TORUS-EQUIVARIANT VECTOR BUNDLES ON PROJECTIVE SPACES

TAMAFUMI KANEYAMA

Introduction

For a free Z-module N of rank n, let $T=T_{N}$ be an n-dimensional algebraic torus over an algebraically closed field k defined by N. Let $X=T_{N}$ emb (Δ) be a smooth complete toric variety defined by a fan Δ (cf. [6]). Then T acts algebraically on X. A vector bundle E on X is said to be an equivariant vector bundle, if there exists an isomorphism $f_{t}: t^{*} E \rightarrow E$ for each k-rational point t in T, where $t: X \rightarrow X$ is the action of t. Equivariant vector bundles have T-linearizations (see Definition 1.2 and [2], [4]), hence we consider T-linearized vector bundles.

The n-dimensional projective space P^{n} has a natural action of T and can be regarded as a toric variety. In [4], we classified indecomposable equivariant vector bundles of rank two on P^{2}. When $n>2$, Hartshorne [3] constructed vector bundles of rank two from codimension two subschemes satisfying certain conditions. Bertin and Elencwajg [2] then used this method to construct equivariant vector bundles of rank two on \boldsymbol{P}^{n} and showed that there exist no indecomposable equivariant vector bundles of rank two on \boldsymbol{P}^{n} which are obtained in this way.

In this paper, we generalize our method in [4] to show that there exist no indecomposable equivariant vector bundles of rank $r(1<r<n)$ on \boldsymbol{P}^{n} (Corollary 3.5) and that indecomposable equivariant vector bundles of rank n on \boldsymbol{P}^{n} are isomorphic to $E(d)$ or $E^{*}(d)$ for some integer d, where E is defined by an exact sequence

$$
0 \longrightarrow \mathcal{O}_{\boldsymbol{P}^{n}} \longrightarrow{\underset{i=0}{n} \mathcal{O}_{\boldsymbol{P}^{n}}\left(a_{i}\right) \longrightarrow E \longrightarrow 0 ~}_{\longrightarrow}
$$

for positive integers a_{i}.

[^0]
§ 1. Preliminaries

Let N be a free Z-module of rank n. Let M be the dual Z-module of N. Then there is a natural Z-bilinear map

$$
\langle,\rangle: M \times N \longrightarrow Z .
$$

It can naturally be extended to $M_{R} \times N_{R} \rightarrow \boldsymbol{R}$, where $M_{R}=M \otimes_{Z} \boldsymbol{R}$ and $N_{R}=N \otimes_{Z} \boldsymbol{R}$. We denote $\varphi(\xi)=\langle\xi, \varphi\rangle$ for ξ in M_{R} and φ in N_{R}. Let $T=T_{N}$ be an n-dimensional algebraic torus defined by N over an algebraically closed field k. Then we can identify M with the additive group of characters of T. Let $X=T_{N} \mathrm{emb}(\Delta)$ be a smooth complete toric variety of dimension n defined by a fan Δ of N for which the reader is referred to [6].

Definition 1.1. An equivariant vector bundle E on X is a vector bundle on X such that there exists an isomorphism $f_{t}: t^{*} E \rightarrow E$ for every k-rational point t in T, where $t: X \rightarrow X$ is the action of t on X.

Definition 1.2. An equivariant vector bundle $E=\left(E, f_{t}\right)$ is said to be T-linearized if $f_{t t^{\prime}}=f_{t^{\prime}} \circ t^{\prime *}\left(f_{t}\right)$ holds for every pair of k-rational points t, t^{\prime} of T, where

$$
f_{t t^{\prime}}=f_{t^{\prime}} \circ t^{\prime} *\left(f_{t}\right):\left(t t^{\prime}\right) * E \xrightarrow{t^{\prime *}\left(f_{t}\right)} t^{\prime *} E \xrightarrow{f_{t^{\prime}}} E .
$$

In [4], we showed that an equivariant vector bundle necessarily has a T-linearization. We also studied how to describe T-linearized vector bundles in terms of fans, as we now recall.

We denote by $\Delta(l)$ the set of l-dimensional cones in Δ. For C in $\Delta(l)$, there exists a finite subset $\left\{\varphi_{1}, \cdots, \varphi_{l}\right\}$ of N such that $C=\boldsymbol{R}_{0} \varphi_{1}+\cdots$ $+\boldsymbol{R}_{0} \varphi_{l}$, where \boldsymbol{R}_{0} is the set of non-negative real numbers. We say that $\left\{\varphi_{1}, \cdots, \varphi_{l}\right\}$ is the fundamental system of generators of C if φ_{i} are primitive, i.e., φ_{i} is not a non-trivial integral multiple of any element of N. The fundamental system of generators $\left\{\varphi_{1}, \cdots \varphi_{l}\right\}$ of C is uniquely determined by C and is denoted by $|C|$. We consider the following:
(I) $m:\left\{\left|C^{\prime}\right| \mid C^{\prime} \in \Delta(1)\right\} \longrightarrow \boldsymbol{Z}^{\oplus r}$
sending φ to $m(\varphi)=\left(m(\varphi)_{1}, \cdots, m(\varphi)_{r}\right)$, and for every C in $\Delta(n)$

$$
m_{c}:|C| \longrightarrow Z^{\oplus r}
$$

so that there exists a permutation $\tau=\tau_{C}$ such that

$$
m_{c}(\varphi)=\left(m_{c}(\varphi)_{1}, \cdots, m_{c}(\varphi)_{r}\right)=\left(m(\varphi)_{\tau(1)}, \cdots, m(\varphi)_{\tau(r)}\right)
$$

for every φ in $|C|$.
Let C be an n-dimensional cone in $\Delta(n)$. Then we have a set of characters $\left\{\xi(C)_{1}, \cdots, \xi(C)_{r}\right\}$ in M by solving, for each $1 \leq i \leq r$, the equations $\varphi\left(\xi(C)_{i}\right)=m_{c}(\varphi)_{i}$ for every φ in $|C|$. Then it is easy to see that (I) is equivalent to the following:
($\left.\mathrm{I}^{\prime}\right) \quad \xi: \Delta(n) \longrightarrow M^{\oplus r}$
sending C to $\xi(C)=\left(\xi(C)_{1}, \cdots, \xi(C)_{r}\right)$ such that there exists a permutation $\tau=\tau_{C, c^{\prime}}$ for every pair of cones C and C^{\prime} in $\Delta(n)$, so that $\varphi\left(\xi(C)_{i}\right)=$ $\varphi\left(\xi\left(C^{\prime}\right)_{\tau(i)}\right)$ for every i and every φ in $|C| \cap\left|C^{\prime}\right|$.
(II) $P: \Delta(n) \times \Delta(n) \longrightarrow G L_{r}(k)$
sending $\left(C, C^{\prime}\right)$ to $P\left(C, C^{\prime}\right)=\left(P\left(C, C^{\prime}\right)_{i j}\right)$ such that $P\left(C, C^{\prime}\right)_{i j} \neq 0$ only if $\varphi\left(\xi(C)_{i}\right) \geq \varphi\left(\xi\left(C^{\prime}\right)_{j}\right)$ for every φ in $|C| \cap\left|C^{\prime}\right|$ and that

$$
P\left(C, C^{\prime}\right) P\left(C^{\prime}, C^{\prime \prime}\right)=P\left(C, C^{\prime \prime}\right)
$$

