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Abstract

By employing a precise form of the Hermite interpolation formula we obtain a best possible
bound for the number of zeros of p-adic exponential polynomials. As companion to this quantitative
result we give a best possible bound on the coefficients, if the exponential polynomial is small at
sufficiently many points.

1. Introduction

Our purpose in this paper is to state and prove some auxiliary results in the
theory of p-adic transcendental numbers. In so doing we have endeavoured to
avoid paraphrasing the complex techniques and have used methods which may
be inappropriate or inefficient in the complex case. We profit by obtaining best
possible results for the number of zeros, and, respectively, small points of
p-adic exponential polynomials. We also obtain an extrapolation lemma which
we claim to be more efficient than is extrapolation with the aid of the
Schnirelman integral.

Specifically, let
p(k) L

2 ^ ' ^
p ( )

1

be a p-adic exponential polynomial of degree <r = 2,p(k), whose frequencies to,
satisfy \wk \p ^ p-

<"«'-»+e\ some 0 > 0 , and m i n ^ t | &>k - to* |p g p A Then the
number of zeros of F in the disc {z £ flp : | z |p g 1} is less than

JV = (o- - 1) + maxOar<P-, {[logp (a + r)] - r/(p - l)}/6>,

12
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[2] Hermite interpolation 13

or F vanishes identically. If, further, a,,--,an are distinct points of flp,

satisfying | ah \p =i 1 and min**!, | ah — ak |p = p~' and T ( 1 ) , • • •, r ( n ) are positive

integers with sum 2T(/ I ) = T, where T g N, then (o- > 1 and)

max \F('-"(ak)/(t-])!\pSp-x

implies that, for all pairs (k, s),

I am indebted to John Coates who alerted me to the Hermite interpolation
formula as it appears in Schinzel (1967), and to the Department of Pure
Mathematics and Mathematical Statistics of the University of Cambridge,
where I wrote this paper whilst on sabbatical leave from the University of New
South Wales.

2. The interpolation formula

THEOREM 1. Let n be a positive integer and T(1), • • -,T(H) non-negative
integers with sum S T ( / I ) = T. Let F{z) be a function sufficiently many times
differentiable at each of the n distinct points a,, • • •, an.

Then the unique polynomial P(z) of degree S l - 1 with the property that

F<I-I)(ofc)=F(-l)(a»). ^ h = 1, • • •, n ; t = 1, • • •, r(h)

is given by the formula

r(h)

in i*h

A(r)/fl(a, -a,y
i

0)

where the sum is over all non-negative integer sets \(t + 1), • • •, A(T( / I ) ) with
sum r(h)-t and such that \(r)Sr-t and such that A(r(h))g 1 (if t = r(h)
the sum is of course empty.)

PROOF. Since the ranges of the various indices will mostly be quite clear
we avoid their explicit mention. Our proof is based on the observation that we
are obtaining the confluent case of the well-known Lagrange interpolation
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14 A. J. van der Poorten [3]

formula. Accordingly we introduce T parameters aks indexed by the pairs
(k, s), k = 1, -• •, n; s = 1, • • •, r(k). We suppose these parameters to be distinct.
When, below we speak of taking the limit, or use the symbol lim, we imply that
we will allow confluence to take place, that is aks —> ak for all the pairs (k, s).

Denote by D the T x T determinant with typical entry air1', here columns
are indexed by the pairs (k, s) lexicographically ordered, and the rows by A,
A = 1, • • •, T. Denote the cofactor of ajs~' by Dks. A.

It is now simply the Lagrange interpolation formula to observe that the
unique polynomial Q(z) of degree T- 1 with the property that

for all (h,t)

is given by the formula

(2)

We will obtain the formula for the interpolation polynomial P{z) by taking the
limit in the formula for Q(z).

Accordingly denote by A the T x T determinant with typical entry
((A - 1).'/(A -s). ')a£ s; here columns and rows are indexed as above in D.
Denote the cofactor of the typical entry by Aks, A.

