ON SOME NON-HYPERFINITE FACTORS OF TYPE III

WAI-MEE CHING⁽¹⁾

Introduction. In 1967, Powers [7] proved that there exists a one-parameter family of pairwise non-isomorphic hyperfinite factors of type III. Powers' result on hyperfinite factors has been extended by Araki and Woods [1]. Connes [4], and Williams [11], with different proofs, showed that there exists a continuous family of mutually non-isomorphic non-hyperfinite factors of type III. Actually, this result was also established by Ching [3] and Sakai [8] independently in 1970, using a method derived from the classification of factors of type II_1 . While the construction of groups in [3] and [8] are highly complicated, the computations in [11] are quite lengthy. On the other hand, Connes' elaborate and deep analysis [4] of factors of type III involves several sophisticated techniques in operator algebras developed recently. In particular, his new algebraic invariants S and T are based on the Tomita-Takesaki theory of modular operators of von Neumann algebras [10]. In this note, we shall give an elementary proof of the existence of a continuous family of mutually non-isomorphic non-hyperfinite factors of type III. In fact, we shall prove a special case of the main result in Williams [11] by restricting the finite factor in the tensor product to a group algebra. We follow the approach of Schwartz [9], but shall not use infinite tensor product of factors of type I.

In the following, 1 denotes the function constantly equal to 1, e the identity element in a group, N the set of natural numbers, δ_k the function on a set G with $\delta_k(k)=1$, and $\delta_k(g)=0$ for $g \neq k$, χ_S the characteristic function of a set S, B' the commutant of a set B of operators on a Hilbert space. All summations \sum in this paper are over certain finite sets of indexes, all functions are complex-valued unless otherwise specified, and isomorphism means *-isomorphism.

Construction of R_{λ}^{G} , $0 < \lambda < 1$. Let $X_{0} = \{0, 1\}$. Let μ_{0} be the measure on X_{0} with $\mu_{0}(0) = p$, $\mu_{0}(1) = q$, p+q=1, $0 , and <math>\lambda = p/q$. Let μ be the completion of the product measure $\mu' = \prod_{i \in N} \mu_{i}$ on the Cartesian product $X = \prod_{i \in N} X_{i}$, where $X_{i} = X_{0}$, $\mu_{i} = \mu_{0}$ for $i \in N$. Let Δ be the subset of X consisting of all functions on N which take the value 1 only finitely many times. For $\alpha \in \Delta$, $h(\alpha) = \max\{i \in N \mid \alpha(i) = 1\}$ is called the *height* of α . For example, $\delta_{n} \in \Delta$, and $h(\delta_{n}) = n$, $n \in N$. Define for $i \in N$,

$$(x+y)(i) = x(i)+y(i) \pmod{2}$$
, for $x, y \in X$.

Received by the editors October 23, 1974.

AMS (MOS) subject classifications (1970). Primary 46L10.

Key words and phrases. Factors of type III, non-hyperfinite, spacial isomorphism.

⁽¹⁾ This research was supported by the National Science Foundation grant GN-28517.

[December

 Δ is then an abelian group where each element is its own inverse. For each $\alpha \in \Delta$, we define the following: a measurable transformation $\alpha: x \mapsto x + \alpha$ on X, a measure $\mu_{\alpha}(E) = \mu(E+\alpha)$ for all μ -measurable subsets E of X. Let $d\mu_{\alpha}(x)/d\mu$ be the Radon-Nikodym derivative of μ_{α} with respect to μ , and $r_{\alpha} = (d\mu_{\alpha}(x)/d\mu)^{1/2}$. We have

(1)
$$r_{\beta}(x+\alpha)r_{\alpha}(x) = r_{\alpha\beta}(x).$$

Let $H_{\lambda} = L^2(X, \mu) \otimes \ell^2(\Delta)$. Since H_{λ} is generated by all $F(x) \otimes \delta_{\alpha}$, $F(x) \in L^2(X, \mu)$, $\alpha \in \Delta$, for each $f(x) \in M(X)$, the algebra of all bounded μ -measurable functions on X, and $\beta \in \Delta$, the following uniquely define 4 bounded linear operators on H_{λ} :

$$L_{f}(F(x) \otimes \delta_{\alpha}) = f(x)F(x) \otimes \delta_{\alpha}, \qquad U_{\beta}(F(x) \otimes \delta_{\alpha}) = r_{\beta}(x)F(x+\beta) \otimes \delta_{\alpha+\beta},$$
$$M_{f}(F(x) \otimes \delta_{\alpha}) = f(x+\alpha)F(x) \otimes \delta_{\alpha}, \qquad V_{\beta}(F(x) \otimes \delta_{\alpha}) = F(x) \otimes \delta_{\alpha+\beta}.$$

