ON SOME NON-HYPERFINITE FACTORS OF TYPE III

BY
WAI-MEE CHING ${ }^{(1)}$

Introduction. In 1967, Powers [7] proved that there exists a one-parameter family of pairwise non-isomorphic hyperfinite factors of type III. Powers' result on hyperfinite factors has been extended by Araki and Woods [1]. Connes [4], and Williams [11], with different proofs, showed that there exists a continuous family of mutually non-isomorphic non-hyperfinite factors of type III. Actually, this result was also established by Ching [3] and Sakai [8] independently in 1970, using a method derived from the classification of factors of type II_{1}. While the construction of groups in [3] and [8] are highly complicated, the computations in [11] are quite lengthy. On the other hand, Connes' elaborate and deep analysis [4] of factors of type III involves several sophisticated techniques in operator algebras developed recently. In particular, his new algebraic invariants S and T are based on the Tomita-Takesaki theory of modular operators of von Neumann algebras [10]. In this note, we shall give an elementary proof of the existence of a continuous family of mutually non-isomorphic non-hyperfinite factors of type III. In fact, we shall prove a special case of the main result in Williams [11] by restricting the finite factor in the tensor product to a group algebra. We follow the approach of Schwartz [9], but shall not use infinite tensor product of factors of type I.

In the following, 1 denotes the function constantly equal to $1, e$ the identity element in a group, N the set of natural numbers, δ_{k} the function on a set G with $\delta_{k}(k)=1$, and $\delta_{k}(g)=0$ for $g \neq k, \chi_{S}$ the characteristic function of a set S, B^{\prime} the commutant of a set B of operators on a Hilbert space. All summations \sum in this paper are over certain finite sets of indexes, all functions are complex-valued unless otherwise specified, and isomorphism means $*$-isomorphism.

Construction of $R_{\lambda}^{G}, 0<\lambda<1$. Let $X_{0}=\{0,1\}$. Let μ_{0} be the measure on X_{0} with $\mu_{0}(0)=p, \mu_{0}(1)=q, p+q=1,0<p<q$, and $\lambda=p / q$. Let μ be the completion of the product measure $\mu^{\prime}=\prod_{i \in N} \mu_{i}$ on the Cartesian product $X=\prod_{i \in N} X_{i}$, where $X_{i}=X_{0}, \mu_{i}=\mu_{0}$ for $i \in N$. Let Δ be the subset of X consisting of all functions on N which take the value 1 only finitely many times. For $\alpha \in \Delta, h(\alpha)=$ $\max \{i \in N \mid \alpha(i)=1\}$ is called the height of α. For example, $\delta_{n} \in \Delta$, and $h\left(\delta_{n}\right)=n$, $n \in N$. Define for $i \in N$,

$$
(x+y)(i)=x(i)+y(i)(\bmod 2), \text { for } x, y \in X
$$

Received by the editors October 23, 1974.
AMS (MOS) subject classifications (1970). Primary 46L10.
Key words and phrases. Factors of type III, non-hyperfinite, spacial isomorphism.
${ }^{(1)}$ This research was supported by the National Science Foundation grant GN-28517.
Δ is then an abelian group where each element is its own inverse. For each $\alpha \in \Delta$, we define the following: a measurable transformation $\alpha: x \mapsto x+\alpha$ on X, a measure $\mu_{\alpha}(E)=\mu(E+\alpha)$ for all μ-measurable subsets E of X. Let $d \mu_{\alpha}(x) / d \mu$ be the RadonNikodym derivative of μ_{α} with respect to μ, and $r_{\alpha}=\left(d \mu_{\alpha}(x) / d \mu\right)^{1 / 2}$. We have

$$
\begin{equation*}
r_{\beta}(x+\alpha) r_{\alpha}(x)=r_{\alpha \beta}(x) \tag{1}
\end{equation*}
$$

