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ON CIRCULANT MATRICES FOR CERTAIN PERIODIC SPLINE

AND HISTOSPLINE PROJECTIONS

FRANCOIS DUBEAU AND JEAN SAVOIE

We present a unified treatment of the band circulant matrices which

occur in the periodic spline and histospline projection theory with

equispaced knots. Explicit bounds for the norm of these matrices

are given.

1. Introduction

For the n > 1 degree periodic spline and histospline projections

on a uniform partition of a periodic function we have to consider linear

0 (It) k
systems of the form Vn(v, P) s^ ' = ?„("., P) b Ck = 0, ••-, n). The

column vectors 8 and b of JR correspond respectively to the k

derivative of the spline and to the data, and the circulant matrices

pl(t,P)(t = 0, ..., «, t e [0, IV of order N S n + 1 are generated by

the polynomials p (t^x) and a permutation matrix P . These systems

come from the linear dependence relationships that exist between a spline
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and its k derivative (see [7]) .

The regularity properties of the matrices p (v,P) are useful in

establishing existence results and, together with bounds for the uniform

matrix norm of the inverses, in obtaining convergence results (see [5]).

The object of this paper is to review the properties of the

polynomials Pn(t>x) and, using elementary facts about circulant matrices,

to present a unified treatment of the matrices p (t3P) .

Throughout this paper |\A\\m is the uniform matrix norm of the

matrix A and A = circ (a~3 a.py ... <%„) means that A is a circulant

matrix of order N with ani aoi ••., a.-., on its first row [7, p.66].

2. Definition and Examples

Let t e M . The polynomials Pn(tyX) are defined as follows

(1) v\(tax) I * j

where c*(t>j) = (-l)k ^^Uj+l-tf^x^ a}(j>l and V is the backward

difference operator.
j.

k 1 3 0
From (1) we have p~(t3x) = y—. irP^ttsX) and i t i s known (seen (n)k 3tfc n

[3] or [7]) that

It follows that p^Ctj-) = 1 3 and for n > 1 we have recurrence

relations for the polynomials p (t} •)

(2) pfojx) = Ul-t) + (n-Ut)xl p^Ct.x) + x(l-x) -^Pn.2(t'x)

and for the coefficients a (t,j)

C 3 ) o°nCt3o) = (n-o+t) c ^ ^
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n

The circulant matrix pn(t,P) is generated by the permutation

matrix P = circ CO, 1, 0, . .. , 0) of order N > n + 1 and the polynomial
p\(t,x) .

For example., pJt,P) = J and for n = 1, ..., 8 and t = 0 or

t = H we have

(i) t = 0: p^CO^) = X,

p°2(0,P) = ci.rc(ltl,0,...a0),

p°3(0,P) = 01^(1,4,1,0,...,0),

p°4(0,P) = circ(l,11,H,l,0,...,0),

p°5(0,P) = circ(l,26,66,26,l,0,...,0),

p°6C0,P) = circCi,57, 302,302,57,1,0,...,0),

p°?(0,P) = circ(l,120,1191,2416,1191,120,l,0,...,0),

p°8(0,P) = circ(l,247,4293,15619,15619,4293,247,l,0,...,0)j

(ii) t = %: p°2(%,P) = h civc(l,1,0,...,0),

p°2(k,P) = (k)
2 cxxcd,6,1,0,...,0),

p°JH,P) = (%)3 circCl,23,23,1,0,...,0),

p°4(h,P) = (h)
4 circd,76,230,76,1,0,. ..,0),

p°5(h,P) = (h)
S civcd,237,1682, 1682,237,1,0,...,0),

p°6(h,P) = (h)
6 circ(l,722,10543,23548,10543,722,1,0,...,0),

p°?(k,P) = (h)
? circd,2179,60657,259723,259723,60657,2179,

1,0,...,0),

p°8(h,P) = (h)
8 circd,6552,331612,2485288,4675014,2485288,

331612,6552,1,0,...,0).
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k k
Remark 1. If a (t>0) = 0 or on(t,n) = 0 we can consider P of

order N > n instead of order N > n + 1 .

3. Propert ies o f the polynomials p ( t , - )

The polynomials p (t}-) have been analyzed by several authors (see

[3], 16], [7], [S] and [9]) and are closely related to the exponential

Euler polynomials. In this section we recall their properties without

proof.