A subset S in X of the form $\{x \in X \mid x(i_k) = a_{i_k}, (a_{i_k} = 0 \text{ or } 1) k = 1, ..., n\}$ is called a cylinder set, and $h(S) = \max\{i_k \mid k=1, ..., n\}$ is called the *height* of S. For example, $C_n^i = \{x \in X \mid x(n) = i\}$, $i = 0, 1, n \in N$, are cylinder sets, and we write χ_n^i for $\chi_{C_n^i}$. Let S(X) be the algebra of all linear combinations of characteristic functions of cylinder sets. For $f = \sum_{i=1}^n c_i \chi_{S_i}$ in S(X), $h(f) = \max\{0, h(S_i) \mid c_i \neq 0, i=1, ..., n\}$ is called the *height* of f. We note that if S is a cylinder set and n > h(S), then $\mu(S \cap C_n^1) = q\mu(S)$. Hence, for $f(x) \in S(X)$ and n > h(f),

$$\int_{C_n^1} |f(x)|^2 \, d\mu = q \, \|f\|_2^2, \text{ where } \|\cdot\|_2 \text{ is the } L^2 \text{-norm.}$$

From the observation that

$$r_{\delta_n}(x) = \lambda^{i-1/2} \quad \text{for} \quad x \in C_n^i, \qquad i = 0, 1,$$

it is also not difficult to see that for each $\alpha \in \Delta$, $r_{\alpha}(x)$ assumes only finitely many values on a cylinder set, all of the form $\lambda^{\pm m/2}$, $m \in N$. Since the cylinder sets in X generate the σ -algebra of all μ -measurable subsets of X, S(X) is dense in M(X) in the strong operator topology. Operators of the form

$$\sum_{i=1}^n L_{f_1} U_{\beta_1} \left(\operatorname{resp.} \sum_{i=1}^n M_{f_1} V_{\beta_1} \right),$$

where $f_i \in S(X)$, $\beta_i \in \Delta$, $i=1, \ldots, n$ form a self-adjoint algebra R_{λ}^0 (resp. R_{λ}^c) of operators on H_{λ} . Operators in R_{λ}^0 commute with operators in R_{λ}^c . Let R_{λ} be the strong closure of R_{λ}^0 . By von Neumann [6], R_{λ} is a factor of type III, and the strong closure of R_{λ}^c is R'_{λ} . R_{λ} is isomorphic to the factor constructed in Powers [7] as pointed out in §4[7].

Let $\mathscr{A}(G)$ be a countable discrete group. Let $\mathscr{A}(G)$ (resp. $\mathscr{A}(G)'$) be the von Neumann algebra associated with the left (resp. right) regular representation of G on $\ell^2(G)$. We denote L_{g_0} (resp. R_{g_0}) the left (resp. right) translation by g_0^{-1} (resp. g_0) on $\ell^2(G)$. Let $R_{\lambda}^G = R_{\lambda} \otimes \mathscr{A}(G)$ be the tensor product of R_{λ} and $\mathscr{A}(G)$ on $H_{\lambda}^G = H_{\lambda} \otimes \ell^2(G)$. R_{λ}^G is purely infinite by Lemma 3 [2], where u is the identity representation, and $R_{\lambda}^{G'} = R_{\lambda}' \otimes \mathscr{A}(G)'$. A vector in H_{λ}^{G} of the form $\xi = \sum_{\alpha,g} f_{\alpha g}(x) \otimes \delta_{\alpha} \otimes \delta_{g}$, where all $f_{\alpha g}(x) \in S(X)$ is called *flat*, and $h(\xi)$, the *height* of ξ , is defined to be the largest of the heights of $f_{\alpha g}$'s and α 's in the summation. Apparently, flat vectors are dense in H_{λ}^{G} .

For G and G_1 two countable discrete groups, and λ , $\lambda_1 \in (0, 1)$, we have the following:

THEOREM. R_{λ}^{G} is not isomorphic to $R_{\lambda_{1}}^{G_{1}}$ if $\lambda \neq \lambda_{1}$.