for every $C, C^{\prime}, C^{\prime \prime}$ in $\Delta(n)$.
For (m, P) defined by (I) and (II), we denote by $E(m, P)$ the T-linearized vector bundle obtained from (m, P). We refer the reader to [4] as for the construction of the T-linearized vector bundle $E(m, P)$.
(III) Two pairs (m, P) and (m^{\prime}, P^{\prime}) defined by (I) and (II) are said to be equivalent if there exists a permutation $\tau=\tau_{C}$ for every C in $\Delta(n)$ such that

$$
\left(m_{c}(\varphi)_{1}, \cdots, m_{c}(\varphi)_{r}\right)=\left(m_{c}^{\prime}(\varphi)_{\tau(1)}, \cdots, m_{c}^{\prime}(\varphi)_{\tau(r)}\right)
$$

for every φ in $|C|$ and if there exists

$$
\sigma: \Delta(n) \longrightarrow G L_{r}(k)
$$

such that $\sigma(C)_{i j} \neq 0$ only if $\varphi\left(\xi(C)_{i}\right) \geq \varphi\left(\xi(C)_{j}\right)$ for every φ in $|C|$ and such that

$$
P^{\prime}\left(C, C^{\prime}\right)=\sigma(C)^{-1} P\left(C, C^{\prime}\right) \sigma\left(C^{\prime}\right)
$$

holds for every C and C^{\prime} in $\Delta(n)$.
Theorem 1.3 (cf. ([4]). Let $X=T_{N}$ emb (Δ) be a smooth complete toric variety defined by a fan 4 . Then the set of T-linearized vector bundles of rank r up to T-isomorphism corresponds bijectively to the set of (I) (or (I')) and (II) up to the equivalence (III).

Remark 1.4 Let D_{φ} be the divisor corresponding to the cone $\boldsymbol{R}_{0} \varphi$ in $\Delta(1)$. Put $m_{\varphi}=m(\varphi)$ where m is defined by (I) in the case $r=1$. Let
$P\left(C, C^{\prime}\right)=1$ for every C and C^{\prime} in $\Delta(n)$. Then the T-linearized vector bundle $E(m, P)$ is the line bundle $\mathcal{O}_{X}\left(-\sum m_{\varphi} D_{\varphi}\right)$, where the summation is taken over φ in $\{\mid C \| C \in \Delta(1)\}$.

Remark 1.5. Let $E=E(m, P)$ be the T-linearized vector bundle of rank r defined by (m, P). Then $E \otimes \mathcal{O}_{X}\left(-\sum m_{n} D_{\varphi}\right)$ is T-isomorphic to $E\left(m^{\prime}, P\right)$, where

$$
m^{\prime}(\varphi)=\left(m(\varphi)_{1}+m_{\varphi}, \cdots, m(\varphi)_{r}+m_{\varphi}\right)
$$

for every φ in $\{|C| \mid C \in \Delta(1)\}$. The dual vector bundle E^{*} is T-isomorphic to $E\left(-m,{ }^{t} P^{-1}\right)$, where

$$
{ }^{t} P^{-1}\left(C, C^{\prime}\right)={ }^{t} P\left(C, C^{\prime}\right)^{-1}
$$

and

$$
-m(\varphi)=\left(-m(\varphi)_{1}, \cdots,-m(\varphi)_{r}\right)
$$

for every φ in $\{|C| \mid C \in \Delta(1)\}$.

§2. Some lemmas

Lemma 2.1. Let C and C^{\prime} be two cones in $\Delta(n)$. Suppose $P\left(C, C^{\prime}\right)_{i i} \neq 0$ holds for every i. Then $\varphi\left(\xi(C)_{i}\right)=\varphi\left(\xi\left(C^{\prime}\right)_{i}\right)$ holds for every i and every φ in $|C| \cap\left|C^{\prime}\right|$.

Proof. Since $P\left(C, C^{\prime}\right)_{i i} \neq 0$ we have $\varphi\left(\xi(C)_{i}\right) \geq \varphi\left(\xi\left(C^{\prime}\right)_{i}\right)$ for every i and every φ in $|C| \cap\left|C^{\prime}\right|$. Hence

$$
\varphi\left(\xi(C)_{1}\right)+\cdots+\varphi\left(\xi(C)_{r}\right) \geq \varphi\left(\xi\left(C^{\prime}\right)_{1}\right)+\cdots+\varphi\left(\xi\left(C^{\prime}\right)_{r}\right)
$$

Since the two sets $\left\{\varphi\left(\xi(C)_{1}\right), \cdots, \varphi\left(\xi(C)_{r}\right)\right\}$ and $\left\{\varphi\left(\xi\left(C^{\prime}\right)_{1}\right), \cdots, \varphi\left(\xi\left(C^{\prime}\right)_{r}\right)\right\}$ are the same sets by (I^{\prime}), we have

$$
\varphi\left(\xi(C)_{1}\right)+\cdots+\varphi\left(\xi(C)_{r}\right)=\varphi\left(\xi\left(C^{\prime}\right)_{1}\right)+\cdots+\varphi\left(\xi\left(C^{\prime}\right)_{r}\right) .
$$

Therefore $\varphi\left(\xi(C)_{1}\right)=\varphi\left(\xi\left(C^{\prime}\right)_{1}\right), \cdots, \varphi\left(\xi(C)_{r}\right)=\varphi\left(\xi\left(C^{\prime}\right)_{r}\right)$ for every φ in $|C| \cap\left|C^{\prime}\right|$.
Lemma 2.2. Let C and C^{\prime} be two cones in $\Delta(n)$ such that $C \cap C^{\prime}$ is in $\Delta(n-1)$. Then, by rearranging $\left\{\xi(C)_{1}, \cdots, \xi(C)_{r}\right\}$ and $\left\{\xi\left(C^{\prime}\right)_{1}, \cdots, \xi\left(C^{\prime}\right)_{r}\right\}$ and replacing (m, P) by an equivalent pair, we can reduce the matrix $P\left(C, C^{\prime}\right)$ to an upper triangular matrix.

Proof. Put $P=P\left(C, C^{\prime}\right)$. Since $\operatorname{det}(P) \neq 0$, we may assume that $P_{i i} \neq 0$ for every i by rearranging $\left\{\xi(C)_{i}\right\}$ and $\left\{\hat{\xi}\left(C^{\prime}\right)_{i}\right\}$. Suppose that $P_{h k} \neq 0$
and $P_{k h}=0$ for some $h, k(h>k)$. Then, by interchanging $\xi(C)_{h}$ with $\xi(C)_{k}$ and $\xi\left(C^{\prime}\right)_{k}$ with $\xi\left(C^{\prime}\right)_{k}$ we have $P_{h k}=0, P_{k_{h}} \neq 0$. So we may further assume that if $P_{n k} \neq 0$ for $h>k$ then $P_{k n} \neq 0$.

