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FLOW RATIO DESIGN OF PRIMAL AND DUAL NETWORK
MODELS OF DISTRIBUTION
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Abstract

The finite element method can be used to provide network models of distribution problems.
In the present work 'flow ratio design' is applied to such models to obtain approximate
minima and maxima for both the primal and dual FEM models. The resulting primal MIN
and dual MAX solutions are equal to or close to the exact solutions but, intriguingly, the
primal MAX and dual MIN solutions are approximately equal to an intermediate saddle
point solution.

1. Introduction

The distribution problem is one of a number of network problems in management
science and operations research [1,3,4,17]. Some of these can be usefully viewed as
finite element problems [10] and the distribution problem is naturally one of flow in
route ij given by

<7/ /=(K- W e , ; (1.1)

where Vh Vj are potentials at each end and cy is the unit transportation cost for
this route. Applying (1.1) to the 'truncated' (without slack or other supplementary
variables) constraint equations of an optimal distribution network Mohr [11] obtains
a result identical to that obtained by summing element matrices

and the resulting network model has the same route flows as in the exact MIN solution
(Mohr using a 'direct' LP method for this [11]).
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Using the finite element method (FEM) to model the initial (with no zero flows)
network Mohr [12] uses the steepest descent method to obtain both MIN and MAX
solutions close to or equal to the exact solutions (again using the'direct' LP method
to obtain exact MAX solutions [12]).

Then, using ci} in place of 1/cy in (1.2), dual FEM models are obtained and again
applying steepest descent [12], Mohr obtained MIN and MAX solutions close to
the exact ones. In the present work a new 'flow ratio design' procedure is applied
to these primal and dual FEM distribution models to obtain both MIN and MAX
solutions. The method is based on fully stressed design (FSD), a simple but widely
used method in finite element analysis of structures in which the solution is iterated,
element stresses being calculated at each iteration and used to adjust their structural
dimensions according, for example, to the ratio

ti+i = tj{tJi/oxim), (1.3)

where tt is the element thickness (the adjusted dimension) in the ith iteration, a, its
stress in this iteration and O\\m is the upper stress limit. Then in many problems
convergence to an approximately optimal solution is obtained after a few iterations
[2,7,19].

Much motivation for FSD as an optimality criterion is given by the classical work of
Michell [6] in which it is shown that minimum weight planar truss structures will have
constant strain magnitude and take the form of Hencky-Prandtl nets. Subsequently
Rozvany and Gollub [16] showed that if the support points for such structures are not
fixed in location then the optimum Michell structures consist of straight members.

Using an argument based on generalised constraints with slack variables [9] Mohr
also obtains Michell's constant strain condition for optimality, also including a term
to allow for vanishing members. The flow ratio method of the present work is, in part,
based on this work, except that a 'median' flow value is used in the ratio calculation
of (1.3).

2. Flow ratio design procedure

In the present work the element constitutive parameters are their unit costs and for
minimisation these are adjusted at each iteration using

D U D Q™ 1*" 21 2
cu = Rqj, where R = -—-, qm « —, qav = ——-,

WI 2 N

where J2 Q *s t n e t o t a ' fl°w m m e network of JV routes and qm is the 'median' flow.
For maximisation q, = c,y /R is used to adjust the element unit costs (iteratively).
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TABLE 1. Results for a 3 x 3 problem.

Route
14
15
16
24
25
26
34
35
36
To
I

CO

5
10
10
20
30
20
10
20
30

Min
0
110
0
80/0
0/80
80
60/140
90/10
0
6700

Max
110
0
0
0/30
160/130
0
30/0
40/70
80
8850

* min

0
110
0
80
0
80
60
90
0
6700
12

£>max

0.01
109.98
0.01
69.98
90.01
0.01
70.01
0.01
79.98
8297.8
21

' m a x

32.50
52.50
25.00
55.42
75.42
29.17
52.08
72.08
25.83
7629.2
80

" m i n

32.50
52.50
25.00
55.42
75.42
29.17
52.08
72.08
25.83
7629.2
150

Then to obtain the minimum solution lower and upper route cost limits

cL = cav/40 -* c.v/10, Cu = 106, (2.1)

where cav = ( £ cy )/N, are used.
As already noted, cy replaces l/cy in (1.2) in the dual problem.
For maximisation cL = 0.01 or 0.001 and cu = 100 was used in the present work.

In later work [14] cL was chosen in the range 10 to 100% of the value used for
minimisation and Cy was chosen in the range 5cav to 100cav, giving almost identical
results for the examples studied here.

