ISOMORPHIC CONGRUENCE GROUPS AND HECKE OPERATORS

by R. A. RANKIN

(Received 15 October, 1965)
Let G, H, K be groups such that G is normal in K and $G \subseteq H \subseteq K$. Let $I(H, K)$ be the set of inner automorphisms of K restricted to H; thus $\alpha \in I(H, K)$ if and only if, for some $k \in K, \alpha(h)=k^{-1} h k$ for all $h \in H$. Let ϕ be an isomorphism of H / G onto a subgroup $H^{(\phi)} / G$ of K / G. An isomorphism Φ of H onto $H^{(\phi)}$ is called an extension of ϕ if

$$
\Phi(h) G=\phi(h G) \text { for all } h \in H
$$

Such an extension need not exist in general, nor need the groups H and $H^{(\phi)}$ be isomorphic.
Suppose that such an extension Φ does exist and that $\Phi \in I(H, K)$, so that, as above, $\Phi(h)=k^{-1} h k$. Since $\phi(h G)=\Phi(h) G=k^{-1} h k G=k^{-1} h G k$, it follows that $\phi \in I(H / G, K / G)$.

Let N be a positive integer and put

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad U=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad T=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Let Ω and Ω_{N} be the sets of all matrices T with entries in Z, the ring of all integers, and Z_{N}, the ring of residues modulo N, respectively. Put

$$
\begin{aligned}
& \Gamma^{*}(1)=\{T: T \in \Omega, \operatorname{det} T= \pm 1\}, \quad \Gamma(1)=\{T: T \in \Omega, \operatorname{det} T=1\}, \\
& \Gamma(N)=\{T: T \in \Gamma(1), T \equiv I(\bmod N)\}, \quad K_{N}=\left\{T: T \in \Omega_{N},(\operatorname{det} T, N)=1\right\} .
\end{aligned}
$$

Then K_{N} contains normal subgroups $G_{N} \sim \Gamma(1) / \Gamma(N), G_{N}^{*} \sim \Gamma^{*}(1) / \Gamma(N)$ arising from the natural homomorphism $\omega: \Omega \rightarrow \Omega_{N}$.

Let Γ be a subgroup of $\Gamma^{*}(1)$ containing $\Gamma(N)$, and put $H_{N}=\omega(\Gamma) \sim \Gamma / \Gamma(N)$. In the theory of Hecke T_{n}-operators (see my forthcoming paper in Math. Annalen) one encounters isomorphisms $\phi \in I\left(H_{N}, K_{N}\right)$, where $\phi(h)=k^{-1} h k$ for some $k \in K_{N}$ and all $h \in H_{N}$, and det $k=n$ with $(n, N)=1$. It is of interest to know for what residues n modulo N the isomorphism ϕ has an extension $\Phi \in I\left(\Gamma, \Gamma^{*}(1)\right)$. The above remarks show that this can occur only if $\phi \in I\left(H_{N}, G_{N}^{*}\right)$, so that we must have $k^{-1} h k=g^{-1} h g$ for some $g \in G_{N}^{*}$ and all $h \in H_{N}$.

A case of particular interest arises when $L^{-1} U^{r} L \in \Gamma$ for some positive divisor r of $N(r<N)$ and some $L \in \Gamma(1)$. Then, for some $T \in \Omega$ with $\operatorname{det} T=n$ (or $-n$), we must have $T^{-1} U^{r} T \equiv U^{r}(\bmod N)$. It follows easily from this that $n($ or $-n)$ must be congruent to a square modulo N / r.

As a kind of converse of this we show that, if $n \equiv \nu^{2}$ or $-n \equiv v^{2}(\bmod N)$, then ϕ always has an extension $\Phi \in I\left(\Gamma, \Gamma^{*}(1)\right)$. For we can take $A \in \Omega$ such that $\omega(A)=k$, and we then put $\Phi(S)=A_{n}^{-1} S A_{n}(S \in \Gamma)$, where $A_{n} \in \Gamma^{*}(1)$ and $v A_{n} \equiv A(\bmod N)$. In particular, this is possible for every n prime to N, when $N=1,2,4, p$ or $2 p$, where p is a prime and $p \equiv 3(\bmod 4)$. [This paper arises from an editorial observation that $167 \equiv 3(\bmod 4)$.]

If we demand that $\Phi \in I(\Gamma, \Gamma(1))$, similar arguments apply, except that references to $-n$ are to be omitted.
University of Glasgow
Glasgow, W. 2