Suppose that P is not an upper triangular matrix. Then we take minimal k such that $P_{h k} \neq 0$ for some $h>k$. Then $P_{i j}=0$ for $j<k$ and $i>j$. Since $P_{h k} \neq 0$ and $P_{k h} \neq 0$ by assumption, we have

$$
\varphi\left(\xi(C)_{k}\right) \geq \varphi\left(\xi\left(C^{\prime}\right)_{k}\right) \quad \text { and } \quad \varphi\left(\xi(C)_{k}\right) \geq \varphi\left(\xi\left(C^{\prime}\right)_{h}\right)
$$

for every φ. in $|C| \cap\left|C^{\prime}\right|$. Consequently, for φ in $|C| \cap\left|C^{\prime}\right|$, we have $\varphi\left(\xi(C)_{h}\right)$ $>\varphi\left(\xi\left(C^{\prime}\right)_{k}\right)$ if $\varphi\left(\xi(C)_{k}\right)>\varphi\left(\xi(C)_{k}\right)$, while $\varphi\left(\xi(C)_{k}\right)>\varphi\left(\xi\left(C^{\prime}\right)_{k}\right)$ if $\varphi\left(\xi(C)_{h}\right)<$ $\varphi\left(\xi(C)_{k}\right)$, a contradiction by Lemma 2.1. Therefore we have

$$
\varphi\left(\xi(C)_{h}\right)=\varphi\left(\xi(C)_{k}\right) \quad \text { for every } \varphi \text { in }|C| \cap\left|C^{\prime}\right|
$$

Since $C \cap C^{\prime}$ is in $\Delta(n-1)$, put $|C|-|C| \cap\left|C^{\prime}\right|=\{\psi\}$. Suppose $\psi\left(\xi(C)_{h}\right)$ $<\psi\left(\xi(C)_{k}\right)$. Then we interchange $\xi(C)_{k}$ and $\xi(C)_{k}$. This procedure interchanges $P_{k i}$ with $P_{k i}$ for each $1 \leq i \leq r$. Therefore the minimality of k is preserved. Hence we may assume that

$$
\varphi\left(\xi(C)_{h}\right) \geq \varphi\left(\xi(C)_{k}\right) \quad \text { for every } \varphi \text { in }|C|
$$

Now we define $\sigma(C)=\left(\sigma(C)_{i j}\right)$ by

$$
\sigma(C)_{i j}= \begin{cases}1 & \text { for } i=j \\ c \neq 0 & \text { for } i=h \\ 0 & \text { otherwise }\end{cases}
$$

and replace (m, P) by an equivalent pair using this $\sigma(C)$. This is allowed by what we have just seen. In this way, we can reduce ourselves to the case $P_{h k}=0$. Hence we have $P_{i k}=0$ for all $i(i>k)$. After this replacement, however. $P_{i i}$ may be zero for $i>k$. By rearranging $\left\{\xi(C)_{k+1}\right.$, $\left.\cdots, \xi(C)_{r}\right\}$ and $\left\{\xi\left(C^{\prime}\right)_{k+1}, \cdots, \xi\left(C^{\prime}\right)_{r}\right\}$, we may assume that $P_{i i} \neq 0$ for every i. So we can repeat the same procedure, which will terminate after finitely many steps and leads to an upper triangular matrix P.

Lemma 2.3. Let $C, C^{\prime}, C^{\prime \prime}$ be three distinct cones in $\Delta(n)$ such that $C^{\prime} \cap C^{\prime \prime}$ is in $\Delta(n-1)$. Then, by rearranging $\left\{\xi(C)_{i}\right\},\left\{\xi\left(C^{\prime}\right)_{i}\right\}$ and $\left\{\xi\left(C^{\prime \prime}\right)_{i}\right\}$ and replacing (m, P) by an equivalent pair, we can reduce ourselves to the situation where $P\left(C^{\prime}, C^{\prime \prime}\right)$ is an upper triangular matrix and $P\left(C, C^{\prime}\right)_{i i} \neq 0$ for every i.

Proof. By Lemma 2.2, $P\left(C^{\prime}, C^{\prime \prime}\right)$ is first reduced to an upper triangular matrix. Since $\operatorname{det}\left(P\left(C, C^{\prime}\right)\right) \neq 0$, we have $P\left(C, C^{\prime}\right)_{i i} \neq 0$ by rearranging $\left\{\xi(C)_{1}, \cdots, \xi(C)_{r}\right\}$.

Corollary 2.4. Let $C, C^{\prime}, C^{\prime \prime}$ be three distinct cones in $\Delta(n)$ such that $C^{\prime} \cap C^{\prime \prime}$ is in $\Delta(n-1)$. Then by rearranging $\left\{\xi(C)_{i}\right\},\left\{\xi\left(C^{\prime}\right)_{i}\right\}$ and $\left\{\xi\left(C^{\prime \prime}\right)_{i}\right\}$ and replacing (m, P) by an equivalent pair, we may assume that

$$
\varphi\left(\xi(C)_{i}\right)=\varphi\left(\xi\left(C^{\prime}\right)_{i}\right) \quad \text { for every } \varphi \text { in }|C| \cap\left|C^{\prime}\right|
$$

and

$$
\varphi\left(\xi\left(C^{\prime}\right)_{i}\right)=\varphi\left(\xi\left(C^{\prime \prime}\right)_{i}\right) \quad \text { for every } \varphi \text { in }\left|C^{\prime}\right| \cap\left|C^{\prime \prime}\right|
$$

hold for every i.
Lemma 2.5. Let $C, C^{\prime}, C^{\prime \prime}$ be three distinct cones in $\Delta(n)$ such that $C \cap C^{\prime}$ is in $\Delta(n-1)$. Suppose that $P\left(C^{\prime}, C^{\prime \prime}\right)=I$ is the identity matrix. Then, by rearranging $\left\{\xi(C)_{i}\right\},\left\{\xi\left(C^{\prime}\right)_{i}\right\}$ and $\left\{\xi\left(C^{\prime \prime}\right)_{i}\right\}$ and replacing (m, P) by an equivalent pair, we can reduce ourselves to the situation where $P\left(C, C^{\prime}\right)$ is an upper triangular matrix and $P\left(C^{\prime}, C^{\prime \prime}\right)=I$.

Proof. By Lemma 2.2, $P\left(C, C^{\prime}\right)$ is reduced to an upper triangular matrix. In this case, $\left\{\xi\left(C^{\prime}\right)_{1}, \cdots, \xi\left(C^{\prime}\right)_{r}\right\}$ is only rearranged. If we rearrange $\left\{\xi\left(C^{\prime \prime}\right)_{1}, \cdots, \xi\left(C^{\prime \prime}\right)_{r}\right\}$ exactly as $\left\{\xi\left(C^{\prime}\right)_{1}, \cdots, \xi\left(C^{\prime}\right)_{r}\right\}$ is rearranged, then $P\left(C^{\prime}, C^{\prime \prime}\right)$ remains the identity matrix.

Lemma 2.6. Let C and C^{\prime} be two cones in $\Delta(n)$. Suppose that $P=$ $P\left(C, C^{\prime}\right)$ is an upper triangular matrix. Let φ be in $|C| \cap\left|C^{\prime}\right|$. Then, by rearranging $\left\{\xi(C)_{i}\right\}$ and $\left\{\xi\left(C^{\prime}\right)_{i}\right\}$, we may assume that $P\left(C, C^{\prime}\right)$ is an upper triangular matrix and that

$$
\varphi\left(\xi(C)_{1}\right) \geq \varphi\left(\xi(C)_{2}\right) \geq \cdots \geq \varphi\left(\xi(C)_{r}\right)
$$

and

$$
\varphi\left(\xi\left(C^{\prime}\right)_{1}\right) \geq \varphi\left(\xi\left(C^{\prime}\right)_{2}\right) \geq \cdots \geq \varphi\left(\xi\left(C^{\prime}\right)_{r}\right)
$$

hold.
Proof. Suppose $\varphi\left(\xi(C)_{h}\right)<\varphi\left(\xi(C)_{h+1}\right)$. Since $\varphi\left(\xi(C)_{i}\right)=\varphi\left(\xi\left(C^{\prime}\right)_{i}\right)$ for every i by Lemma 2.1, we have $P_{h, h+1}=0$. Hence we have $P_{h, h} \neq 0$, $P_{h+1, h+1} \neq 0, P_{h, h+1}=0, P_{h+1, h}=0$. By interchanging the order of $\xi(C)_{h}$ and $\xi(C)_{h+1}$ as well as $\xi\left(C^{\prime}\right)_{h}$ and $\xi\left(C^{\prime}\right)_{h+1}$, we have $\varphi\left(\xi(C)_{h}\right)>\varphi\left(\xi(C)_{h+1}\right)$. After a finite repetition of this process we are done.