Observing these limits iteration proceeds and some routes vanish as their cy -» cu,
flows qtj < 0.001 being set to zero prior to calculating the total distribution cost

where (cy)o are the initial unit costs for each route.
Note that the lower limit 0.001 for gy was used with 8 d.p. computation and a value

of 0.01 gave the same results and might be needed with less accurate computation.

3. An example problem

Table 1 shows the route flow obtained using qm = 25 for a 3 x 3 distribution
problem (with 3 supply and 3 demand points) compared to the exact LP solutions
(columns 3 and 4). The supply flows (i = 1, 2, 3) are 110, 160, 150 and the demand
flows 0' = 4, 5, 6) are -140, -200, -80.
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For minimisation we have cav = 155/9 « 17 and we take ct = 1 « cav/20 and Q.
is in the middle of the range given in (2.1).

Then after / = 12 iterations (of the primal FEM model) the exact minimum solution
(column 5 in Table 1) is obtained, the final element costs being cy = cL = 1 for routes
with non-zero flows and for the vanishing routes

c14 = c25 = cu = 106, c16 = 731629, c36 = 234271

so that, indeed, in these qy ~ 0.
For the dual minimum, on the other hand, all the final cy = cL = 1 except that

c\6 ;» 1 initially but c)6 -*• cL slowly with iteration (and ci6 ~ 4 when / = 150).
Here an 'intermediate' solution with no zero flows is found, this being the saddle point
between the primal and dual solutions.

For the maximum solution the same qm value is used and the cost limits are

cL = 0.01 or 0.001, cv = 100.

The dual maximum solution (column 6 in Table 1) is only a lower bound to the
exact solution (column 4) and the final element costs are cy = cL for routes with
qtj = 0 and cy = cv for routes with 'non-zero' flows.

For the primal maximum (column 7) the saddle point solution is obtained again,
here with all final element costs cy = cu except that ci6 ~ 0 initially but c]6 ->• cv

slowly with iteration (and c!6 — 25 at / = 90).
Note that for this saddle point solution 7J is here close to the average of the initial

(at 7 = 1) primal and dual solutions after one iteration, that is,

(/»i + D,)/2 = (7313.5 + 7929.6)/2 = 7621.6.

Note also that use of a median value for qm here was found by trial to provide
satisfactory results, particularly in the case of the primal minimum problem which
is that of usual interest. Doubtless improved results for the dual maximum can be
obtained with alternative values for qm (and perhaps cv). Doubtless too the 'dual'
appearance of the saddle point solution is the result of use of this median value qm, an
intriguing result.

4. Further examples

Table 2 shows the route flows obtained using qm = 10 for a 3 x 4 problem with
supply flows (i = 1, 2, 3) of 60, 80, 60 and demand flows 0' = 4, 5, 6, 7) of -50,
—40, —70, —40. Here for minimisation cL = 0.2 ~ cav/15 was used and the result
(column 5) is close to the exact solution.
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TABLE 2. Results for a 3 x 4 problem.

Route
14
15
16
17
24
25
26
27
34
35
36
37
To
I

CO

2
5
4
5
1
2
1
4
3
1
5
2

Min
50
0
0
10
0
10
70
0
0
30
0
30
330

Max
0
40
10
10
50
0
0
30
0
0
60
0
760

40
0
0
20
10
0
70
0
0
40
0
20
340
16

£>max
0.01
0.01
59.98
0.01
0.01
39.99
0.01
39.99
49.98
0.00
10.02
0.00
680.1
17

'max

15.00
11.67
21.67
11.67
20
16.67
26.67
16.67
15.00
11.67
21.67
11.67
568.3
20

15.00
11.67
21.67
11.67
20
16.67
26.67
16.67
15.00
11.67
21.67
11.67
568.3
18

Once again the 'flow ratio design' (FRD) dual maximum is a lower bound (col-
umn 6) of the exact result (column 4—note again the latter is also obtained by the
'direct' LP method [12] but using a dual pivoting rule).

Then Pm^ and D^n are identical and their To value is close to the average of Px

and D, (P, = 464.6 and D, = 665.1).
Table 3 shows the route flows obtained using qm = 1.5 for another 3 x 4 problem

with supply flows (i = 1, 2, 3) of 7, 9, 18 and demand flows (J = 4, 5, 6, 7) of
- 5 , —8, —7, —14. Here for minimisation cL = 1 ~ cav/40 was used and the result
(column 5) is an upper bound.

