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DEGREE OF APPROXIMATION 
BY RATIONAL FUNCTIONS 

WITH PRESCRIBED NUMERATOR DEGREE 

D. LEVIATAN AND D. S. LUBINSKY 

ABSTRACT. We prove a Jackson type theorem for rational functions with prescribed 
numerator degree: For continuous functions/: [—1,1] —> R with t sign changes in 
(—1,1), there exists a real rational function Rin{x) with numerator degree t and de
nominator degree at most n, that changes sign exactly where/ does, and such that 

l l f - K f J w - i . i ] < C ( £ + l ) 2 ^ ( / ; i ) . 

Here C is independent of/, n and I, and u^ is the Ditzian-Totik modulus of continuity. 
For special functions such as/(jc) = sign(jt)|jt|°\ we consider improvements of the 
Jackson rate. 

1. Introduction. In [6], Levin and Saff have investigated the degree of uniform 
approximation on a finite interval /, of real functions/ continuous on /, by reciprocals 
of real and complex polynomials. They have immediately made the observation that in 
order to approximate/ by reciprocals of real polynomials,/ must keep a fixed sign in /. 
Thus they were compelled to use complex polynomials whenever/ had a sign change in 
/. Their work has been extended in part in [4] and in [1], but always under the assumption 
that/ has no sign changes in /. We shall allow the function/ to have finitely many sign 
changes in /, but rather than approximating by reciprocals of polynomials (an impossible 
task), we shall have in the numerator a fixed polynomial of degree t that changes sign 
with/. For this type of rational approximation, we prove a Jackson type estimate. We 
also investigate some special functions that admit a much better degree of approximation 
than is guaranteed by the Jackson rate. 

For simplicity of notation, we take / = [—1,1]. We state our main results in Section 2 
and their proofs are given in Sections 4 and 5. In Section 3, we state and prove some 
auxiliary results, notably Theorem 3.1, which is crucial to the proofs, and which we 
believe is of independent interest. We conclude with some examples in Section 6. 
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620 D. LEVIATAN AND D. S. LUBINSKY 

2. Main results. Let 7r„ denote the set of polynomials of degree at most n with 
real coefficients. Our main result is the following Jackson-type theorem involving the 
Ditzian-Totik modulus of continuity off in [—1,1]. Namely (see [2]), with 

<j>(x) := V l - J c 2 , xe [-1,1], 

we set for t > 0, 

u<!>(/', t) = sup sup \f(x + -<t>(x)) -f(x- -<j>(x) 
Q<h<* JC±|0(X)G[—1,1]' 2 r v V J\ 2 

THEOREM 2.1. There exists an absolute constant C with the following property: If 
f G C[— 1,1] changes sign exactly I times m (—1,1), say atb\,b2,...9bt, then for each 
n > 1, there exists a polynomial pn G i\n, having the same sign as f in (/?£, 1), and such 
that for x G [—1,1], 

(2.1) \f(x) 
Pn(x) 

<c(£ + i ) 2 ^ ( / ; -
Y\ n 

Note that in particular C is independent of/, n, £, b\, b^,..., Z?£ and JC. For £ = 0, the 
theorem reduces to the result of Leviatan, Levin and Saff [4]. In fact, our proof depends 
very heavily on the result of [4], Obviously, the minimal dependence on the number of 
sign changes I in the right-hand side of (2.1) would be of interest. Can (£ + l)2 be dropped 
altogether? 

If/(jc) = sign(x)|jc|a, 0 < a < 1, then by Theorem 2.1 / is uniformly approximable 
by x/pn(x) at the rate of n~a. However, if a > 1, then (2.1) only guarantees the rate ri~x. 
Our next result shows that we can do much better if a > 1, and that in fact, for a > 1, 
the rate n~a is attainable and is best possible. (The case a — 1 needs no discussion). Let 
us set 

E\n(f) := inf \\f - RinWi^i-ui], 

where the infimum is taken over all rational functions of type (1, n). Then we have: 

THEOREM 2.2. Let a > 0. Then there exists an absolute constant C such that if 

/ (*) := sign(x)K, * E [ - 1 , 1 ] , 

then for n > 1, 

(2.2) EXn(f) < cm«{i.«}„-«. 