Proof. Let

$$J_n = L_{\chi_n^1} U_{\delta_n} \otimes L_e, \qquad K_n = M_{\chi_n^0} V_{\delta_n} \otimes R_e, \qquad n \in N.$$

Then $J_n \in R_\lambda^G$, $K_n \in R_\lambda^{G'}$, and

(2)
$$||J_n|| = ||K_n|| = 1$$
, for $n \in N$.

We claim that for each $\xi \in H_{\lambda}^{G}$,

(3)
$$||K_n\xi|| \to q^{1/2} ||\xi||,$$

(4)
$$\|(J_n - \lambda^{1/2} K_n)\xi\| \to 0,$$

(5)
$$\|(\lambda^{1/2}J_n^* - K_n^*)\xi\| \to 0.$$

Because of (2), we only need to show (3)–(5) for an arbitrary flat vector $\xi = \sum_{\alpha,g} f_{\alpha g}(x) \otimes \delta_{\alpha} \otimes \delta_{g}$. We first observe that for $f \in S(X)$, $\alpha \in \Delta$, $n > \max\{h(f), h(\alpha)\}$, we have

$$f(x+\delta_n) = f(x), \qquad \chi_n^i(x+\alpha) = \chi_n^i(x), \qquad i = 0, 1,$$

and $\chi_n^0(x+\delta_n) = \chi_n^1(x)$, $\chi_n^1(x+\delta_n) = \chi_n^0(x)$ for all $x \in X$. Hence, for $n > h(\xi)$, we have

$$\begin{split} \|K_{n}\xi\|^{2} &= \sum_{\alpha,g} \|M_{\chi_{n}^{0}}V_{\delta_{n}}f_{\alpha g}(x) \otimes \delta_{\alpha}\|^{2} \\ &= \sum_{\alpha,g} \|\chi_{n}^{0}(x+\alpha+\delta_{n})f_{\alpha g}(x) \otimes \delta_{\alpha+\delta_{n}}\|^{2} \\ &= \sum_{\alpha,g} |\chi_{n}^{1}(x)f_{\alpha g}(x)|^{2} = q \|\xi\|^{2}, \\ \|(J_{n}-\lambda^{1/2}K_{n})\xi\|^{2} &= \sum_{\alpha,g} \|(L_{\chi_{n}^{1}}U_{\delta_{n}}-\lambda^{1/2}M_{\chi_{n}^{0}}V_{\delta_{n}})f_{\alpha g}(x) \otimes \delta_{\alpha}\|^{2} \\ &= \sum_{\alpha,g} \|\chi_{n}^{1}(x)r_{\delta_{n}}(x)f_{\alpha g}(x+\delta_{n})-\lambda^{1/2}\chi_{n}^{0}(x+\alpha+\delta_{n})f_{\alpha g}(x)\|_{2}^{2} = 0, \\ \|(\lambda^{1/2}J_{n}^{*}-K_{n}^{*})\xi\|^{2} &= \sum_{\alpha,g} \|(\lambda^{1/2}U_{\delta_{n}}L_{\chi_{n}^{1}}-V_{\delta_{n}}M_{\chi_{n}^{0}})f_{\alpha g}(x) \otimes \delta_{\alpha}\|^{2} \\ &= \sum \|\lambda^{1/2}r_{\delta_{n}}(x)\chi_{n}^{1}(x+\delta_{n})f_{\alpha g}(x+\delta_{n})-\chi_{n}^{0}(x+\alpha)f_{\alpha g}(x)\|_{2}^{2} = 0. \end{split}$$

This verifies (3)-(5).

 α, g

Now, suppose on the contrary that there is an isomorphism θ from R_{λ}^{G} onto $R_{\lambda_{1}}^{G_{1}}$. It is easy to see that $\xi_{0}=1\otimes\delta_{e}\otimes\delta_{e}$ is a cyclic and separating vector for both R_{λ}^{G} and $R_{\lambda_{1}}^{G_{1}}$ in H_{λ}^{G} and $H_{\lambda_{1}}^{G_{1}}$ respectively. By Theorem 3 on p. 222 of Dixmier [5], R_{λ}^{G} and $R_{\lambda_{1}}^{G_{1}}$ are then spacially isomorphic, i.e., there exists a unitary operator W from H_{λ}^{G} to $H_{\lambda_{1}}^{G_{1}}$ such that

