For n = 2, inequality (1) goes 
over into (3) with r = 1. 

THEOREM 3. A// solutions ft that do not change signs on (0, 1), i = 1, 2, 0/ fhe 
ineqwa/iYy 

(9) P ^ + ^ - P ) ^ ? ^ 1 ' 0 < P < 1 , 0 « , < 1 , 
fiiq) /2(i-q) 

are 0/ the form 

(10) / , (P ) = a e x p ( | P ( 1 ~ J ^ " ° dtj, /2(p) = fcg(p), p e (0,1), 

where a,b, and c are arbitrary, afr^O, C G ( 0 , 1), wiïh g arbitrary continuous, 
positive, decreasing, and p —» pg(p) increasing on (0, 1). 

Proof. Let £ be solutions to (9) that do not change signs, say f>0, i = 1, 2. 
By Theorem 1, /2 is decreasing and continuous while pf2ip) is increasing on 
(0,1). It follows from Theorem 1 (iii) and (iv) that 

/1(P) / 2 (1 -P) 

almost everywhere on (0,1). Since f2 is locally absolutely continuous on (0,1), 
therefore ((1 - t)/t)(f2(l - t)/f2(l -1)) is locally integrable on (0,1) and we solve 
for fx in (11) to obtain (10) with a = b = 1, and /2 = g. To prove the converse, it 
is enough to demonstrate that (10) satisfies (9) when a = b = 1. Let g be an 
arbitrary continuous, positive, decreasing function such that pgip) is increasing. 
The argument in Theorem 1 (iii) shows that g is locally absolutely continuous 
on (0,1). We can prove that p/i(p) as defined in (10) is increasing. Indeed, for 
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C > 0 , 

p/1(p) = PexPy c fg(i_f) * ] 

As pg(p) is increasing, d[pg(p)]/dp = pg'(p) + g(p)>0 almost everywhere and, 
as g is positive, 

(13) f - M i - 0 g ' ( i - 0 + g ( i - 0 s 0 

Jp, t g ( i - 0 

for all 0 < p ! < p 2 < l . From (12) and (13) we have 

PifiiPÙ^PifAPi) for 0 < p ! < p 2 < l 

and thus p/x(p) is increasing. By differentiating fx in (10), we obtain 

/x(0 ^ g ( l - 0 

a.e. on (0,1), say for all te A. Define 

fi(t) g ( l - 0 

then H(f )<0, te A. Let p, q be fixed, l > q > p > 0 . Because p/i(p) and pg(p) 
are increasing, we find in logical sequence, for teAH[p,q], that 

p / l ( p ) = = 1 ^ d - p ) g ( i - p ) 
tfx(t) ( l - t ) g ( l - t ) ' 

rr ( fxP/l(P)^ „ / r t ( I - P ) g ( l - P ) 

f i (p) / i (0^, . , , g ( i - p ) g ' ( i - 0 
p"Àôr^ ( 1 _ p ) gd-o2 ' 

p / i ( p )fi ld ( S ( 1-p ) 8 ( 1-p )ffd^ld t ' 
^ (p )[-^]> (1-p)g(1-p)[-i?ôC' 

and that 

1 ^ f&Kn ^ g ( 1 " P ) ^ > 4 . n ^ 2 ( 1 - P ) 
ft(q) g ( l - q ) /i(q) /2( l-^f) 

which is (9). Similarly, (9) holds if q < p . 
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We now give the general solution to inequality (2), when n = 2, if / has 
constant sign. 

THEOREM 4. All solutions that do not change signs on (0,1), of the inequality 

(14) p M + (1-p)glzPW o<p<l, 0<q<l, 
f(q) f(l-q) 

are of the form 

(15) /(p) = a e x p ( J P ^ p d t ) , p e ( 0 , l ) , 

where a j=- 0, b e (0,1) with G arbitrary measurable on (0,1) and satisfying for 
almost all p e (0,1) 

(16) G ( l - p ) = G(p) 

and 

(17) - l < G ( p ) < 0 . 

Proof. We may suppose that / > 0 on (0,1). We shall use Theorem 1 with 
/ = / 1 = / 2 and r = l . It follows from (i) that / is differentiable a.e. on (0,1). 
Then, by (iv) we have that 

f(p) / ( 1 - p ) 

for almost all p on (0,1), say on A. Define 

^ ( P ) = P 7 7 - T ? ptA; 
f(p) 

then (16) holds. Moreover, by (ii), pf{p) is increasing so that 

/(p) + p f ( p ) ^ 0 , for peA. 
Thus 

1 + G(p )>0 , peA, 

and since f ( p ) ^ 0 , (17) is valid. We obtain from (iii) that / is locally absolutely 
continuous on (0,1). Therefore G is measurable and 

(18) G(p)_f'(p) 
P f(p) 

is locally integrable on (0,1). We derive (15) by integrating (18). It can be 
shown, as in Theorem 3, that all / given by (15) satisfy (14). 
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