Moreover for a > 1, (2.2) is best possible in the sense that there exists a constant Aa 

such that for n > 1, 

(2.3) Ei„(f)> Aan~a. 
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It is interesting to compare Theorem 2.2 with Theorem 2.3 in [6]. Our technique 
in proving (2.2) for a G (0,1] is based on the technique of Section 3, and that for 
a > 1 is based on an idea of Levin and Saff [6]. For a e (0,2], it is possible to give a 
different proof based on the Dombrowski-Nevai formula (applied in the special case of 
the Legendre weight) [3], but we omit this. 

3. Auxiliary lemmas. We need the following auxiliary result, which is of indepen
dent interest: 

THEOREM 3.1. There is an absolute constant C > 0 with the following property: Let 
— 1 < b\ < Z?2 < • • • <bi < 1, and set 

p(x):=ll(x-bj). 

Then there exists forn >3£, a polynomial S(x) of degree < n such that for x G [—1,1], 

1-b2 

S(x) { n j=l \x-bj\ J 

We emphasise that C is independent of n and I and the location ofb\,b2 — -b£. The 
proof of Theorem 3.1 requires a few lemmas. In the sequel, we use ~ in the following 
sense: If {cn}^x and {dn}™=x are sequences of real numbers, we write cn ~ dn if there 
exist positive constants C\ and C2 such that 

C\ < cn/dn < C2, n> 1. 

Similar notation is used for functions and sequences of functions. We also use C, C\, C2, 
to denote constants independent of n and P G 7rn. The same symbol does not necessarily 
denote the same constant in different occurrences. 

LEMMA 3.2. There exists n\ and C such that for n > n\ and \b\ < cos(^), there 
exists a polynomial Vn^ of degree < n — 1, such that 

(3.2) v„,^) = 1 = IKfclkr-uh 

and 

(3.3) 1^(01 <C ,, ??, t£[-l,\]\{b}. 
n\t — b\ 

PROOF. Vnh was constructed in Proposition 13.1 in [5]. 
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LEMMA 3.3. Forn > n\ and \b\< cos(^), define 

(3.4) RnJb(t) := jf Vlb(u) du J fb Vlb(u) du, t G R. 

Set 

(3.5) cnJb := £ Vlb(u) du J fb V2
nJb(u) du. 

(i) Rn,b(u) has the same sign as u — b. 
(ii) Uniformly for n > n\ and \b\ < cos(^), 

(3.6) cn,b ~ 1. 

(Hi) There exists C such that for n > n\ and \b\ < cos(^), 

(3-7) l l ^ l l w - i . i ] < C; 

(3.8) Rn,b(t)-l<C-.—-, r e ( M ) ; 

n\t— b\ 

and 

(3.9) \RnAt) + cnJ,\ < C , ^ r G (-1,*). 

PROOE (i) This follows directly from the définition of Rn^. 
(ii) By the Bernstein and Markov inequalities, for s G [— 1,1], 

ynr?" B ~ - , J VT • s 

say. We first show that 

(3.10) \s - b\ < X-Xn(b)implies| VnJt,(s)\ < 2/Xn(b). 

For this it suffices to show that 

(3.11) \s-b\ < \\n(b)implies 1 / Xn(s) <2/Xn{b). 

