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PSL(2, q) AS AN IMAGE OF THE EXTENDED MODULAR
GROUP WITH APPLICATIONS TO GROUP ACTIONS ON

SURFACES

by DAVID SINGERMAN*

(Received 10th August, 1985)

1. Introduction

The modular group PSH2, Z), which is isomorphic to a free product of a cyclic group
of order 2 and a cyclic group of order 3, has many important homomorphic images. In
particular, Macbeath [7] showed that PSUl, q) is an image of the modular group if
q =£ 9. (Here, as usual, q is a prime power.) The extended modular group PGU2, Z)
contains PSL{2, Z) with index 2. It has a presentation

the subgroup PSL(2, Z) being generated by UV and VW.
A simple group which is an image of PGL(2, Z) is also an image of PSU2, Z). For

many reasons connected with PSU2, q) actions on surfaces (which we discuss in Section
4) it is important to know when PSU2, q) is also an image of PGL(2, Z). We will prove

Theorem 1. PSL(2, q) is a homomorphic image of the extended modular group for all q
except for q — 1, 11 and 3", where n = 2 or n is odd.

The case where q is a prime =lmod4 or q = 2m were proved in [5] and [3]. Some
other cases appear in [4].

2. Antipodal generating sets

Theorem 1 follows from a result, given in Theorem 2, which applies to a wider class
of groups, namely groups with two generators A,B with A2 = I (i.e. images of Hecke
groups). We call {A,B] an antipodal generating set if there exists ZeG=gp (A,B} such
that

Z2=(/1Z)2=(BZ)2 = /.

*This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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144 D. SINGERMAN

(The motivation for this terminology appears in Section 4.)

It is useful to note the following:

Lemma A. Let B have order 3 so that G is an image of the modular group. If {A, B}
is an antipodal generating set then G is an image of the extended modular group.

Proof. If {A, B} is an antipodal generating set then G is generated by A, B, Z obeying

so that U^AZ, F-»Z, W->BZ extends to a homomorphism from PGL{2, Z) onto G.

•
Now suppose that PSL(2,q) is generated by A,B with A2 = I. Then by conjugating we

may assume that

<•(-? i
(representing the elements of PSL(2, q) by matrices in the usual way).

( x v\ ( z w

\,xw-yz=\ so that AB = \
z wf ' \-x -y

Write z + w = p, z—y = y. Then following Macbeath [7] we associate to the pair {A, B)
the quadratic form

(More generally there is a term in n( whose coefficient is the trace of A.)
If q is not a power of 2 then the discriminant of this form is

= A(A,B) =
1 P/2 y/2

p/2 1 0
y/2 0 1

We then have:

Theorem 2. Let PSL(2,q), (q^2n), be generated by A,B as above. Then {A,B} is an
antipodal generating set if and only if A is a square in GF(q).

Proof. We suppose first that {A, B] is an antipodal generating set. Then there exists
ZePSL(2,q) with
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An element of PSU2, q) of order 2 has zero trace so that trace Z = trace AZ = trace BZ = 0.
From trace Z = trace AZ = 0 we get

and trace BZ=0 gives

a(x-w) + b(y + z) = 0 (1)

Thus b\y + z)2 = ( - 1 - fc2)(x - w)2 and hence b2((y + z)2 + (x - w)2) = - (x - w)2.
Using xw — yz = 1 we obtain

b2((w + x ) 2 + ( y - z ) 2 - 4 ) = - ( x - w ) 2

so that

b2{p2 + y2-4)=-(w-x)2

and thus

Therefore if b =/= 0, A is a square in
If b = 0 then a2 = — 1 so that — 1 is a square. From (2), x = w which gives

and as — 1 is a square, A is a square.
For the converse we suppose that A is a square in GF(q). As A and B generate

PSl\2,q) it follows by Theorem 2 of [7] that A^=0. To prove the existence of a matrix
Z with Z2 = (AZ)2 = (BZ)2 = I we need to find a,beGF(q) such that a2 + b2= - 1 and (1)
holds.

We assume first that xj=w. Then we can find a^bieGF^q) such that

Then

a\ + b\ (x-w) 2 +(y + z)2 -4A
b\ (x-w)2 (x-w) 2

so that d= — {a\ + b\) is a non-zero square.

https://doi.org/10.1017/S001309150001806X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001806X


146 D. SINGERMAN

Let a = ajs/d, b = bjs/d, then

a2 + b2=-l, a(x-w]
as required.

If x = w then

4

and as A is a square, — 1 is also a square. Then

Z = l \ePSU2,q)
-a

and obeys Z2=(AZ)2 = (BZ)2 = I. Thus in both cases {A, B} is an antipodal generating
set. •

We have a corresponding result for p = 2. We now use the quadratic form directly.

Theorem 3. Let PSL(2,2n) be generated by {A,B} with A2 = I. Then {A,B} is an
antipodal generating set.