(6)
$$\theta(T) = WTW^* \text{ for all } T \in R^G_{\lambda}.$$

Clearly, (6) also defines an isomorphism from $R_{\lambda}^{G'}$ onto $R_{\lambda_1}^{G'_1}$. From (3)-(6), we have for an arbitrary $((\lambda/2)^{1/2} >) \varepsilon > 0$, an $n_0 \in N$ such that

(7)
$$\|\theta(K_{n_0})\xi_0\| > \frac{1}{2}q^{1/2}$$

(8)
$$\|\theta(J_{n_0} - \lambda^{1/2} K_{n_0}) \xi_0\| < \frac{\epsilon}{4} q^{1/2}.$$

(9)
$$\|\theta(\lambda^{1/2}J_{n_0}^*-K_{n_0}^*)\xi_0\| < \frac{\epsilon}{4} q^{1/2}.$$

Since $R_{\lambda_1}^0$ (resp. $R_{\lambda_1}^c$) is strongly dense in R_{λ_1} (resp. R'_{λ_1}) and operators of the form $\sum_g c_g L_g$ (resp. $\sum_g c_g R_g$) are strongly dense in $\mathscr{A}(G)$ (resp. $\mathscr{A}(G)'$), by the Kaplansky density theorem (Theorem 3, p. 43 [5]), the hermitian parts of $R_{\lambda_1}^0$ and $R_{\lambda_1}^c$ are dense in the hermitian parts of R_{λ_1} and R'_{λ_1} respectively. Hence, after multiplying $2q^{-1/2}$ on (7)-(9), we can find two operators $P = \sum_{\alpha,g} L_{f\alpha g} U_{\alpha} \otimes L_{g}$ and $Q = \sum_{\alpha,g} M_{\varphi\alpha g} V_{\alpha} \otimes R_{g}$, where $f_{\alpha g}, \varphi_{\alpha g} \in S(X)$, such that

(10)
$$||Q\xi_0|| > 1,$$

(11)
$$\|(P-\lambda^{1/2}Q)\xi_0\| < \epsilon,$$

(12)
$$\|(\lambda^{1/2}P^* - Q^*)\xi_0\| < \epsilon.$$

Without loss of generality, we can assume that the summations in P and Q are over the same finite subset $E \times F$ of $\Delta \times G$, and furthermore, $g \in F$ implies $g^{-1} \in F$. (11) and (12) are respectively the following:

(13)
$$\left\| \sum_{\alpha,g} (f_{\alpha g}(x)r_{\alpha}(x) \otimes \delta_{\alpha} \otimes \delta_{g} - \lambda^{1/2}\varphi_{\alpha g}(x+\alpha) \otimes \delta_{\alpha} \otimes \delta_{g^{-1}}) \right\|$$
$$= \left(\sum_{\alpha,g} \|f_{\alpha g}(x)r_{\alpha}(x) - \lambda^{1/2}\varphi_{\alpha g^{-1}}(x+\alpha)\|_{2}^{2} \right) < \epsilon,$$

(14)
$$\left\| \sum_{\alpha,g} (\lambda^{1/2}r_{\alpha}(x)f_{\alpha g}(x+\alpha) \otimes \delta_{\alpha} \otimes \delta_{g^{-1}} - \varphi_{\alpha g}(x) \otimes \delta_{\alpha} \otimes \delta_{g}) \right\|$$
$$= \left(\sum_{\alpha,g} \|\lambda^{1/2}r_{\alpha}(x)f_{\alpha g}(x+\alpha) - \varphi_{\alpha g^{-1}}(x)\|_{2}^{2} \right)^{1/2}$$
$$= \left(\sum_{\alpha,g} \|\lambda^{1/2}f_{\alpha g}(x) - r_{\alpha}(x)\varphi_{\alpha g^{-1}}(x+\alpha)\|_{2}^{2} \right)^{1/2} < \epsilon.$$

646

[December

The last equality follows from

$$\int_X f(x+\alpha) \, d\mu(x) = \int_X f(x) \, \frac{d\mu_\alpha}{d\mu}(x) \, d\mu(x),$$

and (1). By Minkowski inequality and (13), (14), we have

(15)
$$\left(\sum_{\alpha,g}\int_X |r_{\alpha}(x)-\lambda^{1/2}|^2 \cdot |f_{\alpha g}(x)+\varphi_{\alpha g^{-1}}(x+\alpha)|^2 d\mu(x)\right)^{1/2} < 2\epsilon,$$

and

(16)
$$\left(\sum_{\alpha,g}\int_{X}|r_{\alpha}(x)+\lambda^{1/2}|^{2}\cdot|\varphi_{\alpha g^{-1}}(x+\alpha)-f_{\alpha g}(x)|^{2}\,d\mu(x)\right)^{1/2}<2\epsilon.$$