Corollary 2.7. Let C, C^{\prime} be two cones in $\Delta(n)$. Suppose that $P\left(C, C^{\prime}\right)$ is an upper triangular matrix. Let $\varphi_{1}, \cdots, \varphi_{l}$ be elements in $|C| \cap\left|C^{\prime}\right|$. Then, by rearranging $\left\{\xi(C)_{i}\right\}$ and $\left\{\xi\left(C^{\prime}\right)_{i}\right\}$, we may assume that $P\left(C, C^{\prime}\right)$ is an upper triangular matrix and that for every pair of h and $k(h>k)$, one of the following conditions holds:
(a) $\varphi_{i}\left(\xi(C)_{k}\right)=\varphi_{i}\left(\xi(C)_{k+1}\right)=\cdots=\varphi_{i}\left(\xi(C)_{h}\right) \quad$ for $1 \leq i \leq l$.
(b) There exists $v(\leq l)$ such that

$$
\varphi_{i}\left(\xi(C)_{k}\right)=\varphi_{i}\left(\xi(C)_{k+1}\right)=\cdots=\varphi_{i}\left(\xi(C)_{h}\right) \quad \text { for } 1 \leq i<v
$$

and

$$
\varphi_{v}\left(\xi(C)_{k}\right)>\varphi_{v}\left(\xi(C)_{k}\right) .
$$

Proof. We first apply Lemma 2.6 to φ_{1}. If $\varphi_{1}\left(\xi(C)_{k}\right)=\cdots=\varphi_{1}\left(\xi(C)_{h}\right)$, then we further apply Lemma 2.6 to φ_{2} with respect to $\left\{\xi(C)_{k}, \cdots, \xi(C)_{h}\right\}$ only. Repeating this procedure, we are done.

§3. The case of \boldsymbol{P}^{n}

From this section on, we restrict ourselves to the case $X=P^{n}$ and consider a T-linearized vector bundle $E=E(m, P)$ of rank $r(r \geq 2)$ on \boldsymbol{P}^{n}. When $n=1$, a vector bundle on \boldsymbol{P}^{1} is split. Hence we assume $n \geq 2$. Let $\left\{\varphi_{1}, \cdots, \varphi_{n}\right\}$ be a Z-base of N and let $\varphi_{0}=-\varphi_{1}-\varphi_{2}-\cdots-\varphi_{n}$. Let Δ be the fan defined by $\left\{\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right\}$, i.e., $\Delta(n)$ consists of $C_{i}=\sum_{j \neq i} \boldsymbol{R}_{0} \varphi_{j}$ $(i=0,1, \cdots, n)$. Then $\boldsymbol{P}^{n}=T_{N} \operatorname{emb}(\Delta)$ and $U_{C_{i}}=\left\{X_{i} \neq 0\right\}$ is the affine open set in \boldsymbol{P}^{n} corresponding to C_{i}, where X_{0}, \cdots, X_{n} are homogeneous coordinates. In this case we note that $C \cap C^{\prime}$ is an ($n-1$)-dimensional cone in Δ for every pair of cones C and C^{\prime} in $\Delta(n)$.

Proposition 3.1. Suppose that $P\left(C^{\prime}, C^{\prime \prime}\right)=I$ is the identity matrix for some C^{\prime} and $C^{\prime \prime}$ in $\Delta(n)$ with $C^{\prime} \neq C^{\prime \prime}$. Then the T-linearized vector bundle E is a direct sum of T-linearized line bundles, hence, in particular, decomposable.

Proof. Let C be another cone in $\Delta(n)$. By Lemma 2.5, we may assume that $P=P\left(C, C^{\prime}\right)$ is an upper triangular matrix and $P\left(C^{\prime}, C^{\prime \prime}\right)=I$. We show that P can be reduced to the identity matrix. Suppose $P_{h k} \neq 0$ for some h and $k(h<k)$. Then $\varphi\left(\xi(C)_{h}\right) \geq \varphi\left(\xi\left(C^{\prime}\right)_{k}\right)$ for every φ in $|C| \cap C^{\prime} \mid$, while $\varphi\left(\xi(C)_{k}\right)=\varphi\left(\xi\left(C^{\prime}\right)_{k}\right)$ by Lemma 2.1. Hence we have $\varphi\left(\xi(C)_{h}\right) \geq \varphi\left(\xi(C)_{k}\right)$ for every φ in $|C| \cap\left|C^{\prime}\right|$.

Put $\{\psi\}=|C|-|C| \cap\left|C^{\prime}\right|$. Then ψ is in $|C| \cap\left|C^{\prime \prime}\right|$ by the definition of Δ. Assume now that $\psi\left(\xi(C)_{n}\right)<\psi\left(\xi(C)_{k}\right)$. Since $P\left(C, C^{\prime \prime}\right)=P\left(C, C^{\prime}\right)$ $P\left(C^{\prime}, C^{\prime \prime}\right)=P$ we have $P\left(C, C^{\prime \prime}\right)_{h k}=P_{h k} \neq 0$, and $\varphi\left(\xi(C)_{h}\right) \geq \varphi\left(\xi\left(C^{\prime \prime}\right)_{k}\right)$ for every φ. in $|C| \cap\left|C^{\prime \prime}\right|$. Therefore, since ψ is in $|C| \cap\left|C^{\prime \prime}\right|$, we have $\psi\left(\xi(C)_{k}\right)$ $>\psi\left(\xi(C)_{h}\right) \geq \psi\left(\xi\left(C^{\prime \prime}\right)_{k}\right)$. This is a contradiction to Lemma 2.1 since $P\left(C, C^{\prime \prime}\right)=P$ is an upper triangular matrix and $\operatorname{det}(P) \neq 0$. So we have $\psi\left(\xi(C)_{n}\right) \geq \psi\left(\xi(C)_{k}\right)$. Since $|C|=\left(|C| \cap\left|C^{\prime}\right|\right) \cup\{\psi\}$ we have $\varphi\left(\xi(C)_{k}\right) \geq \varphi\left(\xi(C)_{k}\right)$ for every φ in $|C|$. Now we define $\sigma(C)=\left(\sigma(C)_{i j}\right)$ by

$$
\sigma(C)_{i j}= \begin{cases}1 & \text { for } i=j, \\ c \neq 0 & \text { for } i=h \text { and } j=k \\ 0 & \text { otherwise }\end{cases}
$$

and replace (m, P) by an equivalent pair using this $\sigma(C)$. Then we can reduce ourselves to the case $P\left(C, C^{\prime}\right)_{h k}=0$. If this process is repeated for all $P\left(C, C^{\prime}\right)_{h k} \neq 0(h \neq k)$, then finally $P\left(C, C^{\prime}\right)$ will become a diagonal matrix. By taking $\sigma^{\prime}(C)=\left(\sigma^{\prime}(C)_{i j}\right)$ with $\sigma^{\prime}(C)_{i j}=P\left(C, C^{\prime}\right)_{i j}$ and replacing (m, P) by an equivalent pair using this $\sigma^{\prime}(C)$, we may assume $P\left(C, C^{\prime}\right)=I$. Hence $P\left(C, C^{\prime \prime}\right)=I$.