Proof. By [7] Theorem 2, the quadratic form

is non-singular. Now the form is singular if and only if there is a factorization

where if necessary u, v lie in the quadratic extension of GF(2").
If P = y then such a factorization is possible

where u + u~l=/}, so that for a non-singular form with coefficients in GF(2"), P^y and
hence x — w^y + z. We can now find a1,b1eGF(2") satisfying

As a\ + b\ = d is a non-zero square (as all elements of GF(2") are squares) we let a =
ajjd, b = bjjd. Then

) = 0, a2 + b2=-l

which, as we have seen, shows that {A, B) is an antipodal generating set. •
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3. The proof of Theorem 1

Our deduction depends heavily on the results of Macbeath's paper [7]. The question
answered there was to find the subgroup generated by two non-identity elements A,
B e PSL(2, q) and in particular to see when A, B generate the whole group. Because of
our interests we shall assume that A has order 2 and B has order 3 (so that trace A = 0
and trace B= ± 1). In Theorem 6 of [7] it is shown that if q^9 then such a generating
pair exists. In the case when q is a power of 2, Theorem 1 now follows from Theorem 3
and Lemma A. From now on we will assume that q is not a power of 2 so we can
consider the discriminant A(A,B)=$(3 — y2).

In [7] it is shown that either

(i) AB has order 2, 3, 4, or 5; or

(ii) A(A, B) = 0; or

(iii) A, B generate a projective subgroup of PSL{2, q).

(i) and (ii) correspond to the exceptional and singular cases of Macbeath's
classification and in (iii) the projective subgroup is isomorphic to either PSL(2, qt) or
PGL(2,q2) where qt and q2 divide q.

We need to know when A, B generate the whole of PSL(2, q). This occurs if y = trace
AB does not belong to a proper subfield of GF(q) and if y2 is not a non-square in
GF(^/q). This final condition only makes sense, of course, if q is a square. It is included
because if y does not belong to a proper subfield of GF(q) but y2 is a non-square in
GF(q) then A, B may generate a subgroup isomorphic to PGL{2, ^Jq).

Now (i) and (ii) can be formulated in terms of the trace y. For AB has order 2, 3, 4 or
5 if and only if y2 = 0,1,2 or y2±y— 1=0 respectively and A(A,B) = 0 if and only if
y2 = 3.

Let us call an element y € GF(q) admissible if

(a) y 2 ^ 0 , l , 2 , 3 o r y 2 ± y - 1 ^ 0 ,

(b) y does not belong to a proper subfield of GF{q),

(c) y2 is not a non-square in

Given an admissible yeGF(q) we know by Theorem 1 of [7] that there exist
A,BePGL(2,q) with A2 = B3 = I and trace AB = y and then A,B generate PSU2,q).
Furthermore, by Theorem 2, {A, B} is an antipodal generating set if and only if
4A(A,B) = 3 — y2 is a square in GF(q). By Lemma A we deduce

Lemma B. PSL(2,q) is an image of the extended modular group if there exists
A, BePSL(2,q) with A2 = B3 = I, y = trace AB is admissible and 3— y2 is a square where
y = trace AB.

Corollary ([5]). / / p=lmod4 is prime then PSL(2,p) is an image of the extended
modular group.
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Proof. By reduction modp of the "standard" generators of PSL(2, Z) we know that

generate PSL(2,q) with A2 = B3 = I. As y = trace /lB = 2 ,3-y 2 = - 1 which is a square in
GF(p) as p = l m o d 4 . Also 2 is admissible in GF(p) (for p=lmod4) except when p = 5;
but in this case A2 = B3 = (AB)5 = I so that A,B generate PSL(2,5) s As. The result
follows from Lemma B.

We now prove Theorem 1. We have already considered the case p = 2 and we shall
deal with p = 3 later, so we assume that q = p", p>3. Now 3 — y2 is a square if and only
if there exists n e GF(q) such that y2 + n2 = 3. Let C denote the conic x2 + y2 = 3 defined
over GF(q). By Dickson ([2], §64) we find that C has s points on it where

f q + 1 if — 1 is not a square in GF(q)
S ^ \

\q—l if — 1 is a square in GF(q).

Now if 3 is not a square in GF(q) then for each y such that 3 — y2 is a square there are
two values of n such that (y, n) e C If 3 is a square then (^3,0), (— y/3,0) e GF(q) and
then for every value of y j= ± ^/3 such that 3 — y2" is a square there are two values of yu
such that (y, n) e C. Thus we find that the number of y e GF(q) such that 3 — y2 is a square is

s/2 if 3 is not a square in GF(q)
1 + (s/2) if 3 is a square in GF(q).

We thus obtain

Lemma C. The number of values of ye GF(q) such that 3 — y2 is a square is

(q+ l)/2 if —3 is a square

(q + 3)/2 if — 1 is a non-square, 3 is a square

(q— l)/2 if — 1 is a square, 3 is a non-square.