Then by what is no more than a repeated application of the so-called
l'Hopital's rule we obtain from (2) the formula

(3)

Actually it is quite straightforward to check that P(z) as defined by (3) has the
T required properties and is a polynomial of degree ^ T - 1. Since these
conditions clearly define P{z) uniquely the truth of the formula (3) follows. As
the formula of the theorem is simply an explicit reformulation of (3) we need
only find an explicit expression for the sum

yA t t t Z'"'
V A

which we achieve by writing it as the following limit

A - { n (/-)">• n (^^
(4) Z A = l i m 1

We remark that the determinant A is explicitly given by
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[4] Hermite interpolation 15

(For details see van der Poorten (1975), see also van der Poorten (1970),
particularly p. 34-35) The formula of the theorem now follows from (4) after a
painful struggle which it seems pointless to detail. The principal point to notice
is that the derivations in (4) are mostly 'used up' in eliminating from D those
factors which would vanish on taking the limit.

REMARKS, (i) Although the idea of the formula (1) dates back at least to
Hermite, I do not know of it having been stated before in so explicit a shape. In
any event this explicit form does not appear to have been used, as such, in
applications. Mahler's identities in Mahler (1932), and again Mahler (1967b), get
very close, and I have a rather inadequate application of what is essentially the
same formula in van der Poorten (1970). My recognition of the identity (3) and
thence the interpolation formula derives from Mahler's ideas, but when in van
der Poorten (1970) I used the idea of confluence explicitly, I had not earlier met
it in this kind of context.

(ii) The unpleasant sum over A in the interpolation formula is of no matter
in estimating in the non-archimedean case when we need only consider the
'worst' term in the sum. In this case one obtains particularly efficient estimates.
However even in the archimedean case one can obtain useful estimates as is
evidenced by Mahler (1967b).

(iii) We have retained maximum detail in the interpolation formula since
doing so presents no extra difficulties and even assists in revealing pattern.

3. Preliminaries

Let p be a rational prime, henceforth fixed, and denote by flp the algebraic
closure of the p-adic completion Qp of the field of rational numbers. We denote
the valuation of flp by | |p so normalised that \p |p = p~\ and for a Eflp we
write ordpa = - logp | a |p = - log | a |P/log p. In the sequel we shall mostly
suppress the suffix p.

We commence by giving estimates for values of the interpolation polyno-
mial in some special cases. The notation is that of the theorem, a,, • • •, an E Cip

and the function F and its derivatives take values in flp.

LEMMA 1. Suppose ord ath g 6 > 0 and max^h ord (ah - ak) ^ e + 6 for

h,k = \,---,n. Then for A = 1,2, • • •, T the formula (1) implies ordP( A""(0)S
( r - O e -(A - t)6 -ord(f - l)/ + ord(A - 1).'}

PROOF. The assertion is essentially immediate from (1). One notices that
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16 A. J. van der Poorten [5]

necessarily e S 0 so that in the 'bad' term we must suppose that we lose, in
differentiating with respect to ah, as much as (r(h)- t)(e + 6). Differentiating
with respect to z costs no more than (A - 1)6 and gains ord (A - 1)/.

LEMMA 2. Write n = R and let a, = 1, • • -,aR = R. Further write T (1) =
• • • = r(n) = S, and let I be an integer greater than R. Then the formula (1)
implies

- 1
- 1ord P(l) g min,,,,, {ord F(-'\h) + S ord (' R ' ) + S ord

+ SordK+(f-l)ord(/-ft)-Sord(/-h)-ord(f-l)/

- (S - 0 max{[log(i? - h)/\ogp], [log(/i - l)/logp], ord(/ - h)}.

PROOF. Substitute in (1) and strategically combine factors.
We will require the following concept due to Mahler (1935), 264-266:

DEFINITION. A (p-adic) power series SlBo/i2', / £ £lP is said to be a normal
series if | / | S l for i = 0 , 1 , 2 , ••• and l im ,^« | / | = 0. A (p-adic) function
f(z) = E/(Z' representable by a normal series is called a normal function.