Let $H_{\lambda}=L^{2}(X, \mu) \otimes \ell^{2}(\Delta)$. Since H_{λ} is generated by all $F(x) \otimes \delta_{\alpha}, F(x) \in L^{2}(X, \mu)$, $\alpha \in \Delta$, for each $f(x) \in M(X)$, the algebra of all bounded μ-measurable functions on X, and $\beta \in \Delta$, the following uniquely define 4 bounded linear operators on H_{λ} :

$$
\begin{aligned}
& L_{f}\left(F(x) \otimes \delta_{\alpha}\right)=f(x) F(x) \otimes \delta_{\alpha}, \quad U_{\beta}\left(F(x) \otimes \delta_{\alpha}\right)=r_{\beta}(x) F(x+\beta) \otimes \delta_{\alpha+\beta}, \\
& M_{f}\left(F(x) \otimes \delta_{\alpha}\right)=f(x+\alpha) F(x) \otimes \delta_{\alpha}, \quad V_{\beta}\left(F(x) \otimes \delta_{\alpha}\right)=F(x) \otimes \delta_{\alpha+\beta} .
\end{aligned}
$$

A subset S in X of the form $\left\{x \in X \mid x\left(i_{k}\right)=a_{i_{k}},\left(a_{i_{k}}=0\right.\right.$ or 1$\left.) k=1, \ldots, n\right\}$ is called a cylinder set, and $h(S)=\max \left\{i_{k} \mid k=1, \ldots, n\right\}$ is called the height of S. For example, $C_{n}^{i}=\{x \in X \mid x(n)=i\}, i=0,1, n \in N$, are cylinder sets, and we write χ_{n}^{i} for $\chi_{C_{n}^{i}}$. Let $S(X)$ be the algebra of all linear combinations of characteristic functions of cylinder sets. For $f=\sum_{i=1}^{n} c_{i} \chi_{S_{i}}$ in $S(X), h(f)=\max \left\{0, h\left(S_{i}\right) \mid c_{i} \neq 0\right.$, $i=1, \ldots, n\}$ is called the height of f. We note that if S is a cylinder set and $n>h(S)$, then $\mu\left(S \cap C_{n}^{1}\right)=q \mu(S)$. Hence, for $f(x) \in S(X)$ and $n>h(f)$,

$$
\int_{C_{n}^{1}}|f(x)|^{2} d \mu=q\|f\|_{2}^{2}, \quad \text { where }\|\cdot\|_{2} \text { is the } L^{2} \text {-norm. }
$$

From the observation that

$$
r_{\delta_{n}}(x)=\lambda^{i-1 / 2} \text { for } x \in C_{n}^{i}, \quad i=0,1,
$$

it is also not difficult to see that for each $\alpha \in \Delta, r_{\alpha}(x)$ assumes only finitely many values on a cylinder set, all of the form $\lambda^{ \pm m / 2}, m \in N$. Since the cylinder sets in X generate the σ-algebra of all μ-measurable subsets of $X, S(X)$ is dense in $M(X)$ in the strong operator topology. Operators of the form

$$
\sum_{i=1}^{n} L_{f_{1}} U_{\beta_{1}}\left(\operatorname{resp} . \sum_{i=1}^{n} M_{f_{1}} V_{\beta_{1}}\right)
$$

where $f_{i} \in S(X), \beta_{i} \in \Delta, i=1, \ldots, n$ form a self-adjoint algebra R_{λ}^{0} (resp. R_{λ}^{c}) of operators on H_{λ}. Operators in R_{λ}^{0} commute with operators in R_{λ}^{c}. Let R_{λ} be the strong closure of R_{λ}^{0}. By von Neumann [6], R_{λ} is a factor of type III, and the strong closure of R_{λ}^{c} is $R_{\lambda}^{\prime} . R_{\lambda}$ is isomorphic to the factor constructed in Powers [7] as pointed out in §4[7].