Furthermore, if $n \geq 3$, let C^{*} be another cone in $\Delta(n)$. We apply the same process to $P\left(C^{*}, C^{\prime}\right)$. Then we may assume $P\left(C^{*}, C^{\prime}\right)=I$. Hence

$$
P\left(C, C^{*}\right)=P\left(C, C^{\prime}\right) P\left(C^{*}, C^{\prime}\right)^{-1}=I
$$

Therefore all $P\left(C, C^{*}\right)$ can be reduced to the identity matrix. This means that the T-linearized vector bundle E is a direct sum of T-linearized line bundles by the very construction of $E(m, P)$.

Proposition 3.2. Suppose that $P\left(C, C^{\prime}\right), P\left(C^{\prime}, C^{\prime \prime}\right)$ and $P\left(C^{\prime \prime}, C\right)$ are upper triangular matrices for some triple of pairwise distinct cones C, C^{\prime} and $C^{\prime \prime}$ in $\Delta(n)$. Then the T-linearized vector bundle E is a direct sum of T-linearized line bundles.

Proof. Concerning the first row of P for (m, P), we suppose that there exists $s>1$ such that

$$
P\left(C, C^{\prime}\right)_{1 j}=0, \quad P\left(C^{\prime}, C^{\prime \prime}\right)_{1 j}=0, \quad P\left(C^{\prime \prime}, C\right)_{1 j}=0 \quad \text { for } 1<j<s
$$

and that

$$
P\left(C, C^{\prime}\right)_{1 s} \neq 0, \quad P\left(C^{\prime \prime}, C\right)_{1 s} \neq 0
$$

Then, since $P\left(C, C^{\prime}\right)_{1 s} \neq 0$ and $P\left(C^{\prime \prime}, C\right)_{1 s} \neq 0$, we have

$$
\varphi\left(\xi(C)_{1}\right) \geq \varphi\left(\xi\left(C^{\prime}\right)_{s}\right) \quad \text { for every } \varphi \text { in }|C| \cap\left|C^{\prime}\right|
$$

and

$$
\varphi\left(\xi\left(C^{\prime \prime}\right)_{1}\right) \geq \varphi\left(\xi(C)_{s}\right) \quad \text { for every } \varphi \text { in }\left|C^{\prime \prime}\right| \cap|C|
$$

Since, by Lemma 2.1,

$$
\varphi\left(\xi(C)_{s}\right)=\varphi\left(\xi\left(C^{\prime}\right)_{s}\right) \quad \text { for every } \varphi \text { in }|C| \cap\left|C^{\prime}\right|
$$

and

$$
\varphi\left(\xi(C)_{1}\right)=\varphi\left(\xi\left(C^{\prime \prime}\right)_{1}\right) \quad \text { for every } \varphi \text { in }\left|C^{\prime \prime}\right| \cap|C|
$$

we have

$$
\varphi\left(\xi(C)_{1}\right) \geq \varphi\left(\xi(C)_{s}\right) \quad \text { for every } \varphi \text { in }|C| \cap\left|C^{\prime}\right|
$$

and

$$
\varphi\left(\xi(C)_{1}\right) \geq \varphi\left(\xi(C)_{s}\right) \quad \text { for every } \varphi \text { in }\left|C^{\prime \prime}\right| \cap|C|
$$

Since $|C|=\left(|C| \cap\left|C^{\prime}\right|\right) \cup\left(|C| \cap\left|C^{\prime \prime}\right|\right)$ we have

$$
\varphi\left(\xi(C)_{1}\right) \geq \varphi\left(\xi(C)_{s}\right) \quad \text { for every } \varphi \text { in }|C|
$$

We define $\sigma(C)=\left(\sigma(C)_{i j}\right)$ by

$$
\sigma(C)_{i j}= \begin{cases}1 & \text { for } i=j, \\ c \neq 0 & \text { for } i=1 \text { and } j=s, \\ 0 & \text { otherwise }\end{cases}
$$

and replace (m, P) by an equivalent pair using this $\sigma(C)$. Then we can reduce ourselves to the case $P\left(C, C^{\prime}\right)_{1 s}=0$. Furthermore if $P\left(C^{\prime \prime}, C\right)_{1 s} \neq 0$ or $P\left(C^{\prime}, C^{\prime \prime}\right)_{1 s} \neq 0$ we do the same. Then we are reduced to the case $P\left(C^{\prime \prime}, C\right)_{1 s}=0$, hence $P\left(C^{\prime}, C^{\prime \prime}\right)_{1 s}=0$. Thus we may assume that

$$
P\left(C, C^{\prime}\right)_{1 j}=0, \quad P\left(C^{\prime}, C^{\prime \prime}\right)_{1 j}=0, \quad P\left(C^{\prime \prime}, C\right)_{1 j}=0 \quad \text { for } j \neq 1
$$

Repaet the same process to the other rows successively. Then $P\left(C, C^{\prime}\right)$, $P\left(C^{\prime}, C^{\prime \prime}\right)$ and $P\left(C^{\prime \prime}, C\right)$ become diagonal matrices. We define $\sigma(C)=$ $\left(\sigma(C)_{i j}\right)$ by $\sigma(C)_{i j}=P\left(C, C^{\prime}\right)_{i_{j}}$ and replace (m, P) by an equivalent pair using this $\sigma(C)$. Then we are reduced to the case $P\left(C, C^{\prime}\right)=I$. Therefore, by Proposition 3.1, the T-linearized vector bundle E is a direct sum of T-linearized line bundles.

Corollary 3.3. Suppose that $P\left(C, C^{\prime}\right)$ and $P\left(C^{\prime}, C^{\prime \prime}\right)$ are upper triangular martices for some triple of pairwise distinct cones C, C^{\prime} and $C^{\prime \prime}$ in
$\Delta(n)$. Then the T-linearized vector bundle E is a direct sum of T-linearized line bundles.