LEMMA 3 (Mahler), (i) A normal series converges to a (normal) function
f(z) for all z E n p such that \ z \ ̂  1.

(ii) Iff(z) = Ifiz' is a normal series then for each z0 G ftp such that \ zo\ S 1
the series

f(z) = 2/(zo)(z - zoy, where f,(z0) = f°\zo)/i! =

is again a normal series (accordingly the concept of "normal function' is
well-defined)

(iii) / / / 15 a normal function with zeros a,,--,an of multiplicities
T(1) , • • •, T(W) respectively, where \ ah \ ̂  1 for h = 1, • • •, n, then

where g is a normal function.

PROOF, (i) is obvious and (ii) checks easily on recalling that combinatorial
coefficients are rational integers, whilst (iii) follows stepwise (that is, by
induction on n) using (ii).

NOTE. If F(z) is represented by a p-adic power series converging in some
open neighbourhood of the origin, then there exist real numbers / and 8 such
that p'F(p"z) is a normal function of z.
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[6] Hermite interpolation 17

LEMMA 4. The interpolation polynomial of Lemma 1 is a normal function
provided that the quantity

-l' = min(h.,,{ord Ff-'\ah) - (T - t)e - ord(t - 1)/ - (T- t)6)

is non-negative; in any event p' P(z) is a normal function.

PROOF. By Lemma 1, ord P(A1>(0) -ord(A - 1)/ > - /' for A = 1, •• •, T
and P has degree g T - 1 .

These preliminaries allow us to state the principal interpolation lemma; the
notation is that of the theorem, together with | ah | § 1, h = 1, • • •, n.

LEMMA 5. Suppose that p'F{z) and p' P(z), where P is the interpolation
polynomial, are normal functions. Then for z0E.£lp, | z01 = 1 and A = 1,2, • • •, T
we have

ordF(A-"(2o)

2min{ordP(A-"(Zo), { o r d ^ ) * ' Y\(z - ahy
(h)} -max{/,/'}}.

PROOF. Write /"= max{/,/'}. Then both p'"F(z) and p'"P(z) are normal
functions so that by Lemma 3 we have

p'\F(z)- P(z)) = n<z - ahy
(h'G(z),

where G(z) is a normal function. Hence

because ord Gf"\z0)-ord ft! SO for all /n =0 ,1 , • • •. On noticing that F(z) =
P(z) + p-'"Yl(z - ahy

lh>G(z) the assertion follows.

LEMMA 6. Let n be a non-negative rational integer. Then

ord ft! S M/(p - 1) - p-"°8**V/(P - 1).

PROOF. Ord p! = IT^ilfi/p'] S fi/(p - 1) - p"V/(P - 1)- where / is the ra-
tional integer such that p' S /x <p'+1-

4. Exponential polynomials

DEFINITION. A (p-adic) exponential polynomial is a function of the shape

m p(k)

k = l s = l

and ord cok > l/(p — 1), k = 1, • • •, m. We refer to the als as the coefficients of F
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18 A. J. van der Poorten [7]

and the wk as the frequencies of F, and write a = 2p(/c), which we call the
degree of F. We assume the frequencies o>i, • • •, <om to be distinct.

LEMMA 7. Let F be an exponential polynomial as defined above, and
suppose that its frequencies satisfy, for each k, max*** ord(wt - wh)^
5k - 6, k, h = 1, • • •, m. Then the coefficients of F satisfy

ord aks > minlsASCT {ord F(A-"(0) -(a-s)Sk- ord (s - 1).'

for each k = 1, • • -,m ; s = 1, • • -,p(/c).

PROOF. If A denotes the a x a determinant with typical entry
((A - 1).'/(A - s)!)a>lsand Aks,A denotes the cofactor of the typical entry, then

(5)
A

since this is just Cramer's rule. The estimate then follows as in the proofs of
Theorem 1 and Lemma 1.