Let $\mathscr{A}(G)$ be a countable discrete group. Let $\mathscr{A}(G)$ (resp. $\left.\mathscr{A}(G)^{\prime}\right)$ be the von Neumann algebra associated with the left (resp. right) regular representation of G on $\ell^{2}(G)$. We denote $L_{g_{0}}$ (resp. $R_{g_{0}}$) the left (resp. right) translation by g_{0}^{-1} (resp. g_{0}) on $\ell^{2}(G)$. Let $R_{\lambda}^{G^{0}}=R_{\lambda} \otimes \mathscr{A}(G)$ be the tensor product of R_{λ} and $\mathscr{A}(G)$ on $H_{\lambda}^{G}=H_{\lambda} \otimes \ell^{2}(G) . R_{\lambda}^{G}$ is purely infinite by Lemma 3 [2], where u is the identity
representation, and $R_{\lambda}^{G^{\prime}}=R_{\lambda}^{\prime} \otimes \mathscr{A}(G)^{\prime}$. A vector in H_{λ}^{G} of the form $\xi=$ $\sum_{\alpha, g} f_{\alpha g}(x) \otimes \delta_{\alpha} \otimes \delta_{g}$, where all $f_{\alpha g}(x) \in S(X)$ is called flat, and $h(\xi)$, the height of ξ, is defined to be the largest of the heights of $f_{\alpha g}$'s and α 's in the summation. Apparently, flat vectors are dense in H_{λ}^{G}.

For G and G_{1} two countable discrete groups, and $\lambda, \lambda_{1} \in(0,1)$, we have the following:

Theorem. R_{λ}^{G} is not isomorphic to $R_{\lambda_{1}}^{G_{1}}$ if $\lambda \neq \lambda_{1}$.
Proof. Let

$$
J_{n}=L_{\chi_{n}^{1}} U_{\delta_{n}} \otimes L_{e}, \quad K_{n}=M_{x_{n}^{0}} V_{\delta_{n}} \otimes R_{e}, \quad n \in N
$$

Then $J_{n} \in R_{\lambda}^{G}, K_{n} \in R_{\lambda}^{G^{\prime}}$, and

$$
\begin{equation*}
\left\|J_{n}\right\|=\left\|K_{n}\right\|=1, \text { for } n \in N \tag{2}
\end{equation*}
$$

We claim that for each $\xi \in H_{\lambda}^{G}$,

$$
\begin{gather*}
\left\|K_{n} \xi\right\| \rightarrow q^{1 / 2}\|\xi\|, \tag{3}\\
\left\|\left(J_{n}-\lambda^{1 / 2} K_{n}\right) \xi\right\| \rightarrow 0, \tag{4}\\
\left\|\left(\lambda^{1 / 2} J_{n}^{*}-K_{n}^{*}\right) \xi\right\| \rightarrow 0 . \tag{5}
\end{gather*}
$$

Because of (2), we only need to show (3)-(5) for an arbitrary flat vector $\xi=$ $\sum_{\alpha, g} f_{\alpha g}(x) \otimes \delta_{\alpha} \otimes \delta_{g}$. We first observe that for $f \in S(X), \alpha \in \Delta, n>\max \{h(f), h(\alpha)\}$, we have

$$
f\left(x+\delta_{n}\right)=f(x), \quad \chi_{n}^{i}(x+\alpha)=\chi_{n}^{i}(x), \quad i=0,1
$$

and $\chi_{n}^{0}\left(x+\delta_{n}\right)=\chi_{n}^{1}(x), \chi_{n}^{1}\left(x+\delta_{n}\right)=\chi_{n}^{0}(x)$ for all $x \in X$. Hence, for $n>h(\xi)$, we have