THEOREM 2. pO
Q(t3x) = 1 and for n > 1

0 in if t e (0,11.
(i) p it,') is a polynomial of degree \

[ n-1 if t = 0;

(ii) p°n(l,x) = x p
O
n(O,x);

(Hi) p*(t}x) = (x-l)
k pi At,x) for k = 0, ..., n;

(iv) p°n(t,x) = x
n p°n(l-t,l/x). D

THEOREM 3. For all n z 0 we have

(i) p°n(t,l) = n! ,

Cii) pfa-l) = (-2)n En(t)

where EC-} is the Euler polynomial degree n. 0

The next theorem has been obtained by several authors for t e LO}1]

(see [6], [7], [9]) and the extension to t e (-e, 1+z) is given in [3].

THEOREM 4. For all n z 1 there exist a strictly positive real

number e and n functions, denoted x .(•) for i = 13 ..., n,

n3%

suoh that xn ̂ (t) is the ith root of p (t,x) for all t e (-z, 1+z)

(except for i = n when t = 0 ). These functions are such that
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(i) x , f . J e C°°((-e, l+z);lR), x^ •,(•) is strictly increasing overn, 1 n, J.

(-z, 12 and strictly increasing (respectively decreasing), over \_1, 1+z)

when n is odd (respctively even);

(ii) for i = 2, . . . , n - 1, x .(•) e ^((-z, l+z);lR) and a; • (•)
n, 2- n , z-

is strictly increasing over (-e, 1+z);

(Hi) x (•) e. c"'((-eJ 0) u (0} 1+z);IR.)3 x (•) is strictly increasing
fljll ft ylV

(respectively decreasing) over (-z, 0) if n is odd (respectively even),

and

-a> if n is odd,
lim, x (t) = -» and lim x (t) =
t*0+ n'n P*0~ n'n +«> if n is even.

Moreover x 7 -(t) = 1/x •(1-t) when the two roots exist,

x 7 C2J = (9 and for i = 2, . .., n we have

and

xn i(t)<xn-l i-l(t)<xn i-l(t)

for all t £ (0,1) . D

It is important to observe that for t e [0,12 the roots of p (t,x)

are real, distinct and nonpositive. This result can be obtained from the

fact that the coefficients of the polynomials form a Polya frequency

sequence (see [9]). But this is not the case when t £ 10,12 .

From these theorems we can prove the following consequences.

COROLLARY 5. Let n> 1 and k e {0, ..., n}. There exist a

strictly positive real number z such that

t e (-e, 1+z) and p*(t,-l) = 0

if and only if

https://doi.org/10.1017/S0004972700026290 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026290


54
Frangois Dubeau and Jean Savoie

n - k is odd and t = %
n - k > 1 and •/ or

n - k is even and t = 0 or 1.

k k
In this case we have p (t,x) = (x+1) q (t,x) where

fyt3x) = ̂ ll fyt,S) J and cPdJ

Moreover for n odd x f̂ J = -1 and for n even
n>~

x (0) = -1 = x (1)

COROLLARY 6. For each n > 2 there exist a strictly positive real

number e such that

tei-z^+z) <<

0 0
\pn(O,-l)\ = \pn(l,-l)\ if n is odd,

\p (h,-l)\ if n is even.

4. Regularity properties and explicit bounds

From the factorization of the polynomial p (ttx) we obtain the

following decomposition for the matrix p (tjP)

n [*n.",rP-a: j(t)I) if t e(-e}0)u(0,l+c) ,
(4) P°n(t3P) J *-J n *

where P = circ (0> 1, 03 ..., 0) . Then we will first consider elementary

factors of the form p(x) = x - a .

THEOREM 7. Let p(x) =x-o.and<xeC. If P = circ (0,1,0,... ,0)

is of order N , then

(i) \\p(P)\ L = 1 + |a| ,

-ts invertible if and only if a ^ 1 . In this case

https://doi.org/10.1017/S0004972700026290 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026290


Circulant matrices and splines
55

-1 7 N—l M 7 4 *

-T-B<k>* p

1-aand

' » i , iVi

|j-«"|rj-|a|;

if |a| = 1

P r o o f . ( i ) O b v i o u s . ( i i ) S e e D a v i s [ 7 , p . 8 9 ] .