LEMMA 8. Let F be an exponential polynomial as defined above. Then
either F vanishes identically or given any real number v > 0 there exists a real
number I such that p'F(z) is a normal function but p'~"F(z) is not a normal
function.

PROOF. Firstly observe that if ord w > l/(p - 1) then, for < = 0,1,2, • • •
ord co' - ord /.' s 0 by Lemma 6, and even lim,--., (ord w' - ord /.') = =°, so e"z is
a normal function. Hence there is a real number /', say so that the finitely many
conditions ord aks — /' S 0 are satisfied, such that p' F(z) is a normal function.
Now suppose that F does not vanish identically, in which case, clearly, not all
its coefficients aks can vanish. It follows from (5) above, and the explicit
evaluation of A towards the end of the proof of Theorem 1 which shows that
A ^ 0, that not all of the derivatives F(A"(0), A = 1,2, • • •, a, can vanish either.
Accordingly there is a A such that there exists a real number /" such that
ord Fu""(0) - ord (A - 1)/ + /" < 0. Then p rF(z) is not a normal function, and it
follows that the set {/' G R: p' F(z) is a normal function} is bounded below. Since
this set is clearly an interval of R, and is non-trivial, this completes the proof of
the lemma.

The following results are the p-adic analogues of results of Tijdeman
(1973) and of Mahler (1967a) and Tijdeman (1971). We have avoided the detail
of Tijdeman (1973) and Mahler (1967a) in favour of precision in another
direction, but this detail could easily be reinserted.
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[8] Hermite interpolation 19

THEOREM 2. Let F be a p-adic exponential polynomial
m p(k)

with coefficients aks, not all zero, in Op, and distinct frequencies wk in ilp

satisfying ord wk g l/(p - 1) + 6, some 8 > 0, and max^t ord (cok - wh) § Sk,
(fc, ft = 1, • • •, m). Lef 0- = ^ P ^ ) ^e ' ^ degree of F.

Further, let a,,- • -,an be distinct points of £lp satisfying ord ah g O and

max^/ , ord (a h - a k ) = e, (ft,/c = 1, • • •, n ) , and let T ( 1 ) , • • •, r ( n ) be no«-

negative integers with sum r = Sr(ft).

T g (o- - 1) + [log (a + p - l)/logp]/0,

and

OTdF"-'\ah)^r] for ft = 1, • • - , « ; f = 1, • • •, r ( f t ) ,

imply that

ordaks > TJ - ( T - l)e - (c r -5 )5 k -ord(s - 1).'

- [log(a + p - l)/logp] + (o- - l)/(p - 1)

f o r all k = 1, • • - , m ; s = 1, • • - , p ( k ) .

PROOF. We write, for some 0' such that 0< 6' < 0,

and observe that our data become

o r d H " - " ( p e a h ) g T j - ( r - l ) 0 ' , for all (h,t).

Let i' be some positive real number to be determined below, and according to
Lemma 8 choose a real number / such that p'H(z) is a normal function but
p'~"H(z) is not a normal function. Let

so that according to Lemma 4, p'P(z) is a normal function, P(z) being the
interpolation polynomial which coincides with H(z) at the appropriate T points
pea,,-- ,p''«„ counting them according to multiplicity.

We assert that for each A = 1,2, • • •, a

ordP a ""(0)<(r - (A - 1)0' + ord (A - 1). '- max {/,/'},
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20 A. J. van der Poorten [9]

which is to say, we claim that Lemma 5 implies that

(6) ord//(A 1>(0)gordP<A'"(0)gmin(h,,){Tj -(T-t)e -ord(f - 1)'

- ( A - 1 ) 0 ' +ord (A -1).'},

the latter bound being obtained by grace of Lemma 1.
For suppose that, on the contrary, it happens that /' S / and

ord / / ( A " (0 )g (T- (A - l ) ) 0 ' + ord(A - 1 ) . ' - / '

= m i n ( h , , , { - q - ( T - t ) e - o r d ( t - 1 ) . ' - (A - 1 ) 0 ' - o r d ( A - l ) ! } + 0 ' .