Now for such s, note that 

l-s2= \-b2+b2-s2 

>l-b2-^Xn(b) 

7T 1 1 1 
Xn(b){nVl-b2--] > x „ ( / , ) ( „ s i n | - - - ) > -Xn(b) 
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by the inequality sin v > |v, v G [0, | ] . Then 

l - ^ 2 XnW/2 

So we have (3.11) and then (3.10). Then for \t — b\ < \xn(b), there exists s between t 
and Z? such that 

l>Vn,b(t) = Vn,b(b)-V'nb(s)(t-b) 

>l - (2 / X „ (* ) ) (^Xn(* ) ) = l /2 , 

by (3.10). Then 

(3.12) / Vlb(u) du~ , V2 (M) du „ Xn(b) 
Jb Jb-\xn(b) 

Note that 

1 - (b+X-Xn(b)) > (1 - * ) ( ^ ) - }X*(*) 

so ft + Ix/iW < !• Similarly, ft - | x«W > - 1 . Moreover, by (3.2) and (3.3), 

(3.13) / ' V̂  (H)dM< f1 m i n l l . C i i ^ n - l du<\„{b) f°° mm{\,C\ls}2ds, 
J— 1 ' ./ —1 I |W — /? | J J—oo 

by the substitutions = (u — b)/xn(b). So we have (3.6). 
(iii) Now for w G [-1,1], 

\Rn,b(u)\ < £ V2
nJb(u)du/ fb Vlb(u)dM 

<J_xVlb{u)du/)b Vlb(u)du<Cu 

by (3.12) and (3.13). So we have (3.7). Next, for t > b, (3.2), (3.3) and (3.12) yield 

\Rn,b(t) ~ 1| = J / ' Vlb(u)du/ fb Vlb(u)dlt\ 

- / m i n | 1 ' C , ( ^ } *>/&*><») 
<Xn(b)^_h)/xn(b)min{l,Q/s}2ds/(C2Xn(b)) 

<CiXn(b)/(t-b) = Ci 
Vl-b2 

n\t-b\ ' 

so we have (3.8). The proof of (3.9) is similar, one estimates for / < b 

r - l 
|#«,e(0 + c„,(,| = l'_Vlb{u)duj I Vlb(u)du\. 

The main part of Theorem 3.1 is proved in the following lemma, which is the case 
= 1 of Theorem 3.1: 
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LEMMA 3.4. There exists C\ with the following property: Forn > 1 andb € (—1,1), 
there exist polynomials Sn^ of degree < 2n + 1 that are positive m [—1,1] and such that 

(3-14) I M w - , . , ] < C 

and for u E [—1,1], 

\u-b\ [ Vl -b2 

(3.15) 0 < 1 - J 7 < min 1, C{ Sn,b(u) ~~ \ n\u — I 

C\ is independent ofn, b and u. 

PROOF. We consider two ranges of b: 

CASE I: \b\ < cos(^). Let n\ be as in the previous lemma. For n < n\, we can take 
Sn£ to be the constant polynomial Snj — 2. It is easy to see that (3.14) and (3.15) are 
satisfied for n <n\\ For 

0<1-J^=4<1 
- 2 -

and 
Vl-b2 sin(7r/(2ni)) 
n\u — b\ ~~ 2n\ 

and so we need only make C\ in (3.15) large enough (depending only on n\). So in the 
sequel, let us assume that n>n\. We define a linear function 

Ln(t) = 2({±fst) - 1, 
V 1 + Cnh J 

which has the property 
Ln(-cnJb) =-V, Ln(l)=l. 

This linear map will compensate for the fact that Rn^ approximates — cn^ and not — 1 in 
[-1,£). Note that 

a bound independent of n, b and t. Let us define 

SnJb(u) := (u - b)Ln(Rn,b(u))+KVl-b2/n, 

where K will be chosen sufficiently large later. Let C have the meaning in (3.7), so that 
C> 1. Now for w G [ M l , 