The dual maximum D , ^ is close to the exact solution (column 6) and again P,™, and
Dmin are identical and their To value is close to the average of P\ and D\(P\ = 1020.4
and D] = 1543.6) but still closer to the average of the exact extremal solutions in this
instance.

Finally Table 4 shows the route flows obtained using qm = 5 for a 4 x 5 problem
with supply flows 0 = 1, 2, 3, 4) of 90, 75, 35, 25 and demand flows (j = 5 , . . . , 9)
of —40, —35, —70, —30, —50. Here demand exceeds supply by 25 units and a dummy
supply point 4 with route costs of 50 is introduced to model this situation.

Here for flow ratio minimisation cL = 0.1 ~ cav/40 was used and the result
(column 5) is close to the exact solution. The dual maximum is a lower bound and
Pmu and Dmin are almost identical and their To values are close to the average of the
exact extremal solutions.

Note here that it was found necessary to use cL = 0.5 (not 0.1) to obtain Dmin and
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Route
14
15
16
17
24
25
26
27
34
35
36
37
To
I

Co

19
30
50
10
70
30
40
60
40
8
70
20

CJ. A. Mohr

TABLE 3. Results for a 3 x 4 problem.

Min
5
0
0
2
0
2
7
0
0
6
0

12
743

Max
0
7
0
0
0
0
0
9
5
1
7
5

1548

* min

0
0
0
7
0
2
7
0
5
6
0
7

798
19

Ana*
0.00
7.00
0.00
0.00
0.00
1.00
0.00
8.00
5.00
0.00
7.00
6.00
1530.0
19

' m a x

0.50
1.50
1.50
3.50
1.50
2.00
1.50
4.00
3.00
4.50
4!00
6.50
1195.5
50

0.50
1.50
1.50
3.50
1.50
2.00
1.50
4.00
3.00
4.50
4.00
6.50
1195.5
50

the same limit was used to obtain PmM (though for the latter the usual value of 0.01
can also be used).

This minor change in procedure was needed because of the identical costs intro-
duced for routes from the dummy supply point 4, resulting in negative flow for route 48
for Prou and in this route flow cycles between values of 0 and 1 in iteration to obtain

Note too that the initial solution for the dual of this problem results in several
negative flows (and consequently D] = 4630.4) and that generally in other problems
negative route flows may be introduced, sometimes temporarily, by flow ratio iteration,
particularly if qm is not close to qm/2 when alternative solutions to those found here
may be obtained.

5. Alternative models

Examples of basis transformation similar to that used to discover a finite element
basis for the distribution problem [11] are given by Mohr [8,9]. As an example
corresponding to the present FEM distribution model consider a simple spar element
with nodes i,j and axial force Ftj given by

Ffj = EAa (dj - d,)/Lfj = S(j (dj - d,), (5.1)

where dit dj are the parallel displacements at each node (at the ends) and Ly, Ay
are the element length and cross-sectional area. Then here linear interpolation can be
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TABLE 4. Results for a 4 x 5 problem.

Route
15
16
17
18
19
25
26
27
28
29
35
36
37
38
39
45
46
47
48
49

To
I

CO

1.5
6.4
1.8
4.0
3.5
1.6
2.6
1.9
3.1
5.8
5.3
3.5
2.4
1.3
2.2
50.0
50.0
50.0
50.0
50.0

Min
0
0
70
0
20
40
35
0
0
0
0
0
0
30
5
0
0
0
0
25
1651

Max
0
35
25
30
0
0
0
25
0
50
35
0
0
0
0
5
0
20
0
0
2162

•min

30.5
0
45.5
0
14.0
9.5
35.0
24.5
6.0
0
0
0
0
24
11.0
0
0
0
0
25.0
1653.5
10

£>max

0.00
34.99
21.68
11.67
21.67
0.00
0.00
28.34
18.33
28.33
34.98
0.01
0.01
0.00
0.01
5.02
0.00
19.98
0.00
0.00
2095.8
12

'max

16.50
14.33
24.94
14.30
19.94
13.50
11.33
21.94
11.30
16.94
5.00
5.00
12.50
5.00
7.50
5.00
4.35
10.63
-0.61
5.63
1921.8
70

-̂'min

16.50
14.36
24.94
14.36
19.98
13.50
11.36
21.94
11.36
16.84
5.01
5.02
12.53
5.02
7.42
5.00
5.00
10.58
0.00
5.48
1914.3
30

applied to the parallel displacement d in the element.
If these element forces (in a structure of such elements) were direction independent