Then, since 0' >0 , a fortiori our assertion is the case and (6) holds. In the
alternative case, suppose that, contrary to the assertion, we have / > / ' and

(7) OTdH"'"(0)^(T-(\ - l))0' + ord(A - 1) . ' - / A = 1,2, • •-,o\

It is convenient to write H(A "(0) = HA_,, A = 1,2, • • •. We now observe that
the HA , satisfy the linear homogeneous recurrence relation

(8) Ha+PL = p , H r - i + l > + --- + p M l i , ( i = 0 , 1 , 2 , • •- ,

where

fl (x - atp-y™ = x*- p,x*-1 p..
k l

Because ord )3A > A/(p - 1), A = 1,2, • • •, er, we obtain on multiple application of
the relations (8), that for p = 0,1,2, • • •.

(9) ord/f<"+'1)(0)>minISASCT{(r-(A -1 )0 ' + ord (A - 1 ) /

Moreover, by Lemma 6 it is the case that

(a- + (i)/(p - 1) g ord(o- + /i,)/ + p-[ lo^<"+-)V + ix)/(p - 1),

so that (9) becomes for (i = 0,1,2, • • •.

(10) ord//'"^'(O) - ord(cr+ /*).'

g (T - (o- - 1))0' - / + p - ' ^ ^ V + jlt)/(p - 1)

+ minlsiS(, {(o- -X)0' + ord (A - 1).' - (A - l)/(p - 1)}.

A very careful check of the behaviour of the last term on the right hand side
shows that, no matter how small 0 might be, the minimum is no smaller than
- [logp (or + p - 1)]; more precisely, it is not less than

arsp-i {[logp (o- + r)] - r/(p - 1)}.
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[10] Hermite interpolation 21

Of course if 0 is at all large, say 0 g l/(p - 1) then without ado the
minimum is attained at A = a and in any event is no smaller than

It follows that if T g (a - \) + [log(<r + p - l)/logp]/0 then the in-
equalities (10) inform us that for /A = 0,1,2, • • •.

(11) ord W^XO) - ord (o- + AA)/ g [logp (o- + p - l)](0'/0 - 1) - /

Similarly the inequalities (7) then become, for A = 1,2, • • -,cr

(12) ordtf(A"(0)-ord(A - 1)/ g [logp (o- + p - l ) ]0 ' /0+(o-- A)0 ' - /

We are left free to suppose that 0 - 6' > 0 is arbitrarily small and we note that

\/{p - 1) S p ^ - ^ V + fi)/(p - 1) < p/(p - 1).

Accordingly there is a real number v satisfying 0< v < \/(p — 1) such that, for
6' sufficiently close to 6, the inequalities (11) and (12) miraculously imply that
for /x =0,1,2, •••.

ord //<M)(0) - ord /A/ g - / + v

Since we have chosen v independently of / the requirements of Lemma 8 are
satisfied and we may conclude that the normality of p'~"H(z) constitutes a
contradiction. It follows that the inequality (6) holds.

Hence, applying Lemma 7 to H(z) under the condition that 6' is
sufficiently close to 6, we obtain for all (/c, s)

ordaks - ( s - 1)0'
>minA {min(h,,,{i7 -(T- l)e -(a- s)Sk -ord(5 - 1)/

+ {<r- \)/{p - l) + ( e r - A)0' + ord(A - l ) . ' - (A - l)/(p— l ) - ( s - 1)0'

+ ( f - l ) e - o r d ( r - l ) / } } .

The minimum over A has already been studied above, whence we promptly
obtain the assertion of the theorem.