Since $r_{\alpha}(x) > 0$, (16) implies that

$$A = \left(\sum_{\alpha,g} \|\varphi_{\alpha g^{-1}}(x+\alpha) - f_{\alpha g}(x)\|_{2}^{2}\right)^{1/2} < 2\epsilon \lambda^{-1/2} < 1.$$

Hence,

(17)
$$\left(\sum_{\alpha,g} \|f_{\alpha g}(x) + \varphi_{\alpha g^{-1}}(x+\alpha)\|_{2}^{2}\right)^{1/2} \geq 2\left(\sum_{\alpha,g} \|\varphi_{\alpha g^{-1}}(x+\alpha)\|_{2}^{2}\right) - A = 2 \|Q\xi_{0}\| - A > 1.$$

Let \mathscr{F} be the finite collection of all cylinder sets whose characteristic functions are in the linear expansions of $f_{\alpha g}$'s and $\varphi_{\alpha g}$'s. (15) and (17) together yield that

$$\min_{\substack{x \in S \in \mathscr{F} \\ \alpha \in E}} |r_{\alpha}(x) - \lambda^{1/2}| < 2\epsilon.$$

But $r_{\alpha}(x)$ is always an integral power of $\lambda_1^{1/2}$ for $x \in S \in \mathscr{F}$, $\alpha \in E$. Since $0 < \lambda$, $\lambda_1 < 1$, and ϵ can be arbitrarily small, we have $\lambda = \lambda_1^n$ for some $n \in N$. By symmetry, $\lambda_1 = \lambda^m$ for some $m \in N$. Hence, $\lambda = \lambda_1$. This shows that R_{λ}^G is not isomorphic to $R_{\lambda_1}^{G_2}$ if $\lambda \neq \lambda_1$.

COROLLARY. There exists a one-parameter family of non-isomorphic non-hyperfinite factors of type III.

Proof. Let $G=G_1=\Phi_2$, the free group on two generators. R_{λ}^G and $R_{\lambda_1}^G$ are factors of type III (Lemma 2 [2] with *u* the identity representation). By the same argument as that in Lemma 9 [2], we see that R_{λ}^G and $R_{\lambda_1}^G$ are non-hyperfinite, for otherwise Φ_2 would admit a translation invariant measure of total mass 1. Hence, $\{R_{\lambda}^G \mid 0 < \lambda < 1\}$ is the required family of factors of type III.

References

1. H. Araki and E. J. Woods, A classification of factors, Publ. R.I.M.S. Kyoto Univ. Ser. A, 3 (1968), 51-130.

2. W. Ching, Non-isomorphic non-hyperfinite factors, Canad. J. Math. 21 (1969), 1293-1308.

1975]

W.-M. CHING

3. W. Ching, A continuum of non-isomorphic non-hyperfinite factors, Comm. Pure Appl. Math., 23 (1970), 921-937.

4. A. Connes, Une classification der facteurs de type III, Ann. scien. l'École Normale Sup. 4^e sér. (2), 6 (1973), 133-252.

5. J. Dixmier. Les Algèbres d'Operateurs dans l'Espace Hilbertien, 2^e Edition, Gauthier-Villars, Paris, 1969.

6. J. von Neumann, On rings of operators III, Ann. Math. (2) 41 (1940), 94-161.

7. R. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. Math. 86 (1967), 138-171.

8. S. Sakai, An uncountable family of non-hyperfinite type III factors, Functional Analysis, Academic Press, New York, 1970, 65-70.

9. J. T. Schwartz, Recent progress in the structure theory of factors, Functional Analysis, Academic Press, New York, 1970, 37-53.

10. M. Takesaki, *Tomita's Theory of Modular Hilbert Algebras and its Applications*, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin and New York, 1970.

11. J. J. Williams, Non-isomorphic tensor product of von Neumann algebras, Canad. J. Math., 26 (1974), 492-512.

DEPARTMENT OF MATHEMATICS, WHITE HALL, CORNELL UNIVERSITY, ITHACA, N.Y. 14853 U.S.A.

648