$$
\begin{gathered}
\left\|K_{n} \xi\right\|^{2}=\sum_{\alpha, g}\left\|M_{\chi_{n}^{0}} V_{\delta_{n}} f_{\alpha g}(x) \otimes \delta_{\alpha}\right\|^{2} \\
=\sum_{\alpha, g}\left\|\chi_{n}^{0}\left(x+\alpha+\delta_{n}\right) f_{\alpha g}(x) \otimes \delta_{\alpha+\delta_{n}}\right\|^{2} \\
=\sum_{\alpha, g}\left|\chi_{n}^{1}(x) f_{\alpha g}(x)\right|^{2}=q\|\xi\|^{2}, \\
\left\|\left(J_{n}-\lambda^{1 / 2} K_{n}\right) \xi\right\|^{2}=\sum_{\alpha, g}\left\|\left(L_{\chi_{n}^{1}} U_{\delta_{n}}-\lambda^{1 / 2} M_{\chi_{n}^{0}} V_{\delta_{n}}\right) f_{\alpha g}(x) \otimes \delta_{\alpha}\right\|^{2} \\
=\sum_{\alpha, g}\left\|\chi_{n}^{1}(x) r_{\delta_{n}}(x) f_{\alpha g}\left(x+\delta_{n}\right)-\lambda^{1 / 2} \chi_{n}^{0}\left(x+\alpha+\delta_{n}\right) f_{\alpha g}(x)\right\|_{2}^{2}=0, \\
\left\|\left(\lambda^{1 / 2} J_{n}^{*}-K_{n}^{*}\right) \xi\right\|^{2}=\sum_{\alpha, g}\left\|\left(\lambda^{1 / 2} U_{\delta_{n}} L_{\chi_{n}^{1}}-V_{\delta_{n}} M_{\chi_{n}^{0}}\right) f_{\alpha g}(x) \otimes \delta_{\alpha}\right\|^{2} \\
=\sum_{\alpha, g}\left\|\lambda^{1 / 2} r_{\delta_{n}}(x) \chi_{n}^{1}\left(x+\delta_{n}\right) f_{\alpha g}\left(x+\delta_{n}\right)-\chi_{n}^{0}(x+\alpha) f_{\alpha g}(x)\right\|_{2}^{2}=0 .
\end{gathered}
$$

This verifies (3)-(5).

Now, suppose on the contrary that there is an isomorphism θ from R_{λ}^{G} onto $R_{\lambda_{2}}^{G_{1}}$. It is easy to see that $\xi_{0}=1 \otimes \delta_{e} \otimes \delta_{e}$ is a cyclic and separating vector for both R_{λ}^{G} and $R_{\lambda_{1}}^{G_{1}}$ in H_{λ}^{G} and $H_{\lambda_{1}}^{G_{1}}$ respectively. By Theorem 3 on p. 222 of Dixmier [5], R_{λ}^{G} and $R_{\lambda_{1}}^{G_{1}}$ are then spacially isomorphic, i.e., there exists a unitary operator W from H_{λ}^{G} to $H_{\lambda_{1}}^{G_{1}}$ such that

$$
\begin{equation*}
\theta(T)=W T W^{*} \text { for all } T \in R_{\lambda}^{G} \tag{6}
\end{equation*}
$$

Clearly, (6) also defines an isomorphism from $R_{\lambda}^{G^{\prime}}$ onto $R_{\lambda_{1}}^{G_{1}^{\prime}}$. From (3)-(6), we have for an arbitrary $\left((\lambda / 2)^{1 / 2}>\right) \varepsilon>0$, an $n_{0} \in N$ such that

$$
\begin{align*}
\left\|\theta\left(K_{n_{0}}\right) \xi_{0}\right\| & >\frac{1}{2} q^{1 / 2}, \tag{7}\\
\left\|\theta\left(J_{n_{0}}-\lambda^{1 / 2} K_{n_{0}}\right) \xi_{0}\right\| & <\frac{\epsilon}{4} q^{1 / 2} . \\
\left\|\theta\left(\lambda^{1 / 2} J_{n_{0}}^{*}-K_{n_{0}}^{*}\right) \xi_{0}\right\| & <\frac{\epsilon}{4} q^{1 / 2} .
\end{align*}
$$