COROLLARY 1. With the notation of the theorem, suppose a > 1. Then
already if T g (a- - 1) + max«s,Sp-i {[log(o- + r)/logp] - r/(p - l)}/0 we obtain
that for all (k,s),

ord aks > 17 ~(T~ l)e —(a — s)Sk -ord(5 - 1)/

- max,srsp-, {[log(o- + r)/logp] - r/(p - 1)} + (<r
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22 A. J. van der Poorten [11]

// moreover e g l/(p - 1), we obtain for all (k, s),

ordaks >TJ - ( T - l ) e -(a- l)8k - max0SrS|, ,{[log(o- + r)/logp]

- r/(p - 1)} + (<T - l)/(p - 1) S TJ - (T- l)e - (<r - 1)&.

PROOF. The above statements are respectively the best possible, and the
optimally simple statements of the theorem. We could include the (trivial) case
a = 1 by requiring that T be strictly greater than the above bound, that is, that
T ^ l . The details which lead to the best possible statement are already
included in the proof of the theorem.

THEOREM 3. Let F be a p-adic exponential polynomial, the distinct
frequencies u>k of which satisfy ord wk g l/(p - 1) + 0, for some 0 >0, k =
1, • • •, m. Suppose that the degree of F is a> 1. Then the number of zeros of F in
the disc{z: | z \p S 1} Cfip is less than

(o- - 1) + max0Sr<P-i {[log(o- + r)/logp] - r/(p - l)}/0,
or F vanishes identically.

PROOF. In the corollary above suppose that F has as many as T zeros, so
that 17 = oo. Then it follows that for all (k, s), ord aks = oc which is to say that F
vanishes identically.

REMARKS, (i) It would seem that Theorem 3 is exact. Indeed in van der
Poorten (197?) I showed by a slightly different method (Strassman's theorem,
or, equivalently, the p-adic Weierstrass preparation theorem) that the number
of zeros of F in | z | P S l does not exceed (a - 1)(1 + l/(p - 1)6). This
essentially coincides with Theorem 3 when o- < p. The method of van der
Poorten (197?) is potentially exact and, with great care, one could no doubt use
it to obtain Theorem 3.

(ii) It is of great interest to observe that in Theorem 3 the number of zeros
of F may exceed a - 1 by an amount which depends, albeit only logarithmi-
cally, on a. One easily writes down the analogue of the complex local valency
results (see Tijdeman (1971) and W. K. Hayman (1973).

(iii) Our results when, say compared to those of Shorey (1972a, b) obtained
by a p-adic paraphrase of the complex method, suggest that there is consider-
able advantage to be obtained by avoiding the Schnirelman integral and using,
in place thereof, a suitable interpolation formula. We hope to vindicate this
viewpoint more forcefully in a future paper on a p-adic version of Baker's
theorem on linear forms in the logarithms of algebraic numbers.

(iv) Recent work of Baker, see also remarks in Cijsouw and Tijdeman
(1975), suggests that the natural way of viewing an exponential polynomial has it
of the shape
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[12] Hermite interpolation 23

m p(k) L

k = i s = i (.5 I) !

whilst the data are bounds for (F"-'\ah))/(t - 1)/ (rather than for F°''\ah)).
Our result confirms this view, and we quote the appropriate conclusion as a
further corollary of Theorem 2.

COROLLARY 2. With the notation of the theorem, suppose a > 1 and write
for each (k,s), bks = aks(s - 1).'. Then

T g (or - 1) + maxoar<p ,{[log(o- + r)/logp] - r/(p - \)}/6

and

ord(F('-"(a,,)/('-l).')i=AS for h = 1, • • •, n; t = 1, • • •, r(h)

together imply that for each (k,s)

ord bks > x ~ (T - l)e - (o- - s)Sk + ((cr - l)/(p - 1)

- maxKr<p-i {[logp (o- + r)] - r/(p - 1)}).

PROOF. This is just (13) in Corollary 1.