Theorem 3.4. Let $r>1$ and $n \geq 2$. For a pair (m, P), suppose the corresponding T-linearized vector bundle $E=E(m, P)$ on P^{n} of rank r is indecomposable. Put $|C|=\left\{\varphi_{1}, \cdots, \varphi_{n}\right\}$ for a cone C in $\Delta(n)$. Then, for any pair of distinct integers s and $t(1 \leq s, t \leq n)$, there exist two integers h and k such that

$$
\varphi_{s}\left(\xi(C)_{k}\right)<\varphi_{s}\left(\xi(C)_{k}\right), \quad \varphi_{t}\left(\xi(C)_{h}\right)>\varphi_{t}\left(\xi(C)_{k}\right)
$$

and

$$
\varphi_{i}\left(\xi(C)_{n}\right)=\varphi_{i}\left(\xi(C)_{k}\right) \quad \text { for } i \neq s, t
$$

Proof. We prove the assertion only when $s=1$ and $t=2$ since the proof in general is the same. Since we are working on \boldsymbol{P}^{n}, there exist C^{\prime} and $C^{\prime \prime}$ in $\Delta(n)$ such that

$$
\left|C^{\prime}\right|=\left\{\varphi_{0}, \varphi_{2}, \varphi_{3}, \cdots, \varphi_{n}\right\}, \quad\left|C^{\prime \prime}\right|=\left\{\varphi_{0}, \varphi_{1}, \varphi_{3}, \cdots, \varphi_{n}\right\}
$$

for some $\varphi_{0} \in N$. By Lemma 2.3, we assume that $P\left(C, C^{\prime}\right)_{i i} \neq 0$ for every i and that $P\left(C^{\prime}, C^{\prime \prime}\right)$ is an upper triangular matrix. Hence by Lemma 2.1, we get

$$
\varphi\left(\xi(C)_{i}\right)=\varphi\left(\xi\left(C^{\prime}\right)_{i}\right) \quad \text { for every } \varphi \text { in }|C| \cap\left|C^{\prime}\right|=\left\{\varphi_{2}, \varphi_{3}, \cdots, \varphi_{n}\right\}
$$

and

$$
\varphi\left(\xi\left(C^{\prime}\right)_{i}\right)=\varphi\left(\xi\left(C^{\prime \prime}\right)_{i}\right) \quad \text { for every } \varphi \text { in }\left|C^{\prime}\right| \cap\left|C^{\prime \prime}\right|=\left\{\varphi_{1}, \varphi_{3}, \cdots, \varphi_{n}\right\}
$$

Therefore

$$
\varphi\left(\xi(C)_{i}\right)=\varphi\left(\xi\left(C^{\prime}\right)_{i}\right)=\varphi\left(\xi\left(C^{\prime \prime}\right)_{i}\right)
$$

for every φ in $|C| \cap\left|C^{\prime}\right| \cap\left|C^{\prime \prime}\right|=\left\{\varphi_{3}, \varphi_{4}, \cdots, \varphi_{n}\right\}$. If $n=2$ then this amounts to nothing since $|C| \cap\left|C^{\prime}\right| \cap\left|C^{\prime \prime}\right|=\varnothing$. When $n \geq 3$, we further apply Corollary 2.7 to $\varphi_{3}, \cdots, \varphi_{n}$ and $P\left(C^{\prime}, C^{\prime \prime}\right)$ and may assume that $P\left(C^{\prime}, C^{\prime \prime}\right)$ is an upper triangular matrix and that for every pair h and $k(h>k)$, one of the following conditions holds:
(a) $\varphi_{i}\left(\xi(C)_{k}\right)=\varphi_{i}\left(\xi(C)_{k+1}\right)=\cdots=\varphi_{i}\left(\xi(C)_{n}\right) \quad$ for $3 \leq i \leq n$.
(b) There exists v such that

$$
\varphi_{i}\left(\xi(C)_{k}\right)=\varphi_{i}\left(\xi(C)_{k+1}\right)=\cdots=\varphi_{i}\left(\xi(C)_{k}\right) \quad \text { for } 3 \leq i<v
$$

and

$$
\varphi_{v}\left(\xi(C)_{k}\right)>\varphi_{v}\left(\xi(C)_{h}\right) .
$$

$P\left(C, C^{\prime}\right)$ cannot be reduced to an upper triangular matrix, since, otherwise, E would be decomposable by Corollary 3.3 contradicting our assumption. Thus there exist integers $h>k$ such that $P\left(C, C^{\prime}\right)_{h k} \neq 0$. Then we have $\varphi\left(\xi(C)_{k}\right) \geq \varphi\left(\xi\left(C^{\prime}\right)_{k}\right)$ for every φ in $|C| \cap\left|C^{\prime}\right|$. Since $\varphi\left(\xi(C)_{k}\right)$ $=\varphi\left(\xi\left(C^{\prime}\right)_{k}\right)$ for every φ in $|C| \cap\left|C^{\prime}\right|$, we have $\varphi\left(\xi(C)_{k}\right) \geq \varphi\left(\xi(C)_{k}\right)$ for every φ in $|C| \cap\left|C^{\prime}\right|$, hence for every φ in $\left\{\varphi_{3}, \cdots, \varphi_{n}\right\}=|C| \cap\left|C^{\prime}\right| \cap\left|C^{\prime \prime}\right|$. This means, by (a) and (b) above, that

$$
\varphi\left(\xi(C)_{k}\right)=\varphi\left(\xi(C)_{k+1}\right)=\cdots=\varphi\left(\xi(C)_{k}\right)
$$

for every φ in $\left\{\varphi_{3}, \cdots, \varphi_{n}\right\}$. Since φ_{2} is in $|C| \cap\left|C^{\prime}\right|$, we have $\varphi_{2}\left(\xi(C)_{h}\right) \geq$ $\varphi_{2}\left(\xi(C)_{k}\right)$ as we saw above. Hence we have the following four possibilities:

1. $\varphi_{1}\left(\xi(C)_{h}\right) \geq \varphi_{1}\left(\xi(C)_{k}\right)$ and $\varphi_{2}\left(\xi(C)_{h}\right)=\varphi_{2}\left(\xi(C)_{k}\right)$,
2. $\varphi_{1}\left(\xi(C)_{k}\right)<\varphi_{1}\left(\xi(C)_{k}\right)$ and $\varphi_{2}\left(\xi(C)_{h}\right)=\varphi_{2}\left(\xi(C)_{k}\right)$,
3. $\varphi_{1}\left(\xi(C)_{h}\right) \geq \varphi_{1}\left(\xi(C)_{k}\right)$ and $\varphi_{2}\left(\xi(C)_{h}\right)>\varphi_{2}\left(\xi(C)_{k}\right)$,
4. $\varphi_{1}\left(\xi(C)_{h}\right)<\varphi_{1}\left(\xi(C)_{k}\right)$ and $\varphi_{2}\left(\xi(C)_{h}\right)>\varphi_{2}\left(\xi(C)_{k}\right)$.

We now show that the case 4 happens for some h and $k(h>k)$ such that $P\left(C, C^{\prime}\right)_{h k} \neq 0$. Suppose that the case 4 does not happen for any such h, k. Then, by interchanging $\xi(C)_{h}$ and $\xi(C)_{k}$ if the case 2 happens, we have

$$
\varphi\left(\xi(C)_{k}\right) \geq \varphi\left(\xi(C)_{k}\right) \quad \text { for every } \varphi \text { in }|C| .
$$