COROLLARY 8 . Let p(x) = x - a a n d a e J ? . 1 / P = c i r c

(0,1,0,...,0) then

[pf-JU| i / a > 0

if a < 0
\p(P)\\a> =

COROLLARY 9. Let p(x) = x - a, a e JR and P = c i r c (0,1,0,...,0)

is of order N.

(i) If | a | ^ 1 then p(P) is invertible and

\plTTX if a - ° >

l

\p(-v\ if a < 0 .

(ii) If a = 1 then the matrix p(P) = P - I of order N is of rank

N - 1 .

(Hi) If a = -1 then p(P) = P + I .

(a) If N is odd then p(P) is invertible,

p(P)'1 = h circ (1,-1,...,-1,1) and \\p(P)~1\\m = N/2 .

(b) If N is even then the matrix p(P) of order N is of rank

N - 1 . Q

When the matrix p(P) is not invertible, we can obtain the

generalized inverse p(P) of p(P) using the formula
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p(P)+ = iF(UlF) 1(LTL) 2LT where p(P) = LU i s a fu l l rank factorizat ion

of p(P) . Using t h i s method for p(P) = P + I and N even, we have

L = > U =

' 1

\

\

0

1

\

\
1

0

\

\
1

and v =

JIT 1 s-» 717

" 1
-1

•

-1
1

Nx.N-1

T T T 1 I T
and I I = I + vv , (L L) = J - j vv and

T? 1

uir =

1 2

N-lxl

A similar decomposition can be done for p(P) = P - I .

fa
Now we apply these results to the matrix p (t,P) and obtain the

following results.

THEOREM 10. Let t e 10,11, then \ \p°n(t,P)

for k = 0,...3n we have \ \p^(t,P) \ \

t,l) = n! and

2k(n-k).'

Proof. From (3) i t follows that the coefficients of p (t,x) are

nonnegative for all t e L0,ll , then the results follow from Theorem 3 (i)

and from Theorem 2 ( i i i ) . 0

THEOREM 11. Let P = c i r c (0,1,0,...,0) be of order H > n + 1 ,

where n s i .

(i) If t e L0,ll and

n is odd and t

or
n is even and t ^ 0 and t ^ 1 ,

then p°nCt,P) is invertible and \ {p^Ct^r1 \ \t

https://doi.org/10.1017/S0004972700026290 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026290


Circulant matrices and splines 57

n is odd and t = k ,

or then p^(t,P) = (P+I)q°n(t,P)(ii) If
n is even and t = 0 or t = 1 ,

where q°n(.t,P) is invertible, \\q°n(t1P)~1\\ai < l/\q°n(t1-l)\ and

(a) If N is odd then P + I is invertible, (P + I)'1

h circ (.1,-1,...,-1,1), p^t^r1 = (P+I)'1 q^(t,P)~2 and

(b) If N is even then P + I is not invertible, but

P°n(t,P)
+ =

Proof. The two situations come from the decomposition (4), Corollary

5 with k = 0 and the fact that all the roots of p (t,x) are non-

positive when t e L0,l] . Then we obtain part (i) from Corollary 9 (i).

To obtain q (t,-l) = -% p j(t,-l) we use (2) and Corollary 5. To

complete the proof of the part (ii) we use parts (i) and (iii) of

Corollary 9 and the fact that the generalized inverse of a circulant

matrix is a circulant matrix [7, p.87]. D

We observe that the bound of part (i) of the Theorem 11 is a minimum

when the denominator is a maximum. From Corollary 6, this happens when

(i) n is odd and t = 0 (or 1 ), (see also [4]) , then

(ii) n is even and t = % , then

V°n(H,-D = (-2)
nvn(h) =En ,

where we used part (ii) of Theorem 3 and where 3 and E are Bernoulli
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and Euler numbers. The first situation corresponds to the odd degree

spline interpolation at the knots and the second situation corresponds

to the even degree spline interpolation at midknots.

For part (ii) of Theorem 11 we have

(i) n is odd and t = % , then

7> i) n+l

(ii) n is even and t = 0 (or 1 ) , (see also [2]) , then

0(0 v

and these two situations correspond to the odd degree spline interpolation

at midknots and even degree spline interpolation at the knots.

Finally, the spline and its derivatives can be given by

when p (v,P) is invertible and by

when p (VjP) is not invertible. This last situation corresponds to a

least squares problem. These representations of the spline are useful in

obtaining convergence results when the data b comes from a regular

function f .
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