\(u - b)Ln(Rnj,(uj) -\u-b\\ = \u-b\ \Ln(Rn,b(u)) - Ln(l)| 

<\u-b\ | |L^ | |L o o [_ c ,q |^(w)- 1| 

< 2CVl - b2/n, 

by (3.8). Let us choose K > 2C. Then 

(K - 2C)Vl-b2/n < SnJb(u) -\u-b\< (K + 2C)V\ -b2/n, 
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and hence 
0 < 1 _ I""*! < (K + 2Qy/T^¥/n 

Since Snj,(u) > \u — b\, we obtain (3.15). Next, suppose that u G [—l,b). Recall that 
Ln(-cnj,) = - l .Then 

\(u - b) Ln(Rnj,(uj) -\u-b\\ = \u-b\ \Ln{RnJb(u)) - Ln{-cn,b)\ 

<\u-b\ \\L'n\\L^c,c\\Rn,b(u) + cn,b\ 

< 2CVl - b2/n, 

by (3.9). The rest of the proof is the same as for u> b. 

CASE II: 1 > |&| > cos(^). Let us suppose that 1 > b > cos(^), and set 

Sn,b(s) '•= b-s + en, 

where 
en := 2irVl -b2/n. 

Note that 
Vl-b2 < sinf •£-) < ^-, 

\2nJ 2n 
so 

(1 - b)/en < (1 - b2)/en = ny/l-b*/(2i0 < 1/4. 

Then for s < b, 
Snj,(s) = \s — b\ + en, 

so 
\s-b\ _ en 

Snjb{s) \s-b\+6n' 

The right-hand side is non-negative and admits the upper bound 

en ) f 2nyJ\-b2 

min < 1, -. 77 > = min < 1 
\s — b\ J ( n\s — b 

so we have (3.15) in this case. Next, for s G (b, 1), 

\s-b\ <(l-b)<en/4, 

so 

and then 

3 
Sn,b(s) = —\s - b\ + en > ~en > 3\s - b\, 

o < i - f ^ < i . 
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Finally for such s, 

^ " ^ > y^ER > ___L_ > 1 
n\s-b\ n\\-b\ ny/\ -b2 TT' 

so in this case (3.15) holds trivially. Finally, 

| | ^ | | L o o [ - i , i ]<2 + e n < 2 + 27r, 

so (3.14) also holds. • 
We can proceed to the 

PROOF OF THEOREM 3.1. Recall that we assume n > 3L We let [x] denote the 
greatest integer < JC, and with Sn^ as in the previous lemma, set 

t 

S(x) := I I [̂n/(3£)],̂ -W-

Then by the previous lemma, S is positive in [—1,1] and has degree at most 

2 2 1 
l(2[n/(30] + l) < x " + t < -n + -n = n. 

Moreover, from (3.15), for 1 <j < I and* G [—1,1], 

S[n/(3t)],bj(x) > \X~ ^/'I» 

SO 

and hence 

S(x)>U\x-bj\ = \p(x)\, 
7=1 

0 < 1 - M < 1 . 
S(x) -

Next, (3.15) also gives 

i - W = i - n | i - f i - ±x~bjl 
S(x) j=\ \ V S[n/(3«)],fc/x) 

<l-nf l -min( l ,C 2 €^ -UÏ 
; = i l I n\x-bj\)) 

\\-b] 
<J2mmll,C2fA 

where we have used the inequality 

i-Aa-»)<£». 
7=1 7=1 

which is valid for v7 G [0,1], 1 < j < L (This is easily proved by induction on I). 
Together with our earlier bound, this completes the proof of Theorem 3.1. • 

We need two lemmas concerning the ^-modulus of continuity: 
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LEMMA 3.5. There exists an absolute constant C such that for s J E [—1,1] and 
fec[-hi], 

(3.16) \f(s)-f(t)\mm{l,_^ f ) <C^(/;^). 
n\s —1\ 

PROOF. Recall that <j>(t) = Vl -t2, te [-1,11. Let A denote the left-hand side of 
(3.16), and let 

a := 0 + 0/2; |s - t\ =: /z0(a). 