5. Details in particular cases

As already remarked, it is quite easy to recover any detail which, in a
particular case might provide a stronger result than is available from Lemma 1
and Theorem 2 and its corollaries. We have in mind applications to the auxiliary
functions that appear in Baker's work (see, for example Baker (1971)) and
accordingly will concentrate on the case already alluded to in Lemma 2.
Incidentally, that result, together with Lemma 5, replaces the extrapolation
lemma in p-adic versions of Baker's work (see, for example, Baker and Coates
(1975)). It is easily seen that additional detail concerning the interpolation
points a,, • • •, an will not disturb our results other than permitting us to replace
the term (T - l)e by some smaller quantity; however in (10) it may force us to
choose the minimum over A at A = <r providing a minor additional sharpening
of the inequalities.

LEMMA 9. Let ordk^h (ah - ak) = ehk and maxt^h ehk = eh, h, k = 1, • • •, n.

Similarly let ordh^fc (wk - ojh) = Skh and maxh*k8kh = Sk, k,h = 1, • • -,m. Then in
Corollary 2 of Theorem 2 we may replace the quantity ( T - l ) e by
max* {I.k*hT(k)ehk + ( T ( / I ) - l)eh}, and the quantity (cr - s)Sk by ?.h*kp(h)8kh +
(p(k)-s)Sk.
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PROOF. Simply make the indicated replacements throughout, checking
that they verify Lemma 1 and Lemma 7.

The following result is a p-adic analogue of Theorem 1 of Cijsouw and
Tijdeman (1975)

THEOREM 4. Let F be a p-adic exponential polynomial

k=\ s _ i ( S — \ ) !

with coefficients bks, not all zero, in flp, and distinct fequencies iok in Op

satisfying ord «jk g l/(p - 1) + 6, some 6 >0 and the ccnditions of Lemma 9.
Let a = Sp(/c) > 1 be the degree of F.

Further let RS = T where R, S are positive integers. Then

T^(a- l) + maxOSr<P-,{[log(or + r) / logp] - r/(p -

and

ord{F(l'\h)/(t-\)!}^x for h = \,- -,R; t = l , - - , 5

imply that

ord bks > x - (S ord (R - 1)/ + (S - l)[log (R - l)/logp])

+ ((o- - l)/(p - 1) - maxoar<p-, {[log (o- + r)/log p ] - r/(p - 1)})

/or all k = 1, • • -,m ; s = 1, • • -,p(/c).

PROOF. This is Corollary 2 of Theorem 2 together with the detail indicated
in Lemma 9, and the observation that

max l s h a R {S ord(R - h)!(h -l)! + (s - l)maxls,v,,SR ord(/i - / ) }

= 5ord( i? - l)

REMARK. There may be purpose in replacing the polynomial coefficients
in the exponential polynomial, so that S^^z5"' becomes 2scks(z + l)
z + 2)---(z + S)/(S-l)!, k = \,--,m. If so, it is easy to show that (see

Cijsouw and Tijdeman (1975), Lemma 4)

ordcks gmin l s , S p ( t ) o rda k , = m\nis,Sp(k){ordbk, - o rd ( f - 1)/}.
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6. About applications

There are good examples of applications of the complex analogues of
Theorem 3 and respectively Theorem 4 to transcendence arguments, in
Waldschmidt (1974), Chapter 7 and respectively Cijsouw (1975). In Shorey
(1972a) and (1972b) there are similar applications of earlier cruder forms of
Theorem 3, and respectively Theorem 2.

One can replace the p-adic extrapolation lemma (an integral form of the
Hermite interpolation formula) by our exact formula, Theorem 1 (which is just
the Hermite interpolation formula) and, as examples, Lemma 1 and Lemma 2,
and then apply Lemma 5.

There is an interesting conjecture to the effect that if a recurrence
sequence of integers has only finitely many zeros then this number of zeros is
bounded by a constant dependent only on the order of the recurrence. There is
reason to believe that this question can be approached with the aid of the very
precise results of Theorem 2 and Theorem 3.
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