At any rate, the number of values of y such that 3 — y2 is a square is not less than

Now the number of values of y not obeying (a) is at most 11, the number of values of
y not obeying (b) is p""1 and the number of values of y not obeying (c) is ep"/2 where
6=1 if n is even and e = 0 if n is odd. Thus the number of non-admissible y e GF(q) is at
most

Hence by Lemmas B and C it follows that if
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then PSL{2, q) is an image of the extended modular group. This is true for all values of
p">25 except for 49. As we are assuming that p=f 2 or 3 and as we have dealt with the
case \vhen q = p=\ mod4 in the corollary to Lemma B we need only consider the cases
where p" = 49, 25, 23 or 19. We do this in the table where, in each case, we list a point
(y, n) e C, where y is admissible.

49
25
23
19

( 2 - 2 7 5 , 3 - ^ / 5 )
(1+2^2, - 1 + 2^/2)
(13,15)
(6,9)

We now deal with q = 3". As PSL(2, 3) s A4, all its involutions lie in the subgroup of
order 4 so it is not an image of the extended modular group; nor is PSL{2,9), as it is
not an image of the modular group ([7], Theorem 6) and it is simple. Thus we can
assume that n>2. Then, as above, we see that there are many admissible y in GF(3").
Now 3—y2= — y2 is a square if and only if —1 is a square. As the multiplicative group
of GF(q) is cyclic of order q — 1 this occurs if and only if q = 1 mod 4, i.e. n is even.

Finally, we note that PSU2,1) and PSU2,11) are not images of the extended
modular group. In both cases all points on the conic x2 + y2 = 3 correspond to non-
admissible y. For example, when q = l we find that y = l,3,4,6. As 12 = 62 = 1 and
32 = 42 = 2, we see that (AB)3 = I or (AB)4 = I so the whole group is not generated.

4. Applications to group actions on surfaces

(a) If G is a finite group with generators {A, B}' satisfying A2 = Bm = (AB)" = I then
there is a regular map M of type {m,«} on a compact orientable surface X which
admits G as a group of sense-preserving automorphisms. If m = 3 then we can choose Jl
be a triangulation. If {A, B} is an antipodal generating set then there is also a regular
map / on a non-orientable surface Y which also admits G as a group of
automorphisms, ([1], §8.1). Here X is the canonical two-sheeted orientable cover of Y
and Jl is the lift of JJ~ to X. The surface X then admits a sense-reversing fixed-point
free homeomorphism of order two (the covering transformation) which is also an
automorphism of Jl. The elements of G commute with this covering transformation so
that C2 x G is a group of automorphisms of Jl.

An example of this situation is given by the icosahedron. This admits As s PSL(2, 5)
as its automorphism group. By Theorem 1, PSL(2,5) has an antipodal generating set {A, B]
with A2 = B3 = (AB)5 = I so that there is a regular map of type {3,5} on the projective
plane and the covering transformation is the antipodal map of the sphere which is a
sense-reversing automorphism of order two of the icosahedron. By contrast,
/14 = PSL(2,3) does not admit any antipodal generating set {A, B} with A2 = B3 = I. This
corresponds to the tetrahedron not admitting a fixed-point free sense-reversing
automorphism of order two. (It does admit a sense-reversing automorphism of order
two which does have fixed points.) More generally all the groups of Theorem 1 give
regular triangular maps on non-orientable surfaces, or equivalently, regular maps on
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orientable surfaces which admit a sense-reversing fixed-point free automorphism of
order two, which we can regard as a generalized antipodal map.

(b) If G is a group of automorphisms of a regular map on an orientable surface X
then we can also regard G as acting as a group of conformal automorphisms of some
Riemann surface homeomorphic to X ([9], §8). The groups of Theorem 1 then give a
class of Riemann surfaces admitting a fixed-point free anticonformal involution (or
symmetry as it is called in [9]) and the groups then act as dianalytic automorphisms on
the non-orientable Klein surfaces without boundary obtained as the quotient of X by
the symmetry. A particularly interesting case is that of the Hurwitz groups when A has
order 2, B has order 3 and AB has order 7, for these act as groups of 84(g—1)
conformal automorphisms of a surface of genus g, the maximum possible number. In
[7], Theorem 8, it is proved that PSL(2,q) is a Hurwitz group if and only if q = l,
q = p=±\moAl or q = p3, p=±2, +3mod7. If {A,B} generates such a group G with
A2 = B3 = (AB)n = 1 then by Theorem 2 we deduce that G acts as a "maximal" group of
dianalytic automorphisms of a non-orientable Klein surface without boundary iff 3 —y2

is a square in GF(q), a result already found by Wendy Hall in her Southampton thesis
[6]. (Also see [8].) She used this result to show that this occurs if and only if q = p= I
or 13mod28 or q = p3, where p = 2 or p = 5, 9, 17 or 25mod28.

(c) An image of the extended modular group for which the elements U, V, W, UV, VW
(in the presentation of Section 1) do not map to the identity is called an M*-group.
These groups occur as 12(g—1) dianalytic automorphisms of a bordered compact Klein
surface of algebraic genus g, the maximum possible number ([3], [5]). All the groups of
Theorem 1 are M*-groups with the exception of PSU2,2) = Si.

Acknowledgement. I would like to thank the referee whose suggestion, to count the
number of points on the conic, enabled me to considerably strengthen my original
Theorem 1.
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