Now we take the smallest k such that $P\left(C, C^{\prime}\right)_{h k} \neq 0$ for some $h>k$. We define $\sigma(C)=\left(\sigma(C)_{i j}\right)$ by

$$
\sigma(C)_{i_{j}}= \begin{cases}1 & \text { for } i=j, \\ c \neq 0 & \text { for } i=h \text { and } j=k \\ 0 & \text { otherwise },\end{cases}
$$

and replace (m, P) by an equivalent pair using this $\sigma(C)$. Then we can reduce ourselves to the case $P\left(C, C^{\prime}\right)_{h k}=0$. Repeating the same procedure for every h such that $h>k$ and $P\left(C, C^{\prime}\right)_{h k} \neq 0$, we have $P\left(C, C^{\prime}\right)_{i k}$ $=0$ for all $i>k$. After this procedure, $P\left(C, C^{\prime}\right)_{i i}$ may be zero for some i, but, by rearranging the order of $\left\{\hat{\xi}(C)_{k+1}, \cdots, \xi(C)_{r}\right\}$, we have $P\left(C, C^{\prime}\right)_{i i}$ $\neq 0$ for all $i>k$. So we can successively apply the same procedure, and $P\left(C, C^{\prime}\right)$ is finally reduced to an upper triangular matrix. By Corollary 3.3 , this is a contradiction to the indecomposability of E. Therefore there exist h and k such that

$$
\varphi_{1}\left(\xi(C)_{k}\right)<\varphi_{1}\left(\xi(C)_{k}\right), \quad \varphi_{2}\left(\xi(C)_{k}\right)>\varphi_{2}\left(\xi(C)_{k}\right)
$$

and

$$
\varphi_{i}\left(\xi(C)_{n}\right)=\varphi_{i}\left(\xi(C)_{k}\right) \quad \text { for } i \geq 3 .
$$

Corollary 3.5. Suppose $1<r \leq n(n \geq 2)$ and let E be an indecomposable T-linearized vector bundle of rank r on \boldsymbol{P}^{n}. Then we have:
(1) $r=n$.
(2) For every $C \in \Delta(n)$ and every φ in $|C|$, all except one of $\left\{\varphi\left(\xi(C)_{1}\right)\right.$, $\left.\cdots, \varphi\left(\xi(C)_{n}\right)\right\}$ are the same integers.
(3) Let $C=R_{0} \varphi_{1}+\cdots+R_{0} \varphi_{n}$ be in $\Delta(n)$. We can tensor a suitable T-linearized line bundle to E and rearrange the order of $\left\{\xi(C), \cdots, \xi(C)_{n}\right\}$, so that the following hold for every $i=1, \cdots, n$:

$$
\varphi_{i}\left(\xi(C)_{i}\right)=a_{i} \quad \text { and } \quad \varphi_{i}\left(\xi(C)_{j}\right)=0 \quad \text { for any } j \neq i .
$$

In this case, a_{1}, \cdots, a_{n} are all positive or all negative.
Proof. Let $|C|=\left\{\varphi_{1}, \cdots, \varphi_{n}\right\}$ for a $C \in \Delta(n)$, and apply Theorem 3.4 to C. For each s, we first see that $\varphi_{s}\left(\xi(C)_{1}\right), \cdots, \varphi_{s}\left(\xi(C)_{r}\right)$ cannot be all equal, since we can pick $t \neq s$ and apply Theorem 3.4 to the pair (s, t).

Clearly, Theorem 3.4 gives a one-to-one map from the set $\{(s, t) \mid 1 \leq s$ $<t \leq n\}$ to the set of pairs $\{h, k\}$ of distinct integers between 1 and r. Thus $n(n-1) / 2 \leq r(r-1) / 2$. Since $r \leq n$ by assumption, we have $r=n$, and the above map must be a bijection.

We can so rearrange $\xi(C)_{1}, \cdots, \xi(C)_{n}$ that for each i, the pair ($1, i$) is sent to the pair $\{1, i\}$ by the above map. Then for each i, we see that $\varphi_{i}\left(\xi(C)_{j}\right)$ are equal for all $j \neq i$.

In view of Remark 1.5, we may tensor a T-linearized line bundle to E so that the following holds for each i :

$$
\varphi_{i}\left(\xi(C)_{i}\right)=a_{i} \quad \text { and } \quad \varphi_{i}\left(\xi(C)_{j}\right)=0 \quad \text { for any } j \neq i
$$

By Theorem 3.4, we see that a_{s}, a_{t} should have the same sign for all $s \neq t$.

§4. Determination of $P\left(C, C^{\prime}\right)$

In this section we consider $P\left(C, C^{\prime}\right)$ for an indecomposable T-linearized vector bundle of rank n on $\boldsymbol{P}^{n}(n \geq 2)$. By Corollary 3.5 , we may assume that, for every C and every φ in $|C|$, we have $\varphi\left(\xi(C)_{i}\right) \geq 0$ and $\varphi\left(\xi(C)_{i}\right)=0$ except for one i. For $C, C^{\prime}, C^{\prime \prime} \in \Delta(n)$, let

$$
\begin{aligned}
|C| & =\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \cdots, \varphi_{n}\right\} \\
\left|C^{\prime}\right| & =\left\{\varphi_{0}, \varphi_{2}, \varphi_{3}, \cdots, \varphi_{n}\right\} \\
\left|C^{\prime \prime}\right| & =\left\{\varphi_{0}, \varphi_{1}, \varphi_{3}, \cdots, \varphi_{n}\right\} .
\end{aligned}
$$

By changing the order of $\left\{\xi(C)_{i}\right\},\left\{\xi\left(C^{\prime}\right)_{i}\right\}$ and $\left\{\xi\left(C^{\prime \prime}\right)_{i}\right\}$, we assume that

$$
\begin{aligned}
\left(\varphi_{0}\left(\xi\left(C^{\prime}\right)_{1}\right), \cdots, \varphi_{0}\left(\xi\left(C^{\prime}\right)_{n}\right)\right) & =\left(\varphi_{0}\left(\xi\left(C^{\prime \prime}\right)_{1}\right), \cdots, \varphi_{0}\left(\xi\left(C^{\prime \prime}\right)_{n}\right)\right) \\
& =(a, 0,0, \cdots, 0) \\
\left(\varphi_{1}\left(\xi(C)_{1}\right), \cdots, \varphi_{1}\left(\xi(C)_{n}\right)\right) & =(b, 0,0, \cdots, 0), \\
\left(\varphi_{1}\left(\xi\left(C^{\prime \prime}\right)_{1}\right), \cdots, \varphi_{1}\left(\xi\left(C^{\prime \prime}\right)_{n}\right)\right) & =(0, b, 0, \cdots, 0) \\
\left(\varphi_{2}\left(\xi(C)_{1}\right), \cdots, \varphi_{2}\left(\xi(C)_{n}\right)\right) & =\left(\varphi_{2}\left(\xi\left(C^{\prime}\right)_{1}\right), \cdots, \varphi_{2}\left(\xi\left(C^{\prime}\right)_{n}\right)\right) \\
& =(0, c, 0, \cdots, 0) \quad(c>0),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\varphi_{i}\left(\xi(C)_{1}\right), \cdots, \varphi_{i}\left(\xi(C)_{n}\right)\right) & =\left(\varphi_{i}\left(\xi\left(C^{\prime}\right)_{1}\right), \cdots, \varphi_{i}\left(\xi\left(C^{\prime}\right)_{n}\right)\right) \\
& =\left(\varphi_{i}\left(\xi\left(C^{\prime \prime}\right)_{1}\right), \cdots, \varphi_{i}\left(\xi\left(C^{\prime \prime}\right)_{n}\right)\right) \\
& =\left(0, \cdots, 0, d_{i}, \cdots, 0\right)
\end{aligned}
$$

for $i \geq 3$, where $d_{i}>0$ is the i-th entry.
Then, by (II), we have

$$
\begin{aligned}
& P\left(C, C^{\prime}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
p_{2} & 1 & 0 & \cdots & 0 \\
p_{3} & 0 & 1 & \cdots & 0 \\
. & . & . & . & . \\
. . & . & . & . & . \\
p_{n} & 0 & 0 & \cdots & 1
\end{array}\right), \quad P\left(C^{\prime}, C^{\prime \prime}\right)=\left(\begin{array}{ccccc}
1 & q_{1} & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & q_{3} & 1 & \cdots & 0 \\
. & . & . & \ddots & . \\
. & . & . & \ddots & . \\
0 & q_{n} & 0 & \cdots & 1
\end{array}\right), \\
& P\left(C^{\prime}, C\right)=\left(\begin{array}{cccccc}
0 & -1 & 0 & \cdots & 0 \\
1 & r_{2} & 0 & \cdots & 0 \\
0 & r_{3} & 1 & \cdots & 0 \\
. & . & . & . & . \\
. . & . & . & . & . \\
0 & r_{n} & 0 & \cdots & 1
\end{array}\right) .
\end{aligned}
$$