(in the xy-plane) we could sum the element equations (5.1) to form equilibrium
equations for each node of the system in the same way as in the distribution problem
when its constraint equations are formed (prior to the LP solution). Then for a single
element we can write

and using (5.1) as a basis transformation we obtain

giving the usual element (stiffness) matrix for a 1-D two d.f. element.
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Then if we have an element with an additional central node k, we use quadratic
interpolation and (5.1) is replaced by [8]:

? - dk \ = T[d).

dj

Applying linear interpolation for Fy we have the force interpolation

Fy = {(1 -x/L0), (x/L^YiFi, Fj] = {f}'{F},

where {/} is the vector of (linear) interpolation functions. Then a kernel stiffness
matrix is given by

, _ SijLtj |"2 1]

and the final element stiffness matrix is given by

6L,

14 -16 2
- 1 6 32 -16

2 -16 14

which is the correct result.
Similarly quadratic elements may be transformed to cubic ones and such transfor-

mation can also be applied to element mass and geometric stiffness matrices [8,9].
In the distribution problem, however, qy and Vh Vj respectively correspond to F,j

and dj, dj in the foregoing. Clearly extension to higher order elements is possible.
As shown by Mohr [11], 2-D continuum FEM models of distribution problems

which are similar to network models (and vice versa) are easily formed. The element
matrix for a right-angled isosceles triangular element, for example, can be obtained
by contraction of the classical Turner triangle by putting Poisson's ratio to zero and
superposing the x and y terms, giving [13]

t
2h

where h is the length of the sides at right angles and t the element thickness. This
is a useful introduction as it can be formed intuitively using (5.2). This gives some
insight into the fundamental resemblance of continuum elements to simple network
ones and Mohr [11] compares a network distribution model with a continuum model
with 6 node elements, obtaining reasonable similarity.

Then, of course, distribution models with both 2-D and line elements are possible,
for example using 2-D elements for a 'background' or general system of minor routes
and line elements for main routes.

2
- 1
- 1

- 1
1
0

- 1
0
1 _

I*.
Ui
1 * 3 .

= . <72
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TABLE 5. Summary of results.

Problem:
Exact:
Min
Max
Steepest descent:
Min
Max
FRD:
Min
Max:

1

6700
8850

6700
8850

6700
8298

2

330
760

340
760

340
680

3

743
1548

779
1548

798
1530

4

1651
2162

1651
2160.5

1653.4
2095.8

6. Conclusions

Table 5 compares extremal solutions for the total cost To obtained using the present
flow ratio procedure with the exact solutions and those obtained using a steepest
descent procedure with 'element access' parameters [12].

As demonstrated by Mohr [9], the steepest descent method can be applied to the
optimisation of a wide range of finite element models.

The simple 'flow ratio design' (FRD) approach used in the present work, however,
gives good results. Generally we will require only the minimum (primal) solutions
in practice and, as the FRD method used here shows, this occurs when all (non-zero)
route flows have equal cost.

This is an important result, corresponding to the 'constant strain' character of
(optimal) Michell structures [6]. A corresponding constant 'r/c' ratio result is widely
used in cost-benefit analysis. The flow ratio approach used in the present work,
therefore, emphasises the wide applicability of such criteria which might, in fact, be
viewed as the converse of Pareto's Law in management science [18].

It is shown that such basis transformation, as used to obtain linear (in V) distri-
bution models, can be used to obtain higher order line elements and that, perhaps in
conjunction with these, simple continuum models are also possible.

Finally, note that such optimality criterion methods as FSD or the present FRD
method do not guarantee optimal solutions [5]. They are simple and very widely
applicable concepts, however, and may often suggest more practical solutions and the
FRD method has been successfully applied to traffic flow networks [15].

If the traffic flows are governed by the classical linear flow rule

where i>y- and ky are the element traffic velocity and density and Vy and Ktj are
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respectively the element free flow velocity and jam density, then the equations for
each element are

U l L(j [~\ l \ \ P j

where qit q, are the inflows at each end, Li} is the length of the route and P,, P, are
arbitrary potentials at the element nodes.

Setting a datum potential of zero in the network the problem is solved for the nodal
potentials P, and the element flows then calculated using

qti = Rij (Pi ~ Pj), where /?,, = Ktj V^/L^.

Solving the quadratic equation

two roots ka and kb and their corresponding velocities va and vb are obtained. In work
to date the larger velocity vb is the feasible root.

Both the steepest descent method of Mohr [12] and the present flow ratio design
procedure have been successfully used for such traffic flow networks and give the
same results for the route flows.
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