Since $R_{\lambda_{1}}^{0}$ (resp. $R_{\lambda_{1}}^{c}$) is strongly dense in $R_{\lambda_{1}}$ (resp. $R_{\lambda_{1}}^{\prime}$) and operators of the form $\sum_{g} c_{g} L_{g}$ (resp. $\sum_{g} c_{g} R_{g}$) are strongly dense in $\mathscr{A}(G)$ (resp. $\left.\mathscr{A}(G)^{\prime}\right)$, by the Kaplansky density theorem (Theorem 3, p. 43 [5]), the hermitian parts of $R_{\lambda_{1}}^{0}$ and $R_{\lambda_{1}}^{c}$ are dense in the hermitian parts of $R_{\lambda_{1}}$ and $R_{\lambda_{1}}^{\prime}$ respectively. Hence, after multiplying $2 q^{-1 / 2}$ on (7)-(9), we can find two operators $P=\sum_{\alpha, g} L_{f_{\alpha}} U_{\alpha} \otimes L_{g}$ and $Q=$ $\sum_{\alpha, g} M_{\varphi_{\alpha \sigma}} V_{\alpha} \otimes R_{g}$, where $f_{\alpha g}, \varphi_{\alpha g} \in S(X)$, such that

$$
\begin{align*}
\left\|Q \xi_{0}\right\| & >1 \tag{10}\\
\left\|\left(P-\lambda^{1 / 2} Q\right) \xi_{0}\right\| & <\epsilon, \tag{11}\\
\left\|\left(\lambda^{1 / 2} P^{*}-Q^{*}\right) \xi_{0}\right\| & <\epsilon \tag{12}
\end{align*}
$$

Without loss of generality, we can assume that the summations in P and Q are over the same finite subset $E \times F$ of $\Delta \times G$, and furthermore, $g \in F$ implies $g^{-1} \in F$. (11) and (12) are respectively the following:

$$
\begin{align*}
&\left\|\sum_{\alpha, g}\left(f_{\alpha g}(x) r_{\alpha}(x) \otimes \delta_{\alpha} \otimes \delta_{g}-\lambda^{1 / 2} \varphi_{\alpha g}(x+\alpha) \otimes \delta_{\alpha} \otimes \delta_{g}-1\right)\right\| \tag{13}\\
&=\left(\sum_{\alpha, g}\left\|f_{\alpha g}(x) r_{\alpha}(x)-\lambda^{1 / 2} \varphi_{\alpha \rho}-1(x+\alpha)\right\|_{2}^{2}\right)<\epsilon
\end{align*}
$$

$$
\begin{align*}
\| \sum_{\alpha, g}\left(\lambda^{1 / 2} r_{\alpha}(x) f_{\alpha g}(x+\alpha) \otimes \delta_{\alpha} \otimes\right. & \left.\delta_{g}-1-\varphi_{\alpha g}(x) \otimes \delta_{\alpha} \otimes \delta_{g}\right) \| \tag{14}\\
& =\left(\sum_{\alpha, g}\left\|\lambda^{1 / 2} r_{\alpha}(x) f_{\alpha g}(x+\alpha)-\varphi_{\alpha g}-1(x)\right\|_{2}^{2}\right)^{1 / 2} \\
& =\left(\sum_{\alpha, g}\left\|\lambda^{1 / 2} f_{\alpha g}(x)-r_{\alpha}(x) \varphi_{\alpha g}-1(x+\alpha)\right\|_{2}^{2}\right)^{1 / 2}<\epsilon .
\end{align*}
$$

The last equality follows from

$$
\int_{X} f(x+\alpha) d \mu(x)=\int_{X} f(x) \frac{d \mu_{\alpha}}{d \mu}(x) d \mu(x)
$$

and (1). By Minkowski inequality and (13), (14), we have

$$
\begin{equation*}
\left(\sum_{\alpha, g} \int_{X}\left|r_{\alpha}(x)-\lambda^{1 / 2}\right|^{2} \cdot\left|f_{\alpha g}(x)+\varphi_{\alpha g}-1(x+\alpha)\right|^{2} d \mu(x)\right)^{1 / 2}<2 \epsilon \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{\alpha, g} \int_{X}\left|r_{\alpha}(x)+\lambda^{1 / 2}\right|^{2} \cdot\left|\varphi_{\alpha g}-1(x+\alpha)-f_{\alpha g}(x)\right|^{2} d \mu(x)\right)^{1 / 2}<2 \epsilon \tag{16}
\end{equation*}
$$