Since $P\left(C, C^{\prime}\right) P\left(C^{\prime}, C^{\prime \prime}\right) P\left(C^{\prime \prime}, C\right)=I$ we have:
Lemma 4.1. $q_{1}=1, \quad p_{2}=-1, \quad r_{2}=1$ and

$$
p_{i}=-q_{i}=r_{i} \quad \text { for } 3 \leq i \leq n
$$

Lemma 4.2. $p_{i} \neq 0 \quad$ for $2 \leq i \leq n$.

Proof. Fix two cones C and C^{\prime} and $P\left(C, C^{\prime}\right)$. We take another $C^{\prime \prime}$ successively and calculate in the above way. Then we have $p_{i} \neq 0$ for $2 \leq i \leq n$.

Lemma 4.3. We may assume that $p_{i}=1$ for $1<i \leq n$.
Proof. Since $p_{i} \neq 0$ for $i \geq 2$, we take

$$
\sigma(C)=\sigma\left(C^{\prime}\right)=\left(\begin{array}{lll}
1 & & 0 \\
& p_{\mathrm{e}} & \\
& & \\
0 & & p_{n}
\end{array}\right)
$$

and replace (m, P) by an equivalent pair using these $\sigma(C), \sigma\left(C^{\prime}\right)$. Then we have

$$
P\left(C, C^{\prime}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
1 & 1 & & 0 \\
\vdots & & \ddots & \\
1 & 0 & & 1
\end{array}\right)
$$

Hence we may assume that $p_{i}=1$ for $1<i \leq n$.
If $P\left(C, C^{\prime}\right)$ is in the above form, then $P\left(C^{\prime}, C^{\prime \prime}\right)$ and $P\left(C^{\prime \prime}, C\right)$ are naturally determined if m in (I) is given. Therefore P in (m, P) is determined for every pair of cones in $\Delta(n)$. Hence, for each indecomposable T-linearized vector bundle of rank n, P is unique up to equivalence (III). Therefore, for any given m in (I) which we know by (3) of Corollary 3.5, an indecomposable T-linearized vector bundle is uniquely determined if it exists.

Theorem 4.4. Let E be a T-linearized vector bundle defined by the sequence
(*)

$$
0 \longrightarrow \mathcal{O}_{\boldsymbol{P}_{n}} \xrightarrow{f}{\underset{i=0}{n} \mathcal{O}_{\boldsymbol{P}_{n}}\left(a_{i}\right) \longrightarrow E \longrightarrow 0}_{\longrightarrow}^{\longrightarrow}
$$

such that f sends 1 to $\left(X_{0}^{a_{0}}, X_{1}^{a_{1}}, \cdots, X_{n}^{a_{n}}\right)$, where X_{0}, \cdots, X_{n} are homogeneous coordinates of \boldsymbol{P}^{n} and a_{0}, \cdots, a_{n} are positive integers. Then E is an indecomposable vector bundle.

Proof. Suppose E is decomposable and let $E=E_{1} \oplus E_{2} \oplus \cdots \oplus E_{l}$ with $l \geq 2$ be a decomposition of E into indecomposable vector bundles. Every indecomposable component E_{i} is T-equivariant by virtue of the

Krull-Schmidt Theorem (see [1]). Since $\operatorname{rank}\left(E_{i}\right)<n, E_{i}$ is necessarily a line bundle by Corollary 3.5. Hence E is a direct sum of line bundles and we may let

$$
E=\mathcal{O}_{P n}\left(d_{1}\right) \oplus \mathcal{O}_{P^{n}}\left(d_{2}\right) \oplus \cdots \oplus \mathcal{O}_{P n}\left(d_{n}\right)
$$

for $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. We may assume that $a_{0} \leq a_{1} \leq \cdots \leq a_{n}$. By tensoring the sequence ($*$) with $\mathcal{O}_{P^{n}}(-k)$ for $k>0$ we have

We have a contradiction, if we take $k=a_{n}$ when $a_{n}>d_{n}$ while we take $k=d_{n}$ when $a_{n}<d_{n}$. Hence we have $a_{n}=d_{n}$. Similarly, we have $a_{i}=d_{i}$ for $1 \leq i \leq n$. By $(*)$, we have $\operatorname{det}(E)=\mathcal{O}_{P^{n} n}\left(\sum_{i=0}^{n} a_{i}\right)$, which is equal to $\mathcal{O}_{P n}\left(\sum_{i=1}^{n} d_{i}\right)$. Hence $a_{0}=0$ and (*) is split, a contradiction. Therefore E is indecomposable.

If we take $a_{0}=a_{1}=\cdots=a_{n}=1$ in Theorem 4.4, then the T-linearized vector bundle E is the tangent bundle $T_{P^{n}}$ for P^{n}.

Corollary 4.5. $\quad T_{P n}$ is indecomposable.
By short calculation, we have

$$
m\left(\varphi_{i}\right)=\left(-a_{i}, 0, \cdots, 0\right) \quad \text { for } 0 \leq i \leq n
$$

for the T-linearized vector bundle E which is defined by (*) in Theorem 4.4. Therefore we have:

Theorem 4.6. An indecomposable equivariant vector bundle of rank n on $\boldsymbol{P}^{n}(n \geq 2)$ is isomorphic to $E(d)$ or $E^{*}(d)$ for some integer d, where E is defined by the sequence (*) in Theorem 4.4 for some positive integers a_{i} $(0 \leq i \leq n)$.

References

[1] M. F. Atiyah, On the Krull-Schmidt Theorem with applications to sheaves, Bull. Soc. Math. France, 84 (1956), 307-317.
[2] J. Bertin et G. Elencwajg, Symétries des fibrés vectorieles sur \boldsymbol{P}^{n} et nombre d'Euler, Duke Math. J., 49 (1982), 807-831.
[3] R. Hartshorne, Stable vector bundles of rank 2 on P^{3}, Math. Ann., 238 (1978), 229-280.
[4] T. Kaneyama, On equivariant vector bundles on an almost homogeneous variety, Nagoya Math. J., 57 (1975), 65-86.
[5] Kempf and Mumford, Toroidal embeddings, Springer Lecture notes 339.
[6] T. Oda, Torus embeddings and applications, Tata Institute of Fundamental Research 58, (1978).
[7] T. Oda and K. Miyake, Almost homogeneous algebraic varieties under torus action, Manifolds Tokyo 1973, 373-381, Proceedings of International Conference on Manifolds and Related Topics in Topology.

Department of Mathematics Gifu College of Education Yanaizu-cho Hashima-gun
Gifu 501-61, Japan

[^0]: Received August 23, 1986.
 Revised April 28, 1987.