If firstly h < 1 /«, we have 

A .. .\ „/ h 
A < [/(.) -f(t)\ = \f(a + - # i ) ) - / ( a - -</>(<*)) 

< a ; ^ ; f c ) < a ; ^ / ; i ) . 

If h > 1/ft, we have 

\f(s)-f(t)\^A -r^^iS\h) 
(3.17) A < -vT^s2 < ~y,Y\'<Ks). 

n\s — t\ nh(j)(a) 

Here by homogeneity properties of uj^{f\ h) [2, Theorem 4.1.2, p. 38] and asnh> 1, 

^(f;h)/(nh)=^{f;nh^)/(nh) < Ca;0(/;^). 

Also assuming that, for example, a > 0, we have 

</>(tf)2 = 1 - a2 > 1 - a = i ( l - j) + i ( l - 0 

1 1 1 
> 2 ( 1 - * ) > 4 0 - ^ ) = 4 ^ ) -

Substituting these last two estimates into (3.17) yields (3.16) for h > 1 jn. m 

LEMMA 3.6. There exists an absolute constant C with the following property: If 
f G C[— 1,1] has a zero in [—1,1], then 

[A*) |<^( / ;2 \ /2 ) V * e [ - i , i ] . 

PROOF. Let/(Z?) = 0. Fix x £ [—1,1] and write a := \{x + b)\ h<j)(a) := \x - b\. 
Then 

\f(* [f W ~f(b)\ = [f (fl + ^( f l ) ) - / ( * ~ ^ ( f l ) ) <^(f\h). 

We now estimate /i. Note that the last part of the previous proof shows that 

<Ka) > ^ W ; <Ka) > \<f>(b). 
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If firstly x and b have the same sign, say both are non-negative, then 

h = 
(l-x)-(l-b) 

<Ka) 
< 

max{l — x, 1 — b} 

\n^-x A - b \ ^^ [l-x1 l - è 2 l „ 

^m a X(2W'2W|-2 m a X(7(^ ' -W|-2-
Similarly if both x and b are negative. If x and b have opposite sign, and say a is non-
negative, then 

m 2 = 1 - a2 > 1 - a = 1(1 - x) + i ( l - b) > i , 

as 1 — JC and 1 — fr are non-negative, and at least one is > 1, so 

h = \x~b\/<j>{a)<lV2. m 

4. Jackson type estimates (Proof of Theorem 2.1). 

PROOF OF THEOREM 2.1. We consider two ranges of n: 

CASE l:n>6L Let - 1 < b\ < b2 < • • • < bt < 1 and/ G C [ - l , 1] change sign 
exactly at bj, 1 <j < L We may assume that/ is positive in (/?£, 1). Let 

p(*):= ]}(*-&,•). 
7=1 

Note that if pn(x) is a polynomial positive in (—1,1), then 

/(*) 
p(x) 

Pn(x) 
l/wi IPW 

Pn(x) 

so this suggests that we set 

pn(x) := 5[n/2]W tf[«/2](*X 

where S[n/2]W is the polynomial of degree <n/2 of Theorem 3.1 approximating |pQc)|. 
(Recall n/2 > 3£, so Theorem 3.1 is applicable). We choose U[n/2](x) to be a polynomial 
of degree < n/2 such that 

(4.1) \f(x)\ - <Cu (w=;)-
Here C is an absolute constant, and U[n/2] exists by Theorem 1 in [4]. Since 

"0(1/1 ;0 < " # ; 0 < 2^([f|;0, * G (0, l], 

we can replace |/| b y / in the right-hand side of (4.1). According to Theorem 3.1, 

^[n/2]W I n Pi \X-bj\ 
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Then 

m-
p(x) 1 

Pn(x) I 
\f(x)\ -

JPWII 

^«i™"i''?é^|*^(/^). 
as |p|/5[n/2] < 1 a n d by (4.1). Here 

(4.2) 
\f(x)\ min( 1, — £ 1 -L < C l £ E W) -f(bj)\ min 1, V 

j=\ \x-bj\ y=i n i x — Z?7 

<C2^(/; i ) , 
by Lemma 3.5 and as/(Z?y) = 0, 1 <j < L We have the required estimate (2.1). 