Since $r_{\alpha}(x)>0$, (16) implies that

$$
A=\left(\sum_{\alpha, g}\left\|\varphi_{\alpha g}-1(x+\alpha)-f_{\alpha g}(x)\right\|_{2}^{2}\right)^{1 / 2}<2 \epsilon \lambda^{-1 / 2}<1
$$

Hence,

$$
\begin{align*}
\left(\sum_{\alpha, g}\left\|f_{\alpha g}(x)+\varphi_{\alpha, g}-1(x+\alpha)\right\|_{2}^{2}\right. &)^{1 / 2} \tag{17}\\
& \geq 2\left(\sum_{\alpha, g}\left\|\varphi_{\alpha g}-1(x+\alpha)\right\|_{2}^{2}\right)-A=2\left\|Q \xi_{0}\right\|-A>1
\end{align*}
$$

Let \mathscr{F} be the finite collection of all cylinder sets whose characteristic functions are in the linear expansions of $f_{\alpha g}$'s and $\varphi_{\alpha g}$'s. (15) and (17) together yield that

$$
\min _{\substack{x \in \mathcal{S}_{\mathcal{G}} \\ \alpha \in E}}\left|r_{\alpha}(x)-\lambda^{1 / 2}\right|<2 \epsilon .
$$

But $r_{\alpha}(x)$ is always an integral power of $\lambda_{1}^{1 / 2}$ for $x \in S \in \mathscr{F}, \alpha \in E$. Since $0<\lambda, \lambda_{1}<1$, and ϵ can be arbitrarily small, we have $\lambda=\lambda_{1}^{n}$ for some $n \in N$. By symmetry, $\lambda_{1}=\lambda^{m}$ for some $m \in N$. Hence, $\lambda=\lambda_{1}$. This shows that R_{λ}^{G} is not isomorphic to $R_{\lambda_{1}}^{G_{2}}$ if $\lambda \neq \lambda_{1}$.

Corollary. There exists a one-parameter family of non-isomorphic non-hyperfinite factors of type III.

Proof. Let $G=G_{1}=\Phi_{2}$, the free group on two generators. R_{λ}^{G} and $R_{\lambda_{1}}^{G}$ are factors of type III (Lemma 2 [2] with u the identity representation). By the same argument as that in Lemma 9 [2], we see that R_{λ}^{G} and $R_{\lambda_{1}}^{G}$ are non-hyperfinite, for otherwise Φ_{2} would admit a translation invariant measure of total mass 1 . Hence, $\left\{R_{\lambda}^{G} \mid 0<\right.$ $\lambda<1\}$ is the required family of factors of type III.

References

1. H. Araki and E. J. Woods, A classification of factors, Publ. R.I.M.S. Kyoto Univ. Ser. A, 3 (1968), 51-130.
2. W. Ching, Non-isomorphic non-hyperfinite factors, Canad. J. Math. 21 (1969), 1293-1308. 2
3. W. Ching, A continuum of non-isomorphic non-hyperfinite factors, Comm. Pure Appl. Math., 23 (1970), 921-937.
4. A. Connes, Une classification der facteurs de type III, Ann. scien. l'École Normale Sup. 4^{e} sér. (2), 6 (1973), 133-252.
5. J. Dixmier. Les Algèbres d'Operateurs dans l'Espace Hilbertien, 2^{e} Edition, GauthierVillars, Paris, 1969.
6. J. von Neumann, On rings of operators III, Ann. Math. (2) 41 (1940), 94-161.
7. R. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. Math. 86 (1967), 138-171.
8. S. Sakai, An uncountable family of non-hyperfinite type III factors, Functional Analysis, Academic Press, New York, 1970, 65-70.
9. J. T. Schwartz, Recent progress in the structure theory of factors, Functional Analysis, Academic Press, New York, 1970, 37-53.
10. M. Takesaki, Tomita's Theory of Modular Hilbert Algebras and its Applications, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin and New York, 1970.
11. J. J. Williams, Non-isomorphic tensor product of von Neumann algebras, Canad. J. Math., 26 (1974), 492-512.

Department of Mathematics,
White Hall,
Cornell University,
Ithaca, N.Y. 14853
U.S.A.