CASE II: n < 6£. Note that a s / changes sign, w^ff; 3) > 0 and so we can choose 
pn(x) to be a positive constant so large that for x E [—1,1], 

\f(x) 
p(x) 

Pn(x) 
<ïf(x)\ + -7-<2^(f;3\ 

Pn\X) 

by Lemma 3.6. By the homogeneity property of u^, we obtain 

2^ ( / ;3 ) = 2 ^ ( / ; 18* • ̂ ) < C ^ ( / ; ^ ) < C ^ ( / ; ± ) , 

as rc < 6£. Here C is an absolute constant. Again, we have (2.1). • 
We remark that the last few lines of Case I of the proof easily admits the following 

improved estimate for the right-hand side of (4.2): 

<C2^(/;i), 
which leads to a marginal improvement of (2.1). 

5. Approximation of sign(x)|x|a (Proof of Theorem 2.2). Since for 0 < a < 1, 
the assertion (2.2) follows easily from Theorem 2.1, we shall restrict our attention to the 
case a > 1. We first prove (2.2) and then (2.3). 

PROOF OF (2.2) OF THEOREM 2.2. We follow an idea of Levin and Saff [6]. Let 

rn{t) := f-2(Tn(t)/tf, 

where n is odd, Tn is the Chebyshev polynomial of degree n, and k is the smallest integer 
satisfying k > a — ^. Since a > 1, rn is integrable on [0,1], so we set 

1 1 /* 
Pn(x) 1= a_l Tn(t)dU X>0, 
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where 
C/i := j0 rn(t)dt, 

mdpn(— x) — pn(x). As pn is an even polynomial on [—1,1], we may consider x > 0. 
Firstly, 

_ L _ j * - i =*«- i l\n{t)dtl [Xrn(t)dt>0, 
PnW Jx I Jo 

and so 

(5.1) 
A : = ^ ( x ) -

Pn(x) 
= X 

Pn(x) 

xa j\n(t)dt/ j\n{t)dt. 

We now proceed exactly as in [6], but provide the details, to avoid confusion because of 
the different relation between a and k here to that of [6]. Note the following estimates [6] : 

Tnif) 
t 

Tn(t) 

If-}-
t 

< m i n { T , n [ , te (0,1]. 

^ ? e ( 0 ' s i nU ]-
These readily yield 

(5.2) 

and 

(5.3) 

^ ) < { ; „ _ 2
n

2 ; fe(o,i] 

rn(t)>Q2W-i, tS(0,an(±)l 

CASE I: x e [0, sin(f )]. Here 

j\n(t)dt<[iy+nrn(t)dt 
,1/n 

< flnnlkf-2dt+ f r 
~ JO h In 

2-2k 

Jlk+\-a „2k+\-a 

as 

(5.4) 

Next 

Then from (5.1), 

a — 1 2k + 1 — a 

2k + 1 - a > a. 

<2 n 

dt 

2k+\-a 

a — 1 

- 2 \ 2 * 2 ^ 2k* 
j f ^ -M; ) " " j f ^ = (;) " 

.a-1 

a— 1 

oSA£mV-^m^-^m\„- , 
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CASElI:xe(sin(f;), 1]. Here 

/ ' rn(t)dt < fl f-*-»dt < . f " " < — 
Jx Jx 2k +1 — a a 

l „i v-a—1—2& v.a— 1— 2k 

by (5.4). Also 

rsin(7r/(2«)) rx /*sin(7r/ (in)) 

yo Tn(t)dt>Jo rn(t)dt 

>(2)V/- 1 /V^>(2f^^. 
VTT/ JO \TTJ a - \ 

7T\^a-l _ „ , ^[2k+l-2a] 
Then 

/ 7T \ z/c OC — 1 

0 < A < ( M -n~a(nx) 

* (ï) """• 
as nx > 1 and 2£ + 1 — 2a > 0. • 

PROOF OF (2.3) OF THEOREM 2.2. First observe that if R(x) = (x + b)/Q(x) is a best 
approximation to/(x) = sign(x)|x|a from the real rational functions of type (l,n), then 

£i«<f)=ll/T-*lk,[-i.i] 

= l l - [ f ( - j f ) - * ( - * ) ] | k [ - u ] 

HN-(-*-*>)IL-,..r 
By uniqueness of the best approximation, we have R(x) = —R(—x). Then 

Q(-x) = x-b 
Q(x) x + b' 

Ifb^O, then this implies that Q(x) = (x + b)P(x), which in turn yields 

-P(-x) _ 
P(x) 

so P is odd. Then R(x) = 1 /P(x) has a pole at 0, a contradiction. So b = 0, and 

R(x) = x/Q(x). 

Since /? is odd, it follows that Q is even, that is 

R(x) = x/Snix2), 

where S„(-) is a polynomial of degree < njl. Then 

£ i„ ( / )= | | x a -x /S„ (x 2 ) | | U 0 , i ] 

= \\tal2 - V?/S„(0|k[o,i]. 
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Assume that as n —» oo through a subsequence, 

6n:=Eln(f)n
a-+0. 

Then for such n, and for t G [0,1], 

(5.5) ta'2 - 5nn-a < y/i/Sn(t) < ta/2 + ènn'a. 

It then easily follows for such n that 

and by the Bernstein-Walsh inequality, 

(5.6) ||5„||wo.J] < C2||S»||z«[B-M] < Cma-K 

But fixing T/ > 0 and setting t = (r]/n)2 in (5.5) yields 

l/Sn((ri/n)2)=n-a+lr1
a-l(l+0(en)) 

and hence, for large enough n, 

Sn((nlnf)>na-\x-al2. 
For large enough n, and fixed but small enough 77, this contradicts (5.6) since 1 — a < 0. 
So we have completed the proof of Theorem 2.2. • 

6. An example. Let 

f(x):=l\sign(x-bj)\x-bJ\
(X^ 

7 = 1 

where - 1 < Z?i < £2 < • • • < bt < 1 and a3 > 0, 1 < j < L If b{ > - 1 and ht < 1 
and we let 

a := min or,-, /3 := max a7, 

then for each n > 1, there exists a polynomial pn G 7rn such that 

(x - b\)(x - b2) - -(x - bi) 
(6.1) W PnW 

- Cn~a, 

where C = C(^, I) depends only on (5 and t. However, if b\ — — 1 or bi = 1 or both, 
then in the left-hand side of (6.1) we need take only the product of the factors x — bj 
corresponding to —1 < bj < 1. At the same time in the definition of a, we may replace 
a\ by 2a\ or a^ by 2ai, respectively, or both. This follows from the following inequality, 
which is easily proved by induction: For any positive polynomials pjn, 1 < j < £, we 
have 

I , (x - b\)(x -b2)--(x- bt) | 
P\n(x)p2n(x) • • 'Pln(x) 

< 2(£-1)/3+1 é |s ign(x - bj)\x - bp 
7= ill 

X — i 

Pjn(x) LoJ-Ul 

To each of the terms involving bj, — 1 < bj < 1, apply the estimate of Theorem 2.4, 
while if b\ — — 1 or bi = 1, we use the Levin-Saff estimate ((2.7) in [6]). Note that in 
applying any of these estimates, we first apply a linear transformation taking bj into 0. 
Obviously if a > 1, (6.1) is better than the rate guaranteed by Theorem 2.1. 
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